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Aerial Robotics

Towards Modular and Certified 
Avionics for UAV

This paper proposes a review of the current state and for thcoming evolutions 
for UAV avionics architecture and software. It provides an outlook of the 

specific technical issues arising in the design of embedded systems for UAV.

Introduction

The Unmanned Aerial Vehicle (UAV) industry has been rapidly growing 
over the last decade. New UAV are being developed for military 
applications and also for civil usage. There is a strong correlation 
between the mission of a UAV and the avionics necessary to implement 
it. For this reason, the design, development and verification of UAV 
avionics, including hardware and software architecture, have been the 
subject of considerable research [23, 21, 16, 22].

UAV avionics, like those of traditional aircraft, are in charge of 
implementing flight control and flight navigation. However, they should 
also ensure a desired level of autonomy and the control of the payload 
(if any).

For flight navigation, a UAV includes embedded means for estimating, 
at any time and anywhere, its position, speed and acceleration. This 
requires navigation sensors (such a GPS) and robust estimation 
algorithms. For flight control, the UAV must generate the steering 
commands and subsequent control surface deflections to stabilize the 
vehicle and to adequately follow the flight plan. This again requires 
robust control algorithms. These computations are relatively simple 
compared to the flight planning algorithms. They however require the 
use of accurate real-time processors and operating systems.

In addition to the flight control and navigation part, UAV require specific 
autonomy means. The autonomy requirement is the main difference 
between UAV and manned aircraft. Autonomy is the ability to operate 
without direct control from a ground operator. Complex or faraway 
missions without ground infrastructure (for instance data link means 
and ground stations) would necessitate making the UAV increasingly 
autonomous. Autonomy requires specific sensors, such as optical 
devices, and complex software, such as image processing software 
and intelligent flight planning. Ideally, the UAV must have the capability 
to plan and re-plan its own flight plan. This results in the requirement for 
an on-board high-performance computing architecture where flight-

planning algorithms can be run. These algorithms require knowledge 
of the UAV’s surroundings, including other traffic, weather, obstacles, 
fuel usage, flight time, etc. Furthermore, in the event of failure, the UAV 
must have the capability to reconfigure itself and re-plan its trajectory 
or its mission. These autonomy requirements result in complex 
software, which requires high performance computing means without 
compromising safety: efficient techniques are necessary to verify and 
validate software.

The aim of this article is to discuss new challenges for future UAV 
avionics architectures and software : current state and forthcoming 
evolutions of UAV avionics, use of IMA (Integrated Modular Avionics) 
for UAV and certification issues.

Current state and forthcoming changes

Current state

The main challenge encountered by UAV avionics is to safely operate 
on-board two types of computation: flight control/navigation and flight 
planning/re-planning, including the reconfiguration of the avionics 
itself in case of mission re-planning.

In order to respond to this challenge, the first generation of UAV 
avionics architectures were divided into three loosely coupled physical 
parts. The first one is dedicated to navigation and flight control; the 
second one offers sensors, hardware and software components 
ensuring the desired level of autonomy; while the third part controls the 
payload of the UAV. The second and third parts are generally specific 
to the operational role that the UAV is supposed to carry out. In most 
cases, each part is implemented by a monolithic dedicated platform 
composed of the simplest possible processor with its own resources 
(memory and communication bus) (figure 1). UAV developed in 
the 90 s and 2000 s were based on this principle (see for instance 
appendix A of [27], and the Piccolo architecture in [33]). 
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Figure 1 – Typical UAV 1st-generation architecture

Such a physical segregation between the three parts ensures that they 
operate (nearly) independently from each other. More precisely, the 
autonomy sensors and algorithms do not interfere with the control 
loop and vice-versa. Likewise, the payload software does not affect 
the rest of the avionics. Thus, a failure in the payload part should 
not affect the safety of the vehicle. Thus, each part can be designed, 
developed, dimensioned and certified separately, without considering 
interferences coming from the other parts. Finally, in the event of 
failure in one of the first two parts, a human operator can directly 
control the vehicle from the ground by means of a set of data-links 
and specific components. The vehicle becomes in that case a remote-
controlled plane.

