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A numerical study concerning a SISO active closed-loop separation control on a 
rounded step is presented. A first study of the synthetic jet frequency effect on the 

separation shows that the mean separation bubble surface is minimized if the mean 
pressure of a single wall pressure sensor is maximized. With the aim of designing 
a closed-loop strategy for the control of the recirculation bubble, a NARX black-box 
model of the pressure signal is identified using a single unsteady RANS simulation. 
The basic extremum-seeking algorithm is improved with an adaptive gain, to guarantee 
algorithm performance and this modification is validated against the nonlinear black-
box model of the forced flow. Then, the robust adaptive closed-loop is applied in real-
time with an unsteady RANS simulation. Closed-loop results show the ability of the 
extremum-seeking control with adaptive gain to automatically control the separation, 
by minimizing the recirculation bubble surface using an unsteady RANS simulation.

Introduction

Separated flows occur in a variety of engineering applications 
and generally have a negative impact on performance. Recently, 
numerous attempts have been made to control turbulent separated 
flows, in order to improve aerodynamic performance. Even though 
open-loop control has been successful in suppressing separation, it 
often results in large requested mass flow rate values, which are not 
realistic for practical use on a real aircraft. More advanced closed-
loop active flow control techniques are seen as a promising way to 
reduce the control cost, using a real-time adaptation of flow per-
turbations. The closed-loop control is generally performed on the 
mass flow rate for continuous or pulsed blowing and, in the case of 
separation control by synthetic jets, on the voltage amplitude. The 
relation between the aerodynamic gain and the mass flow rate or 
the voltage amplitude is generally monotonic, with some saturation 
(see for example [29]). 

On the contrary, the relation between the aerodynamic gain and the 
forcing frequency sometimes exhibits an optimum frequency (see 
[30]), which allows the required energy input in the system to be 
reduced. The application of active flow control in a practical case 
requires a self-sustaining, autonomous control system to adapt the 
forcing frequency to the freestream velocity, for example.

When the actuator-sensor relationship is linear, the actuation and 
sensor signals can be linked by a transfer function and all of the 
linear controller theory of the automatics domain can be used, for 

instance: robust control, predictive control and adaptive control. 
On the contrary, when the actuator-sensor relationship is characte-
rized by a steady-state map with an extremum, model-independent 
controllers based on gradient methods can be used. The extremum-
seeking algorithm is especially well suited in this case. It is a non-
model-based method for the control of non-linear plants, characte-
rized by an output extremum in the steady state (Ariyur & Krstic [2] 
and Krstic & Wang [21]). This control technique has been used in 
different studies: Banaszuk et al. [3] and King et al. [20] used it to 
recover the pressure in a separated diffuser flow. Extremum-seeking 
and its variant, slope-seeking, were experimentally tested by Becker 
et al. [5-6] for separation control on a NACA 4412 flap. Pastoor et 
al. [26] applied it to control the separation behind a D-shaped body 
and Beaudoin et al. [4] to control the bluff-body drag. In order to 
improve the seeking algorithm, Henning et al. [18] added some slope 
estimators.

This short review shows the efficiency of the extremum-seeking stra-
tegy to control separation and underlines the fact that this strategy 
was only applied in experiments. A feature brought by our study is the 
fact that it is entirely numerical. It adds the challenge that the closed-
loop convergence time must be lower than few seconds, in order to 
be compatible with actual computer capacities. Due to this compu-
tational cost, unsteady RANS (URANS) simulations are preferred to 
large-eddy simulations. 

This study is devoted to the closed-loop control of a rounded step 
separation by synthetic jet, where the only real-time optimized 
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parameter is the frequency. The pressure of a single wall sensor in 
the separated zone is the output of the closed-loop. Since the steady-
state map in the frequency domain exhibits an optimum frequency, 
the extremum-seeking algorithm is used with some improvements to 
increase convergence rate.

First, in order to tune the extremum-seeking parameters and validate 
the closed-loop strategy before applying it in a URANS computation, 
a reduced-order model is required to be able to quickly test the 
effect of all parameters. In order to have a model offering a good 
compromise between simplicity, cost and accuracy, a Nonlinear 
Auto-Regressive with eXogenous input (NARX model) has been 
selected. 

This paper is divided into three main parts. In the first part, the 
NARX model is presented. In the second one, the model is iden-
tified and validated. Unsteady Reynolds-Averaged Navier-Stokes 
(URANS) computations are performed to obtain the unsteady flow 
response to the synthetic jet actuation. The location of the pres-
sure sensor is justified and the relationship between the pressure 
information and the separation bubble geometry is evidenced. In 
a second step, the structure of the NARX model is chosen. A 
rigorous methodology is then developed to justify the choice of 
each of these model parameters and both the dynamic and the 
steady state responses of the model are assessed. The proposed 
methodology is inspired by the one developed by Box and Jen-
kins [7] for linear ARMAX models. The choice of the polynomial 
power, which introduces the nonlinearity, is specific to this study. 
In the third part, the extremum-seeking algorithm is presented, as 
well as its improvements: the adaptive gain and the use of Bessel 
filters. Then, the closed-loop is applied to the NARX model to 
check the convergence time before being applied in an URANS 
simulation.

