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Anumber of activities in aeronautical engineering rely on the availability 
of models to represent the real behavior of the aircraft. Let us quote, for 

example, the development of autopilots and synthesis of flight control laws, 
the study of the handling qualities, the fault monitoring process, the prediction 
of hazardous behaviors, or the implementation of simulators used to train the 
pilots and to validate hardware and software systems. The initial modeling 
derived from CFD, wind tunnel or ground tests is seldom reliable enough with 
respect to the requirements. Hence, the needed accuracy is finally achieved 
thanks to suitable identification techniques and to a set of peculiar flight tests. In 
addition, the complexity of the models has increased in recent years, along with 
more stringent accuracy requirements to satisfy the raising constraints of the 
new aeronautical devices which make use of these models; e.g., an increasing 
number of vibration modes in the low frequency range for flexible aircraft, or a 
larger complexity and non-linearity of the aerodynamical models in the rigid case. 
Hence, the variety of problems and models under consideration entails taking an 
interest in a wide range of identification techniques. These include basic methods, 
like least-squares or maximum likelihood and their variants, spectral analysis 
and estimators based on Kalman filtering, as well as more recent approaches 
like neural-based or subspace methods. Special care is given to the frequency 
domain formulation of the algorithms, especially in the flexible A/C case. Most of 
these methods are not directly usable as they are and need to be adapted to the 
peculiarities of aeronautics. Accordingly, this paper reviews the various issues 
related to the identification process when applied to such applications. These 
steps include data pre-processing, input design, time vs. frequency domain 
methods, model validation, etc., and are illustrated by industrial problems dealt 
with by Onera, for rigid as well as for flexible A/C modeling. 

Introduction 

The concept of model identification refers to a set of tasks required to 
determine, and then to tune, a suitable modeling, likely to explain the 
experimental behavior of a given system. This involves choosing the 
type of mathematical relationships linking the i/o observed variables 
(often denoted as structural identification), as well as adjusting the 
unknown parameters of these equations (denoted as parametric 
identification). The early developments in system identification date 
back to the seventies, but this topic remains the subject of new 
developments nowadays, especially for aeronautics. In this domain, 
the works concern the modeling of both rigid aircraft, described by the 
flight mechanics equations, and flexible aircraft where the structural 
deformations are taken into account.

A number of activities in aeronautical engineering rely on the 
availability of models to represent the real behavior of the aircraft. Let 
us quote for example the development of autopilots and the synthesis 
of flight control laws, the study of the handling qualities, the fault 
monitoring process, the prediction of hazardous behaviors, or the 
implementation of simulators used to train the pilots and to validate 
hardware and software systems. The initial modeling, obtained from 
Computational Fluid Dynamics, wind tunnel or ground tests, is seldom 
accurate enough with respect to the accuracy requirements. Hence, 
this accuracy is finally achieved thanks to suitable identification 
techniques and to a set of peculiar flight tests. Models have become 
increasingly complex in recent years, and there are more stringent 
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accuracy requirements to satisfy the raising constraints of the 
new aeronautical devices which make use of these models. In the 
framework of flexible aircraft for example, the new materials and the 
structural alleviation lead to an increasing number of vibration modes 
in the low frequency range, some of which are likely to interact with 
the rigid body modes. The identification of a flexible model, or even 
of a coupled one representing both the rigid and flexible components, 
thus becomes a much trickier task but is also more crucial than it 
was in the past. On the other hand, the aerodynamical models used 
for the rigid case are also becoming drastically complex since from 
now on they integrate several effects that were disregarded before, or 
simply because the airplanes themselves have become much more 
complicated. Let us quote A400M as an example, or A380 with an 
unprecedented proliferation of the control surfaces. We also need to 
point out a strong industrial constraint, which affects the identification 
process; the need to reduce the duration and cost of the identification 
tests, taking place during the first flights of a new airplane (both of 
these being significant), requires specific techniques to design and 
then to process this type of tests to be developed, without degrading 
the quality of the resulting models. 

One feature of the aeronautical domain is that we can rely on many 
physical models derived from aerodynamics, structural dynamics 
or flight mechanics. Quite often however, these models cannot be 
implemented into identification algorithms just as they are, because 
of high orders or strongly nonlinear behaviors. Hence, they require 
grey-box type simplified physical representations to be developed, or 
even to make use of intermediate black-box models, linear or nonlinear 
types. E.g., these submodels facilitate the modeling of multimensional 
aerodynamic nonlinearities, usually complex and poorly structured, 
and are also beneficial to the linear modeling of A/C aeroelastic 
behavior by means of polynomial transfer functions in the Frequency 
Domain (FD). In addition, some constraints should be respected 
during the process: the aircraft simulation will require continuous-
time differential equations to be integrated, a priori knowledge 
about the predicted A/C behavior should be considered, a physical 
understanding and interpretation of the results will remain mandatory 
and could induce additional constraints in the optimization process.
 
The variety of problems and models under consideration entails having 
a wide range of identification techniques available. Obviously, they 
include basic methods, such as least-squares or maximum likelihood 
(ML) and their variants, spectral analysis and estimators based on 
Kalman filtering (KF), as well as more recent approaches like neural or 
subspace methods. Special care is given to the FD formulation of the 
algorithms, especially in the flexible A/C case; working inside a limited 
frequency band allows a good part of the noise to be cancelled and the 
computational cost to be decreased noticeably, thanks to information 
compression. Most of these methods are not directly usable as they 
are and need to be adapted to the peculiarities of aeronautical problems 
(previously mentioned). For example, a very restrictive point comes 
from the requirement of coupling identification tools with industrial 
simulators, in order to enable model updating and to facilitate the 
implementation of the results. This is all the more restrictive because 
the simulators also suffer from increasing complexity, involving a drift 
of the computational costs which is hardly compatible with the number 
of simulations required by the identification procedure. Another major 
concern arises from the will to automate and systematize the test 
processing, in order to reduce its duration and to facilitate its progress. 
Indeed, the whole set of available flight tests represents a huge 

amount of data and hence some semi-manual steps of the process 
are especially tedious for the engineers responsible for sifting through 
the data. Automation also enables a global and joint processing of 
many tests, as well as the gradual introduction of new tests as they 
become available. For the flutter analysis of flexible A/C, a near real-
time processing is considered to open the flight envelope and again it 
results in strong constraints on the performances and the features of 
the tools to be developed.

On the other hand, the accuracy of the estimates issued from the 
identification algorithms is highly dependent on the frequency 
content of the input signals used to excite the system, in addition to 
the quality of the measurements which can be degraded by several 
types of errors (incorrect alignments, drifts, delays, calibration errors, 
etc.) superimposed on the usual noises and external disturbances 
(wind, turbulence). Even if the signal-to-noise ratio is satisfactory, an 
improvement can be achieved by taking advantage of the redundancy 
that usually exists between some of the available measurements 
(especially with aircraft instrumented for flight testing). Regarding the 
excitation signals, the common idea consists in looking for optimal 
inputs permitting the estimation accuracy to be improved, this 
optimization taking place by considering either single tests or multiple 
tests. This question can also be extended to minimizing the signals 
length while keeping a given level of accuracy, or even generalized to 
other types of criteria.

identification process

MODELS

- knowledge-based models
- black-box representations

MEASUREMENTS

- filtering and pre-processing
- consistency analysis
- estimation of wind and defects

METHODS

- time or frequency domains
- linear or nonlinear techniques

MANEUVERS

- optimization of input signals
- design of experiments

Figure 1 – Identification process and the Quad-M basics

To sum up, it appears that identification in aeronautics calls for 
various skills: flight mechanics, aerodynamics, structural dynamics, 
signal processing, estimation and optimization techniques. Their 
combination is absolutely mandatory to obtain a relevant model, in 
fine. These various aspects are depicted by the scheme in figure 1, 
which stresses that the identification process is located at the meeting 
point of the Quad-M basics (Maneuvers-Measurements-Models-
Methods) [14]. These will be detailed in the following sections and 
illustrated by a set of industrial applications resulting from Onera's 
activities in this field.

State-of-the-art and industrial context at Onera

Owing to its positioning and to its mission, Onera plays an 
intermediate role between academy and its main industrial partners. 
Within the framework of identification, as in others domains, this 
role presupposes that new promising methods will be investigated, 
adapted and transposed whenever necessary, and will finally be 
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evaluated through aeronautical applications. Since the early historical 
works of Landau [10], De Larminat [8] and Richalet et al. [51,55] in 
the seventies, the academic research in this domain has been active 
in France. Without claiming to be exhaustive in any way, several 
university specialists, such as E. Walter [75] and A. Benveniste [45] 
contributed especially to developing and promoting new techniques. 
In Europe, the Delft University of Technology also became renowned in 
the identification domain [50,72,74], as well as the Vrije Universiteit of 
Brussels [59] for modal estimation, without forgetting L. Ljung, one of 
the most famous European specialists in this topic [38]. With regard to 
aeronautical applications, the key players are obviously not so many; 
let us mention R. Jategaonkar at the DLR [24-26] and the E. Morelli/V. 
Klein [29,46-48] and R.E. Maine/K.W. Iliff pairs at NASA [41-43], two 
organizations that have a scientific scope and authority to perform 
activities similar to those of Onera. 

System identification was a very first activity for the Systems Control 
and Flight Dynamics Department (DCSD) of Onera. DCSD has 
been developing and implementing identification techniques since 
the beginning of the seventies [31,32] in various application fields, 
such as: industrial processes, robotics, marine and aerial vehicles. 
It is noteworthy that some of these methods can benefit more than 
one domain and that advances can often be transposed to other 
applications. For instance, the experience gained and strengthened 
in the aeronautical domain through airplanes and helicopters has 
allowed DCSD to identify many warships and submarines from sea 
tests (linear and nonlinear models), as required by the synthesis of 
their control laws [15,17]. Parallel to the aeronautical sector, this 
activity has represented a major area of application for Onera from the 
beginning of the eighties since, for 25 years, the autopilots of most 
French submarines, frigates and aircraft carrier were studied and 
carried out by DCSD. Besides these historical works, which lie beyond 
Onera's usual scope, DCSD has been working with French aircraft 
manufacturers (Airbus and Dassault Aviation) on the whole spectrum 
of themes presented in the introduction, applying them through a 
succession of industrial programs: from the A320 to the A380, the 
Rafale, UAVs, etc. Let us mention very briefly:

• A close cooperation with the Flight Mechanics and Simulation 
Department of Airbus has been running without a break for about 
30 years and has led to the implementation of several software in 
its identification tool unit for an operational use [37]. It is continuing 
nowadays through research programs aimed at improving the 
industrial process that allows the aerodynamic model to fit in the flight 
envelope as a whole. Indeed, the aerodynamic forces appear in the 
flight mechanics equations as nonlinear look-up tables depending 
on a number of variables (Mach number, angles of attack (AoA) and 
sideslip, configuration, dynamic pressure, etc.). Consequently, the 
identification task can be performed either within a linear (or weakly 
nonlinear) framework by processing only tests performed under similar 
flight conditions, or within a fully nonlinear framework by seeking to 
adjust the global modeling in an extended area of the flight domain.

