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Nowadays, cameras and other exteroceptive sensors are on board of a large variety 
of automatic platforms, such as Unmanned Aerial Vehicles (UAV), space explora-

tion probes and missiles. However, apart from this latter application, they are mostly 
used as payload and not to pilot the vehicle itself. In this paper, we focus on the use 
of computer vision for UAV perception to navigate through the environment and model 
it. This function is typically needed at low altitude in unknown or GPS-denied condi-
tions. The measurements from exteroceptive sensors can then be processed to obtain 
information about the motion of the UAV, or the 3D structure of the environment. Our 
contribution is presented starting with the vision-based closed control loop, where 
image-based navigation is integrated to UAV control. Then, we focus on proper motion 
estimation techniques, like mapless relative terrain navigation or map-based GPS alter-
natives. Eventually, environment mapping solutions are proposed. In most cases, real 
image sequences coming from an aircraft or a hand-held sensor are used for valida-
tion. Our research underlines the need for new co-designed 3D sensors and massively-
parallel computation technologies to go further in vision-based UAV navigation.

Introduction 

Unmanned Aerial Vehicles (UAV) are mostly employed for observa-
tion or military intelligence missions. When they are not remotely ope-
rated, UAVs can only perform automatic functions such as waypoint-
following, landing and take-off. For this purpose, they are equipped 
with high-grade inertial, GPS or radio navigation sensors. However, 
their navigation abilities constrain them to medium or high-altitude 
flight trajectories, far from any ground obstacle. The threat of an aerial 
collision is dealt with thanks to traffic collision avoidance systems 
and airspace segregation.

To extend the scope of operation of these vehicles, their safe navi-
gation through an unknown environment or despite an intermittent or 
lacking GPS signal must be assured. To achieve this objective, UAVs 
must be equipped with exteroceptive sensors, efficient on-board 
computers, innovative estimation algorithms and new control laws to 
achieve a perception function.

In order to provide reliable information, the sensor measurements 
must be processed to deal with the coupling between the motion of 
the vehicle and the structure of the surrounding environment. Percep-
tion is also challenging because of the dependence of the measure-
ment quality on the scene content, especially in the case of passive 
sensors. For instance, camera-based navigation is impossible over 

scenes with uniform texture, since the inference of geometrical in-
formation requires image feature association. Perception algorithms 
must also be robust to recurrent outlier measurements from low-le-
vel image processing, like optical flow or feature matching. Last but 
not least, passive sensors supply no direct information about the 3D 
structure of the environment, contrary to active ones like lidars, time-
of-flight cameras, or Microsoft Kinect-like sensors. They must then 
be able to recover the 3D structure of the world with 2D-only image 
measurements.

Computer vision for UAVs is also challenging because of the vehi-
cle itself. The first issue consists in the room available on board of 
commonly-considered platforms, such as multi-rotor or other aerial 
vehicles with Vertical Take-Off and Landing (VTOL) capabilities. Com-
puters and sensors need to be placed in this very limited space, res-
pecting weight constraints from some hundreds of grams to a few 
kilograms, usually no more than 2 kg [1][5][11][35][59]. Online flight 
computational capabilities have a direct influence on the UAV naviga-
tion performance since, contrary to a ground robot which can stop to 
wait computation results, a UAV is still in motion and even in hovering 
flight it needs to be stabilized. With its significant maneuverability and 
complex dynamics, it also entails a higher computational rate, which 
can be obtained through an Inertial Measurement Unit (IMU) aid for 
image processing. In practice, it is common to see solutions com-
bining on-board computation and calculation deported to a ground 
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station with the main drawback of having to maintain the data link 
between these and the UAV [1][5]. With progress in processor archi-
tecture, however, some teams have demonstrated some computatio-
nally greedy real-time algorithms, such as Simultaneous Localization 
and Mapping (SLAM) or stereo-vision as in [35][59]. 

In practice, the misreading of the 3D environment structure is usual-
ly the most penalizing. Three strategies are possible. The easiest 
involves installing an active sensor on board, such as a Microsoft 
Kinect [46] or a flash lidar [1][5][59]. On bigger systems [19][77], 
lidars can be mounted on a scanning platform to offer a higher field 
of view. In all cases, there is a price to pay in terms of greater electric 
power consumption and less room available for payload instruments. 
The second strategy is to use a stereo rig. 3D can be inferred from 
it, using an algorithm running on a CPU [35] or an FPGA board [3]. 
The use of a Structure from Motion (SfM) algorithm with a monocular 
passive camera is also possible, but needs an external aid to solve 
for the scale [90][91]. The third and last strategy simply consists in 
ignoring the 3D structure of the environment. In our point of view, 
there is a clear separation between the techniques involved in consi-
dering or ignoring this 3D structure. The former are usually common 
in the navigation literature, while the latter are often seen at the control 
and guidance level. We must distinguish the techniques assuming a 
planar world, like visual servoing [20][21][70][71], from the tech-
niques using a specific video sensor to compute the image scrol-
ling at high rate under certain assumptions about the structure of the 
environment. In all cases, these techniques exploit a limited visual 
information, mainly the image transformation between two views, to 
emulate some complex behavior, such as flying down the center of 
a canyon [41], terrain-following [37], landing [36][81], or obstacle 
avoidance [11].

This article outlines recent research work at Onera regarding the per-
ception functions for UAVs and is divided into four parts. The first 
one focuses on vision-based control and guidance applications. At 

this level, image processing and command are closely related. Image 
processing is designed to provide limited 2D information but at high 
frequency, for example, an estimation of the image motion. These 
techniques are illustrated through two purposes: safe landing and the 
rallying/stabilization of a VTOL UAV to a reference position defined by 
an image taken at this position.

The second part tackles the problem of UAV self-localization and 3D 
environment modeling relative to a local reference frame. Here, com-
puter vision is involved in the navigation task and must infer 3D infor-
mation from an image sequence. These methods are complementary 
to those presented in the first section. They are typically used for the 
flight of small UAV, indoors or outdoors, when the GPS signal is bloc-
ked or jammed. They are designed to work at video rate for several 
seconds, between two map position fixes. The previously described 
techniques are prone to trajectory estimation drift by the accumula-
tion of small motion estimation errors. 

The third part addresses computer vision techniques to provide map-
based correction information similar to a GPS. The idea is to register 
the current sensor output with a prior map of the environment tied to 
a global frame. Data association between the map and the current 
view allows the pose of the camera to be computed and consequently 
the position and attitude of the vehicle. In an ideal visual navigation 
filter, such a function operates at a low rate, combined with a relative 
motion estimator working at video rate. Figure 1 illustrates our vision 
of a vision-aided control and navigation system and shows how the 
different techniques described in the article could be articulated with 
each other. In the last part, we focus on environment mapping tech-
niques, which is indirectly linked to the UAV navigation. 

We present an offline mapping method for environment modeling that 
can be used for pre-flight mission planning and for the absolute re-
localization task. A second subpart is dedicated to online obstacles.

Figure 1 -  Organization of a vision-based navigation and control system. Each block is related 
to a section of this article.
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Box 1 - Optical flow

Optical flow (OF) is the field of apparent motion observed in the image plane during a video sequence. The «intensity conservation 
assumption», states that the visible difference between adjacent frames can be explained by «apparent motion» of pixels (or patches) 
from one image position to another. Actually, many image variations cannot be explained by such motion, for instance, motion blur, 
specular reflections, variations of illumination due to automatic gain tuning, occlusions, etc. However, one usually considers that these 
perturbations can either be corrected beforehand (illumination effects), or are rare (reflections, occlusions). Under the intensity conser-
vation assumption, the optical flow derives from three contributors: the egomotion of the camera, the 3D rigid structure of the observed 
scene and the motion of moving objects that are in the field of view.
Figure B1-01 shows a residual optical flow norm map after global registration by a homography. Structure 3D and moving objects are 
very distinguishable. Optical flow then appears as a useful clue for autonomous behavior, and, indeed, it is used by most animals – inclu-
ding humans, of course. Its use in robotic application amounts to solving two coupled problems: (1) optical flow estimation (2) optical 
flow interpretation, in terms of the three components listed earlier (egomotion, 3D structure and moving parts). 

 
Figure B1-01 - OF norm after homographic global motion compensation. On the left, an image from the «Blood Diamond» movie. On the right, a com-
pensated OF norm map. 3D structures and moving objects are easily detected.
 
Let us first comment about OF estimation. Dense OF estimation (where each pixel goes from t to t+1?), is an under-determinate inverse 
problem, which can be solved by spatial regularization. Several approaches have been proposed, ranging from costly global estimates 
with discontinuity-preserving properties [38][47][92] to very fast local estimates [48][54]. The latter can be obtained at video rate on 
full HD (2MPixels) images, thanks to FOLKIGPU [72], as illustrated in figure B1-02.

On the other hand, several applications, such as vision-based navigation, can be done with a sparse OF estimation, i.e., the estimation of 
the motion of a few hundred points spread over the image support – as for instance in all of the vision-based control problems of the sec-
tion. Each point is chosen in a textured area, for instance using Harris-like detectors [34], and its motion is estimated by block matching 
techniques, often using cross-correlation maximization. These independent estimations are often improved by fitting a parametric global 
motion model (such as the planar homography model in the section “Online obstacle mapping for safe landing planning”) with robust 
techniques – in order to discard wrong matches and other outliers. This robust parametric approach is very efficient in aerial imagery, 
where the assumption of a planar scene is often correct above a given altitude and over a large part of the field of view.