Black-box modeling

Due to the nature of the governing equation, a nonlinear model is 
studied. Nevertheless, its accuracy will be compared to a linear mo-
del for each application, to justify the gain brought by the nonlinear 
modeling. The idea is not to capture the flow physics, but rather only 
to represent the pressure output as a function of the forcing signal. 
This is the reason why a black-box model is used. The NARMAX 
model [9] is a class of model that links inputs u and outputs y with 
nonlinear relationships. Its general formulation is written in equation 
(1), where G denotes a nonlinear function, k is the discrete time, nu 
and ny are the number of past inputs and past outputs, respectively, 
and  and  stand for possible noise and residual error. 

( ) ( ( 1),..., ( ), ( 1),...,

, ( ), ( 1),..., ( )) ( )
y

u y k

y k G y k y k n u k
u k n k k n xε ε ξ

= − − −

− − − +  (1)

The nonlinear function G can be a polynomial, a neural network, a 
wavelet network, or any other nonlinear function.

In this study a polynomial NARX (a NARMAX with the noise terms 
excluded, see Section "Model identification and validation" below 
for the justification) is computed. The advantage of the polynomial 
NARX model is that the model is linear with respect to the coefficients 
of the model . The specific model structure used is described in 
equation (2).

0 , ,
1 1 1 1

,
1 1

,
1 1

( ) ( ) ( )

( ) ( )

( ) ( )

y u

y y

u u

n np p
i i

uy i j u i j
i j i j

n n

yy i j
i j

n n

u uuu i j
i j

y k y k j u k j lag

y k i y k j

u k i lag u k j lag

θ θ θ

θ

θ

= = = =

= =

= =

= + − + − −

+ − −

+ − − − −

∑∑ ∑∑

∑∑

∑∑

 (2)

where the ij are the coefficients of the model, p is the polynomial 
power and lagu is the delay between the output and the input, to take 
into account, for example, the convection time of the vortices between 
the actuator location and the sensor. The cross-terms u(k-i)y(k-j), 
as well as the terms of order over 2 on the input u or the output y, are 
not taken into account in the model, in order to keep a reasonable total 
number of terms and avoid the problems of overfitting. Moreover, it 
must be noticed that the constant term 0 is particularly important, 
since it has been observed that it enables the mean output to be dif-
ferent from zero. Therefore, it allows the model to reproduce the static 
map <P> = f(F+), where <P> is the time-averaged wall pressure, 
F+ is the reduced frequency defined by F+ = f LUC / U


 and LUC is 

the separation length of the uncontrolled case.

The total number of regressors is:

 1 ( ) ( 1) / 2 ( 1) / 2u y y y u un p n n n n n nθ = + + + − + −  (3)

and corresponds to the number of coefficients  to be determined 
(see Section "Model identification and validation").

The identification phase consists in computing the NARX regressors 
. For this purpose, an identification signal u must be defined to ex-
plore the system response to an actuation. In this study, a periodic 
forcing is considered. In order to model the flow response, the iden-
tification signal must randomly explore the entire frequency range of 
interest. Then, the resulting model is not expected to be valid out of 
this frequency range.

Let YM be the URANS identification simulation pressure output vector, 
 be the regressor vector, M be the NARX relation matrix between YM 
and  so that M= YM, with the property that:

( ( ), ( 1),..., ( ))T
M kY y k y k y k n= − −  (4)

and

0 1( , ,..., )T
nθ

θ θ θΘ =  (5)

where nk is the number of samples, which must be larger than the 
number of regressors n


.

Since the number of measurements is larger than the number of 
regressors, the problem is overdetermined. The standard approach 
to solve an overdetermined system of linear equations given as 
M = YM is known as linear least squares and seeks to minimize the 
residual  2

MM YΘ− , where .  is the Euclidean norm. 

The matrix M is generally ill-conditioned. The Tikhonov regulariza-
tion [32] is the most commonly used regularization method for ill-
posed problems. In order to give preference to a particular solution 
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with desirable properties, the regularization term is included in this 
minimization: 2 2

MM YΘ− + ΓΘ  for some suitably chosen Tikho-
nov matrix . In many cases, this matrix is chosen as the identity 
matrix  = I, giving preference to solutions with the smallest norm. 
In other cases, high-pass operators (e.g., a difference operator or a 
weighted Fourier operator) may be used to enforce smoothness, if 
the underlying vector is believed to be mostly continuous. This regu-
larization improves the conditioning of the problem, thus enabling 
the existence of a numerical solution. An explicit solution, denoted 
by Θ̂ , is given by:

1ˆ ( )T T T
MM M M Y−Θ = + Γ Γ  (6)

The effect of regularization may be varied via the scale of matrix  
(e.g.   = I). For  = 0, this is reduced to the non-regularized least 
squares solution, provided that (MT M)-1 exists.