• The transposition of some techniques developed for the civilian 
industry to military aircraft and drones was also considered a few 
years ago, during research programs involving Dassault Aviation. This 
work was intended to automate the industrial processes for identifying 
the models of new aircraft, a tedious task considering all of the load 
configurations. Appropriate techniques, suitable for dealing with 
unstable models (linear or nonlinear), were developed and evaluated 
from real flight data.

• The processing of the flight test campaign for flutter analysis 
is the subject of a cooperation with the Flight Tests Department of 
Airbus, which dates back to the mid-eighties and which has made 

progress in successive stages through more and more ambitious 
goals [64-71]: SISO identification at first, then SIMO (Single Input-
Multiple Outputs) implementation within the framework of the MEFAS 
project in the early 2000 s [57], and finally MIMO processing in the 
FIND project which is still underway. Hence, the real-time performance 
of DCSD approaches remains very competitive in comparison to other 
commercial products, such as the polyMAX method developed by the 
company LMS. As such, Onera was also involved in the European 
project FLITE2 which gathered many specialists in modal analysis 
(French, Belgian and Polish universities, laboratories), together with 
Airbus and Dassault Aviation. DCSD managed the working group 
TRAMPOLINE, which studied the continuous tracking of aeroelastic 
modes during the acceleration stages between two flight conditions. 

Input design and flight test optimization

Off-line techniques

Flight test protocols

As numerical simulation becomes widely used in aeronautics, 
the requirements regarding the accuracy and reliability of the flight 
dynamics models are increasing. To improve the representativeness 
of the models, flight test protocols are thus designed and flown to 
adjust some relevant coefficients of the predicted aerodynamic model 
to the real aircraft. However, the permanent concern of building more 
accurate models in a shorter time leads to this identification process 
being revisited, by designing optimal inputs. Such an optimization 
belongs to the field of Experimental Design (ED), which is basically 
aimed at defining experiments suitable for the modeling purpose. In 
our context, an experimental protocol gathering several input signals 
can thus be mathematically represented as:

( ){ }*, ( ) , 1 and [0, ]i
T T T iN u t N i N t TNΞ = ∈ = … ∈ (1)

In (1), TN corresponds to the total number of aircraft flight test 
maneuvers considered for aerodynamic parameter estimation, and the 
index i denotes the current maneuver with time duration iT . The input 
vector u ( )i t associated with the ith flight test can be either a single 
or a multiple control surface input signal. Optimal ED can thus be 
performed on the basis of criteria that characterize the uncertainty 
in the model parameters to be estimated, denoted by θ. Such cost 
functions depend on the estimator used to conduct the identification 
process. In particular, for any asymptotically unbiased and efficient 
estimator, a minimum achievable parameter standard deviation, also 
called Cramer-Rao lower bound [41], can be computed for each 
component of the vector θ. The problem of ED can thus be formulated 
as follows:
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In (2), integer un  (resp. yn ) corresponds to the number of non-linear 
constraints ( , )γΓ  (resp. ( , )λΛ ) that the inputs (resp. outputs) 
must satisfy in the design process due to flight tests safety: inputs 
energy, A/C loads tolerance, sideslip angle limitations… In problem 
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statement  (2), criterion J  can take, among other possibilities, the 
form of a non-linear scalar function applied to the Fisher information 
matrix F, s.t. ( ) ( ( , ))J F θΞ = Φ Ξ ∈R . F is calculated from the 
matrix of the model output sensitivities S(t) to the parameter vector 
θ s.t.:
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In (3), y(t) designates the outputs of the simulation model and the 
weighting factors np( ) *i ∈N  the number of measurement points 
available per flight test. R is a diagonal weighting matrix. An illustrative and 
general class of functions Φ is given by the following family ( *k ∈N ):

1
11( ( , )) [ trace ( ( , ) ) ]

if det( ( , )) 0  ( otherwise)

T k k
k F QF Q

p
F

θ θ

θ

−Φ Ξ = Ξ

Ξ ≠ +∞
(4)

where Q is also a weighting matrix. Other examples based on the 
mathematical notions introduced in equation (3) and commonly used 
in the literature are given by:

• ( )trace F which represents the amount of information available 
through the set of flight tests, but does not take into account the 
possible correlations between the effects;

• ( )( )log det F which is indicative of the global sensitivities of 
model outputs towards the aerodynamic parameters, collected for 
a given set of flight tests. Inputs that maximize this scalar norm are 
called D-optimal;

• ( )1trace F − which is equal to the sum of the variances of the 
parameter estimation errors. Inputs that minimize this criterion are 
called A-optimal;

• maxλ  of 1F −  which is equal to the maximum radius of the 
uncertainty ellipsoid. Inputs that minimize the greater eigenvalue of the 
dispersion matrix are called E-optimal.

As shown in (3)-(4), the objective function depends on θ which are 
unknown parameters. More general mathematical formulations (e.g., based 
on the expectation) can be used to introduce some given uncertainties 
on these parameter values. More details are available in [75] (see robust 
optimal experiment design). When the number of experiments TN is fixed 
a priori, the ED formulation (2) is reduced to an Optimal Input Design 
(OID) issue, which is unfortunately an infinite dimensional problem since 
U {u ( ) 1 }i

Tt i N= =   are functional decision variables. Consequently, 
solving OID requires an approximation by a finite dimensional problem 
using a non-linear programming approach. Input signals U of Ξ are thus 
parameterized in order to conduct a non-linear optimization. Despite this 
approximation, the resulting OID problem remains difficult to solve due to 
its global feature. Indeed, several approaches corresponding to various 
levels of complexity exist to tackle issue formulation (2). For instance, the 
OID problem can be solved on the basis of a single flight test ( 1TN = ), 
for which an optimal scalar input signal, applied to only one A/C control 
surface, is desired ( ( )1dim u * 1= ). On the contrary, the same issue can 
be tackled globally, considering a set of flight tests ( 1TN > ) composed of 
both mono and multi-dimensional input vectors, which results in a problem 
that is far more complex to solve than the previous one.

The state of the art in the field of OID dedicated to parameter estimation 
points out the Time Domain (TD) methodology developed by Klein/

Morelli, which applies the principles of dynamic programming (see 
[46-48]), as the main contribution. A literature review shows that 
other methods exist, such as the minimum flight test length via optimal 
inputs developed by Chen, which applies the principles of the time-
optimal control theory [5]; let us also quote the FD OID methodologies 
initially set by Mehra [44], and then generalized by Mulder [50], in 
which input signals are parameterized from a predefined basis of 
orthonormal functions. Yet, none of these seems fully suitable for 
tackling and solving the OID problem (2) in its entirety (i.e. multiple 
flight tests with multidimensional input signals). This observation 
has motivated the development of new methodologies based on 
the theoretical principles of Evolutionary Computation (EC) to solve 
formulation (2) in various frameworks (single/multiple input signals 
for single/multiple experiments). The optimization techniques used 
correspond to original adaptations of the genetic and particle swarm 
optimization algorithms, for handling both continuous and discrete 
decision variables. Theoretical details of these methods are available in 
[60,61]. Among other capabilities, the resulting OID algorithms permit 
a priori information, defined through usual reference flight tests so that 
expert know-how can be preserved for flight dynamics identification, 
to be integrated into the optimization process. The results obtained 
show promising gains in both the global flight test duration and the 
accuracy of the estimated parameter. ED and OID methodologies are 
now entered into a phase of validation in flight. A series of flight tests 
has been flown to validate the theoretical results obtained in simulation. 
The objective is to prove that this kind of new input signals is able to 
provide at least the same level of parameter accuracy as in the usual 
flight test protocols, while significantly reducing the overall length 
of the flight tests. Video 1 illustrates a typical example of optimized 
input signals, simulated on an AIRBUS A340/300 and used for the 
identification of the lateral flight dynamics.

Video 1- Optimization of input signals for an A340/300
Video - http://www.aerospacelab-journal.org/al4/relevant-issues-for-aircraft-
model-identification

Definition of excitation signals for aeroelastic mode estimation

Flutter is a divergent aeroelastic phenomenon, usually resulting from a 
coupling between flexible modes. Hence, it is mandatory for certification 
to prove that the aircraft is free from flutter throughout the flight domain. 
For this purpose, the flight test strategy consists in applying excitations 
to the aircraft structure by means of the control surfaces, at stabilized 
flight conditions (constant speed and Mach number). Acceleration 
measurements are then used to analyze the evolution of aeroelastic 
modes. Clearance for the next flight condition is given if it is satisfactory 
and safe. Flutter tests are usually performed by using two types of 
excitation signals: sine sweeps and pulses. The former provides a good 
excitation level over a prescribed frequency range, but it is also very 
time-consuming (nearly 120 s long). For this reason, pulse excitation 
signals (see figure 2) are preferred nowadays, since they result in 
shorter duration tests (the useful response is usually 10 s or 15 s long). 
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Figure 2 – Shape of classical vs. innovative excitation signals

However, the excitation level provided by this kind of signal is lower 
than that provided by sine sweeps, and the frequency range is also 
limited. Research has been performed at Onera for defining better 
excitation signals. Two innovative orientations were studied in order 
to improve the quality of the modal analysis and to reduce the test 
duration in the meantime.
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Figure 3 – Spectral comparison of classical and innovative excitation signals

A first approach deals with the distribution of the excitation signal 
through the control surfaces. Instead of applying signals through pairs 
of control surfaces, the idea is to combine the excitations applied to the 
whole set of control surfaces at the same time. Thus, more energy is 
introduced into the structure. The deflections of the surfaces are also 
coordinated, so as to excite the A/C modes more efficiently [22,70]. 
A second approach focuses on the design of more efficient excitation 
signals. The objective is to devise signals as simple as possible, with 
a duration comparable to pulses but with an improved frequency 
content [71]. This is illustrated in figure 3, where the spectra of the 4 
excitation signals plotted in figure 2 are depicted. We can notice a gap 
in the spectra of the conventional and pulse doublet. Conversely, the 
2 new signals proposed do not present any weaknesses in the whole 
frequency band of interest.

