
Issue 8 - December 2014 - Towards Modular and Certified Avionics for UAV
	 AL08-02	 1

Aerial Robotics

Towards Modular and Certified
Avionics for UAV

This paper proposes a review of the current state and for thcoming evolutions
for UAV avionics architecture and software. It provides an outlook of the

specific technical issues arising in the design of embedded systems for UAV.

Introduction

The Unmanned Aerial Vehicle (UAV) industry has been rapidly growing
over the last decade. New UAV are being developed for military
applications and also for civil usage. There is a strong correlation
between the mission of a UAV and the avionics necessary to implement
it. For this reason, the design, development and verification of UAV
avionics, including hardware and software architecture, have been the
subject of considerable research [23, 21, 16, 22].

UAV avionics, like those of traditional aircraft, are in charge of
implementing flight control and flight navigation. However, they should
also ensure a desired level of autonomy and the control of the payload
(if any).

For flight navigation, a UAV includes embedded means for estimating,
at any time and anywhere, its position, speed and acceleration. This
requires navigation sensors (such a GPS) and robust estimation
algorithms. For flight control, the UAV must generate the steering
commands and subsequent control surface deflections to stabilize the
vehicle and to adequately follow the flight plan. This again requires
robust control algorithms. These computations are relatively simple
compared to the flight planning algorithms. They however require the
use of accurate real-time processors and operating systems.

In addition to the flight control and navigation part, UAV require specific
autonomy means. The autonomy requirement is the main difference
between UAV and manned aircraft. Autonomy is the ability to operate
without direct control from a ground operator. Complex or faraway
missions without ground infrastructure (for instance data link means
and ground stations) would necessitate making the UAV increasingly
autonomous. Autonomy requires specific sensors, such as optical
devices, and complex software, such as image processing software
and intelligent flight planning. Ideally, the UAV must have the capability
to plan and re-plan its own flight plan. This results in the requirement for
an on-board high-performance computing architecture where flight-

planning algorithms can be run. These algorithms require knowledge
of the UAV’s surroundings, including other traffic, weather, obstacles,
fuel usage, flight time, etc. Furthermore, in the event of failure, the UAV
must have the capability to reconfigure itself and re-plan its trajectory
or its mission. These autonomy requirements result in complex
software, which requires high performance computing means without
compromising safety: efficient techniques are necessary to verify and
validate software.

The aim of this article is to discuss new challenges for future UAV
avionics architectures and software : current state and forthcoming
evolutions of UAV avionics, use of IMA (Integrated Modular Avionics)
for UAV and certification issues.

Current state and forthcoming changes

Current state

The main challenge encountered by UAV avionics is to safely operate
on-board two types of computation: flight control/navigation and flight
planning/re-planning, including the reconfiguration of the avionics
itself in case of mission re-planning.

In order to respond to this challenge, the first generation of UAV
avionics architectures were divided into three loosely coupled physical
parts. The first one is dedicated to navigation and flight control; the
second one offers sensors, hardware and software components
ensuring the desired level of autonomy; while the third part controls the
payload of the UAV. The second and third parts are generally specific
to the operational role that the UAV is supposed to carry out. In most
cases, each part is implemented by a monolithic dedicated platform
composed of the simplest possible processor with its own resources
(memory and communication bus) (figure 1). UAV developed in
the 90 s and 2000 s were based on this principle (see for instance
appendix A of [27], and the Piccolo architecture in [33]).

F. Boniol, V. Wiels
(Onera)

E-mail: frederic.boniol@onera.fr

DOI : 10.12762/2014.AL08-02

Issue 8 - December 2014 - Towards Modular and Certified Avionics for UAV
	 AL08-02	 2

Engines

Proc1 Proc2 Proc3

Payload

Data link
interface

Navigation
sensors

Anemometric and
inertial sensors

Flight control
surfaces

Backup remote
control unit

FC + Nav Plan PLMgt

Figure 1 – Typical UAV 1st-generation architecture

Such a physical segregation between the three parts ensures that they
operate (nearly) independently from each other. More precisely, the
autonomy sensors and algorithms do not interfere with the control
loop and vice-versa. Likewise, the payload software does not affect
the rest of the avionics. Thus, a failure in the payload part should
not affect the safety of the vehicle. Thus, each part can be designed,
developed, dimensioned and certified separately, without considering
interferences coming from the other parts. Finally, in the event of
failure in one of the first two parts, a human operator can directly
control the vehicle from the ground by means of a set of data-links
and specific components. The vehicle becomes in that case a remote-
controlled plane.