Separation control by a synthetic jet slot over 
a rounded ramp

Configuration

The geometry of the configuration is displayed in figure 1. The ramp 
height h is equal to 20 mm and the maximum slope is equal to 35°. 
The shape of the rounded backward-facing step is given by equation:

1 sin
2

y a x a x
h h h

π π
π
  = −  

  

where 20;x
h a

 ∈   
 and  = 0.703.

The shape is the same as the one defined in Dandois et al. [11]. The 
Mach number M


 is set equal to 0.31 and the free-stream velocity U∞ 

is equal to 104.0 m.s-1.

Figure 1- Flow configuration with the synthetic jet cavity and grid

The boundary layer thickness at x/h = -1 and its momentum thic-
kness are equal to 0.5h and 0.05h, respectively. The Reynolds num-
ber Re


 based on the momentum thickness is equal to 1,460. The 

Reynolds number Reh, based on the ramp height and freestream 
velocity, is equal to 29,200. The synthetic jet orifice consists in a 
two-dimensional slot. Its windward edge is located close to the mean 
separation point of the uncontrolled flow, following the methodology 
proposed by Neumann and Wengle [23].

The coordinate system is the following: x is oriented in the stream-
wise direction, y is vertical and z is in the spanwise direction. The 
origin is located at the beginning of the ramp.

Actuator

The actuator is composed of a slot cavity and described by four 
parameters: slot width d, slot height Hs, cavity width Wc and cavi-
ty height Hc. The actuator dimensions used in these computations 
are d = 0.55 mm, Hs = d, Wc = 2d and Hc = d/2 (figure 2). 

Figure 2 - Actuator geometry

The reduced frequency work range is chosen within the interval 
F+  [0.1;10]. Quantitatively, F+ = 1 corresponds to f = 911 Hz.

Actuator dimensions have been calculated with respect to classical 
synthetic jet designing criteria: the synthetic jet formation criterion 
and a minimal value of the Stokes number (Holman et al. [19] and 
Schuster et al. [28]). The resonance frequency definition of Gallas 
et al. [13,14] has been used to set up cavity design, with a reso-
nance frequency chosen at F+

resonance ≈ 59, which is far enough from 
F+

max = 10 to avoid resonance effects at high frequency. The synthe-
tic jet forcing amplitude is characterized by its momentum coefficient, 
which is defined by:

2

2
j RMS

UC

dV
C
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ρ
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=  (7)

where j is the synthetic jet density, VRMS is the root-mean-square 
value of the synthetic jet velocity at the orifice exit and ∞ is the 
freestream density.

Numerical method

The geometry, the grid and the numerical method are the same as 
those used in [15] to compare the URANS and LES techniques. 

The FLU3M code is a finite volume solver for the compressible Navier 
Stokes equations. The turbulence model used for URANS simulations 
is the Spalart-Allmaras one [31] with the rotation correction of Daclès-
Mariani et al. [10]. The time integration is carried out by means of the 
second-order-accurate backward scheme of Gear [16]. The time step 
is equal to 5.10-7 s.

The spatial scheme is the one proposed by Mary and Sagaut [22] 
which is second-order-accurate. The accuracy of the solver has been 
assessed in various applications at Onera [11, 12, 25, 27, 33].

The streamwise length of the computation domain is 24h (7.5h 
upstream of the separation point and 12h downstream from the 
reattachment point of the uncontrolled case), its height is 10h in the 
inflow plane. The grid is composed of 66,265 cells distributed as 
515×127 for the ramp, 10×38 for the slot and 20×24 for the cavity. 

Actuator
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Grid spacings in the streamwise and in the wall-normal directions are 
x+ = 50 and Δz+

min = 0.5, respectively. A view of the URANS grid 
in the x-z plane is displayed in figure 1.

Each controlled case is initialized with the same field. A transient time 
equivalent to 4.5 flow-through times was necessary to reach the per-
manent regime. Then, 11 flow-through times were found sufficient to 
obtain converged statistics. 

To simulate the diaphragm displacement, a blowing/suction condi-
tion with a top-hat spatial distribution and sinusoidal temporal varia-
tion is implemented on the entire cavity bottom surface (figure 2): 
V(x,t)=Vact. cos(2ft). Previous studies have shown that the com-
putation of the whole actuator cavity was mandatory for an accurate 
description of the synthetic jet effect on the separation.

Open-loop results

This section outlines some open-loop results regarding the forcing 
frequency effect, useful to determine a closed-loop strategy. It has 
two purposes. The first objective of this open-loop study is to find a 
criterion to quantify the control effect on the separation. The second 
one is to justify the use of a local measurement (which will be the 
model single output) by correlating it with the previous criterion.

