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Although the need for even more accurate system, phenomena and process 
modeling is required in order to reduce development time and costs, the 

number of variables linear and non-linear optimization tools can handle is still 
a practical and theoretical limiting factor. This is especially true in aircraft 
dynamical performance analysis, monitoring and control design, where dynamical 
models are accurately designed at varying local flight configurations, in order 
to handle flexible modes, aerodynamic delays, etc., leading to high-dimensional 
problems [5]. Although Onera has a well established tradition of proposing 
complete and efficient tools for optimizing controllers and analyzing dynamic 
system performances through the use of Linear Fractional Representation (LFR) 
mathematical objects [2, 15, 22], recent growth in the dimensions of models has 
led to strong time and computational limitations when using these tools. The aim 
of this paper is to give an overview of the solutions developed within Onera to 
approximate a set of large-scale dynamical models with a parameterized LFR 
lower order model, which can be used in place of the original ones to effectively 
synthesize control laws and achieve performance analysis.

Introduction and main problem

Motivations and challenges in aeronautics

In many areas of engineering (e.g. aerospace, automotive, biology, 
circuits…), dynamical systems are the basic framework used for 
modeling, control and analysis of a large variety of systems and 
phenomenon. Due to the growth in the use of dedicated and accurate 
computer-based modeling design software, numerical simulations 
have been increasingly used to simulate complex systems or 
phenomenon and shorten both development time and cost. However, 
the need for enhanced accuracy of the models has led to an increasing 
number of variables and resources to be handled at the price of a 
high and expensive computational cost. Moreover, from the control 
engineer point of view, modern analysis (e.g. LPV H∞ and H2 norm 
computation, µ-analysis…) and synthesis (e.g. H∞, H2 control…) 
tools [2, 4, 8, 9, 22] become drastically inefficient for such high-
dimensional dynamical systems (see figure 1) [1].
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Figure 1 – Illustration of the model reduction paradigm
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These remarks are especially true in the flight dynamics domain where 
aircraft are locally modeled (i.e. at each flight and mass point) with 
high fidelity tools to account for the flexible modes and aeroelastic 
delays (see e.g. [5]). 

As an illustration, let us consider figure 2, in which the frequency 
responses of an industrial longitudinal aeroelastic commercial aircraft 
are plotted for varying flight points (MACH / Calibrated air speed 
configurations). The model considered has 3 inputs (the ailerons 
deflection, the elevator deflections and the vertical wind disturbance) 
and 3 outputs (the vertical load factor, the bending moments at the tail 
horizontal plan and at the wing/fuselage positions). This model also 
includes actuators and a severe von-Karman wind disturbance model. 
It is worth noting that the entire model has about 300 states and that 
the system behavior is flight conditions dependent (see also, a very 
interesting paper on aircraft modeling [5]).

Because of this complexity, the resulting control engineer problem is 
large and configuration/flight point dependent. More specifically, the 
high numbers of variables and dynamics lead to two major problems 
for numerical and control engineers:

• An increase in simulation time and, eventually, in the difficulty 
of analyzing the model's properties with respect to uncertainties, 
parameter variations, nonlinearities…;

• The difficulties of controller synthesis. In practice, modern control 
methods (such as LQG, Robust, MPC…), use the dynamical system 
model directly and employ optimization methods (e.g. descent, LMI, 

non-smooth…) to synthesize the controllers [2, 22].

Consequently, the model reduction and interpolation stage, linking 
the modeling and the control law design, aims to achieve the following 
main objectives (see also the very relevant work of Antoulas [1]):

• To speed up the simulation in the validation stage, using simpler 
models, while preserving the most significant system dynamics and 
properties (e.g. frequency response, stability, structure…);

• To efficiently use the numerical control tools in order to 
synthesize controllers in a cleverer manner and thus focus on the 
controller structure for implementation purposes. Note that most 
modern control approaches lead to controllers that are considerably 
more complex than truly needed (mainly because of the initial 
dimensions of the model);

• To describe the nonlinear model over the entire parametric 
domain (e.g. flight point and mass configurations), even if the model 
is only provided at local configurations.