However, these first architectures based on the principle of separation
of concerns have many limitations.

Forthcoming changes

Firstly, safety is guaranteed in the final degraded mode (i.e., the mode
in which the automatic flight control part is lost) by the ability to pilot
the vehicle from the ground. As stated above, it assumes (1) safe
onboard mechanisms to commute from the automatic flight mode
to the remote-controlled flight, (2) a data-link between the vehicle
and the group operator, which guarantees that orders and data are
transmitted in real-time (in less than 10 or 100 milliseconds for flight
control orders) and, (3) a ground infrastructure able to present to the
human operator the complete situation of the vehicle (position, speed,
attitude, obstacles in front of the vehicle, etc.). Such requirements are
not consistent with complex and faraway missions, or with missions
in a hostile environment. In that case, contrarily to manned aircraft, the
UAV must ensure its own safety without waiting for backup orders sent
by a human pilot. However, first generation UAV avionics architectures
do not offer the appropriate safety level. This is their first limitation.

Secondly, the continual development of UAV applications results
in an ever-increasing demand on embedded algorithms. On board
computational resources must meet this demand, while at the same
time providing robustness, reliability and a small footprint, both in
physical size, mass and power consumption.

Thirdly, new applications may necessitate the integration in a more
coupled way of the three parts of the UAV avionics. In particular, the
payload management may depend on flight data, such as position,
speed, attitude, etc. Conversely, navigation and flight control may
depend on the state of the payload. This requires an appropriate
mechanism providing navigation data to the payload and conversely,
in such a manner that the payload activity cannot interfere with flight
control and planning. Failure of the payload must not compromise the
safety of the UAV (for example, denying access to the on-board data-
bus by saturating it with payload messages). First generation UAV
avionics architectures do not offer such a mechanism.

A first solution could be to continue with the segregation principle
(each part has its own sub-architecture), while increasing the number
of computing resources. It should lead to the duplication of several
components (for instance, the flight data calculation for the payload).
However, this first architecture principle reaches its natural limit when
the weight and volume of the dedicated sub-architectures encounter
the envelope restrictions of the UAV. This issue becomes central in
the case of small UAV able to carry only a few kilograms (generally
less than 10 kg) including payload and avionics. Another drawback
becomes obvious: the huge number of different resources has
significantly increased the maintenance costs in terms of component
spare part provisioning and handling.

Another approach, called Integrated Modular Avionics (IMA) [2, 3] has
been suggested to address this issue for manned aircraft, such as
Airbus A380 / A350 and Boeing B787.

Towards modular integrated avionics for UAV

Modular Integrated Avionics

Resource sharing and robust partitioning are the central ideas of the
IMA concept. They are based on two principles: partitioning principles
in processing modules and partitioning principles for communications
between functions.

Processing module partitioning

As has already been explained, an UAV avionics architecture
implements several software functions (flight control, navigation,
planning and payload management), each of them possibly divided
into sub-functions. Initially running on different processors, the first
IMA idea is to place these functions on processing modules partitioned
with respect to space (resource partitioning) and time (temporal
partitioning).

• Resource partitioning. A processing module is divided into
partitions. Each partition is seen as a virtual processing module.
It is allocated a set of private spatial resources (memory, non-
volatile memory, I/O resources, etc.) in a static manner. Low-level
mechanisms (at the operating system level) provide protection for
partition data against any modification from the other partitions. They
monitor function activity with reference to allowed resources, which
are statically allocated through configuration tables.

• Temporal partitioning. Each function is allocated a partition.
The scheduling of partitions on each module is defined off-line by
a periodic sequence of slots, statically organized in a time-frame.
Each partition is allocated a time slot for execution. At the end of
this time slot, the partition is suspended and execution is given to
the next partition (running another function). Thus, each function is
periodically executed at fixed times.

Thanks to partitioning mechanisms, functions become independent.
A faulty function can be isolated without affecting functions placed on
the same module.