On-line techniques

In 2002, Onera launched an internal research program called REMANTA 
(REsearch program on Micro Aerial vehicle and New Technologies 
Application) on biologically-inspired Micro Air Vehicles [40], which 
was aimed at improving scientific and technical knowledge in 
several topics, such as unsteady aerodynamics, actuation, structural 
dynamics and control. In order to gain a better understanding of 
specific unstationary aerodynamic phenomena at low Reynolds 
numbers, experimental tests were carried out in the Onera/DAAP 
hydrodynamic tank, with a scaled wing model flapping in water, in 
order to maintain the Reynolds similitude (see video 2).
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Video 2 - Experiments in a 
hydrodynamic tank
Video - http://www.aerospacelab-
journal.org/al4/relevant-issues-for-
aircraft-model-identification

Video 3 - Optimization of wing 
motion
Video -http://www.aerospacelab-
journal.org/al4/relevant-issues-
for-aircraft-model-identification

A specific experimental set-up was designed to analyze hovering 
flight which requires large angular motions, and an innovative on-line 
optimization process was proposed to seek efficient wing kinematics 
without needing a preliminary identification of the flight dynamics 
model [54]. The experiment consists in a rigid up-scaled wing and 
in a mechanism including two independent servo-controlled motors 
to control the flapping and pitching motions. The search for efficient 
wing kinematics consists in an optimal input design problem with the 
experimental set-up in the loop. A parameter optimization technique 
was implemented to determine the shapes of a periodic wing motion 
maximizing the performance criteria computed from force balance 
measurements (figure 4).

optimal wing
kinematics

flapping & pitch laws

[LabView]

[MatLab]

lift, drag, power

Flapping wing model

Servomotor
controller

Data
acquisition

Averaging
over 3 cycles

Parametric modeling
of periodic motions

Nelder-Mead algorithm extended with 
inequality constraint handling

Data processing Kinematic modeling

Optimization

Figure 4 – On-line optimization process of wing kinematics

The two periodic laws involved in wing motions have been modeled 
in a parametric form, chosen to represent various wing kinematics 
observed in the literature review [53], with a limited number of 
parameters (figure 5). 

The flapping model consists of four 3rd order polynomial arcs. Signal 
shape is defined by tb and pb values. The duty cycle parameter rb 
can be modified to deliver dissymmetrical signals. The adjustment of 
only one parameter facilitates the reproduction of periodic functions 
continuously varying from square to triangular shapes, as well as cosine 
functions. The pitch motion model involves 3 parameters. Mathematical 
functions were established to reproduce insect wing kinematics, which 
corresponds to a nearly constant incidence during wing stroke [54].
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A direct search method based on the Nelder-Mead algorithm was 
implemented to optimize the parameters of the flapping laws. This 
algorithm, which does not require gradient evaluation, is well suited 
to avoid the effects of measurement noise on the approximation of 
gradients by finite-difference [2]. This method, which is an extension 
of the original simplex method, is based on a comparison of the 
criteria at the vertices of a simplex. The algorithm combines three 
geometric operations (reflection, expansion and contraction) in order 
to construct a new simplex in a favorable direction. This is a simple, 
intuitive and relatively stable method that is used in various domains 
and is renowned as a computationally efficient algorithm to minimize 
noisy unconstrained functions. The algorithm requires the choice of 
an initial point, which was set here to kinematics optimized by using 
an a priori simulation model. Classical convergence criteria have been 
supplemented with detection of simplex degeneracy. The original 
algorithm was extended to handle bounded parameters and nonlinear 
inequality constraints. Constraints are accounted for by an adaptive 
penalization approach and a technique robust to the initialization of the 
penalty parameters.
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Figure 6 – Time history of computed and experimental forces

During the first test program, a restricted set of parameters was tuned in 
several configurations, resulting in the optimization of:

• pitch shape with a sine flapping in a horizontal stroke plane, in 
order to maximize the mean lift coefficient;

• flapping and pitch shapes in a horizontal stroke plane, to minimize 
the mean power for a minimum mean lift coefficient;

• pitch shape with a sine flapping in an inclined stroke plane, to 
maximize the mean lift coefficient (see video3).

The preliminary analysis of the test results shows a fast convergence of 
the iterative optimization process and an optimal kinematics shape close 
to those obtained with the a priori simulation model. Hydrodynamic 
force measurements were analyzed to improve the reliability of the 
simulation model, based on a simplified aerodynamic model consisting 
of a single-element model. Adjustments to the lift gradient coefficient, 
and to the location of the reference point on the wing chord used for the 
computation of the local AoA, lead to a good match for instant lift forces 
over a complete cycle. Figure 6 presents the contribution of separate 
components of the aerodynamic model (from green, to cyan, to blue 
colors). In the same way, the aerodynamic moments resulting from the 
global forces applied to the aerodynamic center match well with the 
time history of the three components (figure 7). Further experimental 
tests should be performed to complete the validation of this on-line 
optimization process, with more complex wing kinematics and multi-
objective optimization methods, for hovering and forward flight. 
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Data Pre-Processing And Consistency Analysis 

Consistency analysis

The development of a new airplane involves a series of flight tests intended 
to update and validate the aircraft model, especially used for flight control 
design and for training simulators. The goal of these tests is to ensure 
an accurate representation of the aircraft behavior over its whole flight 
envelope, but also in ground to flight transitions. The accuracy of the 
updated model strongly depends on the quality and consistency of the 
measurements recorded during the flight tests. This data often contains 
deficiencies such as biases, time delays and air data calibration errors, 
which must be estimated before undertaking the A/C identification process. 
Furthermore, wind components can only be partially reconstructed from 
the comparison between ground speed and air speed measurements. 
Accurate and reliable measurements of ground velocities are achievable by 
using DGPS devices. On the other hand, air data information is corrupted, 
especially in ground effects, by aerodynamic disturbances that are only 
partially corrected by calibration laws.

With the aim of achieving a systematic check of data consistency, a set 
of estimation tools based on KF and Rauch smoothing techniques has 
been developed by DCSD. These tools are designed from simple physical 
models (kinematics, atmosphere), independent from the aircraft modeling 
which is not accurate as yet at this stage. Experience has proven that an 
incomplete or imperfect modeling can induce disturbances in a set of 
variables and moreover can complicate the interpretation of anomalies. To 
avoid these drawbacks, a multistep checking process has been developed 
on the basis of models of increasing complexity. This multistep procedure 
enables an easy detection and localization of some unexpected errors, for 
example the reference position of the velocity measurements. Flight data 
analysis is performed in three stages, involving a consistency checking of:

• Angular data: This estimator is also relevant for estimating the 
angular accelerations, which are useful to update the aircraft model thanks 
to an equation error approach (EE);

• Ground speed: DGPS velocities are compared to the velocities 
resulting from the integration of the accelerometers and previously 
validated angular measurements;

• Air data: Wind is estimated from the difference between the ground 
and air velocities.
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Estimated corrections

Angular
accelerations

Gyro. bias
Gyro. time delay

Residuals

Accelero. bias
IRS bias

Residuals

Wind velocities
Residuals
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Air data
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Figure 8 – Block diagram of flight test data checking

In this process, which is outlined in figure 8, the inputs of the three 
estimators always consist of raw measurements. Only the error 
parameters are propagated from one step to the next. At the end of 
the KF, results are processed backward in time by a Rauch smoothing 
algorithm, to improve the estimation accuracy and to estimate the initial 
state. Smoothing residuals are also computed to check the proper 
adjustment of the Kalman error models a posteriori. Based on this 

residual computation, an iterative technique was implemented for an 
automatic adjustment of the variances of process and measurement 
noises. This method is aimed at satisfying the agreement between 
theoretical and experimental variances of the residuals. This tool was 
also extended to air data reconstruction at low speeds in ground 
effects. The introduction of variable measurement error variances 
along the flight path enables some aerodynamic disturbances to be 
compensated for in AoA measurements during takeoff phases. 

Figure 9 shows a typical result of corrections for the AoA. The validity 
of clinometric air data is limited below 25  m/s, due to losses in 
sensor sensitivity. Moreover, these measurements are forced to zero 
below 5 m/s. Wind components are held constant at their latest value 
estimated during smoothing with the air data nominal accuracy. During 
the first seconds of climb, the vertical wind component computed 
from raw AoA measurements shows unlikely variations, which are 
mitigated by the KF with non-stationary noise covariances. To sum up, 
consistency checking is an important part of flight test data processing 
prior to aircraft modeling. It provides an estimate of the sensor errors 
and of unmeasured or poorly measured variables, and thus can help to 
save a lot of time during the following modeling tasks.
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New estimation techniques: particle and Sigma-point Kalman filters

A necessary step for modeling, identification or fault diagnosis often 
consists in fully reconstructing the system state. In aeronautical 
applications, the A/C state is only partially measured and the 
reconstruction of the full state involves a classical state estimation 
task. Two kinds of state estimation can be distinguished, depending 
on whether the application should run on-line or not. In this section 
devoted to flight tests processing, only off-line applications are 
considered.