However, these first architectures based on the principle of separation 
of concerns have many limitations. 

Forthcoming changes

Firstly, safety is guaranteed in the final degraded mode (i.e., the mode 
in which the automatic flight control part is lost) by the ability to pilot 
the vehicle from the ground. As stated above, it assumes (1) safe 
onboard mechanisms to commute from the automatic flight mode 
to the remote-controlled flight, (2) a data-link between the vehicle 
and the group operator, which guarantees that orders and data are 
transmitted in real-time (in less than 10 or 100 milliseconds for flight 
control orders) and, (3) a ground infrastructure able to present to the 
human operator the complete situation of the vehicle (position, speed, 
attitude, obstacles in front of the vehicle, etc.). Such requirements are 
not consistent with complex and faraway missions, or with missions 
in a hostile environment. In that case, contrarily to manned aircraft, the 
UAV must ensure its own safety without waiting for backup orders sent 
by a human pilot. However, first generation UAV avionics architectures 
do not offer the appropriate safety level. This is their first limitation.

Secondly, the continual development of UAV applications results 
in an ever-increasing demand on embedded algorithms. On board 
computational resources must meet this demand, while at the same 
time providing robustness, reliability and a small footprint, both in 
physical size, mass and power consumption.

Thirdly, new applications may necessitate the integration in a more 
coupled way of the three parts of the UAV avionics. In particular, the 
payload management may depend on flight data, such as position, 
speed, attitude, etc. Conversely, navigation and flight control may 
depend on the state of the payload. This requires an appropriate 
mechanism providing navigation data to the payload and conversely, 
in such a manner that the payload activity cannot interfere with flight 
control and planning. Failure of the payload must not compromise the 
safety of the UAV (for example, denying access to the on-board data-
bus by saturating it with payload messages). First generation UAV 
avionics architectures do not offer such a mechanism.

A first solution could be to continue with the segregation principle 
(each part has its own sub-architecture), while increasing the number 
of computing resources. It should lead to the duplication of several 
components (for instance, the flight data calculation for the payload). 
However, this first architecture principle reaches its natural limit when 
the weight and volume of the dedicated sub-architectures encounter 
the envelope restrictions of the UAV. This issue becomes central in 
the case of small UAV able to carry only a few kilograms (generally 
less than 10 kg) including payload and avionics. Another drawback 
becomes obvious: the huge number of different resources has 
significantly increased the maintenance costs in terms of component 
spare part provisioning and handling.

Another approach, called Integrated Modular Avionics (IMA) [2, 3] has 
been suggested to address this issue for manned aircraft, such as 
Airbus A380 / A350 and Boeing B787.

Towards modular integrated avionics for UAV

Modular Integrated Avionics

Resource sharing and robust partitioning are the central ideas of the 
IMA concept. They are based on two principles: partitioning principles 
in processing modules and partitioning principles for communications 
between functions.

Processing module partitioning

As has already been explained, an UAV avionics architecture 
implements several software functions (flight control, navigation, 
planning and payload management), each of them possibly divided 
into sub-functions. Initially running on different processors, the first 
IMA idea is to place these functions on processing modules partitioned 
with respect to space (resource partitioning) and time (temporal 
partitioning).

• Resource partitioning. A processing module is divided into 
partitions. Each partition is seen as a virtual processing module. 
It is allocated a set of private spatial resources (memory, non-
volatile memory, I/O resources, etc.) in a static manner. Low-level 
mechanisms (at the operating system level) provide protection for 
partition data against any modification from the other partitions. They 
monitor function activity with reference to allowed resources, which 
are statically allocated through configuration tables. 