Communication resource partitioning

Initially routed onto different physical links, the second IMA idea is to
place communications between functions on shared communication
networks. The network is divided into Virtual Links (VL). Each VL is
dedicated to the traffic coming from a single function. It is characterized

Issue 8 - December 2014 - Towards Modular and Certified Avionics for UAV
	 AL08-02	 3

by a bounded bandwidth. Similarly to processing modules, a low-level
mechanism (at the network level) guarantees that no function can go
beyond its contract, that is, produce more communication than the
permitted bandwidth. Such a mechanism can be implemented by a
traffic shaper, which separates two successive emissions on the VL
by at least a fixed time interval called Bandwidth Allocation Gap (BAG).
This principle has been implemented in the Avionics Full Duplex Ethernet
(AFDX) architecture embedded in the Airbus A380 and A350 [3].

A typical IMA platform is described in figure 2. Its hardware architecture
consists of 3 generic computing processing modules (called CPM) that
are connected to a communication network. The network is composed
of two identical redundant parts (Part A in blue, and Part B in red).
CPM1 and 2 are connected to Switches 1 (A and B), while CPM3
is connected to Switches 2 (A and B). Flight control and navigation
sensors and actuators are reached through a redundant gateway
(Gtw1) connected to Switches 1. Similarly, the payload and the
data link interface are reached through a second redundant gateway
(Gtw2). As shown in the figure, the critical functions Flight Control
(FC) and Navigation (Nav) are triplicated and the Planning Function
(Plan) is duplicated, while the Payload Management Function (PLMgt)
is implemented by a single occurrence (i.e., without any redundancy).
Each CPM is divided into four partitions (e.g., FC1 is hosted in the
first partition of CPM1). On each module, partitioning and scheduling
are ensured by a partition manager, while bandwidth communication
from each function is controlled by a VLs manager. Figure 3 shows
the time-triggered scheduling of the four partitions hosted by CPM1.
As has already been explained, this scheduling is organized as a
sequence of time slots. It is composed of two minor frames (MiF),
the duration of which is 10 ms. FC1 runs in the first time slot of each
MiF. The duration of this time slot is 2ms. FC1 is then supposed to
execute every 10 ms within an execution time of less than 2 ms. Nav1
runs only in the first MiF, while PLMgt runs in the second MiF. The aim
of the partition manager is to unroll this sequence and monitor each
partition. For instance, if PLMgt tries to continue after the end of its
time slot, the partition manager stops it and starts the next partition
(FC1). Hence, a software failure in PLMgt does not affect FC1. Note
that in the CPM1 scheduling, a spare time slot is reserved for hosting
potential new functions without affecting other functions.

VL Mgt

Partition Mgt

FC
1

Na
v1

PL
M

gt

Sp
ar

e

VL Mgt

Partition Mgt

FC
2

Na
v2

Pl
an

1

Sp
ar

e

VL Mgt

Partition Mgt

FC
3

Na
v3

Pl
an

2

Sp
ar

e

CPM1 CPM2 CPM3

Payload

Data link
Navigation
sensors

Anenometric and
inertial sensors

Flight control
surfaces

Engines

Gtw
2.AGtw

2.B

Switch 1.A Switch 2.A

Switch 1.B Switch 2.B

Gtw
1.AGtw

1.B

Figure 2 – Example of UAS IMA architecture

FC1 FC1 FC1 FC1Nav1 Nav1PLMgt PLMgtSpare Spare

10 ms

First minor frame
Second minor frame

8 ms2 ms 3 ms

Figure 3 – Temporal scheduling of CPM1

Benefits and effects for UAV avionics

The benefits of such a new architecture are mainly: safety level
improvement, as well as weight and power consumption reduction.
Let us again consider the architectures given in figure 1 and figure 2.
These two architectures implement the same functions FC, Nav, Plan
and PLMgt. They are both composed of 3 processors. However, the
first architecture is not fault tolerant. For instance, loss of Processor 1
leads to total loss of the vehicle. Conversely, the IMA architecture
(figure 2) is fault tolerant with the same number of processors. For
instance, despite of the loss of CPM1, the flight control and navigation
functions still run properly on CPM2 and CPM3. Only the payload
management is lost. It is obvious that the total loss of the vehicle is
consecutive to at least two failures: for instance, loss of Switches
1.A and 1.B or loss of Gateways 1.A and 1.B, etc. In that sense, with
(nearly) the same number of resources, the IMA architecture is safer
than the first one.

Globally, IMA results in a reduction of the required physical resources.
Reduced physical resources translate into global weight and power
savings for the UAV. The same trend has been observed in aircraft
architectures: for instance, the number of processing units in the
A380 is half that of previous generations. Reductions in operating
costs are expected to be significant, with the decrease in the number
of computers and cables (for power supply or communication),
contributing to a reduction of vehicle weight leading to better fuel
consumption efficiency and then to a greater autonomy.