The Extended Kalman filter (EKF), supplemented by a Rauch 
smoothing algorithm, is the most widely used method taking into 
account nonlinear models with uncertainties or unknown inputs. It 
is implemented by linearizing the nonlinear models about the current 
estimate. Such a numerical technique using finite differences can 
raise practical problems with strong nonlinearities of the aerodynamic 
model at high angles of attack. Recent approaches address the model 
linearization issues of the EKF with approximations of the probability 
density of the estimated state kx  (at time k). Some of these represent 
this probability distribution by a minimal set of pN  weighted sample 
points (given the measurements 1: 1( , , )k kz z z=  ):
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(5)

where ( )i
kW  is the weight associated to the sample point 

( )
/
i

k kχ  and 
(.)δ  is the delta Dirac density. For instance, the Unscented Kalman 

Filter (UKF) selects the sample points (also called Sigma Points) by 
deterministic methods in order to match the mean and covariance 
of the true probability density [27]. These sigma points are then 
propagated through the nonlinear function. An augmented formulation 
of this algorithm is able to propagate state and measurement noises 
through model nonlinearities. Specific implementations such as 
square-root or UDU UKF can improve the numerical stability for 
sigma point computations. Moreover, the use of sigma points can 
be generalized to solve the smoothing problem [58] and to compute 
measurement and state residues. In the same vein, the particle filters 
[1] consist in iteratively updating an approximate description of the 
filtered distribution ( )1:/k kp x z  (figure 10). This description requires 
a set of random samples (or particles) with associated weights. 
As the number of samples becomes very large, this Monte-Carlo 
characterization is more accurate. Then the key point consists in a 
recursive propagation of the weights and support points when new 
measurements are obtained. 

p(Xk|Xk-1)
random 

sampling

weights
∝ p(Zk|Xk)

resampling

p(Zk|Xk)
likelihood

Zk

Xk |Zk

Figure 10 – Principles of particle filtering algorithms

Again, various versions of particle filter algorithms depend on a 
priori choices (like the resampling method, etc.) and attempt to 
counteract the difficulties encountered with the simplest version. 
The best example is the Rao-Blackwellized particle filter (also called 
marginalized particle filter [7]) which exploits the presence of a linear 
Gaussian substructure in the state equation. Thus, the corresponding 
linear components of the state can be optimally estimated by a KF. 
The resulting filter combines a particle filter for the estimation of the 
nonlinear components with a classical KF for updating the particles in 
the linear state space. This procedure is worthwhile on two accounts: 
it reduces the particle number as well as the variance of the estimation 
error. Other EKF alternatives approximate the filtered density with a 
weighted sum of Gaussian densities:

( ) ( ) ( )
1: / /
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ˆ( / ) ( , )
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i i i
k k k k k k k

i
p x z W N x P

=

≈ ∑  
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i

k
i

W
=

=∑  and ( ) 0 ( )i
kW i≥ ∀

Such methods (called Gaussian Mixture Filters [30]) do not need 
sampling techniques, as is the case with particle filters. At each 
iteration, the number of Gaussian densities used for the a priori 
density is multiplied by the number of Gaussian densities used for the 
noise models. In order to avoid an exponential increase of Gaussian 
densities, an elimination mechanism of the low weight components is 
added to the algorithm.

Among the various situations of interest, the estimation of delays 
was retained to evaluate these new estimation methods. Indeed, 
the recording systems for in-flight data acquisition rarely perform 
a synchronous sampling of all measurements. This is the reason 
why differential delays exist between some measurement subsets. 
The estimation of these delays involves a strongly nonlinear filtering 
problem. This is noticeable with the EKF, which suffers from its 
linearization step, whereas the UKF gives a more accurate estimation 
of the input delays. This application is a good illustration of the UKF 
ability to take strong nonlinearities into account. Similarly the Rao-
Blackwellized version of the particle filter offers a good compromise 
between the accuracy of the estimates and the number of required 
particles.

Another interesting application comes from sensor fault detection. For 
instance, local measurements of airflow characteristics, performed by 
anemo-clinometric sensors, often produce errors that are difficult to 
model. Corrections are applied to provide the modulus and direction 
of the aerodynamic velocity. Despite these corrections, some 
undesirable effects (such ground effects, etc.) are not cancelled. 
Literature reports few approaches dedicated to sensor fault detection 
and non-stationary noises, which are interesting to test through this 
specific example. Amongst the various tested approaches, the Rao-
Blackwellized particle filter and the stochastic M algorithm (combining 
the pros of the particle and Mixture Gaussian filters [76]) offer a better 
performance. 

Identification techniques

Identification in the time domain

The equations of motion of a rigid body A/C are derived from the 
fundamental principles of classical mechanics. The external forces 
involved in these equations are the propulsion and aerodynamic 
forces, and gravitational attraction. The uncertainties in this model 
mostly concern the aerodynamic effects. Consequently, the fitting of 
the aerodynamic model within the whole flight envelope is the main 
purpose of the identification process. 

Parameter identification methods

Equation Error type approaches

Since EE methods are mostly applied to Linear-in-their-Parameters 
(LP) models (i.e. linear with respect to the parameters to be identified), 
only this type of model is considered in this section. An extension to 
the nonlinear case will be considered afterwards. Therefore, the model 
obeys:

Z θ ε= Φ + (6)
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where Z is a (N×1) vector gathering all measurements, Φ is the   
(N×nθ) regression matrix, and θ is the (nθ×1) vector of parameters 
to be identified. Therefore, ε is the (N×1) vector of errors and N is 
the total number of available samples. The columns of Φ are called 
the regressors and are assumed to be linearly independent (i.e. 
rank( ) dim( ) nθθΦ = = ). In addition, the model structure is supposed 
to be fixed and known a priori, because it results from Lagrangian 
equations, Newton’s law, Ohm’s law or Maxwell equations.

In aeronautics, this method is commonly used to estimate the linear 
coefficients involved in the analytical expression of aerodynamic 
developments and, more generally, as a preliminary step in the 
identification process. As an example, let us consider the following 
linearized lift modeling, 0 eq eCz Cz Cz Cz q Czα δα δ= + + + , where  

0 , , ,
eqCz Cz Cz Czα δ are the stability and control derivatives to be 

estimated, α is the AoA, q  is the adimensional pitch rate and eδ  
the elevator angle. This model is LP since we can write (at sample k):

( )kZ Cz k= , [1 ( ) ( ) ( )]k ek q k kα δΦ =

and 0[ ]
e

T
qCz Cz Cz Czα δθ =

(7)

Since values like Cz  are not directly sensed, this approach at first 
requires these global aerodynamic coefficients, which constitute 
the pseudo-measurements of the model to be identified, to be 
reconstructed. Hence, they are computed from the linear and angular 
accelerations, which are measured or derived from the flight test 
instrumentation. Keeping the z-axis example, this is achieved by 
inverting the flight mechanics equation ( )aero eng

z z zmg n F T= − + , 
where zn  is the normal load factor computed from the accelerometers,  

eng
zT is the normal component of the engine thrust and aero

zF  is the 
normal aerodynamic force permitting the previous Cz  to be computed 
in fine. Practically, the measured input variables used in this process 
are corrupted by noises and calibration errors, especially in the case 
of air data. To reduce the impact of these errors, which can result for 
example in a correlation between Φ and ε, a KF technique is relevant 
to estimate A/C state variables and aerodynamic coefficients jointly 
(see figure 18).

Usually, the vector θ is identified with the well-known Ordinary Least 
Squares (OLS) technique, which minimizes the following criterion: 

2

2
( )J θ ε= . The OLS solution is then given by:

1ˆ ( )T T
LS Zθ −= Φ Φ Φ (8)

In most cases, OLS is not statistically efficient, and the Weighted Least 
Squares (WLS) technique is often preferred to OLS. For this purpose, 
a (N×N) weighting matrix Ω is introduced and the WLS solution is 
then given by: 

1ˆ ( )T T
WLS Zθ −= Φ Ω Φ Φ Ω (9)

LS techniques are easy to use and were successfully validated through 
several application fields such as robots, motors, cars, compactors 
and aircraft (see for example [12,28,36,73]). However, LS techniques 
provide consistent results if and only if the observation matrix Φ is 
statistically not correlated with the error vector ε (i.e. ( ) 0TE εΦ = ). This 
is the reason why LS techniques are often coupled with an appropriate 
data filtering to make the regression matrix Φ practically deterministic. 
However, as pointed out in many papers, it cannot be proven that LS 
estimation is consistent without additional information [6,11,63]. 
Consequently, techniques dealing with a noisy observation matrix 
have been studied. One among others is the Instrumental Variable (IV) 
method. The idea consists in introducing an instrumental matrix (N×nθ) 

denoted as V and pre-multiplying the two members of (6) by TV ; with 
the strong assumptions that ( ) 0TE V ε =  and TV Φ  is invertible, the 
IV estimation is thus given by:

1ˆ ( )T T
IV V V Zθ −= Φ (10)

The major problem is of course to find valid instruments. The best 
choice consists in building the instrumental matrix from simulated 
data. This choice is particularly suitable for physical systems [77]. 
Though the IV technique has been studied in many papers, there are 
only a few real world applications. Nevertheless, this technique has 
been recently extended to robots with excellent results [23].

Output Error and Filter Error type approaches

The output error (OE) method is probably the most widely applied 
method to parameter estimation for aircraft models. The principle is 
again very simple: A/C model parameters (aerodynamic derivatives, 
state and output biases, initial conditions) are fitted in order to minimize 
the following cost function:

1

1

1( ) [ ] [ ] log[det( )] / 2
2

{ }
N

T
k k k k

k
J z y R z y N Rθ −

=

= − − +∑ (11)

where y represents the vector of ny model outputs, z the (ny×1) 
measurement vector, N is the number of samples and R is the 
covariance matrix of the measurement noises. Solving this optimization 
problem according to the ML principle also allows R to be estimated 
with a relaxation strategy [29]. In practice, the diagonal elements of 
R are often adjusted by the user, to balance the output contributions 
according to the measurement accuracy (and the last term of (11) 
is dropped). It is worth noting that the principle of the OE method 
assumes that the control deflections used to simulate the A/C model 
behavior are noise free. In addition, for more than 30 years, it has been 
proven that the variance of the parameter estimates can be computed 
at the same time, an approximation being provided by the Cramer-
Rao lower bounds (see e.g. [41]). However, an imperfect knowledge 
of the aerodynamic model structure can result in a degradation of 
the parameter accuracy, resulting in a spread of the aerodynamic 
derivatives dependent on the flight conditions. In this case, the 
uncertainties evaluated via the Cramer-Rao bounds do not account for 
these errors. Moreover, the processing of flight tests performed in the 
presence of turbulence can also lead to an increase in the parameter 
scattering. 
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Figure 11 – Block diagram of OE/FE methods
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Owing to these problems, the ML principle allows the OE approach 
[41] to be generalized. The previous two types of disturbances are 
then represented by process noises, which can be accounted for in 
a more general formulation called the filter error method (FE). This 
technique can be considered as an extension of the OE method and 
incorporates a state estimator, KF type (figure 11). Applied to parameter 
identification, the estimation, according to the ML principle, gives the 
parameter value that maximizes the probability of the measured data 
for a given set of parameters. The likelihood function is defined from 
the probability distribution ( / )p Y θ  of the response 1( , , )NY y y=   
as ( ) ( )/ Y ZL p Yθ θ

=
= . Assuming a linear state space representation 

with Gaussian white noises for measurement and process equations, 
the ML estimate can be derived by minimizing the following cost:

1

1

1( ) [ ] [ ] log[det( )] / 2
2

N
T

k k k k
k

J z y S z y N Sθ −

=

= − − +∑ (12)

where y corresponds, from now on, to the predicted observations resulting 
from the KF and S is the innovation covariance of the KF. In the most general 
formulation, this method can be used to estimate all the parameters, i.e., 
the model parameters, the initial states and the covariance of process and 
measurement noises (Q and R). Several formulations have been proposed 
for linear models, to solve the numerical and the convergence issues [42]:

• Natural formulation: the unknown variances (in Q and R) are 
estimated, as well as the model parameters;

• Innovation formulation: the elements of the Kalman gain matrix 
are directly estimated, instead of noise variances, and the innovation 
covariance is experimentally estimated from the filtering residuals;

• Combined formulation: this algorithm takes the principle of natural 
formulation and replaces the computed innovation covariance by its 
estimate from measurements [42]. The computation of the Kalman gain 
is derived from a modified Riccati equation, which must be solved with 
an additional constraint to ensure the filter stability.