Uncontrolled flow

The mean separation bubble contour results from the calculation at 
each abscissa of the integral of the mass flux in the wall normal di-
rection. The zero-mass-flux line gives the separation bubble contour 
from which the bubble surface is deduced. This line and streamlines 
for the uncontrolled flow case are given in figure 3. From the skin 
friction distribution (not shown), it is found that the separation point 
is located at x/h = 0.53 and the reattachment point at x/h = 6.26, so 
the separation length is LUC/h = 5.73.

Figure 3 - Uncontrolled flow: streamwise non-dimensional velocity with 
streamlines and zero mass-flux line (dash-dot line)

Open-loop controlled cases

URANS computation series were performed in order to study the for-
cing frequency effect with Vact = 39.9 m.s-1. This velocity corres-
ponds to a theoretical momentum coefficient C equal to 0.28 %. 

As a reminder, the reduced frequency is defined by F+ = f.Luc/U∞. 
The Strouhal number used in this paper is based on the ramp height: 
St = f.h/U∞.

The reduced frequency work range is chosen within the interval 
F+  [0.1; 10], in which 23 computations have been carried out. 
The set of reduced frequency forcing cases is: F+ = {0.1; 0.3; 0.4; 

0.5; 0.7; 0.9; 0.95; 1.0; 1.05; 1.055; 1.06; 1.065; 1.07; 1.075; 
1.1; 1.2; 1.5; 2.0; 2.5; 3.0; 4.0; 6.0; 10.0}.

Forcing results on the mean bubble surface reduction

This study is based on URANS computations to make its compu-
tational cost acceptable. It is subject to classical RANS limitations; 
in particular, the results are not free from model sensitivity (see in 
particular the turbulence model study on this geometry in [15]). Ne-
vertheless, we only need frequency sensitivity results to validate our 
closed-loop strategy. A previous LES study of synthetic jet frequency 
and amplitude effects in open-loop brings more physical meaning to 
the assessment of different control criteria (see Pamart et al. [24]).

For some frequencies, the forcing by the synthetic jet significantly 
modifies the entire flow. Consequently, some flow parameters are 
modified, such as pressure and viscous drag, mean separation and 
reattachment locations, mean recirculation bubble shape, turbulence 
level, etc. The mean recirculation bubble surface S, non-dimensio-
nalized by the baseline separation bubble surface S0, is plotted as 
a function of the forcing frequency in figure 4. The separation sur-
face decreases with the reduced frequency for 0.1 ≤ F+ ≤ 0.7. The 
separation bubble surface is a minimum for F+ around 0.7. For this 
reduced frequency, the bubble surface is reduced by 70 %. Then, 
for 0.7 ≤ F+ ≤ 2, the separation surface increases with the reduced 
frequency. For, F+ ≥ 2, there is no longer any effect of the control on 
the separation surface, since S/S0 remains nearly equal to 1.

Figure 4 - Forcing frequency effect on the nondimensionalized mean separa-
tion bubble surface

Criterion and input choice for the closed-loop

In order to reduce the recirculation bubble surface, the closed-loop 
algorithm needs a measure of this criterion. The measurement of the 
bubble surface is not practically feasible, but the idea is to corre-
late this bubble surface with a wall pressure sensor. By comparing 
figures 4 and 5, one can observe that, in this case, a decrease of the 
separation bubble surface is concomitant with an increase of the wall 
pressure in the separated zone. Thus, the objective of the closed-loop 
could be to maximize the wall pressure at a given location.

The time-averaged wall pressure from the 23 URANS computations 
is plotted in figure 5, as a function of the forcing frequency and the x-
coordinate. The mean pressure maximum corresponding to the opti-
mal reduced frequency is extracted from this figure and the evolution 
of this optimal frequency is plotted in figure 6, as function of the x-
coordinate. For 2.3 ≤ x/h ≤ 3.8, the maximum mean pressure is obtai-
ned for a reduced frequency equal to 0.7, which exactly corresponds 
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to the reduced frequency for which the recirculation bubble surface is 
minimum in figure 4. 

Figure 5 - Mean wall pressure as function of forcing frequency 
and x-coordinate

  
Figure 6 - Sensor position effect on the reduced frequency corresponding 
to the mean pressure maximum

Figure 7 - Wall pressure distribution of the baseline (uncontrolled), showing 
the pressure sensor location (red dot)

Finally, the wall pressure sensor is chosen at x/h = 2.71, near the 
middle of the separated zone (figure 7). For example, the control ob-
jective could be to maximize the pressure at this location. A closed-
loop algorithm, such as the extremum-seeking algorithm, is espe-
cially well suited for this purpose.

In the following, the objective will be to identify a model that links the 
actuator output velocity with the wall pressure sensor at x/h = 2.71.