Past and recent experiments on applying IMA to UAV

Considering these expected benefits, recent research has been
conducted on the integration of IMA architecture into modern UAV. A
preliminary work has been proposed by Elston et al. [17]. They are
developing a distributed modular architecture concept for small UAV
(about 10 kg). This architecture is composed of a set of computing
modules communicating through a CAN bus. Similarly, Ellen et al.
investigated in [16] an architecture for the QUT research UAV, still based
on a cluster of small dedicated processors communicating through
CAN buses. They show that the performances of this architecture, in
terms of power consumption, size and weight, are better than those
for the legacy architecture (based on a centralized PC104 computer).
However, contrary to the full IMA concept, computing modules in these
proposed architectures still own their private sensors and actuators
and host only one function. There is no partitioning mechanism.

Following this direction, Lopez et al. investigated in [25] a middleware-
based architecture suitable to operate as a flexible payload and
mission controller in a UAV. The architecture is composed of low-
cost computing devices connected by a network. The functionality
is divided into reusable services distributed over a number of nodes,
with a middleware partitioning their lifecycle and communication.
However, the middleware does not take into account real-time issues.
Thus, flight control and navigation cannot run on this platform and still
require a dedicated real-time architecture.

In order to respond to the real-time issue, [29] proposes an architecture
platform based on a Time-Triggered network. Functions, including
flight control and navigation, run on dedicated PC/104 computers and
communicate in a deterministic way through the network. Thanks to
the time-triggered protocol, the network guarantees fixed time slots for
each function. This solution has been implemented on large UAV, such
as the R-MAX Helicopter (about 10 kg).

Issue 8 - December 2014 - Towards Modular and Certified Avionics for UAV
	 AL08-02	 4

More recently, [22] has developed a complete IMA solution, based on
an ARINC 653 processing module, for a small quad-rotor helicopter.
Due to the UAV size (70 cm in diameter and 1 kg payload), the avionics
only include a single embedded processor hosting the flight control,
navigation and planning functions. The processing unit is partitioned in
a deterministic way according to the IMA principle. To our knowledge,
this experiment is the first attempt to apply the IMA concept, here
reduced to the processing module part, to small UAV.

All of these experiments clearly show the trend to embed an IMA
execution platform for flight control and the navigation function, as
well as for planning and payload management, in both small and larger
UAVs.

Certification issues

Given that the use of drones for different kinds of mission is spreading,
and will continue to do so, their safety and security will become a
crucial issue. For aircraft, safety and security are assessed using
certification standards. The ARP 4754 [4] is the standard for systems,
DO-178 [14] is the standard for software, while Common Criteria (ISO
15408) [12] handles security aspects.

These standards are bound to also be applied for UAV systems and
software. Application of ISO 15408 will enforce security requirements
and help to prevent the hacking of UAV. However, it will only be effective
if safety-critical requirements are also taken into account. Ensuring the
safety of embedded software is paramount, since there is no human
pilot onboard. In this section, we consider the challenges at stake for
the certification of this software. We distinguish the domains where
aircraft solutions can be adapted to UAV without too much trouble and
UAV specific certification issues.

[28] gives a broader overview of the challenges and a roadmap for
the certification of Remotely-Piloted Aircraft Systems. We focus on
software aspects, but also consider autonomous systems (even
though their operational use is further away). [28] also tackles
insertion into the airspace; we do not consider this certification issue.

Issues similar to those for aircraft

Flight control and navigation systems are certified for aircraft, using
classical means or more recently innovative verification techniques.
We will not provide an exhaustive overview of existing work here, but
rather only list the various aspects that should be considered together
with a few references, mainly of Onera work in this domain. We focus
on aspects related to avionics; safety and security assessment at the
aircraft and system levels are also essential, but will not be discussed
here (see [7,5]).

Real-time analysis

Certification objectives regarding real time are scattered around in
various certification standards (IMA, software) but they are essential
for the correctness of software and systems. Regarding real-time
behaviors, the first requirement is to guarantee that each function
located in an IMA partition terminates properly before the end of
the partition. For instance, let us consider the flight control function
FC1 hosted by CPM1 (figure 2). FC1 runs in a partition of which
the duration is 2 ms (figure 3). Thus, it must be shown that all sub-
functions involved in FC1 are scheduled in such a way that they will

all terminate before 2 ms have elapsed. Several techniques and tools
have been developed to analyze worst-case execution time [1, 26],
and worst-case response time [30, 11] for IMA software, or generate
a correct scheduling from different constraints within a partition [30].