Extensions to nonlinear systems have also been derived, but 
implementations are often restricted to steady state filters, to limit the 
computational burden [24]. In practice, with nonlinear systems and 
measurements corrupted with non-white Gaussian noises, an estimation 
of both process and measurement variances is generally not achievable. 
However, the simultaneous estimation of aerodynamic model parameters 
and of (a limited number of) process noise variances can be considered 
thanks to the direct minimization of the likelihood function. The algorithm 
adjustment parameters are then limited to the elements of R, as is usually 
the case with the OE method.

Following this principle, an FE approach has been developed to identify a 
nonlinear aircraft model. It includes a nonlinear Kalman estimator, operated 
with a constant gain resulting from the resolution of an algebraic Riccati 
equation and requires a (numerically) linearized A/C model. The state 
estimator is implemented in a Gauss-Newton algorithm, a common 
optimization method for OE approaches. This 2nd order method is based 
on a local quadratic approximation of the Hessian matrix and only 
requires a computation of the output sensitivity derivative vector. An 
additional mechanism was implemented to decrease the step size of 
parameter changes automatically, if the criterion increases. The gradient 
computation has been extended to allow the optimization of the process 
noise covariance, which results in a non-quadratic formulation [13]. The 
corresponding estimated parameters are defined by the logarithms of 
the noise standard deviations. This change of variable cancels the sign 
constraints, and improves the convergence rate.

The simultaneous processing of multiple flight tests leads to defining 
a subset of parameters (i.e. aerodynamic coefficients) that are shared 

by all tests and to cope with specific parameters, such as state and 
output biases, plus initial conditions, which must be adjusted for each 
experiment. Process noise variances can be globally defined for all the 
experiments, or separately processed. Output sensitivity derivatives 
are numerically estimated restricting the simulations to those required 
by the previous test-dependent parameters. Apart from accounting for 
process and measurement noises, this method offers several advantages 
compared to the OE approach: a faster convergence rate, fewer local 
minima, an improved convergence robustness to initial model errors 
and the possibility of identifying unstable models [25]. Regarding the 
latter, the gradual evolution towards new unstable A/C configurations 
can lead to difficulties in the use of the standard OE approach. Indeed, 
this technique involves an open-loop integration of the model, which may 
cause numerical divergence during the simulations. The state estimator 
implemented in the FE method has intrinsic stabilizing properties and is 
thus well suited for the identification of unstable models. Without process 
noise, the steady-state Kalman gain matrix is not null as it is with OE, but 
is rather a constant gain that shifts the unstable poles in the left half-plane.
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Figure 12 – Estimates of aerodynamic derivatives (FE vs. OE)

To illustrate this, some simulation results are presented in figure 12, 
to show the benefits of applying an FE approach to the identification 
of aerodynamic derivatives with a mismatched model. A linear 
aerodynamic model is estimated, whereas the reference simulation 
was performed with nonlinearities in the control derivatives. Each plot 
displays the variation of the aerodynamic derivatives with the Mach 
number. Coefficients estimated with the FE method match well with 
reference values, whereas several parameters delivered by the OE 
method exhibit a drift.

Structure of the aerodynamic model

The aerodynamic coefficients are usually expressed as look-
up tables or strongly nonlinear functions, depending on multiple 
parameters (configuration, Mach, AoA, sideslip, deflection angles). 
However, the parameter estimation can be tackled either in a linear 
or weakly nonlinear framework, by using only tests flown at close 
flight conditions, or in a strongly nonlinear framework by fitting the 
model directly into a large part of the flight envelope. The 6dof flight 
mechanics model is usually split into two largely independent sets 
of equations describing the longitudinal and the lateral-directional A/C 
motions. This way, the identification problem is reduced to two smaller 
problems, which are easier to solve. The main difficulties result from 
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the strong nonlinearities in the Mach number and AoA as far as the 
longitudinal axis is concerned, and from the roll-yaw coupling in the 
lateral case. EE-OE-FE minimizations can be used, depending on 
the context. Whatever the method, it is crucial for the aerodynamic 
corrections to remain physically acceptable.

Weak nonlinearities

Usually, the identification process for the lateral-directional coefficients 
can be conducted by using flight tests flown with about the same 
configuration, Mach number, AoA and at low sideslip angles. The 
nonlinearities, which mainly depend on sideslip, do not act and the 
aerodynamic nonlinear effects come only from control surface 
efficiency. Either additive or multiplicative corrections can be estimated 
by minimizing the weighted errors between simulated outputs and A/C 
measurements. In addition, a smoothing constraint is generally applied 
to the efficiencies, in order to limit their fluctuations and to ensure the 
consistency of the corrections. Accordingly, a software package was 
developed by DCSD for identifying the lateral model of an aircraft and 
was used by Airbus for several programs from the A340 up to the 
A380 [37].

The aerodynamic model identification is based on aircraft-wide 
measurements and delivers global corrections for the aerodynamic 
coefficients. If the aerodynamic model is split into an aircraft with and 
without tailplane, as is the case with Airbus modeling, the question 
is raised regarding the distribution of the corrections among the 
various parts. A conceivable solution to this problem would consist 
in processing measurements that are sensitive to local effects, such 
as load measurements, besides standard flight parameters. The 
drawback is that this kind of measurements can be corrupted by a 
high level of noise. This idea was implemented to estimate the lateral-
directional coefficients of an A340-600, in high-lift configuration, the 
additive measurements being restricted to fin loads sensed by strain 
gages. Among the split coefficients corresponding to an aircraft with 
and without vertical stabilizer (fin), only sideslip effects could be 
accurately identified.

Neural and hybrid approaches

Techniques based on linear or weakly nonlinear models are efficiently 
used as a first step of the identification process. However, when a 
global model is sought, i.e., a model that is valid throughout the flight 
domain and that includes all aircraft specific nonlinearities, appropriate 
approaches and techniques must be applied. The task is all the more 
complex because the nonlinearities are only available in the form 
of multivariate look-up tables, which are not very convenient for 
identification purposes. In industry, this global modeling is typically 
obtained after a long iterative process mainly based on EE algorithms, 
the result of which is highly dependent on the skill of the performing 
engineers. For that matter, DCSD has been developing a so-called 
hybrid identification approach for several years, which is aimed at 
proposing a more automatic processing of flight data. The ideal thing 
would be to tune all of the model parameters in a single step (linear and 
nonlinear ones) using all of the available test data; thus, the tools have 
been designed for that purpose. In practice, a sequential approach 
often remains useful.

Hybrid identification refers to the hybridization between classical linear 
approaches (in the TD) and specific methods intended to handle the 
model nonlinearities. The various methods classically used can be 

implemented (EE, OE or FE algorithms) and this has been achieved 
through extensive algorithmic adaptations. As for the representation 
of the nonlinearities, the choice was made in favor of Neural Networks 
[21]. NN are commonly used as surrogate models to replace 
the system or the reference model when it is too complex or time 
consuming for achieving some tasks like optimization, parameter 
identification, etc. [62]. They are particularly well suited for modeling 
complex and unstructured nonlinear systems, whether static or 
dynamic [15,16]. In the hybrid approach, NN are typically used to 
replace the look-up tables describing the various nonlinearities of 
the aerodynamic model [39]. This allows an algorithmically efficient 
identification which, additionally, does not require a priori knowledge 
(e.g. the look-up index). This kind of implementation of NN is thus 
grey-box type and it preserves the physical meaning and structure of 
the aerodynamic developments. Let us provide an example of how NN 
are introduced in the model. The equation below shows a somewhat 
simplified description of an A/C pitching moment coefficient Cm , as 
it appears in longitudinal flight dynamic equations [3]:

  



0

f ( )f ( ) f ( ) f ( , )f ( , )

[ ( ) ]
NLcg F NL

MM M MPd M

Cm S l Pd Cm x x Cz Cmα

α

α η= + − + ∆ +…


(13)

where , , , ,M S l Pdα  are AoA, Mach number, reference area and 
length, and dynamic pressure respectively, whereas cgx  and Fx
correspond to the longitudinal abscissae of mass and aerodynamic 
centers. 0 , , ,FCm x Czα NLCm∆  and NLη represent aerodynamic 
and aeroelastic coefficients, which contribute to the global Cm  and 
which can be replaced by neural modules to automate and improve the 
identification process.

Two options are available: either this time dependent coefficient 
is directly compared with its counterpart extracted from flight data 
throughout the sequence of tests available (EE), or it is integrated 
into the flight dynamic equations to allow a minimization between 
measured and simulated state variables (OE). Both methods benefit 
from of the analytical and differentiable formulations of NN, which 
make it possible to perform quasi-exact parameter optimization (unlike 
purely numerical approaches using finite differences). Much CPU time 
is also saved for the derivative estimates required by the sensitivity 
equations, which is quite valuable, especially for OE or FE approaches. 
The software developed by DCSD mainly relies on the use of local 
models, such as Radial Basis Function Networks (RBFN). As opposed 
to global models, such as Multi-Layered Perceptrons (MLP), local 
models keep the aerodynamic model readable and make it easier to 
perform identification from partial data relative only to portions of the 
flight domain [49]. The output ˆky  predicted by a RBFN, e.g. Ĉzα  in 
(13), complies with the form:

 
1

ˆ ( ) ( )
m

k k j j k
j

y f e w eφ
=

= = ∑

with 2 2

1
( ) exp[ ( ) / ]

n
i

j k k ji ji
i

e e cφ σ
=

= − −∑

(14)

denoting ( [1, ])i
ke i n∀ ∈  the value of the ith explanatory variable for 

the kth data sample (i.e. , orPd Mα  in (13)), and assuming that ˆky  
is scalar, to simplify the writing. In the expression (14), the functions 

jφ  are the nonlinear regressors, which allow internal parameters 
jc (centers) and jσ  (radii) to appear by choosing Gaussian radial 

functions, a rather common choice (see figure 13 without dotted 
connections). wj are the regression parameters also to be determined 
during the optimization process and m defines the number of 
regressors (a priori unknown). 
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Box 1 - Local Linear Modeling via Neural Networks

A nonlinear model can be either linear, nonlinear or both in regard to its internal parameters. Within the framework of NNs, the latter case 
corresponds for example to the MLP [15], but also to the RBFN when the centers and radii of the radial units are optimized [16]. Clearly, 
this is the most general formulation since LP models are nothing but a special case and it is also the cause of NN theoretical properties 
as parsimonious approximators. However, the joint optimization of the whole set of model parameters (linear and nonlinear) practically 
results in ill-posed problems, which are likely to converge very slowly to solutions conveying the trade-off between performances and 
regularization. This is why LP models are always quite common practice, since more simple and robust algorithms can be adopted, driven 
from the classical methods in use for adapting linear regression parameters. Hence, by taking advantage of their features, we can proceed 
to structural identification, i.e., to determine the best set of regressors from the available data.