The last issue is the interpretation of OF so as to produce quantities that are relevant for the application at hand, be it control, obstacle 
avoidance or target detection. Let us first consider the case of a static environment and discuss of the coupling between the scene 
structure and the egomotion. In the late 80s, the following first order optical development was proposed by several researchers [52][56]:
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The left-hand sides are OF components (u,v) at pixel (x,y). In the right-hand sides, the focal length f, the translational and rotational com-
ponents of the ego-motion (T and Ω) and the depth Z of the scene point whose image is projected at pixel (x,y) appears – in a referential 
fixed to the camera’s center. Several remarks can be made regarding these equations. First, there is a decoupling between translational 
and rotational effects, with the depth appearing only in the translational terms. There are two kinds of constant terms, arising either from 
rotation components (O1, O2) or frontoparallel translation components T1, T2: with a limited field of view these terms can become indis-
tinguishable. The rotational part (three first term) is independent of the depth: it can be estimated by analytical methods, see [39][40]. 
Then the translational part is an affine motion model scaled by the inverse depth: the center of this model is the «focus of expansion» 
FOE (fT1/T3, fT2/T3). An example of such a motion model can be seen in figure 21, in the case of a (mainly) translational forward motion 
in a canyon. The scaling by the scene structure is clearly visible in the OF norm, opening the way toward 3D reconstruction from OF 
estimation. Around the FOE, the OF collapses. As a general result, the use of the OF for structure and motion estimation is best done «on 
the sides», i.e., as far away from the FOE as the orientation of the camera and field of view allow.
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Let P denote the coordinates of a point of the environment expressed 
in the camera-fixed frame, ,D pℜ  its projection on a spherical image 
and p  its kinematics.
Then, the optical flow on a spherical image can be obtained by inte-
grating p  over a small image section W²: 

2W
pdpφ = ∫∫ 

where W² is a hemisphere of the image on which we calculate the 
optical flow. Detailed derivation of this equation can be found in [33].

Landing on a target

Figure 2 - Obstacle avoidance configuration

We can extract from the optical flow  the translational optical flow, 
which is in fact the velocity relative to the ground:

vw ( )
d

f φ= − =

Lastly, let us comment on moving object detection and characterization using the OF. In aerial imagery, as already mentioned, the scene 
can often be approximated by a plane and (OF1) reduced to a second order polynomial model, which can be estimated and compensa-
ted. Residual motion can then be used to detect moving objects. This is done for instance in figure B1-02. In the case of low altitude flight 
over a 3D area, structure effects become important and detection should integrate clues other than OF, for instance learned knowledge 
on the appearance of the objects that are sought.

 
Figure B1-02 - Optical flow on a video from the BBC movie “One day on earth”.  The colormap used here (source: Middlebury Optical Flow challenge 
[6]) at the same time codes the norm of the optical flow and the direction.  This map is overlappable to the image on the right. We can easily detect 
the depth discontinuities. 

Vision-based closed control loop

While the navigation task requires an estimation of the vehicle position 
and attitude, it has already been shown that coupling the output from 
exteroceptive sensors with a suitable control law enables automatic 
vehicles to achieve a complex and safe behavior, such as landing, 
terrain-following, flying down the center of a canyon or obstacle avoi-
dance. We present here some work using 2D visual motion estima-
tions and IMU measurements.  First of all, we show how optical flow 
can be used to safely land an UAV.  After that, two UAV stabilization 
techniques, related to visual servoing and based on the homography 
matrix computed between a reference view and the UAV current view, 
are explained.  

Note, that, in both cases, a “target” must be pointed out in the image. 
The designation could be delivered by a human operator or by an 
“intelligent” embedded system. 

Optical flow based control

In this section we present the control laws of a VTOL (Vertical Take-
Off and Landing) UAV using optical flow as an input. A control objec-
tive is to land on a target while avoiding obstacles on its way. We first 
present the concept of optical flow and then describe the control laws 
that allow a UAV to achieve this objective.

Optical flow

Box 1 provides a detailed overview of optical flow, assuming the 
true image plane. For control tasks, it is more common to consider a 
camera as a spherical sensor, because of its passivity-like properties 
[32] knowing that it is possible to convert the plane image model to 
the spherical one [86].
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where v is the UAV velocity expressed in the inertial frame. The control 
law for landing is designed as a PI controller, by feeding back w and 
the position of the target in the image. This controller allows the target 
to be placed in the center of the image and to descend to land.

Figure 3 - Obstacle avoidance and landing. The obstacle is represented here 
by the repulsive sphere and we show that the UAV trajectory lays on the 
sphere surface

Obstacle avoidance

If the UAV crosses the repulsion sphere of an obstacle Bo during 
landing (figure 2), a repulsive term is activated in the control law. 
This repulsive part is a function of the integral of / Rt t

o o o od d wη= , 
which is a function of the translational optical flow of the obstacle. 
Choosing the repulsive gain correctly, we can guarantee that the UAV 
avoids the obstacle. Figure 3 shows simulation results of UAV landing 
trajectories, with and without obstacle.

Inner-loop vision based control for UAV stabilization

The previous parts show the benefit of an onboard video camera 
on the guidance/ navigation functions of a UAV. Confronted with 
the weaknesses of other sensors (GPS jamming, need for external 
devices, etc.), they also question the possibility of a UAV control sys-
tem relying on a very minimal sensor suite, namely only on visual 
information and on other on-board sensors (typically gyrometers to 
measure angular velocity). 

This problem is highly challenging for several reasons, some of which 
are related to image processing: the richness of visual information, 
which questions the associated computational burden, and the need 
for real-time computations or the required robustness to changing 
light conditions. 

Furthermore, vision based control is also highly challenging from an 
automatic control prospective: depth information acts as a gain in the 
control loops and it cannot be extracted from images without extra 
knowledge; velocity is not measured; the UAV orientation is unknown 
unless, again, extra assumptions are made; the relationships between 
point coordinates seen from a camera are nonlinear, and so are heli-
copter dynamics, thus calling for nonlinear control techniques when 
addressing stability in a large flight domain. Finally, several types of 

UAV, such as helicopters, are not fully actuated, thus increasing the 
control task difficulty.

For these reasons, vision-based control for UAVs has been mostly 
addressed in the past years by the use of restrictive assumptions. 
First of all, the huge majority of works consider the observed land-
marks to be lying on a plane, this assumption being necessary to 
use the homography matrix. Moreover, most works assume that the 
position and orientation (the «pose») of the UAV can be extracted 
from the images, leading to a more standard UAV control problem 
[57], or that enough knowledge is available for the dynamics to be 
able to be somehow inverted [31]. Several works do not consider 
the dynamics of the UAV (or that of another system), such as [23]. 
This happens for instance when the system is supposed to be fully 
actuated (in [13], a quadrotor is considered, where the dynamic can 
also be considered to be actuated). 

A few recent works have addressed the nonlinearities of the UAV and 
camera models, often leading to local stability results [33] (the UAV 
has been proven to be stabilized, as long as it does not start too far 
off from the desired pose). Some of these works also prefer to use a 
spherical image camera – as mentioned in the previous part of this 
article dealing with optical flow – because of their passivity property, 
which helps in the control design steps [13].

Finally, in some recent approaches, the assumption of the knowledge 
of the normal to the target is made in the camera frame [50], leading 
to interesting but still restrictive results.

In this context, we have built on these previous works, in order to 
reduce the need for such assumptions still further, and have proposed 
two control laws: 
	 • in the first one, a linear control law uses the homography matrix 
to avoid extra assumption;
	 • the second control law is a nonlinear control law, with an almost 
global stability domain.

The task at hand is to stabilize a UAV helicopter flying in front of 
a planar object, on which points of interest (Harris, Fast, etc.) can 
be extracted. The control task is to make the current image equal 
a reference image, supposedly taken by the UAV from the desired 
pose. The object nature and size, current or reference distance to 
object, velocity, position or orientation of the UAV are all unknown; we 
only have the current and reference images, as well as the gyrometer 
angular velocity measurements.

Figure 4:  planar target object seen from two viewpoints
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The linear control law [70]

The first important question is: how can relevant information be ex-
tracted from the images taken by the video camera? If the observed 
scene is a planar object seen from two viewpoints, one can esti-
mate the so-called homography matrix, which is the transformation 
between the coordinates of any point of the target plane, as seen from 
the two viewpoints; it encompasses the rotational and translational 
information, while it is not possible without assumption to extract 
these two elements:

 

*
*

1t t tH R R pn
d

= −

where R is the rotation matrix between the two viewpoints, d* is the 
distance to the target plane from the reference position, p is the trans-
lation between the two viewpoints, and n* is the normal to the target 
plane (see figure 4). All of these quantities are unknown in the consi-
dered scenario, so that we are left with one global measurement, 
which implicitly encompasses position/orientation information.
We have chosen this matrix as the core measurement for the control 
task: based on [9], we have defined a new error vector according to:
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with and

defined by

where and

In these equations, the first error vector e was defined in [9] so that it 
is bijectively related to the position/ orientation information. The goal 
of our proposed error vector e  is to recover vectors that are closer 
to the position/ orientation information, so that a control law close 
to standard linear control for helicopters can be applied. In this fra-
mework, m* is a pointing direction in the reference camera frame, 
which is chosen equal to the camera axis (third component of the 
basis). With these definitions and this choice for m*, one shows that 
rendering this vector null ensures that the UAV is at the desired pose. 
Moreover, based on this vector, a nested loop linear control law was 
defined, with the addition of a dynamics augmentation. This control 
law is shown to stabilize the UAV without velocity measurements and 
without extra knowledge about the scene (size, distance, etc.) for a 
very wide range of values of the unknown distance to target: as long 
as rough bounds on this distance are known, the UAV can be stabi-
lized. Finally, a heuristics for gain tuning was provided to fine tune the 
UAV performance.

The nonlinear control law [71]

Building on this first linear result, a nonlinear control law was desig-
ned. The procedure adopted was similar to that adopted in the linear 
case: to define an error vector recovering information close to posi-
tion/orientation, then use this vector in a framework inspired by more 
standard helicopter UAV control. The previously-defined error vec-
tors, although well-suited for the linear context, were not suitable for 
the nonlinear domain. We have defined new error vectors, once more 
computed from the homography matrix:

2 3 1

3

He He He
gHe

π
γ
= ∧ −
=

In this definition, π can be shown to be close to the position error infor-
mation, whereas  is close to the orientation error information. With 
these new error vectors, the error dynamics, although described with 
the use of unknown parameters (reference distance to target, normal 
vector to the target plane) and unmeasured variables (velocity), are 
rewritten in a form closer to a standard UAV dynamics model, which 
permits recent results to be used in the field of nonlinear control for 
helicopter UAVs [42][43]. The general form of the dynamic equations 
was considered, in order to prove a general result on the nonlinear 
robust control of an uncertain dynamic model, with the use of satura-
tion functions. This result was applied to the vision-based control, with 
the aforementioned error vector, in the case of a vertical target plane. 
This assumption does not mean that the target plane orientation is fully 
known; in more recent and yet unpublished work, this assumption is 
forgotten. In this context, the system with such a nonlinear control law 
was shown to be stable for almost all initial conditions.