The second certification requirement deals with worst-case traversal
time through a communication network. Let us again consider the
example in figure 2. FC1 periodically sends orders to actuators through
the network. Note that the payload also sends and receives data
through the same network. It could then happen that, if a failure occurs
somewhere in the payload, it may begin to send a huge amount of data
to PLMgt, overloading the communication network, leading to delays
in the flight control orders. Such a scenario may lead to a catastrophic
situation, despite the initial single failure being of minor importance.
An interesting benefit of the IMA principle is that, if functions are
statically allocated in modules and partitions, and if the network hosts
mechanisms enforcing functions to respect their communication
contract (e.g., traffic shapers), then it is possible to mathematically
prove that the end-to-end delay of any message is bounded and it is
possible to evaluate an over-approximation of this bound. This proof
is based on the network calculus theory [8, 9]. Network calculus has
been used for certification of the A380 and A350 avionics network.
It contributes an adequate mathematical technique for UAV avionics
network certification as well.

Software verification

DO-178/ED-12 [14] does not prescribe a specific development
process for software, but rather identifies important activities and
design considerations throughout a development process and
defines objectives for each of these. DO-178 [14] distinguishes
development processes from “integral” processes that are meant to
ensure correctness, control and confidence in the software life cycle
processes and their outputs. The verification process is part of the
integral processes, along with configuration management and quality
assurance. Version C of this standard, which was published in 2011,
includes technical supplements to take into account and facilitate the
appropriate use of new software engineering techniques. DO-333/ED-
216 [15] is the formal method supplement. Formal methods can be
applied to many of the development and verification activities required
for software. The supplement proposes guidance for the use of formal
methods. It describes the activities that are needed when using formal
methods, new or modified objectives and the evidence needed for
meeting those objectives.

Formal verification techniques have already been used for the
certification of aircraft avionics software [32] and a lot of work is
underway in this field [34]. Specific work on the verification of stability
and safety properties of flight control software could be of special
interest for UAV [10].

UAV specific issues

In this section, we point out the specific certification issues arising for
UAV in the various domains considered previously.

In-flight reconfiguration

As explained above, IMA architectures are based on a strict principle:
static and fixed allocations. However, it could be interesting, in the event
of a hardware failure or in the event of loss of the communication link, for
example, to be able to reconfigure the system, which means reallocating

Issue 8 - December 2014 - Towards Modular and Certified Avionics for UAV
	 AL08-02	 5

functions to safe processors. Let us consider the example in figure 2 and
let us imagine that CPM1 fails. Then PLMgt is lost. It could be interesting
to reallocate it in the spare partition of CPM2. Such a mechanism
could allow a reduction of the number of on-board processors, thereby
saving weight, particularly for small UAV. Unfortunately, current IMA
architectures do not allow in-flight reconfiguration. Recent research
work conducted by Onera with Thales and Airbus has explored the
reconfiguration issue for aircraft IMA architectures in the European
SCARLETT project (http://www.scarlettproject.eu/) [6]. The solution is
limited to on-the-ground reconfigurations, which seems to be enough
for aircraft architectures. However, small UAV can only include a small
number of embedded resources. Safe in-flight reconfiguration remains
a strong challenge for UAV architectures.

Software verification

A significant difference between aircraft and UAS resides in mission
management software. As stated by [23], mission management
software may be quite complex, in order to be able to respond to various
situations; it may include various concurrent tasks, etc. Moreover, the
development of mission management software typically does not follow
stringent processes, such as those used for flight critical software; the
verification of this software is currently mostly done through simulations
and flight tests. The proliferation of UAV will call for the use of more
rigorous means of verification for mission management software.

Requirements for this kind of software will first have to be identified
and formalized. It may not be an easy task, due to the very nature of

the software. In order to ensure the autonomy of the UAV, mission
management software is designed to be “intelligent”, to be able to
respond to many different situations by analyzing available information.
An exhaustive enumeration of all possible situations might be a tedious
and difficult task. Once the requirements have been expressed, formal
verification techniques will also have to be adapted, or extended, to
handle the specificities of mission software. A family of techniques
that could be useful for the verification of mission software is runtime
verification. The principle is to monitor the software with respect to a
given set of formalized properties [18, 20].