To choose the regressors jφ , we will focus on methods based on forward selection, as opposed to other methods which consist in selecting a 
full set of candidate regressors at first, before removing the less relevant ones one by one (backward elimination). Forward selection starts with an 
empty subset and the regressors are added one at a time in order to gradually improve the results. Therefore, the final number of regressors is not 
known in advance and the computational cost is reduced since the regression size will become large only if it is required to reduce the modeling 
error. Forward selection is computationally efficient, but constructive algorithms can be sped up even further thanks to a preliminary orthogonalization 
process, making use of the famous Gram-Schmidt technique [19,20]. Moreover, this procedure allows the successive regressors to be decoupled 
from each other, and hence allows their individual contribution to be evaluated regardless of those already recruited for the modeling.

To implement this forward selection, two options are available: 1  to first define an initial pool of candidate regressors from which the 
most relevant ones will be selected, 2  to determine each regressor individually as the process goes on, which generally amounts to 
optimizing the kernel functions in the input space. Within class 1  is the entire range of classical and direct methods that locate the 
regressor kernels quite arbitrarily: in a subset of the data samples, on the knots of a lattice derived from a gridding of the input space, 
by using data clustering or self-organization techniques. Class 2  has to do with optimization techniques, but to avoid the problems 
inherent to classical methods (convergence, sensitivity to initial values) global optimization is favored, among which evolutionary 
algorithms have done particularly well for some years. Recently, a new metaheuristic also arising from biological inspiration (bird 
flocking or fish schooling) was imagined, known as Particle Swarm Optimization (PSO). The collective behavior of the particles looks 
like a swarm of living beings (e.g. bees): an individual discovering a good spot passes on the information to the others, which use it to 
direct their next moves. Therefore, the swarm represents a set of autonomous and interacting agents cooperating to solve a problem. 
The members of a group benefit from the accidental discoveries, as well as the experience acquired by other individuals. Similarly to 
the evolutionary case, the method is based on an iterative and stochastic process [20].
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Video 4 - PSO-based kernel positioning
Video - http://www.aerospacelab-journal.org/al4/relevant-issues-

for-aircraft-model-identification

Video 5 - Modeling through LLM
Video -http://www.aerospacelab-journal.org/al4/relevant-issues-for-aircraft-

model-identification

The coupling of this PSO algorithm with the constructive approach based on forward selection allows structural and parametric optimizations 
to be proceeded to jointly, for various types of regressors with local basis. The interested reader will find more details in [20,21]. In the 
KOALA tool (Kernel Optimization Algorithm for Local Approximation) developed by DCSD, this approach is applied to various kernel-based 
NNs, such as RBFN and LLM. To illustrate the working of this tool, videos 4 and 5 display the gradual improvement of an LLM during the 
iterative process involving the forward selection and optimization of kernels. The coefficient chosen corresponds to a complex L-shaped 
membrane including a constrained area (hyperplane in [ 1,0] [0,1]− × ) to prove the capability of the method to take this type of constraints 
into account. Video 4 illustrates some PSO issues: the black crosses and dotted circles represent the swarm particles during the internal 
PSO cycles (centers and radii parameters), whereas the red circles represent the current best individual and the blue circles represent the 
kernels already selected. Video 5 displays the reference coefficient (top left) to be modeled from noisy observations (top right), the current 
LLM model (bottom left) and the current modeling error (bottom right), as the forward process unfolds (until 16 RBF units are created to 
fulfill a trade-off between accuracy and complexity). It is also worth noting that this technique is useful for identification purposes (especially 
EE approaches), as well as for on-board implementation of models with low memory requirements [20] or for synthetizing control laws 
from sparse approximated expressions [19].
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Figure 13 – Architecture of RBFN and LLM

Besides RBF nets, other types of local models can be usefully 
implemented (see box 1). This is the case with LLM (Local Linear 
Models), which generalize RBFN by replacing the linear weights by an 
affine expression depending on the model inputs, but are also related 
to other local models like some Fuzzy Inference Systems. By defining 
an extended set of regressors #

lφ , the generic form (14) used to 
represent LP models thus becomes:

( 1)
#

1 0 1

ˆ ( ) ( ) ( ) ( )
m nm n

i
k k ji k j k l l k

j i l
y f e w e e w eφ φ

+

= = =

= = =∑ ∑ ∑ (15)

with 0 1ke =  to include the constant terms of the local affine modeling 
into the 2nd sum. It is thus expected that fewer RBFs will be required 
to achieve the same accuracy in most applications (see the dotted 
connections in figure 13).

Practically, the purpose of an automated identification in large areas 
of the flight domain has raised a new need: specifying constraints 
to be followed by the nonlinearities (i.e. the NN outputs). Constraints 
are a way to compensate for insufficient or sparse test data and to 
introduce some kind of expertise into the problem. For instance, the 
freezing of output levels may be required in some zones (e.g. NLCm∆  
in (13) should remain null at low AoA and low Mach, so that it does 
not interfere with other terms); it may also be desired to smooth the 
nonlinearity, or to connect identified and pre-flight models in areas 
where no flight data is available. Constraints are thus enforced by 
mechanisms relying for example on criteria penalty. Various forms 
of penalties are used, depending on the goals: constrained values, 
smoothing, regularization, etc. This in turn raises the question of 
choosing and tuning these hyperparameters, which should also be as 
automated as possible: this topic is currently being addressed.

Identification in the frequency domain

Flexible A/C and flutter analysis

Among the various phenomena that can affect the flight of an A/C, 
flutter is one of the most feared events, since this dynamic instability 
can lead to a sudden destruction of the airplane (see box 2). One of 

the major goals of the series of flight tests undertaken for any new 
aircraft is to check that the airplane is free of any flutter tendency in 
the whole set of flight conditions. Current flight tests are performed 
under stabilized flight conditions (at constant speed and at given Mach 
number). Under each condition, excitation signals (frequency sweeps, 
pulses) are successively applied to the structure through the control 
surfaces. The measurements of the A/C response are transmitted by 
telemetry to the ground test center in real time, where they are used 
to estimate the modes. The damping ratio estimates obtained under 
each stabilized condition, allow a trend to be drawn up, as a function 
of airspeed, which is useful to evaluate the stability of the next higher 
airspeed condition and to clear the airplane to this condition.

Onera has been working for many years in close collaboration with 
Airbus for flutter flight surveillance and has developed a large expertise 
in this topic [22,57,64-71]. DCSD not only develops identification tools 
that are currently used in the Toulouse ground test center of Airbus 
[57,64], but it also tackles most of the aspects of the identification 
process. Optimized excitation procedures are investigated and 
proposed for industrial use [22,70,71]. Evaluation tools based on 
high dimensional aeroelastic models were also developed [67,68]. 
Concerning the identification tools, prototypes are implemented 
involving all the aspects: raw data pre-processing, identification algo-
rithms, supervision in order to determine the best model order and 
ergonomic graphical interfaces (see figure 14).

Owing to the operational context of the flutter tests, involving real-
time monitoring, identification algorithms should comply with stringent 
requirements. Let us mention here the major constraints. First of 
all, the flight test conditions are not really favorable to an accurate 
identification. On the one hand, since the A/C operates under operational 
conditions, the measurements are affected by the ambient noise due to 
the airflow around the aircraft. Sometimes, the data is also corrupted 
by air turbulence when the aircraft encounters wind gusts. On the 
other hand, the excitation signals applied to the control surfaces are 
constrained in amplitude, frequency and shape. Consequently, many 
structural modes are not excited efficiently enough. 
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Figure 14 – Example of a graphical interface used for order determination

The second demanding requirement is that the algorithms must 
operate in a fully automated and near real-time way, since the crew 
is awaiting clearance before going on to the next test condition. It is 
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noteworthy that about one thousand identification runs are required for 
the certification of a new aircraft. This also claims for a high processing 
efficiency. Fully automated procedure is of capital importance, in order 
to relieve the ground operator who is put in charge of monitoring 
flight safety. To achieve this task, the algorithms must cope with high 
dimensional systems. Considering the number of modes that can be 
reasonably estimated and the number of available measurements, it 
turns out to be necessary to identify systems including 1000 to 5000 
parameters. Hence, the algorithms must be very reliable and very 
robust to numerical errors.

The FD is particularly appropriate to the test conditions since we can 
focus only on the frequency band of interest. The amount of data to be 
processed is also greatly reduced, resulting in improved computation 
times. Hence, the tools developed for flutter flight test surveillance are 

based on a parametric approach in the FD [64]. A polynomial transfer 
function has been chosen for the system, since it is very convenient 
for modal modeling:

( , )( , )
( , )

N sH s
d s

θθ
θ

= (16)

where the denominator ( , )d s θ  is a polynomial of degree dn  and the 
numerator ( , )N s θ  is a ( 1)yn ×  vector of polynomials of degree dn , 
assuming that yn  outputs are processed; s jω=  is the Laplace transform 
variable and θ  is the parameter vector of dimension ( 1) ( 1)y dn n nθ = + × + , 
which includes all of the numerator/denominator coefficients to be estimated. 
This black-box type of modeling is also convenient, since the frequency 
responses (i.e. the values taken by the transfer function for a discrete set 
of frequencies) may be directly computed from the measured time data by 
applying non-parametric spectral estimation methods.