Model identification

Identification signal

Due to the computational cost of URANS simulations, we cannot afford 
to collect a time signal of several seconds with a time step of 5.10-7 s. 
However, it is useful to consider that for F+ ≥ 3, the forcing effect on 
the flow is negligible (see figure 4 again). A NARX black-box model is 
then identified on a reduced frequency range F+  [0.1; 3], which is 
divided in 30 steps. Moreover, a good representation of the process 
steady-state map is made accessible if the signal is compounded of 
some command plateaus, which allow the flow to converge towards a 
steady state. With these two ingredients, the signal shape consists in 
a series of sinusoids of equal length. Each frequency is different and 
randomly distributed over the frequency range. 

The duration of every command step is set equal to 29.4 ms (rou-
ghly twice the transient time), which results in a total signal dura-
tion of 0.9 s. In order to smooth the discontinuities generated by the 
steps, the signal is filtered by a first order transfer function, with a 
time constant equal to 0.35 ms. The reduced frequencies F+ used for 
the identification are given in figure 8. The sinusoidal signal with the 
frequencies of figure 8 is then imposed as a boundary condition on 
the cavity bottom wall. The momentum coefficient C


 is constant and 

equal to 0.28 %. The signal sampling is chosen such that the highest 
frequency is discretized by at least 12 samples. Consequently, the 
time step used for the NARX model is 2.5 10-5 s.

Figure 8 - Input sequence of reduced frequency for the NARX identification

Model identification and validation

A URANS simulation enables us to obtain the response of the consi-
dered pressure sensor to the identification signal. The model time 
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step being already fixed, the NARX parameters to set are the number 
of past elements for each NARX term (ny, nu), the polynomial power 
p and the lag lagu. The lag lagu and the number of past inputs nu are 
found using the intercorrelation between the forcing u and the pres-
sure y (figure 9). It can be seen that the intercorrelation is maximum 
for lag = 46. In this figure, the lag values for which the intercorre-
lation is higher than a predefined user threshold (0.02) are picked 
up (red part of the curve with dots), since it means that these output 
terms are correlated with the input. lagu is the first abscissa for which 
the intercorrelation is larger than the threshold (lagu = 2). nu is the 
difference between the abscissa above which the intercorrelation falls 
definitely below the threshold level (here lag = 113) and lagu. Thus, 
in order to take into account the most correlated terms in the model, 
lagu is chosen equal to 2 and nu = 111.

Figure 9 - Intercorrelation between the pressure y and the forcing u, for dif-
ferent lag values of u

Figure 10 - Autocorrelation function (in red, square symbols) and partial auto-
correlation function (in blue, triangle symbols) of the output y

Concerning the value of ny, the partial autocorrelation function on the 
output y is computed (figure 10) as recommended by Box & Jen-
kins [7], to find the order m of an Auto-Regressive Model AR(m). 
The partial autocorrelation of an AR(m) process becomes zero at lag 

m + 1 and greater, so the partial autocorrelation function is examined 
to see if there is evidence of a departure from zero. This is usually 
determined by placing a 95 % confidence interval on the sample 
partial autocorrelation plot (black dashed line). Figure 10 shows that 
the autocorrelation function (ACF) decreases gradually, whereas the 
partial autocorrelation function (PACF) is close to zero for ny > 3, 
which means that an AR(2) model should be used. Consequently, ny 
is chosen equal to 3. 

The autocorrelation function of a MA(q) process becomes zero at lag 
q + 1 and greater. Since the ACF tails off gradually and does not cut 
off after ny lags, a Moving Average MA(q) model should not be consi-
dered here (see Box & Jenkins [7]); thus, a NARX structure (without 
noise ) is chosen, which justifies the fact that the noise terms were 
excluded in equation (2).

A parametric study of the effect of the model power p is then perfor-
med for a fixed value of the Tikhonov regularization coefficient  = 2. 
This value of the regularization coefficient is chosen following the 
L-curve rule (see figure 11 and Hansen [17]): the optimum value of 
 is obtained when the L-curve is the closest to the axis origin.

Figure 11 - L-curve of the chosen NARX model

The range of the p parameter studied is p  [3; 7] (figure 12). The 
model power p is chosen to minimize the Akaike Information Criterion 
(AIC) (see [1]) and its modified definition (AICc), which increases 
the weight of the number of regressors n


 when it becomes large 

which is the case here. They are defined by:
2ln( ) 2

2 ( 1)
1

AIC L n
n nAICc AIC
n n

θ

θ θ

θ

= − +
+

= +
− −

 (8)

where L is the likelihood function of the model, n

 is the total number 

of regressors and n is the number of samples. If the error between 
the model output ym and the learning data y is assumed to be zero-
mean Gaussian (it has been checked that it is true here), the previous 
expression of the AIC criterion becomes (see [8]):

ln( / ) 2AIC n RSS n nθ= +  (9)

where RSS is the residual sum of squares:
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This criterion is the sum of two terms: the first one depends on the er-
ror between the model and the true measurement and the second one 
includes a penalty, which increases with the number of regressors in 
the model. This prevents overfitting. The objective is to minimize one 
of these two criteria.

Figure 12 shows that the AIC of the model is minimized for p = 6 and 
that the AICc is minimized for p = 5. Since AICc has a larger penalty 
on the number of regressors, we choose p = 5.

