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Aircraft Subsystems 1 Conventional and All Electric

A Aircraft and equipment systems and subsystems are essential for the performance, safety,
controllability and comfort

Conventional Subsystems Architecture (CSA) Electric Subsystems Architecture (ESA)
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More Electric Aircraft (MEA) 1 An Intermediate Step

A Due to technological risk, the transition to All Electric Aircraft (AEA) will be progressive
A More Electric Aircraft (MEA) will appear in between
A Some subsystems, but not all, will be electric

A Such aircraft have already entered service i Airbus A380 and Boeing 787

A Question: Why do the A380 and B787 have different electrified subsystems?

A Question: How should the MEA designer decide which subsystems to electrify?

www.airbus.com

Two in -service

@& More Electric =D :

Aircraft
Airbus A380 Boeing 787
A Electrohydrostatic Actuators (EHA) A Electric (bleedless) ECS architecture
A Electrical Backup Hydraulic Actuators (EBHA) A Electric wing ice protection system (WIPS)
A Electric thrust reverser actuation system (ETRAS) A Electro Mechanical Brake System (EMBS)
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Consideration of Subsystems in Aircraft Conceptual Design
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Refined sizing method (Raymer, Aircraft Design: A Conceptual Approach, 4 th ed.[)

A Conceptual phase commercial aircraft sizing is driven by the design requirements:
A Payload & range requirements
A Operational requirements (TOFL, Vapp, CRMACH, etc.)

A The aircraft subsystems affect this process
A Aircraft empty weight (OEW)
A Engine SFC (shaft-power and bleed extraction)
A Drag increments (ram air inlets, etc.)
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Integrating Subsystems Design in the Conceptual Design Phase

A For conventional subsystems, the conceptual phase Weight of fight control system
1 - - 2
designer has access to a vast historical database of (ERmethed) _ 0,576
information We, = 56.01 {(Wp,)(gy)/100,000)

Weight of hydraulic, pneumatic, and
electrical systems ( Torenbeek method) @

A This database and regression equations provide a starting W. + W g " u.ounmﬁjl'z,

int f ) ) f sub iah hps
point for estimation of subsystem weights “here: W, is the empty weight in lbs

A The conceptual phase designer of AEA/ MEA _[ :f::;‘ft'gsn':ll:f;" }
A Wil not have access to such a historical parameters
database or regression equations J J
A Will have to account for significant [ Size / analyze ](_,[ Size / analyze I
interactions among subsystems p"’p”'s"::' System a"”f:"“'e
4 Dray For each;ubsvstem:
A Weight
A Conceptual phase design of AEA/MEA can be m ’ [ erverequirements ]
facilitated through a methodology where
. lterate to convergence I Model relevant components |

A subsystem sizing/analysis is done in

. ) | Identify sizing condition(s) |
parallel with that of vehicle and propulsor U Momatore s popogme eee |
A subsystem characteristics are fed back

into vehicle and propulsor analyses

Bleed req’ment and/or shaft-power req’ment
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Objectives and Proposed Approach

Define high-level
aircraft & mission

1. Develop / identify methods suitable for subsystem

}

- . . parameters
sizing in conceptual design phase
A\ 4
[ Size / analyze Size / analyze
. Isi t i hicl
2. Integrate methods into a framework that allows e e'"] [ it ] |
4 Drag For each subsystem:

comparison of the vehicle and mission level
effects of CSA and ESA architectures

4 Weight \l'
p Derive requirements |

I Model relevant components |

U Identify sizing condition(s) | C

Iterate to convergence

N

Bleed req’ment and/or shaft-power req’'ment

uate
t h

3. Demonstrate and eval
the design to capture
subsystem architecture changes

Simulate & propagate effects | f

Test case: single -aisle narrow -body aircraft

Parameter Symbol Value Subsystem/function CSA ESA
Wing reference area Sw 124.8 m? (1,343 ft?) Actuation subsystems
7 span bw 34.3 m (112.6 ft) Control surface actuation Hydraulic Electrohydrostatic
" sweep (25 % chord) Acsa 25.02 ° + Electromechanical
" aspect ratio Au 9.2 Landing gear actuation, Hydraulic Electromechanical
" taper ratio Aw 021 braking, nose-wheel steering
”  loading Wro/Sw | 622.5 kg/m?  (127.5 1b/ft?) - ’ - :
Sealevel static thrust Ty 942.9 kN (54,600 Ibf) Environmental control system Pneumatic Electric
Thrust-to-weight ratio Ts./Wro 0.3189 Ice protection system
Operating Empty Weight OEW 41,871 kg (92,310 1b) Wing ice protection Pneumatic Electrothermal
Maximum Takeoff Weight | MTOW 77,478 kg (171,201 1b) Nacelle ice protection Pneumatic Electrothermal
Payload Wpy 14,987 kg (33,040 1b) Taxiing Engine thrust Electric
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Control Surface Actuation

Flight Conditions

A Ailerons: FAR 25.3497 Rolling conditions (V,, V¢, Vp)

A Elevators: FAR 25.255i Out-of-trim characteristics

A Rudder: FAR 25.149 i Minimum control speed (V,ca)
FAR 25.35171 Yaw maneuver conditions

A Flight spoilers: Emergency descent at design dive speed (V)

A Ground spoilers: Extension at max rated tire speed

A High-lift devices: Extension at max flap extension airspeed (Vg)
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Load characteristics
A Ailerons, elevators, rudder i hinge moment coefficients 3l
A Flight & ground spoilers i hinge moment coefficients [

A High-lift devices i scaling wind-tunnel results 5!
(or matching specifications of existing actuator)

T Actuation Loads

Kruegers x 2
FIt. spoilers x 4 _l
¥

5\g\9 * A

ne
R
Gnd. spoilers x 4
Ailerons x 2

Kruegers x 2
[ FIt. spoilers x 4

Elevators x 2
TEF: trailing-edge flap ‘ ‘

Rudder x 1

Actuation requirements for baseline aircraft control surfaces

Control Surface | Actuating Load Rate #/Aircraft
Ailerons 4,200 Nm 60°/s 2
Elevators 7,600 Nm 60°/s 2

Rudder 8,200 Nm 60°/s 1
Flight spoilers 4,200 Nm 60°/s 8
Ground spoilers 3,800 Nm 40°/s 4
Trailing-edge flaps 51,000 N 102 mm/s 4
Leading-edge slats 6,300 N 60 mm/s 8
Krueger flaps 5,600 Nm 16°/s 4




Control Surface Actuation T Actuator Models

A

A
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Two types of electric actuators were modeled

A
A

Electrohydrostatic actuator (EHA)
Electromechanical actuator (EMA)

Based on control surface actuation
requirements (load, speed, stroke), actuator
models were created to estimate

A Weight 5] EHA EMA

A

[10] ) _
power Electrohydrostatic and Electromechanical Actuators [

The following association of actuators to
control surfaces was considered

A

> B D D

each aileroni 2 x EHA
each elevator i 2 x EHA
rudderi 3 x EHA

each spoileri 1 x EHA
each L/E devicei 1 x EHA
each T/Eflapi 2 x EMA

The conventional hydraulic system was not
modeled in detalil. Instead its weight was @
estimated from empirical relationships 2