• Temporal partitioning. Each function is allocated a partition. 
The scheduling of partitions on each module is defined off-line by 
a periodic sequence of slots, statically organized in a time-frame. 
Each partition is allocated a time slot for execution. At the end of 
this time slot, the partition is suspended and execution is given to 
the next partition (running another function). Thus, each function is 
periodically executed at fixed times.

Thanks to partitioning mechanisms, functions become independent. 
A faulty function can be isolated without affecting functions placed on 
the same module.

Communication resource partitioning

Initially routed onto different physical links, the second IMA idea is to 
place communications between functions on shared communication 
networks. The network is divided into Virtual Links (VL). Each VL is 
dedicated to the traffic coming from a single function. It is characterized 
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by a bounded bandwidth. Similarly to processing modules, a low-level 
mechanism (at the network level) guarantees that no function can go 
beyond its contract, that is, produce more communication than the 
permitted bandwidth. Such a mechanism can be implemented by a 
traffic shaper, which separates two successive emissions on the VL 
by at least a fixed time interval called Bandwidth Allocation Gap (BAG). 
This principle has been implemented in the Avionics Full Duplex Ethernet 
(AFDX) architecture embedded in the Airbus A380 and A350 [3].

A typical IMA platform is described in figure 2. Its hardware architecture 
consists of 3 generic computing processing modules (called CPM) that 
are connected to a communication network. The network is composed 
of two identical redundant parts (Part A in blue, and Part B in red). 
CPM1 and 2 are connected to Switches 1 (A and  B), while CPM3 
is connected to Switches 2 (A and B).  Flight control and navigation 
sensors and actuators are reached through a redundant gateway 
(Gtw1) connected to Switches 1. Similarly, the payload and the 
data link interface are reached through a second redundant gateway 
(Gtw2). As shown in the figure, the critical functions Flight Control 
(FC) and Navigation (Nav) are triplicated and the Planning Function 
(Plan) is duplicated, while the Payload Management Function (PLMgt) 
is implemented by a single occurrence (i.e., without any redundancy). 
Each CPM is divided into four partitions (e.g., FC1 is hosted in the 
first partition of CPM1). On each module, partitioning and scheduling 
are ensured by a partition manager, while bandwidth communication 
from each function is controlled by a VLs manager. Figure 3 shows 
the time-triggered scheduling of the four partitions hosted by CPM1. 
As has already been explained, this scheduling is organized as a 
sequence of time slots. It is composed of two minor frames (MiF), 
the duration of which is 10 ms. FC1 runs in the first time slot of each 
MiF. The duration of this time slot is 2ms. FC1 is then supposed to 
execute every 10 ms within an execution time of less than 2 ms. Nav1 
runs only in the first MiF, while PLMgt runs in the second MiF. The aim 
of the partition manager is to unroll this sequence and monitor each 
partition. For instance, if PLMgt tries to continue after the end of its 
time slot, the partition manager stops it and starts the next partition 
(FC1). Hence, a software failure in PLMgt does not affect FC1. Note 
that in the CPM1 scheduling, a spare time slot is reserved for hosting 
potential new functions without affecting other functions.
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Figure 2 – Example of UAS IMA architecture
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Figure 3 – Temporal scheduling of CPM1

Benefits and effects for UAV avionics

The benefits of such a new architecture are mainly:  safety level 
improvement, as well as weight and power consumption reduction. 
Let us again consider the architectures given in figure 1 and figure 2. 
These two architectures implement the same functions FC, Nav, Plan 
and PLMgt. They are both composed of 3 processors. However, the 
first architecture is not fault tolerant. For instance, loss of Processor 1 
leads to total loss of the vehicle. Conversely, the IMA architecture 
(figure 2) is fault tolerant with the same number of processors. For 
instance, despite of the loss of CPM1, the flight control and navigation 
functions still run properly on CPM2 and CPM3. Only the payload 
management is lost. It is obvious that the total loss of the vehicle is 
consecutive to at least two failures: for instance, loss of Switches 
1.A and 1.B or loss of Gateways 1.A and 1.B, etc. In that sense, with 
(nearly) the same number of resources, the IMA architecture is safer 
than the first one.