Figure 12 - AIC & AICc criteria as a function of the NARX model power p.

To assess the performance of the NARX model, a fit coefficient (which 
must be maximized) is defined by equation (10). In this coefficient, 
the mean squared prediction error (MSPE) between the identification 
signal y and the NARX model ym is computed
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 (10)

where y  is the mean value of y.

It must be noted that nothing prevents this fit coefficient from being 
negative.

For the previous set of NARX parameters (lagu = 2, ny = 3, nu = 111 
and p = 5), a very good fit equal to 84 % is obtained. In compari-
son, a fit of only 42.7 % is obtained with a linear ARX model with 
lagu = 18, ny = 3, nu = 111, p = 1 and no cross terms giving a total 
of 115 regressors.

The representations of the response signal computed by the URANS 
simulation and the signal given by the NARX model for the same iden-
tification input command are given in figure 13. This figure shows the 
ability of the model to represent the temporal pressure evolution of the 
flow perturbed by the series of forcing frequencies shown in figure 8.

In addition, the black-box model is validated by comparing the model 
output with CFD results for different forcing frequencies. For each 
frequency, the measured pressure signal from the URANS simula-
tions is compared with the output of the NARX model for the same 
input command. Some comparisons are displayed in figure 14. Figure 
15 shows the relative error between the model and the CFD results:

( ) ( )(%)( ) 100
( )

my i y ierror i
y i
−

= ×

On the frequency interval covered by the identification command 
F+  [0.1; 3], the NARX model is in good agreement with the flow 
computed by URANS simulations. The fit coefficient varies between 
48.6 % for the lowest frequency and 93.9 % for the highest. The 
error between the NARX model and the URANS decreases when 
the reduced frequency increases and is always lower than 2 % for 
F+ > 0.1. Outside of this frequency interval (figure 16), the NARX 
model quickly diverges. 

Another important point is to validate the steady state behavior of 
the NARX model, that is to say, to check whether the mean pressure 
given by the model is the same as that computed by time-averaging 
the URANS simulation. The evolution of the time-averaged pressure 
<P> with respect to the forcing frequency is given in figure 16. On 
the reduced forcing frequency interval F+  [0.1; 3], mean pres-
sures are in good agreement. Nevertheless, for F+ > 3, the NARX 
steady pressure estimations quickly diverge from those of the URANS 
simulation. 

Figure 13 - Comparison of the output of the NARX model (in blue) with the URANS simulation (in red) on the identification signal 
(left: complete signal, right: zoom for 0.1<t<0.2)
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Figure 14 - NARX model validation with open-loop results 
for different reduced frequencies

 

Figure 15 - Relative error between the NARX model and CFD results 
for different reduced frequencies
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As expected, the model can be used for representing the steady pressure 
frequency response, but only on the frequency bandwidth of the identifi-
cation signal.

Figure 16 - Comparison of the evolutions of the time-averaged pressure with 
respect to the forcing frequency between the NARX model (in blue) and the 
CFD (in red).

Finally, this NARX model is able to accurately represent the steady 
component as well as the unsteady component of the pressure for 
F+  [0.1; 3] at the sensor location. The black-box model has its 
steady maximum at the same frequency as that given by URANS 
simulations. The NARX reduced-order model can then be used to 
design a closed-loop algorithm.

Closed-loop control by extremum seeking

Description of the extremum seeking algorithm

The extremum-seeking algorithm is a robust adaptive closed-loop algo-
rithm without an internal model. It is appropriate for the control of non-
linear plants characterized by an output extremum in the steady state. 
Let a block with a command input u and an output y be a representation 
of the nonlinear system, with the static input-output-map y=G(u). A 
typical SISO extremum-seeking structure is given in figure 17.

Figure 17 - Block diagram of the basic extremum-seeking feedback algorithm

The extremum-seeking control is based on a gradient online optimi-
zation. The aim is to adjust the control input u, in such a way that the 
maximal steady-state system output y* is achieved without knowing 
the steady-state input-output map y=G(u) and especially its extre-
mum y* = max(G(u)) = G(u*). The idea is to add a periodic pertur-
bation to the command input u, in order to compute the static input-

output slope and then modify the command u toward the optimal 
command u*.