Box 2 - The flutter phenomenon

In aeronautics, aeroelasticity is the science that studies the interaction between the inertial, structural, and aerodynamic forces acting on an 
aircraft. It was introduced by Collar as early as 1947. Aeroelasticity deals with several phenomena that may occur during flight. Among these, 
flutter is the most hazardous one. It is a dynamic instability whereby the oscillations of the structure extract energy directly from the airstream. 
Flutter can build up very quickly and cause the destruction of the aircraft. Any physical object is subject to its natural modes of vibration. 
When placed in a strong airflow, the aerodynamic forces alter the characteristics of these natural modes and flutter will happen if a positive 
feedback occurs between the natural vibration and these forces. If the energy extracted from the airflow is greater than the natural damping 
of the system, the level of vibration increases and leads to instability. Flutter can occur in any structure exposed to aerodynamic forces. 
One famous example is the collapse of the Tacoma Narrows Bridge (USA) in 1940 (see video 6 for several illustrations including this one).

Video 6 - The flutter phenomenon
Video - http://www.aerospacelab-journal.org/al4/relevant-issues-for-aircraft-model-identification 

A schematic representation of the flutter phenomenon is also given by figure B2-1, which depicts a typical flutter case for airplanes. It results 
from the coupling between the bending and torsional modes of a wing. If these modes have similar frequencies and produce in phase 
oscillations under some flight condition, then the torsion of the wing induces variations in the lift due to the variations of the AoA. When 
these oscillations in the lift are in phase with the bending mode, they amplify the amplitude of the oscillations for this mode and hence flutter 
occurs. The physical modeling of the aeroelastic behavior is quite complex: it is based on the modeling of structural dynamics and unsteady 
aerodynamic effects. For complex systems such as an aircraft, the exact modeling of all structural aspects under all flight conditions is not 
possible. Therefore, a thorough flight testing is the only way to guarantee that an aircraft is free of flutter.

α

α

α

α

α

Figure B2-1 – Illustration of the flutter phenomenon 
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The purpose of the identification task is to determine the best model 
(16), in order to match the estimated transfer ( , )H s θ  with these 
measured frequency responses ( )mH jω  derived from the raw data. 
The parameter estimation problem is then formulated as a nonlinear 
optimization problem:
ˆ Arg Min [ ( )]J

θ
θ θ=  

where 
2

m W
( ) ||H ( ) ( , )||J j H j

ωω

θ ω ω θ
∈Ω

= −∑
(17)

where Ω  is the set of frequencies ω  located within the band of interest 
and Wω  is a weighting matrix introduced to take the (varying) quality of 
measurements into account. A method of iteratively reweighted least-
squares is then used to solve this optimization problem. To improve 
the algorithm implementation, ( , )N s θ  and ( , )d s θ  are expressed 
in specific polynomial bases to overcome the conditioning problems 
encountered with high order polynomials when using conventional 
bases involving high powers of ω  [64].

In the current test protocol, a single excitation signal is used for each 
test. In the future, in order to shorten the tests duration and hence 
to reduce the costs, it is contemplated to apply several excitation 
signals through several control surfaces simultaneously. Then, 
current developments focus also on MIMO (Multi-Input/Multi-Output) 
identification methods that are able to satisfy these more stringent 
operational requirements.

Rigid A/C and on-board monitoring

As seen before, the methods involving the OE minimization are 
common practice in aeronautics. The criterion is generally expressed 
in the TD (see eq. (11)), but it can also be formulated in the FD thanks 
to Parseval's theorem, conveying the principle of energy preservation 
between the two domains. Hence, it becomes:

[ ] [ ]1

1

1( ) ( ) ( , ) ( ) ( , )
2

†N

k k k k
k

fJ Z Y R Z Y
t

ω

θ ω ω θ ω ω θ−

=

∆
= − −

∆ ∑ (18)

where †  represents the complex conjugate transpose operator and 
where the summation is now taken over the Nω  frequencies kω  of 
interest, available from the TD to FD transformation ( N Nω ≤ ). The 
simulated and measured outputs Y, Z are defined in figure 15, whereas 

f∆ and t∆ represent the sampling periods in FD and TD respectively.

Aircraft

Criterion J(θ)

OE (or EE) minimization

Fourier transformFourier transform

noise
+

+

+−

Z(ω)U(ω)

outputs Y(ω)

inputs u(t) measurements z(t)
(or estimated forces/moments)

parameter
update θ

initial
knowledge θ0

Frequency Model

Figure 15 – Principles of identification in the frequency domain

As illustrated by figure 15, the transition to the FD is classically carried 
out by means of the standard FT of the TD signals. Since they are only 
available over a limited period of time [0, ]T , the finite FT is used instead. 
Practically, two efficient tools are available for computing this quantity, 
namely the Fast Fourier Transform (FFT) and the Chirp z-transform. The 
latter permits a desired frequency resolution to be chosen independently 

from the interval length T, but it is less effective as far as computation 
time is considered. From N data samples equally spaced over the time 
interval [0, ]T , the FFT algorithm calculates N values of the discrete 
FT over the frequency interval [0, 2 / ]tπ ∆ , also equally spaced with 
a step 2 / .Tω π∆ =  It is also worth noting that a recursive version 
of the algorithms allows the method to be implemented in real-time 
applications very efficiently. Apart from these computationally efficient 
tools making it possible to go from TD to FD, the FD identification 
approaches have other pros: they do not require an integration of the 
flight mechanics differential equations to perform a simulation and they 
enable working within a limited band of frequencies by selecting any 
range 1 2[0 , 1/ 2 ]tω ω≤ ≤ ∆ .

More precisely, let us consider equation (19) which expresses the 
transformation of the system dynamics into state-space form from TD 
to FD and let the state and output biases bx and by appear. If we consider 
frequencies kω  only multiples of the sampling frequency ω∆ , which 
is the case when using the FFT, the right bracket of (19) represent 
the simplified form of the FD state-space equations. ( )kδ ω  denotes 
the Dirac function in the FD, such that ( ) 1kδ ω =  for 0kω =  and 

( ) 0kδ ω =  else for 0kω ≠ . (0) ( )x x x T∆ = −  corresponds to the 
discrepancy between the initial and final states.

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

x
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k k k k x k

k k k y k

x t A x t B u t b
y t C x t D u t b

j X A X B U b T x
Y C X D U b T

θ θ
θ θ

ω ω θ ω θ ω δ ω
ω θ ω θ ω δ ω

= + +
 = + +

= + + + ∆
 = + +



(19)

Localized effects in the TD are thus translated into broadband effects in 
the FD and vice versa. Thus, the initial and final conditions are translated 
into a bias that affects all frequencies. On the contrary, the biases that 
act as broadband inputs in the TD modify only the zero frequency. To 
get the most out of these specificities, it is generally worthwhile to 
also discard this zero frequency during the identification stage, which 
avoids state and output biases having to be estimated. Thus, (19) is 
further simplified and only the x∆  components need to be estimated 
in addition to other parameters θ, if not zero.

Consequently, the FD methods are well suited for real-time 
implementations, for which TD methods could hardly be realistic owing 
to computational costs, but also for dealing, for example, with unstable 
models, which is rather common for military aircraft. In this case, no 
divergence of the internal simulations is to be feared since this technique 
do not proceed to TD integrations; the use of a stabilizing loop is thus 
avoided, which eliminates the risk of interactions between the stabilizing 
feedback and the identification process. It is also noteworthy that FD 
techniques can be beneficial to both OE and EE approaches, especially 
for real-time implementations, as far as the EE case is concerned; 
hence, the interest of FT regression has been highlighted in many 
publications [47]. Regarding TD algorithms, the only limitation (but 
not an insignificant one) results from the requirement to cope with linear 
or linearized models (at least locally valid).

These major application topics (model instability and online 
implementation) were explored by DCSD through two different research 
programs: with Dassault Aviation for identifying an unstable A/C, and 
during a long-term project jointly run by Onera and DLR between 2006 
and 2010, named IMMUNE (Intelligent Monitoring and Managing of 
Unexpected Events). The objective of this project was to show the 
capability and viability of intelligent techniques for monitoring and 
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handling the Flight Control Systems (FCS) in real time, to improve 
civil A/C safety and autonomy. The monitoring was based on several 
methods, including modern Fault Detection, Isolation and Estimation 
(FDIE) techniques and of course on-line identification. The handling 
of the detected events was contemplated by different reconfiguration 
or self-adapting techniques, based on Fault Tolerant Control (FTC) 
principles. Both actions are strongly dependent and therefore were linked 
via a supervisory architecture in charge of the decision making [9].

The FD identification method presented above can be useful both for 
event detection via the variation of aerodynamic parameters, and for 
event handling since an updated model is often required for indirect 
adaptation or FTC techniques [33]. In practice, it delivers a near real 
time estimation of the stability/control derivatives involved in the A/C 
modeling. For monitoring purposes, these estimates are compared 
to a set of reference values corresponding to the nominal behavior 
(non-faulty situation). In the framework of FDIE, using this method 
for diagnosis makes up a special class of model-based methods, the 
residuals referring to model parameters instead of the TD histories of 
measured variables, as is usually the case. Due to weak excitation 
signals and large residual errors (ordinary control signals resulting 
from pilot or autopilot orders are used), a measure of confidence is 
essential to the accommodation logic, but this measure can be easily 
computed via the standard deviation of the estimation errors, directly 
available from the FD method. Finally, FD identification is the central part 
of a monitoring process that also includes pre-processing and post-
processing stages, respectively, to prevent and filter out inaccurate 
estimations. The scenarios used as benchmarks during IMMUNE 
involved actuator FDIE on the one hand and detection of icing accretion 
on the other hand. Results can be found in [18]. The computational 
feasibility of an onboard implementation was thus shown for this FD 
OE method. Owing to its characteristics, the algorithm requires a few 
iterations to converge and the memory requirements are limited thanks 
to a moving data windowing. The technique can estimate changes in 
the dynamics within a short delay, despite state and output noises.