Mathematical problem definition and Onera approach

Starting from a set of medium (large) scale Linear Time Invariant (LTI) 
models describing a complex  system at frozen configurations, the 
problem tackled in this paper consists of obtaining a reduced-order 
Linear Parameter Varying (LPV) model of suitable form, from which a 
Linear Fractional Representation (LFR) can be built to be used in place 
of the original LTI models. This objective is formalized in problem 1 
(see also [21]).

Figure 2 – Frequency response for varying flight configurations (in MACH / Calibrated air speed)
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Problem 1 - Multi-models approximation and interpolation

Let us consider a set of N dynamical system models of order n 
(e.g. defined by n-ODEs), corresponding to different parametric 
configurations (e.g. flight point, tank filling…), described as 
follows:

( ) ( ) ( )
:

( ) ( )
i i i i

i
i i

x t A x t B u t
G

y t C x t
= +

 =



, where { }1,...,i N∈

The objective is to find a parameterized model of order r n
, of 

the form,

ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )ˆ ( ) :
ˆˆ ˆ( ) ( ) ( )

x t A x t B u t
G

y t C x t

δ δ
δ

δ

 = +


=



, where δ varies within a 
bounded compact set 

that well approximates the original system at each local model 
configuration, and the frequency responses and eigenvalues of 
which evolve smoothly as the parameters vary.

A two step procedure is adopted to solve problem 1: (i) local model 
reduction, approximating the original local system model with a 
lower order one, while minimizing the mismatch error and preserving 
stability, and, (ii) model interpolation in order to construct a Linear 
Fractional Representation (LFR) on which control and analysis 
can be achieved. The rest of the paper is organized as follows: § 
"Approximation of large-scale LTI models" presents some literature 
approximation techniques and points out Onera's contributions. Then, 
interpolation issues and Onera's contributions to complete this step 
are presented in § "Algorithm for flexible aircraft LFT modeling". 
Then, § "Industrial application" presents very successful results 
from combining the reduction and interpolation phases, applied to an 
industrial aircraft model. Finally, we conclude and indicate directions 
for further development.

Approximation of large-scale LTI models 

This section presents the model reduction step. This step is used to 
reduce the original model's complexity while keeping the model's main 
properties.

Preliminaries and problem formulation

There are two main families in the LTI model reduction field: (i) the 
projection based methods and (ii) the non-projection based ones. While 
the second methods are not well appropriated for a large-scale model 
[1, 20], the former methods clearly exhibit the best performances and 
will thus be considered in what follows. Mathematically, the problem 
considered in this section is given as in Problem 2.

Problem 2 - Projection-based linear dynamical systems approximation

Let us consider a MIMO dynamical model : ( , , )G A B C= of an 
aircraft's dynamics at frozen configurations, defined by n-ODEs, 
as follows:

( ) ( ) ( )
:

( ) ( )
x t Ax t Bu t

G
y t Cx t

= +
 =



where , , yu n nn nn nA B C ×××∈ ∈ ∈    

The projection-based model reduction problem consists of finding 

, n rV W ×∈ , where T
rW V I= ( r n<< ), such that the reduced order 

model ˆ ˆ ˆˆ: ( , , )G A B C= , defined as,

ˆ ˆˆ ˆ( ) ( ) ( )ˆ :
ˆˆ ˆ( ) ( )

x t Ax t Bu t
G

y t Cx t

 = +


=



where ˆ ˆ, ur nT r r TA W AV B W B ××= ∈ = ∈  and ˆ un rC CV ×= ∈ , well 
approximates the original system, in the sense of a given metric.

Considering problem 2, the classical manner to assess the quality 
of an approximation is to consider the system's error by mean of 
a mathematical measurement. To do so, let us simply introduce 
the classical metrics widely used in the numerical and control 
communities, i.e. [1, 11]:

• The relative "mismatch error" metric (in %), based on the H2 

norm, defined as:

 2
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ω σ ω
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In the model approximation framework, the objective is thus to reduce 
these errors. While the latter is practically very complex to achieve for 
large (medium) scale models due to the (iterative) nature of the H∞ 

norm computation, when considering the former, first-order optimality 
conditions can be characterized and satisfied, practically, thanks to the 
celebrated Wilson conditions (see [13, 23, 24, 25, 26]).

