UAV Autonomous Navigation
in a GPS-limited Urban Environment

Yoko Watanabe
DCSD/CDIN

JSO-Aerial Robotics
2014/10/02-03
Global objective

Development of a UAV onboard system to maintain flight security and navigation & guidance capability for urban operation

GPS signal occlusion

- Alternative GPS-independent navigation system
 - Stabilization
 - GN&C functions
 - Mission continuation
 - Automatic return-to-base
 - etc.

- Path planning with GPS signal occlusion map
 - Safe path plan w.r.t. localization uncertainty
 - Sensor availabilities

A. Gorski «Understanding GPS performance in urban environments»
Objective

- Development of alternative back-up navigation system which estimates UAV absolute state by using onboard sensors other than GPS, given the last GPS-updated state
 - No dedicated sensors
 - No knowledge on environment
 - Low computation
 - Robustness

- In-flight validation on outdoor UAV helicopter
 - Onboard system integration with
 - flight avionics
 - onboard sensors
 - Closed-loop flight using existing GN&C functions with GPS signal cut-off
Vision-aided inertial navigation

- Stereo vs Monocular visions
- Pure vision vs INS-fusion
- Visual odometry vs Visual SLAM
- Filter vs Optimization (BA)
Vision-aided inertial navigation

- **Visual odometry**
 - Stereo vision
 - Monocular vision (motion stereo)

[Kelly 2007], [Kendoul 2009] and many others.

- Low computation
- Estimation drift due to absence of absolute measurement

- **Visual SLAM**
 - Loop-closure (memorization of feature points)

[Weiss 2012], [Chaudhar 2013] and many others.

- High computation + memory-use
- Estimation correction with absolute measurement

- Keyframe-based SLAM
 [Klein 2007] and many others.
Optical flow estimation

- Robust estimation of Affine model optical flow field (DTIM)
 - Feature point matching on a small window
 - RANSAC approximation
 - ~10Hz

\[\phi x_{p_k} = A_k x_{p_k} + b_k \]
Optical flow estimation

- vs. OpenCV

Mean of Estimation Error

~ Bias

Std. Deviation of Estimation Error

~ Noise
Onboard system architecture

Flight avionics

Flight Safety

Flight Management

Flight Guidance & Control

EKF

Low-pass filter

Serial com.

P/L processor

- AMD 4x1.5GHz
- Linux Debian

UAV

Flight Safety

communication

Flight Guidance & Control

Environmental information

Decision & Mission Planning

and/or

Advanced Guidance Law

Perception

Camera

Lidar

• AMD 4x1.5GHz • Linux Debian

µblox : 4Hz

GPS

Baro

SBG : 50Hz

INS

laser

alt.AGL

pos./vel

alt.MSL

filtered acc., angular vel.

6 dof state

50Hz

6 dof state + sensor measurements

operator commands
Onboard system architecture with GPS-independent navigation

- Flight avionics
 - Flight Safety
 - Flight Management
 - Flight Guidance & Control
 - EKF
 - Low-pass filter

Serial com. to P/L processor
- • AMD dual core 1.6GHz
- • Linux Debian

Flight mode request to Decision & Mission Planning
- and/or Advanced Guidance Law
- Perception + OF Estimation

Sensor measurements:
- Baro: alt.MSL
- INS: filtered acc., angular vel.
- EKF: pos./vel.
- Camera: optical flow
- Lidar: alt.AGL
- Serial com.: • AMD dual core 1.6GHz • Linux Debian

Operator commands to Flight mode request

UAV: laser, alt.AGL, pos./vel.
- **OF + INS + Barometer**
 - with or w/o laser (alt. AGL)
 - over a slope

![Graphs showing flight test results](image)
Closed-loop flight test results

- **GPS cut-off during WP tracking mission**
 - Rectangle trajectory 40 x 80 (m)
 - Constant heading into wind NW
 - 10m of WP-reach criteria
 - Flight distance (w/o GPS) ~ 320 (m)
 - Flight time (w/o GPS) ~ 130 (sec)
Closed-loop flight test results

- OF-estimated vs. GPS-estimated position and velocity
 - Position estimation error < 12m
 - Stable altitude estimation by barometer + laser
 - WP miss distance < 12m
Position and velocity estimation errors
Closed-loop flight test results with INS-only navigation

- Position and velocity estimation errors
 - Stabilization
 - 50 m of drift after 45 sec
 - Divergence in altitude control due to Vz estimation