The perturbation addition is displayed in figure 18, as Step I. Typi-
cally, this perturbation is a sine signal p.sin(p.t) where p and p 
denote the perturbation amplitude and pulsation, respectively. The 
perturbation period must be larger than the largest time constant of 
the dynamic plant, in order to obtain an approximate sinusoidal out-
put y. If the static input-output slope is positive, then the sinusoidal 
output and the perturbation are in phase and vice versa (figure 18 
Step II). The slope sign is obtained by filtering the system output 
with a high-pass filter (figure 17: High Pass box) and by demodu-
lating this filtered signal with the perturbation (box with a cross in 
figure 17). The high-pass filter (Step III in figure 18) removes the 
mean value and keeps the unsteady component. The demodulation 
consists in doing the product of the latter with the perturbation si-
gnal. Indeed, the product of two signals in phase gives a signal with 
a positive mean and vice versa (Step IV in figure 18). This demodu-
lation leads to a non-zero mean signal, as long as the maximum is 
not obtained. This output is passed through a low-pass filter (Low 
Pass box in figure 17), which gives a moving average value of the 
slope. The slope sign signal is multiplied by a gain K and integrated 
(K/s box in figure 17). As a result, the command u is shifted toward 
the optimal command u*, which is displayed in figure 18 as Step V. 
For more details on the algorithm and in particular a demonstration 
of the algorithm stability, the reader should consult Ariyur and Krstić 
[2] and Krstić and Wang [21].

Figure 18 - Extremum-seeking algorithm in 5 steps

Since the extremum-seeking algorithm is based on the slope value 
estimation using a demodulation step, it is important to use high-pass 
and low-pass filters with ideal specifications. That is to say, a filter 
with the shortest possible time response and with a linear phase-shift. 
The last specification allows a minimum phase distortion, so that dif-
ferent frequencies in the band-pass have the same time delay and the 
shape of a signal remains unmodified by the filter.

This is the reason why the basic extremum-seeking feedback was 
improved by using Bessel filters. Bessel filters, also known as 
Thompson filters, are characterized by an almost constant group 
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delay across the entire pass-band, thus preserving the wave shape of 
filtered signals in the pass-band. The “Bessel” approximation aims to 
develop a normalized low-pass filter, with a maximal constant group 
delay at the origin. A Bessel low-pass filter is characterized by its 
transfer function:

0

(0)( )
( / )

n

n

H s
s
θ

θ ω
=

where n(s) are reverse Bessel polynomials and 0 is a frequency 
chosen to give the desired cut-off frequency. The filter has a low-
frequency group delay equal to 1/0.

The reverse Bessel polynomials are given by:
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Extremum seeking tuning

First, the NARX previously identified in the first part of the paper in the 
case of flow separation over a ramp is used, with the aim of tuning 
the parameters of the extremum-seeking algorithm (pulsation p and 
amplitude p of the perturbation, filter cut-off frequencies, loop gain 
K, etc.) and validating the closed-loop strategy. This NARX black-box 
model imitates the flow response to a periodic blowing and suction 
signal. Since the command input given by the extremum-seeking 
regulator is a frequency, an actuator signal converter is attached to 
the NARX model for converting the input command to an oscillatory 
signal. In order to ensure the signal continuity and to introduce actua-
tor dynamics, a first-order transfer function is added to the system 
model. Its time constant  allows the time response of the actuator, 
which is set equal to 0.35 ms here, to be managed.

To tune the extremum-seeking parameters, the U-RANS CFD box in 
figure 17 is replaced by the NARX model. Thus, the U-RANS CFD box 
in figure 17 is replaced by the blocks given in figure 19. The moving 
averaged pressure at the exit of the system block diagram is obtained 
by filtering the NARX model output with a low-pass filter. A correct 
mean pressure estimation requires a NARX pressure output averaged 
over at least two actuation periods. The lower bound of reduced for-
cing frequency interval is F+ = 0.1, then the mean pressure estimator 
low-pass filter cut-off frequency m is set equal to F+ = 0.05. A re-
presentation of the entire system block diagram is given in figure 19.

Figure 19 - System block diagram

Concerning the extremum-seeking algorithm itself, there are three 
pulsations to be chosen: the perturbation pulsation p and the low-
pass and high-pass filter ones, LPes and HPes respectively. The 
largest time constant of the system is given by the mean pressure 
estimator low-pass filter cut-off frequency m. Then, it allows the sine 
perturbation pulsation p to be adjusted. A pulsation p equal to a 
quarter of m is chosen. The extremum-seeking high-pass filter must 
remove frequencies larger than p and the direct component. Bessel 
filters allow a constant group delay, but with a soft magnitude filtering, 
to be ensured. As a result, HPes is set equal to p. The extremum-

seeking low-pass filter must be able to give a moving-average of the 
slope sign to the integrator. As a mean pressure estimator, the cut-off 
frequency is adjusted, so that the slope sign signal is averaged over 
two perturbation periods. Therefore, LPes is chosen to be equal to 
F+ = 0.00625.

Concerning the closed-loop gain K in figure 17, it is in principle a 
constant; however, here we propose an adaptive gain to increase 
the convergence rate of the closed-loop. When the steady state map 
slope is small (at the beginning of the closed-loop), K will be high to 
increase the convergence rate and, when the slope is large, K will be 
small to prevent the closed-loop from overshooting and oscillating 
around the extremum. The expression below has been chosen for the 
adaptive gain:

max

2
( ) min ,

( )
p p

slope

a
K t K

y t
ω

σ
π

 
=   

 

where Kmax is a user defined gain and  is a safety margin with 
0 ≤  ≤ 1.