(Non exhaustive) state of the art in the dynamical model 
approximation field

Methods that can be used to meet the Wilson first-order optimality 
conditions [25] have been widely explored and still are of great interest 
in both the numerical and control communities. Significant results in 
this field propose an iterative procedure for converging toward a near 
optimal condition. The underlying idea is to iteratively construct the 
projectors , n rV W ×∈ using either the Lyapunov and Sylvester-like 
approaches [17, 26] or the Tangential (Krylov) ones [13, 23]. 

Tangent (Krylov) approaches

More specifically the following techniques, derived from the Tangential 
(Krylov)-like approaches, have retained a lot of attention in the recent 
years since they do obtain very nice results in practice and provide 
computational effectiveness: 

• The Iterative Rational Krylov Algorithm (IRKA), initially set for 
SISO systems [13] which produces excellent results on benchmarks 
[7] but does not guarantee stability (unless implementing specific 
restart techniques). Later, in [3], the authors extended it to MIMO 
systems, with a complex Trust Region algorithm which guarantees 
convergence and preserves stability;

• At the same time, the Iterative Tangential Interpolation Algorithm 
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(ITIA) for MIMO systems, suggested in [23, 24], was developed to 
handle the MIMO case. Indeed, the ITIA, developed in [10, 23] is 
similar to the MIMO IRKA. Like the previous one, this procedure has 
proved to be effective on many classical benchmarks [7] but does not 
preserve stability, a priori. 

The underlying idea of these methods is the moment matching. The 
moments are defined as follows.

Definition 1 - System moments

Let 1( ) ( )nH s C sI A B−= − be a complex valued MIMO rational 
transfer function. The system moments iη , around the complex 
shift σ , are defined as a Laurent series given as follows,

( 1)( ) i
i nC I A Bη σ − += − −

and verify,

0
( ) ( )i

i
i

H s sη σ
∞

=

= −∑
Because of the A matrix power, the moments computation is usually 
ill-conditioned and explicit moment matching is thus numerically 
impossible to achieve [20]. Consequently, the fact that the construction 
of Krylov subspaces allows for moment matching without computing 
them explicitly is used. Moreover, Krylov subspaces can be efficiently 
constructed through Arnoli-like procedures, very cheap from the 
computational point of view [1, 12, 20]. The main result of the moment 
matching, by construction of Krylov subspaces, is formulated in the 
following theorem (see e.g. [1, 13] and references therein).

Theorem 1 - Rational Krylov subspace and moment matching

Let 1( ) ( )nH s C sI A B−= − be a complex valued MIMO ( un inputs, yn
outputs) rational transfer function, and kσ ∈ be k interpolation 
points such that ( )k I Aσ − is invertible, if,
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where ( ) 1, , ,..., r
r A B B AB A B− =   stands for the Krylov subspace 

of order r. Then, moments of the original and reduced models 
satisfy

 ( ) ( )ˆ k k

k k

j j
σ ση η=  for  0,..., 1k

u y

r rj
n n

  
= + −  

    
Based on this theorem, recent results within the numerical and control 
communities have provided proof and algorithms that can be used 
to meet the Wilson H2 optimality conditions through the construction 
of iterative projectors (for more details, see [20, 25] and references 
therein).

Sylvester (and Lyapunov) like approaches

In parallel to the Tangent (Krylov)-like approaches, other techniques 
have been developed from the Sylvester and SVD approaches to 
approximate MIMO LTI systems (without always aiming at guaranteeing  
H2 first-order optimality conditions), e.g.: 

• Balanced Truncation (BT), which is often considered as the gold 
standard since it preserves stability, provides a bound on the error and 

a nearly optimal H2 error. The drawback is that it may fail in practice 
when the system order is too large, because of the need to solve two 
Lyapunov equations [11, 27];

• The Low Rank Square Root Method (LRSRM), which is a 
modification of the BT approach, is applicable for large-scale models 
but does not guarantee the preservation of stability [17];

• Dominant Subspaces Projection Model Reduction (DSPMR), 
which is a heuristic approach that can be used to handle large-scale 
systems, without guaranteeing stability;

• The Two-Sided Iterative Algorithm (TSIA), which iteratively 
solves two Sylvester equations, has been shown to be equivalent to 
the tangential interpolation. This procedure guarantees stability and 
provides nice results for medium-scale problems but it suffers of 
two main drawbacks: first, it requires a good projector initialization 
to converge, and secondly, no stopping criterion has been described 
so far [26].