Conclusion

In this paper, we have described the current state of avionics for UAV,
identified challenges in this domain and proposed directions for future
work. In conclusion, we would also like to mention an Onera initiative,
called FORC3ES (Formal engineering for certified control-command
embedded systems). This initiative is aimed at defining a set of
techniques and tools for the formal development and verification of
control-command systems. The framework is experimented with on a
UAV and its associated Iron Bird (an Iron Bird is a system test bench; it
includes the same sensors, actuators and avionics as the real aircraft;
see pictures in figure 4). The first part of this project is dedicated to
flight control software development and verification, but in the long
run we also intend to study the verification of mission management
software and to experiment with new concepts of IMA architectures
for UAV n

Figure 4 – UAV (left) and associated Iron Bird (right)

Issue 8 - December 2014 - Towards Modular and Certified Avionics for UAV
	 AL08-02	 6

References

[1] aiT Worst-Case Execution Time Analyzers. http://www.absint.com/ait.
[2] Aeronautical Radio Inc – ARINC 653: Avionics Application Software Standard Interface. 1997.
[3] Aeronautical Radio Inc – ARINC 664: Aircraft Data Network, Part 1: Systems Concepts and Overview. 2002.
[4] ARP64754A – Guidelines for Development of Civil Aircraft and Systems. 2010.
[5] P. BIEBER, J.-P. BLANQUART, G. DESCARGUES, M. DULUCQ, Y. FOURASTIER, E. HAZANE, M. JULIEN, L. LÉONARDON and G. SAROUILLE – Safety and
Security Assurance in Aerospace Embedded Systems. ERTSS, Toulouse, February 2012.
[6] P. BIEBER, E. NOULARD, C. PAGETTI, T. PLANCHE, F. VIALARD – Preliminary Design of Future Reconfigurable IMA Platforms. SIGBED Review 6(3): 7, 2009.
[7] P. BIEBER and C. SEGUIN – Safety Analysis of the Embedded Systems with the AltaRica Approach. Industrial Use of Formal Methods: Formal Verification, Wiley, 2012.
[8] J.-Y. LE BOUDEC and P. THIRAN – Network Calculus: a Theory of Deterministic Queuing Systems for the Internet. LNCS, Vol. 2050, Springer, 2001.
[9] M. BOYER, N. NAVET, X. OLIVE and E. THIERRY – The Pegase Project: Precise and Scalable Temporal Analysis for Aerospace Communication Systems with
Network Calculus. LNCS, Vol. 6415, pp. 122–136, Springer, 2010.
[10] A. CHAMPION, R. DELMAS, M. DIERKES, P.-L. GAROCHE, R. JOBREDEAUX and P. ROUX – Formal Methods for the Analysis of Critical Control Systems
Models: Combining Non-linear and Linear Analyses. FMICS, pp. 1-16, 2013.
[11] Cheddar, Université de Brest, http://beru.univ-brest.fr/~singhoff/cheddar.
[12] Common Criteria, http://www.commoncriteriaportal.org.
[13] R.P.G. COLLINSON – Introduction to Avionics Systems. http://books.google.fr/books?id=aU8SMhzrScgC, Springer, 2011.
[14] RTCA/DO-178C, EUROCAE/ED-12C – Software Considerations in Airborne Systems and Equipment Certification. 2011.
[15] RTCA/DO-333, EUROCAE/ED-216 – Formal Methods Supplement to DO-178C and DO-278A. 2011.
[16] R. ELLEN, P. ROBERTS and D. GREER – An investigation into the Next Generation Avionics Architecture for the QUT UAV Project. Goh, Roland & Ward,
Nick (Eds.) Smart Systems 2005 Postgraduate Research Conference, Brisbane,15 December, 2005.
[17] J. ELSTON, B. ARGROW and E. FREW – A Distributed Avionics Package for Small UAVs. AIAA Conference, Arlington, Viginia. 2005.
[18] Y. FALCONE, K. HAVELUND and G. REGER – A Tutorial on Runtime Verification. Book chapter four: Summer School Marktoberdorf 2012 - Engineering
Dependable Software Systems. July 31 to August 12, 2012. IOS Press book, NATO Science for Peace and Security Series - D: Information and Communication