Globally, IMA results in a reduction of the required physical resources. 
Reduced physical resources translate into global weight and power 
savings for the UAV. The same trend has been observed in aircraft 
architectures: for instance, the number of processing units in the 
A380 is half that of previous generations. Reductions in operating 
costs are expected to be significant, with the decrease in the number 
of computers and cables (for power supply or communication), 
contributing to a reduction of vehicle weight leading to better fuel 
consumption efficiency and then to a greater autonomy.

Past and recent experiments on applying IMA to UAV

Considering these expected benefits, recent research has been 
conducted on the integration of IMA architecture into modern UAV. A 
preliminary work has been proposed by Elston et al. [17]. They are 
developing a distributed modular architecture concept for small UAV 
(about 10 kg). This architecture is composed of a set of computing 
modules communicating through a CAN bus. Similarly, Ellen et al. 
investigated in [16] an architecture for the QUT research UAV, still based 
on a cluster of small dedicated processors communicating through 
CAN buses. They show that the performances of this architecture, in 
terms of power consumption, size and weight, are better than those 
for the legacy architecture (based on a centralized PC104 computer). 
However, contrary to the full IMA concept, computing modules in these 
proposed architectures still own their private sensors and actuators 
and host only one function. There is no partitioning mechanism.

Following this direction, Lopez et al. investigated in [25] a middleware-
based architecture suitable to operate as a flexible payload and 
mission controller in a UAV. The architecture is composed of low-
cost computing devices connected by a network. The functionality 
is divided into reusable services distributed over a number of nodes, 
with a middleware partitioning their lifecycle and communication. 
However, the middleware does not take into account real-time issues. 
Thus, flight control and navigation cannot run on this platform and still 
require a dedicated real-time architecture.

In order to respond to the real-time issue, [29] proposes an architecture 
platform based on a Time-Triggered network. Functions, including 
flight control and navigation, run on dedicated PC/104 computers and 
communicate in a deterministic way through the network. Thanks to 
the time-triggered protocol, the network guarantees fixed time slots for 
each function. This solution has been implemented on large UAV, such 
as the R-MAX Helicopter (about 10 kg).
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More recently, [22] has developed a complete IMA solution, based on 
an ARINC 653 processing module, for a small quad-rotor helicopter. 
Due to the UAV size (70 cm in diameter and 1 kg payload), the avionics 
only include a single embedded processor hosting the flight control, 
navigation and planning functions. The processing unit is partitioned in 
a deterministic way according to the IMA principle. To our knowledge, 
this experiment is the first attempt to apply the IMA concept, here 
reduced to the processing module part, to small UAV.

All of these experiments clearly show the trend to embed an IMA 
execution platform for flight control and the navigation function, as 
well as for planning and payload management, in both small and larger 
UAVs.

Certification issues

Given that the use of drones for different kinds of mission is spreading, 
and will continue to do so, their safety and security will become a 
crucial issue. For aircraft, safety and security are assessed using 
certification standards. The ARP 4754 [4] is the standard for systems, 
DO-178 [14] is the standard for software, while Common Criteria (ISO 
15408) [12] handles security aspects.

These standards are bound to also be applied for UAV systems and 
software. Application of ISO 15408 will enforce security requirements 
and help to prevent the hacking of UAV. However, it will only be effective 
if safety-critical requirements are also taken into account. Ensuring the 
safety of embedded software is paramount, since there is no human 
pilot onboard. In this section, we consider the challenges at stake for 
the certification of this software. We distinguish the domains where 
aircraft solutions can be adapted to UAV without too much trouble and 
UAV specific certification issues.