This second family of methods basically consists of solving either 
Lyapunov or Sylvester equations. As an illustration, Lyapunov-based 
approaches consist of solving the following equations:

1

0
0

( ,..., )

T T

T T

n

AP PA BB
A Q QA C C
P Q diag σ σ

 + + =


+ + =
 = =
 where 1( ,..., )nσ σ  are the matrix singular values

Then, states with high energy are kept, while the others are eliminated. 
When considering the Sylvester like approaches, the problem consists 
of solving a lower order equation of the form [26],

0

0T T T T

AV V BR
W A W L C

σ

µ

+ Σ + =
 + Σ + =

Many other methods exist, but the above ones catch our attention 
because of their efficiency. The main drawback on these approaches 
concerns the resolution of such equations.

Mixed approaches & Onera contribution

Nowadays, another family of methods is being increasingly explored: 
mixed ones. These methods combine the advantages of both methods. 
For deeper insight, readers are invited to refer to [12, 19]. Recently, 
Onera has made a contribution that is illustrated in Box 1.

Industrial aircraft application & comparison of methods 

In this section, the model reduction techniques are applied to an 
industrial problem. The model considered is an industrial longitudinal 
aeroelastic model at varying flight points, as illustrated in figure 2 [20]. 
It is worth emphasizing that approximating (and controlling) such 
system is a challenging task since the model's order is about 300, 
the conditioning number is very high and numerous badly damped 
modes are present. The ISTIA approximation procedure is used on this 
industrial flexible aircraft model, and benchmarked with respect to the 
ITIA and the BT methods (note that BT is the one implemented in very 
efficient commercial computing software). In figure 3, the 

2Hε  error 
(mismatch error) of models approximated with the BT, ITIA and ISTIA 
are plotted as a function of the approximation order r for a model at 
one single flight point. 
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Box 1 - Onera contribution (ISTIA) and tool developments

Based on [12] and [23], in [19], a new hybrid methodology has been proposed to allow for accurate LTI model approximation while 
preserving system stability. In the MORE Toolbox1 very recent methods in the field of large-scale systems approximation, extracted both 
from the literature [12, 13 26] and from the project carried out within the laboratory [19, 20], have been implemented. One contribution is 
the definition and the numerical implementation of the SVD Tangential Interpolation Algorithm (ISTIA) [19], summarized as follows:

Algorithm ISTIA: Iterative SVD-Tangential Interpolation Algorithm [19]

Require: (0) (0)
1 1̂

ˆ, , , ,..., , ,..., , 0yu n nn nn n r n r
r rA B C b bσ σ ε××× ×  ∈ ∈ ∈ ∈ ∈ >       

1 Construct ( )(0) 1 (0) 1
1 1̂

ˆ( ) ,..., ( )r rV span I A Bb I A Bbσ σ− −= − −

2 Solve 0T TA Q QA C C+ + =  in Q

3 Compute 1( )TW QV V QV −=

4 While ( ) ( 1)i iσ σ ε−− >  Do

5 1i i← + and ˆ ˆ,T TA W AV B W B= =

6 Compute ( )ˆ ˆ( )AX diag A Xλ=

7 Compute 1
1̂

ˆ ˆ,..., rb b X B−  = 
8 Set ( ) ˆ( )i Aσ λ= −

9 Construct ( )( ) 1 ( ) 1
1 1̂

ˆ( ) ,..., ( )i i
r rV span I A Bb I A Bbσ σ− −= − −

10 Compute 1( )TW QV V QV −=

11 EndWhile

12 Construct ˆ : ( , , )T TW AV W B CVΣ =

Ensure: ˆ : ( , , )T TW AV W B CVΣ = stable and partial H2 optimality conditions

PDEsODEs
Discretization

Reduced
ODEs

State nx R∈  with n large
Of the form ( ),u x t

t
∂
∂

 with 

t the time and x the space 

(numerically solved)