Security, Vol. 34, 2013.
[19] V. GAVRILETS – Avionics Systems Development for Small Unmanned Aircraft. Master’s Thesis, MSc in Aeronautics and Astronautics, MIT, 1998.
[20] A. GROCE, K. HAVELUND, G. HOLZMANN, R. JOSHI and R-G. XU – Establishing Flight Software Reliability: Testing, Model Checking, Constraint-Solving,
and Monitoring. Annals of Mathematics and Artificial Intelligence, March 2014.
[21] G.Y. IMMANUEL and N. JOHNSON – New Architectures for UAV Flight Control Avionics. 21st Digital Avionics Systems Conference, 2002.
[22] H.C. JO, S. HAN, S.H. LEE and H.W. JIN – Implementing Control and Mission Software of UAV by Exploiting Open Source Software-Based Arinc 653. Digital
Avionics Systems Conference (DASC), IEEE/AIAA 31st, pp. 8B2–1–8B2–9, October 2012.
[23] T. JOHNSON, R. KONECK and S.F. BUSH – Improving UAV Mission Success Rate through Software Enabled Control Design. IEEE Aerospace Conference, 2000.
[24] M. LAUER, J. ERMONT, F. BONIOL and C. PAGETTI – Worst Case Temporal Consistency in Integrated Modular Avionics System. HASE, T. M. KHOSHGOFTAAR
Ed., IEEE Computer Society, pp. 212–219, 2011.
[25] J. LÓPEZ, P. ROYO, E. PASTOR, C. BARRADO and E. SANTAMARIA – A Middleware Architecture for Unmanned Aircraft Avionics. Middleware’07, Newport
Beach, California, November 26-30 2007.
[26] OTAWA, IRIT Université de Toulouse, http://www.otawa.fr.
[27] S. PARK – Avionics and Control System Development for Mid-Air Rendezvous of Two Unmanned Aerial Vehicles. PhD Thesis, MIT, 2004.
[28] Roadmap for the Integration of Civil Remotely-Piloted Aircraft Systems into the European Aviation System. Final report from the European RPAS steering
group, June 2013.
[29] A. SAMUEL, N. BROWN, R. COLGREN and G. KELLY – Subsystem Design and Integration of A Robust Modular Avionics Suite for UAV Systems Using the
Time Triggered Protocol (TTP). SAE Aerospace Technology Conference, 2007.
[30] SchedMCore, Onera, http://sites.onera.fr/schedmcore.
[31] A. SHAHSAVAR – Defining a Modular, High Speed and Robust Avionic Architecture for UAV’s. Master’s Thesis Programmes in Engineering Space Engineering,
2008:174, Lulea University of Technology. 2008.
[32] J. SOUYRIS, V. WIELS, D. DELMAS and H. DELSENY – Formal Verification of Avionics Software Products. Formal Methods, 2009.
[33] B. VAGLIENTI and R. HOAG – A Highly Integrated UAV Avionics System. Technical Report, A cloud cap Technology, 2003.
[34] V. WIELS, R. DELMAS, D. DOOSE, P.-L. GAROCHE, J. CAZIN and G. DURRIEU – Formal Verification of Critical Aerospace Software. AerospaceLab, Issue 4, 2012.

Issue 8 - December 2014 - Towards Modular and Certified Avionics for UAV
	 AL08-02	 7

Frédéric Boniol graduated from a French High School for
Engineers in Aerospace Systems (Suapero) in 1987. He holds
a PhD in computer science from University of Toulouse (1997).
He has a research position at Onera/DTIM. His research
interests include modeling languages and performance
analysis methods for embedded real-time systems.

Virginie Wiels is research scientist at Onera/DTIM since
1998. She is working on formal verification of embedded
systems and software. Before joining Onera, she was
research associate at NASA/WVU IV&V Facility in Fairmont
(USA). She holds a PhD in computer science from University
of Toulouse (1997).

AUTHORS

Acronyms

AFDX	 (Avionics Full Duplex Ethernet)
BAG	 (Bandwidth Allocation Gap)
CPM	 (Computing Processing Module)
FC	 (Flight Control)
IMA 	 (Integrated Modular Avionics)
MiF	 (Minor Frame)
PL Mgt	 (Payload Management)
UAS	 (Unnamed Aerial System)
UAV 	 (Unnamed Aerial Vehicle)
VL 	 (Virtual Link)