Future directions include the introduction of this control law into a gui-
dance framework, which could lead to following a trajectory relying 
solely on video camera and gyrometer sensing.

Vision-based relative navigation 

Techniques presented in the previous part exploit image measure-
ments for guidance and control tasks. This involves a close interlea-
ving between image processing and flight control software, because 
the vehicle state is not explicitly recovered by vision. 

In contrast, the navigation system recovers at each time (as a mini-
mum) the position and attitude of the vehicle. In addition, it must be 
able of take into account new information about the vehicle environ-
ment, for example to avoid an unknown obstacle. Here we consider 
the case of relative navigation, defined as navigation without a system 
able to locate the vehicle in an external reference frame, such as the 
GPS or a terrain correlator.  In relative navigation, the reference frame 
is commonly the sensor frame at the beginning of the mission or the 
last available GPS statement. 

The methods described here extract 3D information about the camera/
vehicle motion and the environment from a vision sensor, eventually 
helped by inertial sensors. These operations rely on a geometrical 
model of sensors, as detailed in box 2.

The first subsection describes a system combining IMU and a 
downward looking camera for recovering the UAV state during a tar-
get tracking scenario. In a more general manner, the two following 
subsections talk about visual 3D motion estimation and its accumu-
lation over time. The estimated state provided by such techniques 
can be exploited to build a representation of the local environment, as 
described in the last subsection.

Optical flow-aided inertial navigation for ground target tracking in 
an urban environment

This section focuses on developing a UAV navigation and guidance 
system for air-to-ground target search and tracking missions in an 
urban environment [89]. The monocular vision-based target localiza-
tion and tracking problem has been well-studied, with various appli-
cations such as aerial refueling, formation flight and ground target 
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observation. However, most assume a UAV operation in an open 
space, but not in a congested area. 

Two main challenges associated with an urban environment are: i) GPS 
signals can be degraded or even denied, and ii) there are obstacles to 
be avoided. Those two conditions are seldom incorporated in the UAV 
visual target tracking problem. Figure 5 summarizes the system that we 
propose to address those two issues, using onboard vision sensors. A 
classic monocular vision-based target localization and tracking system 
is augmented with optical flow-aided inertial navigation and the lidar-
based obstacle mapping and avoidance algorithm. 

For UAV flight safety during urban operation, it is critical to maintain 
its navigation capability in case of GPS signal loss. In order to limit 
divergence of the inertial-only navigation solution, we have suggested 
the use of optical flow measurement to compensate the UAV velo-
city information [88]. The navigation filter is based on the extended 
Kalman filtering method to simultaneously estimate 3D position and 
velocity of a target and those of the UAV. Figure 6 compares UAV 
trajectories estimated by the optical flow/inertial and the inertial-only 
navigation filters. They are calculated by using the inertial sensor 
measurements and the onboard camera images synchronically re-
corded during a UAV target tracking flight. The suggested system can 

BOX 2 – Camera model and calibration

One camera provides oriented information: the radiometric or/and distance information at one pixel comes from a certain direction 
relative to the optical axis. In order to infer geometric information from images, the process of geometrical image forming must be 
mathematically explained. 

The direct camera model describes the image position from the 3D feature position (relative to camera position). The pinhole model, the 
simplest camera model, corresponds to a central projection whose center corresponds to the camera focal point. Thanks to the projec-
tive theory, this model is formulated as a linear operator, described by a 3x3 upper-triangular matrix K, where fu, fv, u0, v0 correspond 
respectively to the horizontal focal distance, the vertical focal distance and the coordinates of the central point projected on the image 
plane. 

0

0

0
K 0

0 0 1

u

v

f u
f v

 
 =  
  

This model is well-suited for long-focal optics. By reducing the focal length, some geometrical distortion caused by the optics appears. 
To deal with it, Brown et al. [17][30] have proposed a modified model adding polynomial disturbance before the affine transform defined 
by the matrix K. Two sorts of distortions are identified: radial distortion, which is the majority and is described by 3 parameters, and 
tangential distortion, which is described by 2 parameters and describes the misalignment of the lenses w.r.t. the sensor plane. See the 
page “Description of the calibration parameters” on the J.Y. Bouguet Website [12].

In the case of a very large field of view, like fisheye lenses or catadioptic lenses, the Barreto [8] camera model is the best suited. This 
model adds 2 parameters to the previous ones.
 
Estimating these parameters is carried out during the calibration process. It consists of taking several images of a known geometrical 
pattern, like a checkerboard. Knowledge of the matching between image measurements and 3D measurements permits intrinsic para-
meters to be estimated thanks to a bundle adjustment process (see box 3). Some toolboxes are freely available on the Web, the most 
famous is due to J.Y. Bouguet [12].

For some exotic lenses, the single viewpoint condition is not respected and some authors propose to replace the parametric camera 
model with a look-up table pixel↔3D ray direction [73].

provide a navigation performance equivalent to that of a GPS, while 
the inertial-only navigation solution diverges quickly. We are currently 
working on adding a ground altitude measurement with a laser for 
further improvement of the localization accuracy. 

Figure 5 - Onboard navigation and guidance system for visual target tracking
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Figure 6 - Optical flow-aided simultaneous visual target tracking and naviga-
tion.  The chart on the left compares three trajectories: in blue, the ground 
truth (from GPS/INS), in green the trajectory from inertial measurements only 
and in red the trajectory from our optical flow-aided navigation filter.  On the 
right, an image with our target and optical flow. 

Visual odometry

In the previous technique, the UAV state is partially recovered by 
vision, altitude and attitude being measured by dedicated sensors. In 
addition, a strong assumption was made about the environment. In 
contrast, visual odometry recovers the full relative motion parameters 
between two successive displacements in time, with the help of visual 
sensors. To achieve this objective, a visual odometer more common-
ly exploits 3D measurements from a stereorig or a depth camera. 
Indeed, under the commonly used hypothesis of stationary scene, 
the non-alignment of corresponding 3D measurements is only due to 
the sensor motion.  Thus, recovering the sensor motion is equivalent 
to estimating the rigid 3D transform (rotation + translation), which 
aligns the two 3D measurements sets at best. 

Figure 7 - Camera attitude and trajectory relative to the frame of the first image 
of the sequence with stereo visual odometry. On the top, one stereo image.
On the bottom left, the current attitude in the reference frame; at right, the 
trajectory.  No ground truth available, but the result is quite similar to our walk.

The most common visual odometer uses a stereorig and a sparse 
set of  image features like Harris corners [34], FAST corners [74] or 
SIFT points [53].  Features, extracted from each stereo image, are 
matched in two ways: the stereo-matching gives the 3D localization 
of the feature by triangulation; the temporal matching supplies the 

matching between 3D measurements. From here, two strategies can 
be followed: the use of a 3D-3D pose computation algorithm [45] or 
a 2D-3D one [55]. The first minimizes a global distance expressed 
in the 3D Euclidean space; the second minimizes a distance on the 
image plane. Modern algorithms are robust to matching error through 
the RANSAC mechanism [29]. Figure 7 shows the result of a trajec-
tory estimated by the real-time state-of-the-art Onera stereo visual 
odometer. 

Stereo visual odometry can be applied on natural scenes (like in figure 
7 and figure 8). In other cases – such as an indoor case, see figure 
9 – a RGBD (Red Green Blue and Depth) sensor is a better choice 
because it can measure relative 3D information, despite the lack of 
texture. In [44], the authors proposed an algorithm that relies on a 
probabilistic framework, where a global matching criterion applied to 
extracted geometric features can be evaluated in parallel in the projec-
tive plane defined by the sensor camera. This algorithm benefits from 
a fast GPU-based implementation and has been successfully applied 
to Kinect data. Compared with local registration methods like the Ite-
rative Closest Point (ICP, [10]), the proposed approach is natively 
robust to large camera motion (rotation or translation). The algorithm 
basically comprises two successive steps:
	 • First, sparse structures (3D contours corresponding to a list of 
edges) are extracted from the depth image and used in a pose score 
evaluation for different movement hypotheses;
	 • Then, a likelihood function is defined on the set of all possible 
transformations and used in the final decision process.

Figure 8 - Trajectory obtained by visual odometry (in red) is quite similar to 
the “ground truth” (blue). Note the drift:  We have made a loop, but the ends 
of the path do not coincide.

Good results have been obtained on structured environment, as 
shown in figure 9. Here the transformation is selected to maximize 
the ML criterion. As we can see, in this case, the selected transfor-
mation permits the two point clouds to be precisely aligned. Future 
work will focus on coupling the pose estimation with a particle filte-
ring approach and its embedding in a global and multi-scale SLAM 
framework.
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manner [22] to simplify the non-delayed vSLAM process. With a 
front-mounted camera, image features and descriptors must be 
robust to scale and appearance changing. Unlike the original algo-
rithm, our implementation uses DAISY descriptors [83] and we ob-
served a better convergence on a UAV monocular image sequence, 
as depicted in figure 10.

Most of the previous techniques work at the standard video-rate 
(25-30 hz) and perhaps at a higher frame-rate (i.e., [76] an-
nounces 60 hz). Since EKF-based and Bundle Adjustment-based 
vSLAM need to invert a matrix whose size is related to the num-
ber of estimated parameters  (viewing parameters and structure 
parameters), these performance are possible only by constraining 
the number of landmarks in the auto-generated map. In an EKF-
vSLAM and standard matching techniques (i.e., without the DAISY 
descriptor), the video-rate is reachable with about 50 3D points in 
the map. This constraint prevents the use of vSLAM techniques in 
large environments. To bypass this limit, some techniques have 
propose the use of local maps regularly initialized and ordered in a 
graph of maps related by rigid geometrical transformation (trans-
lation, rotation) [66][68].

Figure 10 - DTIM EKF-vSLAM on an indoor UAV images sequence provided 
by the CEA-LIST

The map built by a vSLAM is not sufficient for navigation through 
obstacles or a congested area. In the next part, we address denser 
environment modeling techniques.

Online environment modeling

The data acquired by the exteroceptive sensors is also processed, in 
order to provide a digital model of the environment for the navigation 
and guidance algorithm. We describe the requirements for this model 
below. 