Reduced state ˆ rx∈  with 
r n

(+) Simulation, Analysis
(+) Optimization, Control

Real physical phenomena/system

This algorithm has very nice theoretical and practical properties, such as, an almost H2 optimal model approximant of the original 
one, while preserving stability at each step. The stopping criterion allows limiting the accuracy of the optimality criteria. Practically, 
the  parameter is chosen small (e.g. 10-2). It has been successfully applied on many large-scale models and on industrial flexible 
aircraft models, showing enhanced performances with respect to the classical techniques [19, 21]. On the following figure B1-
1, the algorithm evolution is illustrated as it iterates, showing the mismatch error decrease and the interpolation points selection. 
Video - http://www.aerospacelab-journal.org/al4/scale-model-reduction-and-interpolation-with-application-to-aircraft-systems
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Figure B1-1 – Illustration of the algorithm evolution. Top left: frequency response (original, dashed blue / reduced, solid red). Top right: mismatch 
relative error (initial, solid black / reduced, solid red). Bottom left: mismatch error 

2Hε  as a function of the iteration i.

1 The MORE Toolbox - stands for MOdel REduction Toolbox (http://www.onera.fr/staff-en/charles-poussot-vassal) - is a dedicated medium(large)-scale LTI dynamical model 

approximation toolbox, developed within the Onera DCSD, by C. Poussot-Vassal.
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Relative mismatch error as a function of the reduction order
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Figure 3 – Mismatch relative error (
2Hε ) as a function of the reduction order r, 

for one single flight configuration.

With reference to figure 3 it appears that the proposed ISTIA method 
outperforms the ITIA and BT approaches in terms of error mismatch in 
all situations. Next, figure 4 compares the frequency responses (left) and 
the eigenvalues locations (right) between the original and reduced models, 
with order 20, obtained with the ISTIA technique. Looking at this figure, it 
is clear that a good fit in terms of frequency response and pole location is 
achieved. This last point is crucial for engineers who are familiar with the 
physical meaning of model modes. Indeed, this specific feature is one of 
the advantages of the interpolation-based techniques, because they can 
focus on specific behaviors through the choice of initial interpolation points.
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Figure 4 – Left: frequency response comparison of the original of order 286 
(solid black) and approximated model of order 20 with ISTIA (dashed red). Right: 
eigenvalues of the original (black rounds) and approximated model with ISTIA 
(solid squares)

By performing this local reduction for every local LTI model, a collection 
of reduced order models are produced which can then (almost) be 
interpolated in order to build a parameterized model, describing the 
aircraft's behavior over the entire flight domain.

Algorithm for flexible aircraft LFT modeling

Based on the reduced order models, interpolation is now performed in 
order to generate an LFR model.

State coordinate transformation for state vector consistency

At this stage, the N reduced order models are available with the same 
number of modes which are not always of the same nature.

Now before interpolating the state space matrices, a state basis must 
be found that ensures that these matrices are consistent in terms of 
states whatever the flight point index i. More precisely, after the state 
matrices have been interpolated, the result must be regular modal 
trajectories as well as variations in frequency responses with respect 
to the flight parameters vector δ (see figure 5). This is an efficient test 
for state vector consistency.

R(λ) R(λ)

F(λ) F(λ)

Figure 5 – Strong constraint: modal trajectories regularity

Our research showed that the characteristic polynomial of the models 
(1) is of deep interest as regards the modal trajectories regularity 
constraint. This phenomenon can be explained by the physical nature 
of this polynomial's coefficients (1) that are directly linked to the 
transfer function, and even more directly with the physical differential 
equations of the flexible aircraft.

1
1 1 0

z z

z

n n
n

d(s)= det(sI - A)
d(s) s c s c s c−

−= + + + +

(1)

The state basis linked with the characteristic polynomial is the 
companion basis, in which the A matrix has the form:

0 1 1

0 1 0 0
0 0

1 0
0 0 0 1

z

comp
i

i i i
n

A

c c c −

 
 
 
 =
 
 
 − − − 



  

  



 

This companion state basis is known to provide badly-conditioned 
state matrices. So the comp

iA matrices must be regularized via a scaling 
matrix T to balance the coefficients' values, while keeping the same 
eigenvalues [29]. The same scaling is applied to all models (i.e. i∀  for 
consistency); a regularized companion matrix compr

iA is then obtained:

1compr comp
i iA T A T−=

The scaling matrix T is computed for matrix compr
iA so that it has the 

same rows and columns norms, as far as possible. More precisely, T 
is a diagonal matrix assembles integer powers of two on its diagonal, 
to avoid round off errors:

1(2 , , 2 )nzkkT diag= 
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in which [ ]1,( )
xp p nk ∈ are the aforementioned integers, independent of the 

i index (flight point index).