Validation of the extremum seeking parameter choice on the 
black-box model

Before applying this closed-loop algorithm in an unsteady RANS si-
mulation, it is necessary to validate it on the NARX reduced-order mo-
del. The controller is tested in various cases listed in Table 1, where u0 
is an initial forcing frequency. The constant  is set to be equal to 0.9. 
Simulations with the NARX model are plotted in figure 20, in which the 
closed-loop is initiated at t = 0.1 s.

Case Kmax p(F
+) fp(F

+) u0(F
+)

I 1000 0.01 0.0125 0.22

II 1000 0.03 0.0125 0.2

III 1500 0.02 0.0125 1.1

Table 1 - Closed-loop strategy validation cases

For each case, the command converges as expected toward 
F+ equal to 0.78. The convergence time depends on the starting 
frequency point, the maximal gain chosen and the perturbation am-
plitude value. The representation of the mean pressure at the output 
of the model is given in figure 21. The extremum-seeking allows the 
mean pressure maximum that validates the closed-loop strategy to 
be found.

Figure 20 - Extremum-seeking with adaptive gain control of the NARX model
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Figure 21 - Mean pressure given by the flow model for validation closed-loop

The closed-loop shows its ability to find in-line the maximum of a 
nonlinear model. The convergence time is small enough to allow the 
application of this closed-loop strategy in-line with an unsteady RANS 
simulation.

Application of the extremum seeking to an URANS computation

After having successfully applied and validated the extremum-seeking 
controller, the NARX model is replaced by unsteady RANS computa-
tions. The controller is tested in the different cases listed in Table 2. 
The command and mean pressure results are plotted in figure 22 and 
figure 23, respectively.

Case Kmax p(F
+) fp(F

+) u0(F
+)

I 1000 0.022 0.0125 0.11

II 1000 0.01 0.0125 0.22

III 900 0.03 0.0125 0.2

Table 2 - Closed-loop in unsteady RANS computation cases

Figure 22 - Extremum-seeking with adaptive gain control of unsteady RANS 
computations

The convergence time is longer than with the black box model, due 
to the fact that the model does not perfectly reproduce the true 
CFD results. Thanks to the robustness of extremum-seeking, the 
closed-loop is still efficient and the pressure is well maximized. 
For Cases II, IV and V, simulation must be continued, in order to 
ensure the frequency command convergence. Cases I and II have 
converging commands, as expected in the vicinity of F+ equal to 
0.78.

Figure 23 - Moving average pressure from unsteady RANS computations in 
closed-loop

Conclusion

This paper describes a successful approach of closed-loop separation 
control by synthetic jet on a generic rounded step configuration. 

An open-loop study of the forcing frequency has allowed the verification 
of the system controllability. The chosen objective criterion to be opti-
mized is the mean recirculation bubble surface. The mean wall pressure 
analysis has shown that maximizing the wall pressure sensor at x/h 
equal to 2.71 enables the recirculation bubble surface to be minimized.

Maximizing the mean pressure automatically at the sensor location 
implies the use of a closed-loop algorithm. In a first step, a single-
input single-output black-box model was identified, in order to tune 
and validate the closed-loop strategy. A NARX model of the real time 
wall pressure signal response to the synthetic jet forcing was suc-
cessfully designed and validated.

The selected control algorithm was the extremum-seeking, which is 
a robust adaptive command without internal model. It is appropriate 
for the control of non-linear plants, characterized by an output extre-
mum in the steady state. The algorithm was improved with an adap-
tive gain, which guarantees optimal performance in terms of gradient 
estimation and, with the use of low-pass and high-pass Bessel filters, 
allows an accurate gradient estimation to be ensured.

The tuning of the control algorithm parameters was based on physi-
cal considerations and was validated using the black-box model. The 
results showed that it was possible to apply this closed-loop strategy 
in-line with an unsteady RANS simulation.

This control goal was to minimize the recirculation bubble surface. It 
is also possible, with the same methodology, to control some other 
criteria, such as the pressure drag or the turbulence level.

Extremum-seeking works with the steady state of the plant, which 
imposes an estimation of the moving-average state of the output. A 
simpler black-box model based on the steady state could have been 
used, but the system dynamics would have been lost.

A next step could be the automatic simultaneous adaptation of 
frequency and amplitude, using a multi-input multi-output regulator 
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Acronyms

SISO (Single-Input Single-Output)
NARX (Nonlinear Auto-Regressive with eXogenous input)
NARMAX (Nonlinear Auto-Regressive Moving Average with
 eXogenous input)
RANS (Reynolds Averaged Navier-Stokes)
LES (Large-Eddy Simulation)
AR (Auto-Regressive model)

MA (Moving Average model)
ACF (Auto-Correlation Function)
PACF (Partial Auto-Correlation Function)
AIC (Akaike Infomation Criterion)
RSS (Residual Sum of Squares)
CFD (Computational Fluid Dynamics)
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