Firstly, the considered application does not need a realistic and very 
accurate environment model – as used for view synthesis or virtual 
architecture. Indeed an exhaustive ternary classification of the 3D 
space as a free space (safe to navigate), obstacle area and unknown 
area is generally sufficient  for planning a collision-free path.  The 
second aspect concerns the modeling strategy. As UAV acquires 

Figure 9 - Dense 3D point registration by the 3D features-based probabilistic 
pose developed by Onera [44]

Visual odometry is also addressed without 3D sensors like a simple 
monocular camera. The scale cannot be estimated directly from the 
sensor and external information is needed, such as an inertial measu-
rement unit (IMU) or some known-size landmarks. We will cite Nistér 
et al. [64]which use the epipolar geometry and an efficient algebraic 
algorithm to compute the relative pose [63] and Caballero et al. [18] 
which use the decomposition of the homography matrix in the case 
of  planar scenes.  

vSLAM: Visual Simultaneous Localization And Mapping

A visual odometer gives the camera relative motion between two 
successive instants as output. The naive global trajectory estima-
tion approach combines successive rigid transforms, accumula-
ting unbounded estimation errors. The vSLAM algorithms attempt 
to reduce the drift by taking into account the geometric constraints 
between the sensor trajectory and some 3D landmarks tracked 
over time and forming a map – the Mapping term in the vSLAM  
acronym. 

The main difficulty is due to the online nature of the algorithm: land-
mark positions and UAV trajectory must be refined continuously 
before the acquisition of the entire information. Ideally, a vSLAM 
algorithm must refine these parameters at each time from all of the 
previous algorithms, leading to an intractable formulation. In order 
to approximate this ideal solution, filters are designed to work on a 
short temporal window (from one to ten views). A great variety of 
filters are proposed in the SLAM literature: local bundle adjustment 
(see box 3) [62][78][79], Non-linear Kalman Filters (Extended, Uns-
cented) [22] [24],or particle filter [60]. These filtering solutions have 
then been declined with different sensors (mono, stereo, RGBD) and 
with different kinds of features (point, segment, planes) and associa-
ted image processing. 

Within the scope of initial work on online environment modeling, we 
address the problem of monocular vSLAM. We have implemented 
the EKF-vSLAM described in Davison [24] and Civera [22] seminal 
works. The state vector – containing firstly current position, attitude, 
linear and rotational speeds of the UAV and secondly a dynami-
cally managed 3D landmark map– and the associated covariance 
matrix are updated sequentially in a prediction-measure-correction 
scheme. The 3D landmarks are parameterized in the inverse-depth 

d) after registration

a) RGB
b) depth image+features

c) before registration

image 1787, 178.7000 s Camera trajectory and attitude in the world 
coordinate frame

Camera attitude in the world coordinate frame Top-view of the landmark map
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progressively more knowledge about the environment, the function 
must be able to combine these fragments in a sequential way, as in 
the SLAM manner. Lastly, the model must offer fast access to the 3D 
information and must be as compact as possible, in order to deal with 
the constraints from the embedded system (memory and computa-
tional resources are limited) . 
 
Three environment representations could be considered: i) 3D point 
cloud ii) 3D meshes iii) voxel-based space quantization. Despite the 
unbound memory footprint, voxels-based solutions are commonly 
used because they natively offer fast access to information content 
(by three indices) and a useful neighborhood relationship between 
these elements. The common solution consists in computing occu-
pancy likelihood in a stochastic update way within a voxel-based 
technique [2][3][27][61][93]. 

Two interesting references deal with the main drawback of the voxel 
representation. In [3], the authors propose to combine a locally 
classical voxel array with a global simplification stage, consisting in 
occupied space by polygonal convex hull. [93] shows how an octree-
based voxel representation could improve the occupied memory 
space, without prior knowledge about the global explored volume. 

In recent work, we have evaluated the Octomap solution [93] with 
RGBD and stereo-rig data. Figure 11 shows the 3D model obtained 
from a depth map provided by a home-made stereovision algorithm. 
Typically, the Octomap processes our data (640x480 depth maps) 
at 1 to 2 Hz. 90% of the computation time consists in the ray-tracing 
operations used for updating occupancy likelihood in the voxel grid. 
We have integrated a pre-processing of the depth maps proposed by 
[1]. The idea is to identify in the depth maps pixels corresponding 
to 3D points belonging to the same voxel and to replace multiple ray 
traces by one only. Practically, we use multi-resolution depth maps. 
This technique is called the “pyramidal approach”. Figure 12 shows 
some performance analysis results. The graph at the top compares 
the number of ray-tracings for different voxel resolutions with the 
pyramidal approach for a depth map sequence. The greater the voxel 
resolution, the greater the gain is. In this example, the gain in the 
coarsest resolution is of around100 w.r.t for the case without pyra-
midal approach. This result was expected. In order to more precisely 
qualify the impact factors, we put a lot of boxes in an office room 
and acquired depth maps during the tidying up (see the photo at the 
bottom left corner in figure 12), boxes being removed from the fore-
ground to the background. For a same voxel resolution, the curve 
shows that gain also depends on the obstacles ↔ sensor distance. 

 
Figure 11 - Online environment modeling. From top to bottom, from left to 
right: grayscale stereorig image, depth map by stereovision, occupied voxels, 

free voxels in semi-transparent green. The obstacles within a radius of 10 
meters are correctly modeled.

 
Figure 12 - The gain obtained by pyramidal approach varies with voxel resolu-
tion (at top, in terms of traced rays) and the cluttering of the scene

Image registration for absolute navigation

Vision-based relative navigation techniques presented earlier analyze 
the image motion of feature points to estimate the current pose of the 
vehicle. Except when these features stay or come back into the field of 
view (within a vSLAM with loop-closure detection, for example), posi-
tion and attitude estimation suffers from a drift due to an unbounded 
error accumulation, as illustrated in figure 8. This is an issue encoun-
tered, for example, by a UAV cruising outdoors, or by a spacecraft 
landing on another planet from an orbit trajectory. Here, we focus 
on two image processing techniques to recover the vehicle position 
and attitude relative to a global frame. They both rely on prior geo-
referenced data. The first one is a dense technique: all of the image 
pixels are used. The second one is sparse and relies on image feature 
matching. 

Registration of video to geo-referenced imagery

Accurate geo-registration of video captured from an airborne plat-
form, such as a UAV, is required for image analysis. Most of the 
time, the recorded data (position, attitude, zoom) supplied with the 
video is not sufficiently accurate for military applications. To meet this 
requirement, we propose an approach to automatically register air-
borne video to geo-referenced imagery and digital elevation models. 
A few manually selected “key frames” are automatically registered 
to geo-referenced imagery, using Mutual Information optimization 
[87]. This step provides ground control points that will be used to 
feed the “Bundle Adjustment“ procedure. The “Bundle Adjustment” 
(see box 3) estimates the viewing conditions (extrinsic and intrinsic 
parameters) of each image, using tracks of salient features generated 
over the sequence by the KLT tracker [80]. When the registration of 
a single frame is not possible because of a too narrow field of view 
of the video, a mosaic is built to enlarge the field of view, in order to 
enable registration through mutual information optimization. 

Good estimates of intrinsic parameters are required to initialize the 
processing chain. When this is not the case, as in the videos we used, 
an optional “Auto-calibration” module may help to recover sufficiently 
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accurate focal lengths to initialize the process. The auto-calibration 
procedure is based on the reference [82]. The figure 13 presents the 
general scheme of the proposed video geo-registration chain. Figure 
14 shows a result after the automatic registration of a keyframe on 
the orthoimage. 

Figure 13 : Synthesis view / Flow chart of the video geo-registration method 
developed at Onera

A quite similar method was developed and applied to UAV naviga-
tion in [16]. In this reference, a correlation-based image registration 
is proposed. It differs from ours by the optimized parameters – a 
2D translation versus a homography – and the maximized criterion 
– cross-correlation versus mutual information. Using this simplest re-
gistration model is possible, because the image registration module is 
combined in a complete navigation system with IMU measurements 
and a homography-based visual odometer, in order to adjust the UAV 
altitude and attitude. 

Figure 14 -  Example of image registration on an orthoimage, by the alignment 
method based on the maximization of the mutual information.  On the left, 
before processing. On the right, after processing, the fitting at the borders is 
great in most cases.

Feature-based registration for pinpoint planetary 
landing navigation

Pinpoint landing capability is required for several future planetary mis-
sions to the Moon and Mars. Since there are no GPS or radio beacons 
to provide position fixes on such planets, inertial-only systems that 
have been used up to date suffer from an error drift and cannot gua-
rantee the required landing precision of 100 m. One way to reduce 
and maintain the navigation error low is to identify landmarks on the 
surface with terrain sensors.  

 
Figure 15 - Vision/Inertial fusion architecture for planetary landing

In [25], we proposed an absolute navigation algorithm that uses a 
simple optical camera to identify landmarks on a terrain map built 
from orbital data. These image-to-map matches are used as mea-
surements in an extended Kalman filter, depicted in figure 15, which 
propagates inertial measurements to estimate the state in terms of 
position, speed, attitude and inertial biases. Inertial measurements 
allow high-frequency estimation to be achieved, to correct abrupt 
motion in the control loop. They also keep the navigation going when 
the camera is flown above a shadowed area, where no optical mea-
surements are available. Vision measurements are processed at a 
lower rate, which is constrained by the on-board processing time of 
usually a few seconds. These delays are taken into account in the fil-
ter through a state management block, which adds the pose estimate 
of the camera at the time of image acquisition in the state of the filter 
and correlates it with the current estimate through the inertial measu-
rements. Although compensated, this delay issue underlines the need 
for a computer-efficient visual landmark matching block, in terms of 
processing and memory requirements.

 
Figure 16 - Scale change illustration. The same crater is imaged by the same 
camera at 260 km of altitude (left) or 50 km (right)

There are three main challenges for the vision system to be used for pla-
netary landing. The first is to be robust to illumination differences between 
the descent and the orbital image used to create the map. Geometric 
landmark descriptions, such as that proposed in [67], are more robust 
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than radiometric ones in this respect. They are also a lot lighter in me-
mory requirements. The second challenge is to be able to match features 
on descent images shot over a broad range of altitude, with landmarks 
selected from orbital images taken at a constant altitude. Altitude change 
converts into a scale change at the image level, which is illustrated in 
figure 16 and is equivalent to an image smoothing. Namely, one image 
usually shows many more details than the other one and this is an issue 
to be faced by the image feature extractor. Eventually, the third vision 
challenge is to make use of 3D information of the world but with a 2D 
image only. A flat world assumption is often made in vision systems 
to face this problem. However, this can no longer be assumed to land 
on very bumpy bodies such as asteroids, or at low altitude over uneven 
areas on the Moon or Mars.