The final regularized companion matrix compr
iA  is then:

2 1

1

0 1 1

0 2 0 0
0 0

0 0 2 n nz z

z

k k

compr
i k k

i i i
n

A

cr cr cr

−

−

−

−

 
 
 =  
 
 − − − 

 





(2)

where cr are the regularized characteristic polynomial coefficients.

Now the state space matrices corresponding to this regularized 
companion form (2) must be computed. To do so, the key step 
consists of linking the Acompr matrix with the initial A matrix by resorting 
to its modal form. Indeed, both matrices have one feature in common: 
their eigenvalues.

So, first the (A,B,C) model is expressed in the modal basis then the 
basis change matrix Pmod is computed so that:

1

1
mod mod mod

mod mod

mod mod

A P AP
B P B
C CP

−

−

 =


=
 =

The Pmod matrix has the form:

1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1

mod modc cr modc

j
j

P P P P
j

j

 
 
 
 = =
 

− 
 
 



in which Pmodc  actually assembles the eigenvectors of A. Then, the 
same process is applied to Acompr matrix to get its modal form:

1
mod mod2 compr mod2A P A P−=

The Pmod2 basis change matrix has the same form as Pmod (its 
expression holds the eigenvector matrix of Acompr this time). For both 
basis changes, it can be shown that their generic expressions are:

22 2

mod modc cr

mod modc cr

P P T P
P P T P

∆

∆

=
=

where TΔ and TΔ2 are free (diagonal) scaling providing additional 
degrees of freedom and Pmodc and Pmodc2 are matrices of eigenvectors 
of A. The latter can be used to help with the forthcoming state 
matrices interpolation (to improve the companion state matrices 
numerical conditioning or minimize their variations from one flight 
point to another).

Finally, the previous steps are summed up to compute the final basis 
change P such that:

1

1

compr

compr

compr

A P AP

B P B
C CP

−

−

 =
 =
 =

(3)

We have:

( )

( )2 2

11

11

        

       
2 2

mod
mod mod modc cr modc cr

compr compr
mod mod modc2 cr modc2 cr

A P AP P T P AP T P

P A P P T P A P T P

−−
∆ ∆

−−
∆ ∆

= =

= =

from which the Acompr matrix can be expressed with respect to the A 
matrix :

( )( ) ( )( )2 2

11compr
modc2 cr modc cr modc cr modc2 crA P T P P T P A P T P P T P

−−
∆ ∆ ∆ ∆= (4)

Through identification using equation (3) and (4) the final basis change 
matrix is obtained:

2

1 1
modc modc2P P T T P− −

∆ ∆=

Models interpolation and LFT modeling

Interpolation

The state space matrices are interpolated in their regularized companion 
form, through a multivariate polynomial structure [ ]1,( ( ))

tj j Np δ ∈ . This 
problem can be easily solved with a least squares algorithm.

LFT realization

Once the interpolation structure is known, the LFT is simply obtained 
with the generalized Morton's method [16] that is implanted in the LFR 
toolbox (function gmorton.m [15]). This method is the generalization 
of the Morton's method to a polynomial expansion, and it relies on a 
singular value decomposition of each matrix coefficient. 

Validation of the LFT

In order to assess the LFT accuracy, three criteria are defined: one 
evaluates the LFT modal matching with the reference models (5), and 
the other two are the H∞ (6) and H2 (7) frequential criteria for the 
frequency matching assessment.

[ ]

,

1

1,
,

1

max

z

z

n
i ref i
k k

k
modal ni N

ref i
k

k

λ λ
ε

λ

=

∈

=

 
− 

 =
 
 
 

∑

∑
(5)

where i
kλ  is the LFT's k-th mode at flight point number i and ,ref i

kλ  
refers to the corresponding reference model ( )iG s .