Stabilization

50 m of drift after 45 sec

Divergence in altitude control due to Vz estimation
Closed-loop flight test results with INS-only navigation

- Position and velocity estimation errors
Summary for GPS-independent navigation system

- **Summary**
 - Development and in-flight validation of optical flow-based inertial navigation system
 - WP tracking mission continuation with GPS cut-off (switch navigation modes)

- **Perspectives**
 - Performance improvement
 - Different OF estimation algorithms
 - Different VINS algorithms
 - Demonstration of automatic return-to-base w/o GPS
 - Return-to-base by VO
 - Automatic landing with vision-based control
 - Reconfigurable navigation system
 - Sensor failure
 - GPS accuracy
Path planning with GPS signal occlusion map

Motivation

- Prediction of PDOP (Positional Dilution of Precision) of GPS at a certain time & location, from 3D obstacle map

UAV safe operation planning

- Avoid zones at high risk of GPS signal loss, if no degraded navigation mode is available
 - Use sensor availability map in path planning task
 - Choice of the best navigation mode

- Take more safety margin when using degraded navigation mode
 - Obstacle collision risk w.r.t. localization uncertainty
3D safe path planning problem

- **Objective** = find a *safe & short* path from A to B

- **Given**:
 - Environment model = 3D voxel occupancy map
 - N different UAV localization modes
 - Positional availability
 - Error propagation model

- **Collision criteria**
 - Minimum safety distance = ds
 - Uncertainty corridor = $(2\sigma + ds)$-ellipsoid evolution
 - Safe path = no interception between the corridor and occupied voxels

- **Minimizing function** = Volume of the uncertainty corridor
 - Path length
 - Integrated localization uncertainty
Path planning with localization uncertainty

- Ground mobile robot navigation with
 - Dead-reckoning
 - Landmark detection

- Collision risk-free minimum distance path
 - Sampling-based (PRM, RRT) : [Peppy 2006], [Luders 2013], [Bopardikar 2014] etc.
 - POMDP : [Candido 2010] etc.

The localization mode is imposed
Related Work (2/2)

- **Path and observation strategy planning**

- **Ground mobile robot navigation with**
 - Dead-reckoning
 - Landmark detection
 - 1 landmark by stereo
 - 2 landmarks
 - 3 landmarks

- **Two-stage planning**
 - Search for all collision risk-free paths with maximum allowable localization uncertainty
 - Viewpoint (and localization mode) planning on each path
3D safe path planner architecture

- **Point cloud data**
- **3D voxel occupancy map**
- **Safe path planner**
 - A*
 - Theta*
 - RRT*
 - RRT-Theta*
- **Localization models**
 - GPS/INS
 - INS-only
 - VINS
 - Landmark
- **Sensor characteristics**
- **Sensor availability map**

Mission objective

Guidance law

Flight plan generation

Flight plan

Node

Localization uncertainty
Example 1 : No VINS

- Path planning with GPS availability map
 - No vision-aided navigation mode available onboard

<table>
<thead>
<tr>
<th>Safe path planner</th>
<th>Cube</th>
<th>Wall Baffle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ fly over the obstacles to avoid no GPS zones

→ collisions due to divergence in localization error covariance
Example 2 : with VINS

<table>
<thead>
<tr>
<th>Uncertainty corridor</th>
<th>Cube</th>
<th>Wall Baffle</th>
<th>Cube Baffle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight plan</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INS-only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS / INS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VINS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remark : Dependence on optical flow measurement noise
Example 3: with VINS + Landmarks

<table>
<thead>
<tr>
<th>Uncertainty corridor</th>
<th>Cube</th>
<th>Wall Baffle</th>
<th>Cube Baffle</th>
</tr>
</thead>
</table>

Flight plan:
- INS-only
- GPS / INS
- Vision / INS
- Landmark 1
- Landmark 2

Remark: Alternate use of VINS and Landmarks → Fusion
Summary for 3D safe path planning

- **3D safe path planner**
 - Under uncertainty with multiple localization modes
 - Simulation studies with UAV obstacle field navigation benchmark
 - Preliminary flight test to validate onboard mapping and planning

- **Future work**
 - Dynamic path re-planning using sampling-based graph search (RRT*)
 - online mapping
 - supervision on real sensor availability and localization performance
 - Path planning with different guidance strategies
 - visual servoing (e.g. wall following etc.)