The vision system proposed in [67] proposes a solution to tackle these 
challenges. It creates a map by selecting landmarks as Harris-Laplace 
features on an orbital image of the area [58]. Unlike craters, these fea-
tures can be found on any image of a non-uniform surface, which makes 
them very generic. The 3D coordinates of these landmarks are derived by 
back-projecting their image position in a ray that intersects a DEM of the 
surface. The map is an Nx5 array made up of the 3 world coordinates of 
each landmark, their characteristic scale on the orbital image and their 
cornerness scores at this scale. Online during the descent, a priori state 
estimates from the filter are used to predict which landmarks will be seen 
by the camera and the a priori state covariance allows an image research 
ellipse to be defined for each of them. Not all landmarks are selected as 
matching candidates, however. Only those for which the research ellipse 
is not overlapped by another, or those that have the highest cornerness 

measure of all of the overlapping ellipses, are chosen. In each pixel of the 
selected ellipses, the Harris cornerness measure in computed at the scale 
re-projected from the orbital image scale of the landmark and the position 
of the maximum is the descent match for the landmark. Finally, the entire 
set of matches is processed through the RANSAC algorithm, to look for 
outliers with respect to the projective camera model [29].

Figure 17 - Monte-Carlo results: position error plot (left) and error statistics at 
the time of the last visual measurements (V) and at touchdown (TD)

This solution was tested in a 100-run Monte-Carlo analysis, dispersing 
the 3-sigma values of the initial errors by 1 deg, 10 m/s, and 100 m per 
axis respectively for attitude, speed and position. The trajectory was an 
Apollo-like Lunar approach, phased starting at 2000 m of altitude with a 
1024x1024 camera image sensor covering a 70-deg field of view. The 

BOX 3 – Bundle adjustment and aero triangulation

Bundle adjustment (BA) [84] designates the method designed to simultaneously refine the position of K 3D points and the parameters of 
N cameras (attitude, position and intrinsic parameters in the most general case) given image measurements. BA is formulated in a basic 
way as the minimization of a non-linear least squares criterion, measuring the total re-projection errors in all images: 
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where vi,j is a binary variable indicating if the i-th landmark is visible in the j-th view, ui,j is the image feature corresponding to the pro-
jection of the i-th 3D landmark on the j-th image, Cj are the parameters of the j-th view, Pi  are the parameters of the i-th 3D landmark 
and P  is the mathematical camera model (see box 2). The maximum likelihood formulation can evidently take into account other 
information sources, such as prior camera positions given by (D) GPS or prior 3D landmark positions given by a map. In the same way, 
prior error covariance can be taken into account by replacing the L2-norm by the Mahalanobis norm. Aero-triangulation is the special 
case of bundle adjustment when the positions of some 3D features are known in a global frame.

The mathematical background to solve such criterion is well known (Gauss-Newton, Levenberg-Marquardt or Trust region techniques).   
The difficulties come from two aspects: the poor robustness of the least squares minimization scheme to outliers and the computational 
cost in O(M3), where M is the number of parameters to be refined simultaneously. The first problem is addressed through robust least 
squares, like M-estimators, which replace the L2 penalty function with an unnecessary convex function more tolerant to large residual 
errors. The second pitfall is by-passed by taking into account the special structure of the graph associating the refined parameters and 
the full set of image measurements. Indeed, since an image measurement depends only on one camera parameter and on one structure 
parameter, the graph is extremely sparse. This property is used to considerably reduce the computational cost. For practical purposes, 
the (6K+ 3N) global problem is transformed into a combination of one problem with 6K variables and N problems with 3 variables. 

This algorithm is commonly called fullSLAM in the robotics community, in contrast to the EKF-SLAM which tends to solve the same 
criterion in a sequential way.

Variable	 3v	 3TD

Attitude/Yaw (deg)	 0.5	 0.5

Attitude/Pitch (deg)	 0.7	 0.7

Attitude/Roll (deg)	 0.9	 0.9

Velocity/X-axis (m/s)	 0.7	 1.2

Velocity/Y-axis (m/s)	 0.8	 1.2

Velocity/Z-axis (m/s)	 0.9	 0.9

Velocity norm (m/s)	 1.0	 1.1

Position/X-axis (m)	 12.9	 35.3

Position/Y-axis (m/s)	 11.8	 32.9

Position/Z-axis (m)	 10.1	 23.9

position norm (m)	 12.0	 36.1
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terrain had a 500-m height range and a 20-deg illumination difference 
in azimuth was introduced between the descent and orbital image, the 
latter being taken at a 50-km altitude. The results are shown in figure 
17. All of the runs converged and touchdown 3-sigma error statis-
tics are below 40 m in position, which is compatible with the 100-m 
pinpoint landing requirements. It must be noticed that below 200 m 
of altitude, 50 s after start, no landmark can be matched anymore, 
because of the limited map density and thus an inertial error drift 
occurs. At the end of the visual phase, the position 3-sigma error was 
of only 12 m, which can be considered as the actual performance of 
the vision system.

Environment Mapping for absolute navigation 
and mission-planning

Previous parts addressed vision subsystems directly involved in the 
control or navigation of intelligent vehicles. Mission planning and 
some vision-based navigation functions depend on precise maps of 
the flown over areas. These maps are generally provided by geogra-
phic information authorities (such as IGN in France, BkG in Germany, 
etc.) or by geosensing companies. However, this data could be ou-
tdated – for example, after a natural or industrial disaster –, partial– 
orthoimages are 2D-only, digital terrain model (DTM) do not contain 
objects above ground – or available in a resolution not well-suited to 
processing (a drawback for image registration technique for absolute 
navigation). To bypass these limitations, UAVs offer a low-cost solu-
tion to collect data (image, video, lidar) necessary to update maps. 
Note that some companies already offer this kind of service [4][69].

This section is consecrated to the environment mapping from UAVs 
and is illustrated through two applications. The first is relative to geo-
sensing and photogrammetry, in order to provide DSM and orthomo-
saics, as in [15][26]. The second is relative to onboard mapping, to 
plan an unattended safe landing. In both cases, the UAVs fly above the 
obstacles and GPS reception is supposed to be perfect. 

Offline mapping from video and lidar data
 
Whatever the aerial vehicle considered, an offline environment mapping 
task follows a well-established scheme: flight dedicated to the acquisi-
tion of heterogeneous time-stamped data (IMU,GPS, video, lidar, posi-
tion of landmarks, etc.) and refinement of the trajectory estimated by 
the IMU/GPS navigation system thanks to exteroceptive sensors and 
environment modeling [15][26][49]. The proposed processing chain is 
no exception to the rule. 

In our case, the data is acquired from the Onera UAV platform, ReSSAC 
[28]. This UAV is based on the Yamaha Rmax (gross mass 100 kg), 
equipped with a hybrid IMU/GPS-RTK navigation filter, a standard 
grayscale industrial camera and a 4-layer lidar scanner (SICK LD-MRS). 

After a resynchronization of exteroceptive data with attitude/position in-
formation by trajectory interpolation, the video data is processed to cor-
rect the UAV 6D-trajecory (attitude and position) by bundle adjustment 
(see box 3 for details). Bundle adjustment uses two kinds of image 
features: Harris points [34] tracked by KLT [80] and SIFT [53] features 
matched between loop-closing frames (when the UAV fly over an area 
that has already been visited). The huge number of frames (more than 
4000 for the example in figure 18) leads us to adopt a hierarchical 
bundle adjustment process. First, the trajectory is reduced to a graph 

of key-frames selected automatically according to an overlapping ratio 
deduced from the initial viewing parameters. Each node represents a 
key-frame and is linked to the previous and next key-frame. The graph 
contains some loop-closing links between temporally-distant key-
frames. The loop closing detection is also based on the predicted over-
lap ratio between key-frames thanks to the good confidence in  the UAV 
trajectory parameters.  This graph defines the skeleton of the trajectory 
and a first bundle adjustment refines the parameters associated to this 
graph (viewing parameters of the keyframes plus position of 3D points 
tracked on the key-frames). In the second step, the trajectory is divided 
into non overlapping segments of views, delimited by key-frames and 
each segment is processed by a local bundle adjustment. 

Figure 18 - Ortho-mosaic and Digital surface model of the Caylus combat camp 
from video and lidar data acquired by Onera ReSSAC UAV.  The UAV states are 
refined by video aero-triangulation. Note that a lidar sensor has a greater lateral 
field of view than a video sensor. Thus, the ortho-mosaic does not entirely 
cover the DSM.

Thanks to lidar, we have access to precise 3D measurements, we 
do not need to infer the 3D information by image processing (higher 
resolution but more parameters to set). The lidar measurements are 
converted to 3D points localized in the global frame (relative to one 
point in the area selected as (0,0,0), while the axes are defined in a 
classical North-East-Down order). The DSM, corresponding to a re-
gular sampling of the horizontal plane, is built by taking the altitude of 
the higher lidar 3D points in each cell. The orthomosaic, superimpo-
sable to the DSM, is achieved by projecting the DSM and taking into 
account geometric visibility, thanks to a z-buffer. Figure 18 shows the 
main output of our processing chain. 

In its current version, our processing chain combines lidar data and video 
data in a suboptimal way, each sensor being used for distinguishable 
tasks. Work is in progress to introduce telemetric measurements within 
the aerotriangulation process. In the future, it would be interesting to com-
bine these two types of data for environment modeling too. 

Online obstacle mapping for safe landing planning 

In the projects PRF ReSSAC [28] and PEA Action [7], a task assigned 
to the UAV is to explore an area to detect obstacles over ground. This 
obstacle map must be built online to plan a safe landing in the vicinity 
of an object of interest or to aid an unmanned ground vehicle in this 
navigation task. 