[ ]

( )( )
( )( )1,

max i
H i N

i

F jw

G jw

σ
ε

σ∞ ∈

 ∆
 =
 
 

(6)

in which ( ) ( ( ( ), ) ( ))i
i u iF j F M j G jω ω ω∆ = ∆ −  and σ  is the 

maximum singular value on the pulsation continuum ( H∞ norm).

[ ]

( ) ( )( )
( ) ( )( )2

*

*1,

1max
2

i j i j jj
H i N

i j i j

trace F jw F jw w

trace G jw G jw
ε

π∈

 ∆ ∆ ∆ =   
 

∑
(7)

where 1( )j j jω ω ω+∆ = −
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In depth validation is of course necessary to check both modal and 
frequential behaviors of the LFT on the whole model continuum. This 
step will be illustrated in the applicative example.

Input/Output error minimization

If the I/O error is not satisfactory, it can be minimized with a biconvex 
optimization. This algorithm is an extension to the LFT case of the one 
previously mentioned in paragraph 2. In this situation, the minimized 
criterion depends on the frequency error between the LFT and the 
reference models:

( ) ( )( ) ( )( ), i
i u iF jw F M jw G jw∆ = ∆ −

Let us recall the state representation of an LFT:

1 2

1 11 12

2 21 22

x Ax B w B u
z C x D w D u
y C x D w D u

= + +
 = + +
 = + +

The LFT frequency response is then (the model index i is dropped for 
simplicity):

( )( ) ( ) ( ) ( ) ( ), ,uF M jw C Y jw B D∆ = ∆ ∆ ∆ + ∆

with ( ) ( )( ) 1
,Y jw jwI A

−
∆ = − ∆ , ( ) 1 1A A B X C∆∆ = + ,

( ) 2 1 12B B B X D∆∆ = + , ( ) 2 21 1C C D X C∆∆ = + ,

( ) 22 21 12D D D X D∆∆ = + , ( ) 1
11X I D −

∆ = ∆ − ∆

Hence the two expressions of the frequency error are:

( ) ( ) ( ) ( )
2

12 2 21 22

22

BD CD

B
F jw H D G jw c D D H G jw

D

 
 ∆ = − = − 
 
 

with ( )
( ) ( )
( ) ( )1 21

,

,

T T

T T T T T T
BD

Y jw C

H jw X B Y jw C D

I
∆

 ∆ ∆
 

 = ∆ ∆ +  
  
 

and ( )
( ) ( )
( ) ( )1 12

,
,CD

Y jw B
H jw X C Y jw B D

I
∆

 ∆ ∆
 

= ∆ ∆ +   
 
 

Back with the models indices i.e. i, each term of both H2 criteria to be 
minimized:

( ) ( )( )( )

( ) ( )( )( )

*
1

*
1

F F i j i j j j
i i

F F i j i j j j
i i

J trace F jw F jw w w

J trace F jw F jw w w

∆ •∆ +

∆ ∆ • +

= ∆ ∆ −

= ∆ ∆ −

∑∑

∑∑

has the following quadratic structure:

( ) ( )( )*
, , ,2 T T

i j i j i j i j i jtrace F jw F jw c f Qθ θ θ∆ ∆ = − +

where θ is a column vector obtained by concatenating either the 

columns of 
2

12

22

B
D
D

 
 
 
 
 

or the transpose of rows of ( )2 21 22C D D .

The final expression is a quadratic criterion 2 Tc f Qθ θ θ− +  

with , 1( )i j j j
i j

c c ω ω+= −∑∑ , , 1( )i j j j
i j

f f ω ω+= −∑∑  and 

, 1( )i j j j
i j

Q Q ω ω+= −∑∑ . 

There is an analytical minimum at Q fθ •= (• is the Moore-Penrose 
pseudo inverse), which makes each loop of the biconvex optimization 
very fast.

Industrial application

As already mentioned in a paragraph above, this application illustrates 
the previously presented method of LFT modeling from a set of 
numerical models corresponding to a set of flight points and mass 
cases. These models are aircraft LFT longitudinal and lateral flexibilities 
for control design.