State-space models for control design

Multivariable state-space models are required to design control laws 
using modern control techniques such as LQR/LQG, LPV/LFT, H2/H∞ 
[56]. They must provide an accurate description of the relationship 
between the surface control deflections and the output signals used 
by the controller. For a flexible aircraft, given the strong interaction 
between the FCS and the first aeroelastic modes, a suitable model 
for control purposes must include rigid-body and structural dynamics 
and represent the aircraft in an extended frequency range. Reduced 
order models can also be derived from those identified before applying 
control techniques [52]. Though preliminary knowledge may provide 
theoretical models that are appropriate for a first design iteration, 
model identification from in-flight data is then required for a fine 
analysis or tuning of the control law performance. Therefore, a two-
step identification procedure depicted in figure 16 was developed by 
DCSD. The corresponding software developments were included in a 
toolbox called HARISSA and were successfully used by Airbus for the 
design of structural active control laws for A340-600 aircraft [34,35]. 
The two steps of the procedure consist in:

• Firstly, a discrete-time representation of the structural dynamics 
is determined from specific flight tests (typically frequency sweeps) 
thanks to the Eigensystem Realization Algorithm (ERA); ERA is one 
of the few available techniques permitting a multivariable state-
space model to be derived from i/o data [34,65]. This representation 

includes only modes that are visible from the measurements. Then, it 
is converted to continuous-time and turned into a real block-diagonal 
form that provides a minimal parametric representation [4];

• Secondly, a state-space model of the flexible aircraft is obtained 
by gathering the structural and rigid-body linearized models, both in 
state-space form. The coupling is performed by simply adding the 
outputs of the two models. This merged model is used to initialize an 
OE approach relying on a Gauss-Newton algorithm in the FD, similar 
to the one described in the previous section (see also [18]). The 
identification is based on both usual rigid-body excitations and peculiar 
excitations dedicated to flexible modes. If it proves to be necessary, 
a preliminary estimation of the rigid-body model coefficients may be 
performed by a standard OE approach in the TD.
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Figure 16 – General chart of the two-step identification procedure

MODEL VALIDATION

Estimation of unknown inputs and model corrections

Input estimation is a general process aimed at estimating the input 
uncertainties or the control orders of a given system, for which a 
mathematical model and some experimental responses are available 
and assumed accurate enough. Several tools have been developed 
to estimate various types of corrections (control surface deflections, 
aerodynamic coefficients, sidestick deflection, wind), which, once 
applied to aircraft inputs, could ensure a best match between the 
computed model responses and the measurements. This aspect 
(shown in red in figure 17) is the counterpart of parameter estimation 
(in blue) and data preprocessing (in green), which are aimed at 
correcting the model parameters or the measured outputs, respectively, 
assuming either a perfect knowledge of inputs and outputs on the one 
hand, or of inputs and model on the other hand.
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Figure 17 – Input estimation vs. parameter identification vs. data preprocessing

Thus, an estimation of some corrections related to the aerodynamic 
coefficients can be implemented as a preliminary step in an 
identification process based on an EE approach. In this case, the 
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estimated corrections are computed from the pre-flight aircraft 
model and the analysis of the corrected aerodynamic coefficients 
can be useful to improve the structure of the aerodynamic modeling. 
Following the model update by EE, an additional estimation of input 
corrections can be performed to check the validity of the identified 
model. The new estimated corrections should be centered around 0 
and their amplitudes should be kept small enough to ensure that a 
sufficiently accurate model is derived.

In such cases, whenever a state-space model of the aircraft is available, 
Kalman-Rauch smoothing is an efficient and well-suited method for this 
estimation problem. Several tools have been developed based on a KF, 
including the complete nonlinear A/C model. This technique has also 
been extended to the processing of tests including transitions between 
ground and flight phases, which lead to account for discontinuities in 
states or inputs. The basic principle of this method is described by the 
block diagram in figure 18, whereas the stochastic models involved in 
this method are described below:

Continuous time process model

( ), ,x f x u C
C η
= ∆


∆ =





Discrete time observation model

( ), ,k k k k kz g x u C ζ= ∆ +

where x  represents the aircraft state, u  the inputs, C∆  represents the 
corrections related to the aerodynamic coefficient and η  represents a 
Gaussian process noise, whereas kz  is the measurement vector and    

kζ is a Gaussian observation noise.

To represent the aerodynamic corrections, additional state variables 
are introduced, with dynamics governed by a random walk process. 
In principle, all process noises are assigned to the aerodynamic 
corrections, but their amplitudes depend on both the accuracy of the 
pre-flight model and the shape of the aircraft maneuver. Hence, standard 
deviations should be adjusted for every test. In order to automate this 
tuning which usually relies on user experience, an iterative technique 
has been designed by DCSD to estimate the variances of both process 
and measurement noises. This algorithm is aimed at guaranteeing the 
consistency between the theoretical and statistical standard deviations 
of the smoothing residuals.

estimated state

aerodynamic coefficients
and corrections

A/C inputs

flight test data

initial noise covariances
Q0 and R0

filtering/smoothing
residuals

Q R

Noise covariance
adjustments

Kalman/Rauch
smoothing

Aircraft
model

Figure 18 – Estimation of aerodynamic corrections by a filtering approach

QTG tests

For each new aircraft, manufacturers are in charge of providing training 
simulators with a set of validation tests approved by the aviation 
authorities. These tests are aimed at proving the ability of the simulator 
to replicate the real aircraft motion within the regulation tolerances. They 
are put together within the Qualification Test Guide (QTG) and provide a 
basis for the qualification of the simulators. However, a preliminary step 
is necessary for the QTG tests, before delivering them to the simulator 
manufacturers. It consists in a fine tuning of the simulation inputs 
(initial conditions, pilot inputs) in order to satisfy the requirements of 
the aviation regulations. If manually operated, this task can be very 
tedious and time-consuming depending on the type of test, especially 
for tests flown with the FCS activated. This is why DCSD has designed 
an efficient tool able to tune a set of various tests, automatically and 
within a reasonable amount of time. 

The solution to this problem comes up against a number of difficulties: 
•	 There is no analytical model of the A/C with the control laws 

available; the only model which can be used is the closed-loop 
simulation software, which excludes the use of estimation methods 
based on state-space representations because too many nonlinear and 
numerical solvers are involved;

•	 The model is strongly nonlinear and may be non-stationary during 
specific flight sequences, e.g., an airplane flying with ground effect;

•	 The multivariable nature of the problem adds more complexity, so 
the question of a global processing or an axis by axis solution is raised;

•	 The solution must comply with strong input and output constraints. 
Moreover, some of these depend on the flight phase (approach, 
touchdown);
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•	 If a solution exists, it is probably not unique since each solution 
satisfying the constraints is acceptable. That is why a solution minimizing 
the output energy will usually be favored;

•	 The computational cost per simulation is rather high, so that the 
total number of simulations should be very limited to keep the total 
CPU time acceptable.

The developed solution is based on a sequential processing of the air 
and ground stages. It has been validated from a challenging set of tests: 
normal landing, landing with crosswind and landing with one engine off. 
Optimization criteria peculiar to each phase are minimized by nonlinear 
optimization techniques to keep the discrepancies between simulation 
outputs and aircraft measurements within the tolerances. A first 
optimization step is devoted to the attitude and trajectory parameters, 
while a fine tuning of the landing gear and nose wheel touchdowns is 
achieved in a second optimization step. Various ways of parameterizing 
have been tested and compared, as regards to the corrections of the 
simulation inputs: multi-pulse signals including Haar or Walsh functions, 
multi-sine and Gaussian functions. The multi-pulse signals have turned 
out to be the best option. It doesn’t matter whether the corrections of 
the longitudinal and lateral sticks are estimated simultaneously or not. 
Indeed, it appears that the two strategies yield very similar results. An 
illustration is given by figure 19.

Conclusion and prospects

Despite being non exhaustive, this survey reveals the variety of issues 
involved in the identification of aeronautical systems, illustrated by 
some of Onera's developments. It stresses the variety of the solutions 
required also, depending both on the available modeling and on the 
objectives. For instance, the structured form of modeling used for rigid 
A/C leads to the use of well-known and mastered techniques, EE/OE/
FE-type, whether in TD or FD forms. On the other hand, the complexity 
of the aeroelastic physical models involved in the flexible case requires 
black-box type representations, only based on i/o data, to be sought. 
Though iterative least-squares are nowadays the favored algorithm to 
obtain these, subspace methods in the FD remain promising alternatives 
and they have been under consideration at Onera for several years.

Most of the current works related to rigid aircraft focuses less on 
developing new techniques than on adapting common ones to the 
requirements of the aeronautical industry. For the incoming A/C 
programs, the cer tification procedures should be achieved within 
a shor ter and shor ter time period, which implies that the length of 
the flight tests must be reduced. Hence, there is a great demand 
for developing new designs of experiments that would be more 
efficient, but also to assist the performing engineers in their tedious 
task while sifting through the whole set of flight data. As regards 
the latter, some advances are contemplated: 

•	 Design of tools for making the user aware of the areas where 
the information provided by the data is too poor to obtain relevant 
results and accordingly where the pre-flight model should be preserved 
(a rather tricky matter in the multivariate case);

•	 Development of multiobjective algorithms, to take various types 
of criteria into account jointly, in both the TD and the FD;

•	 Merging the identification results computed under various 
flight conditions;

•	 Proposing incremental approaches to process new flight tests 
progressively, as soon as they become available, in order to improve 
the modeling without restar ting from scratch; 

•	 Taking advantage of new types of flight tests, requested by 
other A/C disciplines and teams, which extend to AoA-Mach-sideslip 
domains usually not covered by the tests devoted to the identification 
process.

Never theless, fur ther effor ts in dealing with the most complex 
aerodynamic nonlinearities are needed and, besides, parameter 
estimation in the presence of significant disturbances still raises a 
number of questions. As far as flexible A/C and flutter analysis are 
concerned, the current effor t focuses on methods allowing several 
sensors and several control surfaces to be processed at the same 
time, the excitation signals being optimized to highlight the aeroelastic 
modes at best. The emphasis is also put on the robustness of the 
tools and their computational performances, owing to real-time 
processing requirements. To track the modes on-line, in order to 
prevent a critical behavior while expanding the flight domain, a 
Linear Parameter-Varying (LPV) modeling could be implemented in 
the future, with the A/C speed as a scheduling parameter n
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SISO (Single Input-Single Output)
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ERA (Eigensystem Realization Algorithm)

LP (Linear-in-their-Parameters)
LS (Least Squares)
OLS (Ordinary Least Squares)
WLS (Weighted Least Squares)
IV (Instrumental Variable)
NN (Neural Network)
RBFN (Radial Basis Function Network)
MLP (Multi-Layered Perceptron)
LLM (Local Linear Model)
PSO (Particle Swarm Optimization)
FT (Fourier Transform)
FFT (Fast Fourier Transform)
FCS (Flight Control System)
FDIE (Fault Detection, Identification and Estimation)
FTC (Fault Tolerant Control)
QTG (Qualification Test Guide)
IMMUNE (Intelligent Monitoring and Managing of UNexpected Events) 
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