For this task, we consider a monocular downward-looking camera and 
two restrictive assumptions: the ground is locally plane and the ground 
occupies quite a large part of the image. Under these assumptions, 
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obstacle detection is equivalent to finding an image area for which 
image motion (between two successive views) cannot be described by 
the majority homography. Our work is quite similar to [14]. As in this 
latter reference, a first step uses the matching of Harris corners [34] 
between two views to infer the majority homography, thanks to a robust 
least square method (Least Median of Squares[75]). Our method dif-
fers from [14] with the obstacle classification step. In [14], authors 
compute the correlation between the reference view and the second 
image warped into the reference, thanks to estimated homography (this 
warped image is a so-called displaced frame difference). On our side, 
we have developed two concurrent methods, based on the comparison 
of the “true” optical flow and the estimated homographic optical flow.  
The first  is based on the Odobez work [65]: the proposed criterion 
computed from the DFD approximates the previous mentioned diffe-
rence. The second uses the CPU-based efficient quasi-dense optical 
flow algorithm proposed by Lhuillier et al in [51]. In this case, the detec-
tion is directly obtained by optical flow comparison. In both cases, a 
threshold criterion produces ternary maps (obstacle / free / unknown). 
The computation times of these two methods are similar, between 2 
and 3 frames per second on a 2.5Ghz Intel Core2 Duo (the algorithm 
is not multi-threaded) on 640x480 images. The processing may seem 
slow, however, this frequency permits a better baseline to be acqui-
red between two successively processed frames. Figure 16 presents 
the result of our method, based on the Quasi-dense optical flow. Here, 
the ground occupies a large part of the image and the detection looks 
precise, the hole between the house and the trees (near of the image 
center) is detected as non-obstacle. These individual detection maps 
are then associated in a global map, thanks to viewing parameters to 
drive a motion planning algorithm (map on the right in figure 19). 

The same video sequence has been processed to obtain the obstacle 
map on the right in figure 19 and the DSM in figure 18. A comparison 
could be made and the estimated obstacle map is globally consistent 
with the DSM – at the same time, in the ground area and in the above-
ground elements – despite  the enlargement of the obstacle footprint 
(the pixels are projected onto the map under the hypothesis of a plane 
scene) or some misalignment due to erroneous viewing parameters. 

Conclusion

We have presented here several contributions for navigation, 
mainly carried out in the context of Onera’s research projects PRF 

SPIDER and PR AZUR, more precisely described in box 4. We have 
shown that the three control levels of an automatic system could 
require perception functions. This interaction between the control 
and the perception functions involves the processing time and, 
consequently, the nature of the information provided by the image 
processing.

For the lowest control level, the image processing provides 2D-only 
information, such as optical flow (dense or parametric) or parametric 
image transform (homography). The emphasis is placed on control 
aspects. At an intermediary level, we are interested in the vision-
based relative navigation. Videos are processed in order to provide 
a geometrically-consistent trajectory and environment modeling. This 
3D information must be inferred from passive or active sensors. This 
topic is addressed outside the context of vehicle control. Lastly, we 
have presented some work for replacing GPS measurements and for 
long-term mapping. Replacing GPS requires reference maps to regis-
ter an image on it. As is frequently the case in image processing, 
the problem can be addressed by using image features or the whole 
image. Long-term mapping provides a useful model for – online or 
offline – mission planning and for GPS replacement. By taking into 
account all available measurements in a global process, offline map-
ping offers the more precise results.

In the future, two technologies will make it possible to go further in the 
autonomous navigation of aerial vehicles. 

The first concerns the generalization of massively-parallel architec-
tures.  Image processing is well suited to this kind of architecture 
because many of the techniques rely on image filtering, for example 
to identify image features. Thanks to increasingly energy-efficient 
electronics, solutions are being combined on the same silicon piece 
multi-core CPU and a Graphical Processing Unit (GPU), promising 
increasing computing power. 

The second concerns the sensors and especially the 3D sensors. The 
Microsoft Kinect is a good example of a technological breakthrough. 
It is a lightweight and energy-efficient device that has been largely 
adopted for indoor robotics (aerial or not). Its main drawback is its 
active nature, which limits its usage domain to the indoor one. Also, 
for outdoor use, the development of 3D compact passive sensors, 
like the one proposed in the SPIDER project (see box 4), seems a very 
promising way 

Figure 19 - Detection of obstacles above ground by segmenting optical flow. On the left: the reference image; in the center, the detection map (white: safe; black: 
obstacle; light gray: unknown; dark gray: non-overlapping regions)
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BOX 4 – Perception for navigation themes at Onera

The themes of perception for automatic vehicle navigation are articulated around two internal research projects with separate finalities. 
The PRF SPIDER (first subsection) is concerned with the development of perception components (sensor and calculators) useful for 
UAV navigation.  The PR AZUR (second subsection) is oriented onboard integration and in-flight demonstration with specific develop-
ment around control and guidance using perception algorithms.  

SPIDER: co-designing the «eyes» of future micro-UAVs

A major issue in micro-UAV concepts is to design their eyes, i.e. integrated «perception devices», made of sensors and microcompu-
ters, which should not only provide good images, but also directly provide good information for autonomous behavior. This is the goal of 
Onera’s internal project SPIDER, a French acronym which could be translated as «Small Perception and Interpretation Devices for Urban 
EnviRonment». To start with, SPIDER integrates researchers in the domains of optics, vision and control and promotes a «co-design» 
approach. Co-design amounts to evaluating the end-to-end performance of a perception device, including optics, vision algorithm and 
control parameters, so as to search for a global optimum to the perception problem at hand. This approach tends to reduce the overfit-
ting issues associated with traditional sequential design. The main objective of SPIDER is to produce demonstrations of the proposed 
perception device concepts. Among the most interesting SPIDER demonstrators is CAM3D, a passive monocular sensor with 3D capa-
bility, based on the «depth-from-defocus» paradigm: preliminary results, extracted from the PhD work of Pauline Trouvé (Onera) [85] 
are presented in figure 22. This figure shows a realistic and coherent raw depth estimation, using a criterion called GL developed in the 
DTIM. It shows a good localization of depth discontinuities in most cases. Even the incised trunk is detected.  The median filter efficiently 
removes the noise, with some artifacts on the discontinuities. 

 
Figure B4-01 - Output of the CAM3D 
concept. On the left, the RGB image. In the 
center, the raw depth map after a depth-
from-defocus process. On the right, the 
depth map after a median post-processing. 
Depth varies between 1.5m and 3.5m accor-
ding to the indicated colormap

AZUR: Autonomous navigation of UAV in an urban zone. 

The AZUR project is aimed at making an onboard navigation software system of a VTOL-type UAV for its fully-autonomous/semi-auto-
nomous operation in an urban environment. As illustrated in the figure below, the system is a closed-loop chain of perception, decision 
and action. In order to ensure flight safety, onboard perception is mandatory to obtain the current situation of both the UAV and of the 
environment (obstacles, wind conditions, etc.). In the AZUR project, the following four function modules will be developed:  

	 • Real-time environment mapping and path planning;
	 • Obstacle detection and reactive avoidance;
	 • Navigation without GPS;
	 • Wind gust estimation and compensation.

Especially, the first three apply active and/or passive vision-based 
control approaches. For example, optical flow-based visual servoing 
for obstacle avoidance, and visual odometry for GPS-free navigation.

These modules will be integrated into one complete navigation system 
and implemented onboard one or more of the Onera UAV experimental 
platforms. Flight demonstration of their safe autonomous operation in 
an obstacle field is expected at the end of the project.

			 
		        Figure B4-02 - UAV on-board navigation system



Issue 4 - May 2012 - Perception for UAV: Vision-Based Navigation and Environment Modeling
	 AL04-04	 16