Description of the model

The set of aircraft models [ ]1,( ( ))i i NG s ∈  correspond to variations of the 
parameters ( )cOT Ma Vδ = , being respectively the outer tanks 
filling rate, Mach number and conventional airspeed.

Normalized Vc values
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No
rm

al
ize

d 
OT

 v
al

ue
s

0.80.60.40.2-0.2-0.4-0.6

0.5

0.5

-0.5

-0.5

0

-0.8-1

-1
-1

1

1

0

0

1

Figure 6 – Parametric domain of LFT model representativity . x : reference points 
for LFT modeling; - : parametric domain

These parameters vary inside the domain depicted in figure 6. For 
interpolation, N = 27 points are chosen inside this parametric domain.

The inputs of the model are the elevator δq and the ailerons in 
symmetric mode sym left rightp p pδ δ δ= + .

The considered outputs are wing root bending load WRMX and wing 
root twisting load WRMY.

LFT construction

The LFT is then built according to the method presented in section 
3.1, 3.2.1 and 3.2.2. The polynomial terms used for interpolation are 
computed by expanding the polynomial 2 2 2(1 ) (1 ) (1 )OT Ma Vc+ + + . This 
parameterization is sufficiently rich to obtain a very accurate interpolation. 
The obtained LFT has the following Δ-block:

( )
( )

42 30 52, ,

110
cdiag OT Ma V

dim

∆ = × × ×

∆ =

  
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Validation of the LFT

The values of the validation criteria (5), (6) and (7) for the example are 
shown in table 1.

modalε % Hε ∞  % 2Hε  %
1.27 × 10-5 1.5 × 10-3 9.28 × 10-4

Table 1 – LFT Validation

Regularity check-up

Since an LFT is a continuum of models, the previously built LFT has also 
to be checked-up between the flight points used to design it. It must be 
proven that the continuum of modes (i.e. modal trajectories when δ varies) 
and the frequency response continuum are both regular. No "overshoot" 
must be observed, and ideally the continuum should vary linearly between 
two reference flight points.

In the application, the main directions of the parametric domain are explored 
to assess the regularity properties of the LFT.

The modal trajectories (see figure 7 and figure 8) show that the LFT 
has no unexpected behavior (i.e. no irregularities) in terms of modes. 
Besides, this proves the interest of the characteristic polynomial 
coefficients for A matrix interpolability. The frequency response 
continuum (figure 9 and figure 10) is fully satisfactory as well.

Conclusion

The method presented in this paper is used to design an LFT from a 
set of large-scale aeroelastic dynamical models. It is definitely adapted 
to complex and prominently numerical models, with no parametric 
structure knowledge whatsoever. 

Naturally the least squares algorithm is used to interpolate the models 
with a basis of polynomials. Before interpolation, two steps are fateful 
in the process: the consistent reduction of the models and their state 
representations' transformation in a regularized companion state basis. 
In this way, the reduced models are made interpolable. After the LFT 
is created using the generalized Morton's method, its Input / Output 
accuracy can be optimized with an efficient biconvex optimization of 
the LFT state matrices. This algorithm was applied to both longitudinal 
and lateral aeroelastic models; the results showed very satisfactory 
modal trajectories and variations in frequency responses with about 
20 states in both cases. This study, based on industrial complex 
aeroelastic models, clearly emphasized the efficiency of the tools 
provided by Onera. 

These LFT models are well-adapted to full flight domain flexible 
aircraft control design. So these flexible LFT models are being used 
in the framework of research on the promising multi-objective flexible 
aircraft control extended to the full flight domain case [22] n
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Figure 7 – Modal trajectories with respect to OT parameter variation
x: reference models modes; o: central model modes
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Acronyms

MIMO (Multiple Input Multiple Output)
SISO (Single Input Single Output)
LPV (Linear Parameter Varying)
LTI (Linear Time Invariant)
LMI (Linear Matrix Inequality)
MPC (Model Predictive Control)

ODE(s) (Ordinary Differential Equation(s))
PDE(s) (Partial Differential Equation(s))

( )Gσ  (Highest singular value)
iff. (if and only if)
resp. (respectively)
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