References

[1] M. ACHTELIK, A. BACHRACH, R. HE, S. PRENTICE, N. ROY - Autonomous Navigation and Exploration of a Quadrotor Helicopter in GPS Denied Indoor 
Environments.  Proceedings of International Aerial Robots Competition, 2009
[2] F. ANDERT - Drawing Stereo Disparity Images Into Occupancy Grids : Measurement Model and Fast Implementation. Proceedings of IEEE International 
conference on Intelligent Robots and Systems, 2009
[3] F. ANDERT, F. ADOLF - Online World Modeling and Path Planning for an Unmanned Helicopter. Autonomous Robots, Vol. 27(3), pp 147-164 , 2009
[4] L’Avion Jaune - http://www.lavionjaune.fr/
[5] A. BACHRACH, S. PRENTINCE, R. HE, N. ROY - RANGE: Robust Autonomous Navigation in GPS-Denied Environments. Journal of Field Robotics, Vol 
28(5), pp 644-666, 2011
[6] S. BAKER, D. SCHARSTEIN, J.P. LEWIS, S. ROTH, M. BLACK, R. SZELISKY - A Database and Evaluation Methodology for Optical Flow. International 
Journal on Computer Vision, Vol 92(1), pp 1-31, 2011
[7] M. BARBIER, S. LACROIX and al. - PEA Action, Research Project Granted by French DGA. Website : http://action.onera.fr/
[8] J.-P. Barreto - A Unifying Geometric Representation for Central Projection Systems. Comuter Vision and Image Understanding, Vol. 103(3), 
pp 207-217, 2006
[9] S. BENHIMANE, E. MALIS - Homography-Based 2D Visual Tracking and Servoing. International Journal of Robotics Research, Vol XX(yy), pp 661–676, 2007
[10] P. Besl, H. McKay - A Method for Registration, of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, N°2, pp 239-256, 1992
[11] A. BEYELER, J.-C. ZUFFEREY, D. FLOREANO - Vision-Based Control of Near-Obstacle Flight. Autonomous Robots, Vol. 27 (3), pp 201–219, 2009
[12] J.Y. BOUGUET - Camera Calibration Toolbox  for Matlab.  Dowloadable on http://www.vision.caltech.edu/bouguetj/calib_doc/index.html, 2010
[13] O. BOURQUARDEZ, R. MAHONY, N. GUENARD, F. CHAUMETTE, T. HAMEL, L. ECK - Image-Based Visual Servo Control of the Translation Kinematics 
of a Quadrotor Aerial Vehicle. IEEE Transactions on Robotics, 2009
[14] S. BOSCH, S. LACROIX, F. CABALLERO - Autonomous Detection of Safe Landing Areas for an UAV from Monocular Images. IEEE International Confe-
rence on Intelligent Robots and Systems, 2006
[15] M. BRYSON, A. REID, F. RAMOS, S. SUKKARIEH - Airborne Vision-Based Mapping and Classification of Large Farmland Environments. Journal of Field 
Robotics, Vol. 27(5), pp. 632-655, 2010
[16] G. CONTE, P. DOHERTY - Vision-Based Unmanned Aerial Vehicle Navigation using Geo-Referenced Information. Eurasip Journal of advances in signal 
processing, 2009
[17] D.C. BROWN - Decentering Distortion of Lenses. Photogrammetric Engineering and Remote Sensing, Vol. 32(3), pp 444-462, 1966
[18] F. CABALLERO, L. MERINO, J. FERRUZ, A. OLLERO - A Visual Odometer Without 3D Reconstruction for Aerial Vehicles. Applications to building ins-
pection, in proceedings of IEEE International Conference on Robotics and Automation, 2005
[19] L. CHAMBERLAIN, S. SCHERER, S. SINGH - Full-Scale Automated Landing and Obstacle Avoidance in Unmapped Environments. Proceedings of the 
67th forum of the American Helicopter Society, 2011
[20] F. CHAUMETTE, S. HUTCHINSON - Visual Servo Control Part 1: Basic Approaches. IEEE Robotics and Automation Magazine, Vol. 13(4), pp 82-90, 2006
[21] F. CHAUMETTE, S. HUTCHINSON - Visual Servo Control Part 2: Advanced Approaches. IEEE Robotics and Automation Magazine, Vol. 14(1), 
pp 109-118, 2007
[22] J.CIVERA, A. DAVISON, J.M.M. MONTIEL - Inverse Depth Parametrization for Monocular SLAM. IEEE Transactions on Robotics, Vol. 24(5), 
pp 932-945, 2008
[23] R. CUNHA, C. SILVESTRE, J. HESPANHA, A.P. AGUIAR - Vision-Based Control for Rigid Body Stabilization.  Automatica, 2011
[24] A. DAVISON, I. REID, N. MOLTON, O. STASSE - MonoSLAM: Real-Time Single Camera SLAM.  IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 29(6), pp 1052-1067, 2007
[25] J. DELAUNE, G. LE BESNERAIS, M. SANFOURCHE, T. VOIRIN, C. BOUDARIAS, J.-L. FARGES - Optical Terrain Navigation for Pinpoint Landing, Procee-
dings of 35th AAS Annual Guidance and Control Conference 2012
[26] H. EISENBEISS - UAV Photogrammetry, PhD Thesis of Institute of Geodesy and Photogrammetry. ETH Zurich, 2009
[27] A. ELFES - Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer, Vol. 22(), pp , 1989
[28] P. FABIANI, A. PIQUEREAU, V. FUERTES and al. - Projet de Recherche Fédérateur ReSSAC. Onera Research project. Website : http://www.onera.fr/
dcsd/ressac/index.html
[29] M. A. FISCHLER, R. C. BOLLES - Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Car-
tography. Comm. of the ACM, Vol 24, pp 381-395, 1981

Acronyms

BA (Bundle Adjustment)

CAM3D (CApteur passif Monovoie à capacité 3D)

CPU (Central Processing Unit)

DEM (Digital Elevation Model)

DSM (Digital Surface Model)

EKF (Extended Kalman Filter)

FPGA (Field-Programmable Gate Array)

GPS (Global Positioning System)

GPU (Graphics Processing Unit)

IMU (Inertial Measurement Unit)

OF (Optical Flow)

PR AZUR (Projet de Recherche Autonomie en Zone URbaine)

PRF SPIDER (Projet de Recherche Fédérateur Système de Perception et d’Interprétation 
Dynamique en Environnement uRbain)

SLAM (Simultaneous Localization and Mapping)

RGBD (Red-Green-Blue-Depth (camera))

UAV (Unmanned Aerial Vehicle)

VTOL (Vertical Take-Off and Landing)



Issue 4 - May 2012 - Perception for UAV: Vision-Based Navigation and Environment Modeling
	 AL04-04	 17

[30] J.G. FRYER, D.C. BROWN - Lens Distortion for Close-Range photogrammetry. Photogrammetric Engineering and Remote Sensing, Vol. 52(1), 
pp 51-58, 1986
[31] T. GONÇALVES, J.R. AZINHEIRA, P. RIVES - Vision-Based Autonomous Approach and Landing for an Aircraft Using a Direct Visual Tracking Method. 
IEEE Conference on Robotics and Automation, 2010
[32] T. HAMEL, R. MAHONY - Visual Servoing of an Under Actuated Dynamic Rigid-Body System : an Image-Based Approach. IEEE Transactions on Robo-
tics and Automation, Vol. 18(2), 2002
[33] T. HAMEL, R. MAHONY - Image Based Visual Servo-Control for a Class of Aerial Robotic Systems. Automatica, 2007
[34] C. HARRIS, M. STEPHENS -  A Combined Corner and Edge Detector. Proceedings of the 4th Alvey Vision Conference, 1988
[35] L. HENG, L. MEIER and al. - Autonomous Obstacle Avoidance and Maneuvering on a Vision-Guided MAV Using on-Board Processing. proceedings of 
International Conference on Robotics and Automation, 2011
[36] B. HERISSE, F. RUSSOTTO, T. HAMEL, R. MAHONY - Hovering Flight and Vertical Landing Control of a VTOL Unmanned Aerial Vehicle Using Optical 
Flow. proceedings of International conference on Intelligent Robots and Systems, 2008
[37] B. HERISSE, T. HAMEL, R. MAHONY, F.-X. RUSSOTO - A Terrain-Following Control Approach for a VTOL Unmanned Aerial Vehicle Using Average Optical 
Flow. Autonomous robots, Vol. 29(3), pp 381-399, 2011
[38] B. HORN, B. SCHUNCK - Determining Optical Flow. Technical Report, Massachusetts Institute of Technology, April 1980
[39] B.K.P. HORN - Closed-Form Solution of Absolute Orientation Using Unit Quaternions. Journal of Optical Society of America, A4, pp 629-642, 1987
[40] B.K.P. HORN, H.M. HILDEN, S. NEGAHDARIPOUR - Closed-Form Solution of Absolute Orientation Using Orthonormal Matrices. Journal of Optical 
Society of America, A5, pp 1127-1135, 1988
[41] S. HRABAR, G. SUKHATME - Vision-Based Navigation Through Urban Canyon. Journal of Field Robotics, Vol. 26(5), pp 431-452, 2009
[42] M-D. HUA, T. HAMEL, P. MORIN, C. SAMSON - Control of Thrust-Propelled Underactuated Vehicles. INRIA Technical Report 6453, 2008
[43] M-D. HUA, T. HAMEL, P. MORIN, C. SAMSON - A Control Approach for Thrust-Propelled Underactuated Vehicles and its Application to VTOL Drones. 
IEEE Transactions on Automatic Control, Vol 54(8), pp 1837-1853, 2009
[44] J. ISRAEL, A. PLYER - Brute SLAM. Accepted in the 1st IEEE Workshop on Consumer Depth Camers for Computer Vision, 2011
[45] M. KAESS, K. NI, F. DELLAERT - Flow Separation for Fast and Robust Stereo Odometry. proceedings of IEEE International Conference on Robotics and 
Automation, 2009
[46] S. LANGE, N. SUNDERHAUF, P. NEUBERT, and al. - Autonomous Corridor Flight of a UAV Using a Low-Cost and Light-Weight RGB-D Camera. Procee-
dings of International Symposium on Autonomous minirobots for research and edutainment, 2011. 
[47] G. LE BESNERAIS, F. CHAMPAGNAT, G. ROCHEFORT - Robust Optical Flow Estimation Using B-Spline Image Models. Proceedings of International 
Symposium on Signal Processing and its Applications, 2003
[48] G. LE BESNERAIS, F. CHAMPAGNAT - Dense Optical Flow Estimation by Iterative Local Window Registration. Proceedings of IEEE International Confe-
rence on Image Processing, 2005
[49] G. LE BESNERAIS, M. SANFOURCHE, F. CHAMPAGNAT - Dense Height Map Estimation from Oblique Aerial Image Sequences. Journal of Computer 
Vision and Image Understanding, Vol. 109(2), pp. 204-225, 2008
[50] F. LE BRAS, T. HAMEL, R. MAHONY, A. TREIL - Output Feedback Observation and Control for Visual Servoing of VTOL UAVs. International Journal of 
Robust and Nonlinear Control, 2010
[51] M. LHUILLIER, L. QUAN - Match Propagation for Image-Based Modeling and Rendering. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 24(8), pp 1140-1146 , 2002
[52] H.C. LONGUET-HIGGINS, K. PRAZDNY - The Interpretation of a Moving Retinal Image. Proceedings of Royal Society of London, 1981
[53] D. LOWE - Distinctive Image Features form Scale Invariant Keypoints. International Journal of Computer Vision, Vol. 60, Issue 2, pp 91-110 , 2004.
[54] B. LUCAS, T. KANADE - An iterative Image Registration Technique with an Application to Stereo Vision. Proceedings DARPA Image Understanding 
Workshop, pp. 121-130, April 1981
[55] A. MALLET, S. LACROIX, L. GALLO - Position Estimation in Outdoor Environments Using Pixel Tracking and Stereovision. Proceedings of IEEE Inter-
national Conference on Robotics and Automation, 2000
[56] S.J. MAYBANK - The angular velocity associated with the Optical Flowfield arising from Motion Through a Rigid Environment. Proceedings of The Royal 
Society of London, 1985
[57] N. METNI, T. HAMEL - A UAV for Bridge’s Inspection : Visual Servoing Control Law With Orientation Limits. Automation in Construction, 2007
[58] K. MIKOLAJCZYK, C. SCHMID - Scale and Affine Invariant Interest Point Detectors. International Journal of Computer Vision, Vol. 60 (1), pp 63-86, 2004
[59] R. MOLERO, S. SCHERER, L. CHAMBERLAIN, S. SINGH - Navigation and Control for Micro Aerial Vehicles in GPS-Denied Environments. Technical 
Report, CMU-RI-TR-10-08, 2010
[60] M. MONTEMERLO, S. THRUN, D. KOLLER, B. WEGBREIT - FastSLAM 2.0 : An improved Particle Filtering Algorithm for Simultaneous Localization and 
Mapping that Provably Converges. International Joint Conference on Artificial Intelligence, Vol. 18, pp 1151-1156, 2003
[61] H.P. MORAVEC - Robot Spatial Perception by Stereoscopic Vision and 3D Evidence Grids. MIT technical Report XXX, 1996
[62] E. MOURAGNON, M. LHUILLIER, M. DHOME, F. DEKEYSER, P. SAYD - Real-Time Localization and 3D Reconstruction. Proceedings of IEEE conference 
on Computer Vision and Pattern Recognition, 2006
[63] D. NISTÉR - An Efficient Solution to the Five-Point Relative Pose Problem. Proceedings of IEEE Conference on Computer Vision and Pattern 
Recognition, 2003
[64] D. NISTÈR, O. NARODITSKY, J. BERGEN - Visual Odometry for Ground Vehicle Applications. Journal of Field Robotics, Vol. 23(1), pp. 3-20, 2006
[65] J.M. ODOBEZ, P. BOUTHEMY - Detection of Multiple Moving Objects Using Multiscale MRF with Camera Motion Compensation. Proceedings of 1st IEEE 
International Conference on Image Processing, 1994
[66] L. PAZ, J. TARDOS, J. NEIRA - Divide and Conquer : EKF SLAM in O(n). IEEE Transactions on Robotics, Vol 24(5), pp 1107-1120, 2008
[67] B.V. PHAM, S. LACROIX, M. DEVY - Vision-Based Absolute Navigation for Descent and Landing. Journal of Field Robotics, 2012



Issue 4 - May 2012 - Perception for UAV: Vision-Based Navigation and Environment Modeling
	 AL04-04	 18

[68] P. PINIES, J. TARDOS - Large scale SLAM Building Conditionally Independent Local Maps: Application to Monocular Vision. IEEE Transactions on 
Robotics, Vol 24(5), pp 1094-1106, 2008
[69] Pix4D - http://pix4d.com/
[70] H. de PLINVAL, P. MORIN, P. MOUYON, T. HAMEL - Visual Servoing for Underactuated VTOL UAVs : a Linear Homography-Based  Approach. Procee-
dings of IEEE International Conference on Robotics and Automation, 2011 
[71] H. de PLINVAL, P. MORIN, P. MOUYON - Nonlinear Control of Underactuated Vehicles with Uncertain Position Measurements and Application to Visual 
Servoing for Underactuated VTOL UAVs. Submitted to the IEEE American Control Conference, 2012
[72] A. PLYER, G. LE BESNERAIS, F. CHAMPAGNAT - FOLKI GPU : http://www.onera.fr/dtim-en/gpu-for-image/folkigpu.php
[73] S. RAMALINGAM, P. STURM, S. LODHA - Towards Complete Generic Camera Calibration. Proceedings of IEEE Conference on Computer Vision and 
Pattern Recognition, 2005
[74] E. ROSTEN, T. DRUMMOND - Machine Learning for High-Speed Corner Detection. Proceedings of the 9th European Conference on Computer Vision, 2006
[75] J.P. ROUSSEEUW - Least Median of Squares Regression. Journal of American Statistical Association, Vol. 79 (388), pp 871-880, 1984
[76] C. ROUSSILLON, A. GONZALEZ, J. SOLA, and al. - RT-SLAM : A Generic and Real-Time visual SLAM Implementation. Proceedings of International 
Conference on Computer Vision Systems, 2011
[77] S. SCHERER, S. SINGH, L. CHAMBERLAIN, M. ELGERSMA - Flying Low and Fast Among Obstacles: Methodology and Experiments. Internal Journal of 
Robotics Research, Vol. 27(5), pp 549-574, 2008
[78] G. SIBLEY, L. MATTHIES, G. SUKHATME - A Sliding Window Filter for Incremental SLAM. Unifying Perspectives in Computational and Robot Vision, 
pp 103-112, 2008
[79] G. SIBLEY, C. MEI, I. REID, P. NEWMAN - Vast Scale Outdoor Navigation Using Adaptive Relative Bundle Adjustment. International Journal of Robotics 
Research, Vol. 29(8), pp 958-980, 2010
[80] J. SHI, C. TOMASI - Good Features to Track. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994
[81] M. SRINIVASAN, S. ZHANG, M. LEHRER, T. COLLETT - Honeybee Navigation en Route to the Goal : Visual Flight Control and Odometry. Journal of 
Experimental Biology, Vol 199, pp 237–244, 1996
[82] P. STURM, Z. CHENG, P. C. YU CHEN, A. NEOW POO - Focal Length Calibration from two Views: Method and Analysis of Singular Cases. Computer 
Vision and Image Understanding, Vol. 99(1), pp. 58-95, 2005
[83] E. TOLA, V. LEPETIT, P. FUA - A Fast Local Descriptor for Dense Matching. Proceedings of IEEE conference on Computer Vision and Pattern 
Recognition, 2008
[84] B. TRIGGS, P. MCLAUCHLAN, R. HARTLEY, A. FITZGIBBON - Bundle Adjustment, a Modern Synthesis. International Workshop on Vision Algorithms 
during ICCV, pp 298-372,1999
[85] P. TROUVÉ, F. CHAMPAGNAT, G. LE BESNERAIS, J. IDIER - Single Image Local Blur Identification. Proceedings of IEEE International Conference on 
Image Processing, 2011
[86] R.F. VASSALLO, J. SANTOS-VICTOR, H.J. SCHNEEBELI - A General Approach for Egomotion Estimation with Omnidirectional Images. Proceedings of 
Omnivis’02 Workshop on Omni-directional Vision, 2002
[87] P. VIOLA, W.M. WELLS III - Alignment by maximization of Mutual Information. International Journal of Computer Vision, Vol. 24(2), pp 137–154, 1997
[88] Y. WATANABE, P. FABIANI, G. LE BESNERAIS - Simultaneous Visual Target Tracking and Navigation in a GPS-Denied Environment. Proceedings of 
International Conference on Advanced Robotics, 2009
[89] Y. WATANABE and al. - AZUR : navigation Autonome en Zone URbaine, Onera research project. Website: http://sites.onera.fr/azur
[90] S.WEISS, D. SCARAMUZZA, R. SIEGWART - Monocular-SLAM-Based Navigation for Autonomous Micro Helicopters in GPS-Denied Environments. 
Journal of Field Robotics, Vol 28(6), pp 854-874, 2011
[91] S. WEISS, M. ACHTELIK, L. KNEIP, D. SCARAMUZZA, R. SIEGWART - Intuitive 3D Maps for MAV Terrain Exploration and Obstacle Avoidance. Journal 
of Intelligent Robotics systems, Vol. 61, pp 473-493,2011 
[92] M. WERLBERGER, W. TROBIN, T. POCK, A. WEDEL, D. CREMERS, H. BISCHOF - Anisotropic Huber-L1 Optical Flow. Proceedings of British Machine 
Vision Conference, 2009
[93] K.M. WURM, A. HOMUNG, M. BENNEWITZ, C. STACHNIS, W. BURGARD - OctoMap: A Probabilistic, Flexible and Compact 3D Map Representation for 
Robotic Systems. Proceedings of the IEEE International Conference on Robotics and Automation, 2010



Issue 4 - May 2012 - Perception for UAV: Vision-Based Navigation and Environment Modeling
	 AL04-04	 19

AUTHORS

Martial Sanfourche obtained his M.Sc. in Computer Science 
while at the University of Cergy-Pontoise in 2001 and then a 
Ph.D. degree in image and signal processing from the Univer-
sity of Cergy-Pontoise in 2005. After a postdoctoral position 
at CNRS-LAAS he joined Onera-DTIM in 2007 where is now 
a research engineer in computer vision. His current research 

interest includes online and offline visual localization and mapping.

Philippe Cornic has been working at Onera as a research engi-
neer for twenty years. He is interested in computer vision and 
more specifically in matching and image registration.

Jeff Delaune graduated from the Ecole Centrale de Nantes in 
2009. He has an M.Sc. in Astronautics and Space Engineering 
obtained at Cranfield University in the United Kingdom. Since 
2010 he has been working as a PhD student at Onera on vi-
sion-based navigation for pinpoint planetary landing. He works 
on tight inertial/vision fusion schemes.

Jonathan Israel graduated from the Ecole Nationale Supérieure 
des Télécommunications in 2004 and received his Masters 
degree in mathematics from the Ecole Normale Supérieure, 
Cachan, France, in 2005. Since 2006 he has been working as 
a research scientist at Onera. His main interests are related to 
data registration, segmentation and classification for naviga-

tion or interpretation purposes.

Guy Le Besnerais graduated from the Ecole Nationale Supe-
rieure de Techniques Avancees in 1989 and received his Ph.D. 
degree in physics from the Universite de Paris-Sud, Orsay, 
France, in 1993. He joined Onera in 1994, where he is now a 
senior scientist in the Information Processing and Modelization 
Department. His work concerns inversion problems in imagery 

and computer vision, with an emphasis on embedded perception for autono-
mous aerial robots.

Henry de Plinval obtained his M.Sc. in Aeronautics and Astro-
nautics at MIT and his Engineer diploma at the Ecole Polytech-
nique in 2006. He is working as a researcher at Onera, the 
French Aerospace lab. His current research interests include 
navigation, guidance and control of systems, especially Un-
manned Aerial Vehicles.

Aurelien Plyer (DTIM) is a Onera-LAGA PhD student since 
2008. He received his M.Sc. in Computer Science from the 
Université Pierre et Marie Curie (Paris 6) in 2008. His research 
deals with video analysis and interpretation for  aerial videos 
within a urban context and he is using GPU programming in 
order to implement real-time processing.

Aurélie Treil has been a Onera-DCSD PhD student since 2009. 
She received her Master of Science in Automatics and signal 
treatment from Supélec/Université Paris 6 and obtained an En-
gineering degree at ESTACA in 2009. Her research deals with 
UAV’s visual servoing.

Yoko Watanabe has been working at Onera-DCSD as a re-
search engineer since 2008. She received her Master’s degree 
in Aeronautics and Astronautics from Kyoto University (Japan) 
in 2003, and her Ph.D. in Aerospace Engineering from the 
Georgia Institute of Technology (USA) in 2008. Her research 
interests include navigation, guidance and control of autono-

mous robots. She has, in particular, a lot of experience of vision-based navi-
gation and the guidance of unmanned aerial vehicles. 