[28] gives a broader overview of the challenges and a roadmap for 
the certification of Remotely-Piloted Aircraft Systems. We focus on 
software aspects, but also consider autonomous systems (even 
though their operational use is further away). [28] also tackles 
insertion into the airspace; we do not consider this certification issue. 

Issues similar to those for aircraft

Flight control and navigation systems are certified for aircraft, using 
classical means or more recently innovative verification techniques. 
We will not provide an exhaustive overview of existing work here, but 
rather only list the various aspects that should be considered together 
with a few references, mainly of Onera work in this domain. We focus 
on aspects related to avionics; safety and security assessment at the 
aircraft and system levels are also essential, but will not be discussed 
here (see [7,5]).

Real-time analysis

Certification objectives regarding real time are scattered around in 
various certification standards (IMA, software) but they are essential 
for the correctness of software and systems. Regarding real-time 
behaviors, the first requirement is to guarantee that each function 
located in an IMA partition terminates properly before the end of 
the partition. For instance, let us consider the flight control function 
FC1 hosted by CPM1 (figure 2). FC1 runs in a partition of which 
the duration is 2 ms (figure 3). Thus, it must be shown that all sub-
functions involved in FC1 are scheduled in such a way that they will 

all terminate before 2 ms have elapsed. Several techniques and tools 
have been developed to analyze worst-case execution time [1, 26], 
and worst-case response time [30, 11] for IMA software, or generate 
a correct scheduling from different constraints within a partition [30].

The second certification requirement deals with worst-case traversal 
time through a communication network. Let us again consider the 
example in figure 2. FC1 periodically sends orders to actuators through 
the network. Note that the payload also sends and receives data 
through the same network. It could then happen that, if a failure occurs 
somewhere in the payload, it may begin to send a huge amount of data 
to PLMgt, overloading the communication network, leading to delays 
in the flight control orders. Such a scenario may lead to a catastrophic 
situation, despite the initial single failure being of minor importance. 
An interesting benefit of the IMA principle is that, if functions are 
statically allocated in modules and partitions, and if the network hosts 
mechanisms enforcing functions to respect their communication 
contract (e.g., traffic shapers), then it is possible to mathematically 
prove that the end-to-end delay of any message is bounded and it is 
possible to evaluate an over-approximation of this bound. This proof 
is based on the network calculus theory [8, 9]. Network calculus has 
been used for certification of the A380 and A350 avionics network. 
It contributes an adequate mathematical technique for UAV avionics 
network certification as well.

Software verification

DO-178/ED-12 [14] does not prescribe a specific development 
process for software, but rather identifies important activities and 
design considerations throughout a development process and 
defines objectives for each of these. DO-178 [14] distinguishes 
development processes from “integral” processes that are meant to 
ensure correctness, control and confidence in the software life cycle 
processes and their outputs. The verification process is part of the 
integral processes, along with configuration management and quality 
assurance. Version C of this standard, which was published in 2011, 
includes technical supplements to take into account and facilitate the 
appropriate use of new software engineering techniques. DO-333/ED-
216 [15] is the formal method supplement. Formal methods can be 
applied to many of the development and verification activities required 
for software. The supplement proposes guidance for the use of formal 
methods. It describes the activities that are needed when using formal 
methods, new or modified objectives and the evidence needed for 
meeting those objectives.

Formal verification techniques have already been used for the 
certification of aircraft avionics software [32] and a lot of work is 
underway in this field [34]. Specific work on the verification of stability 
and safety properties of flight control software could be of special 
interest for UAV [10]. 

UAV specific issues

In this section, we point out the specific certification issues arising for 
UAV in the various domains considered previously.

In-flight reconfiguration

As explained above, IMA architectures are based on a strict principle: 
static and fixed allocations. However, it could be interesting, in the event 
of a hardware failure or in the event of loss of the communication link, for 
example, to be able to reconfigure the system, which means reallocating 
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functions to safe processors. Let us consider the example in figure 2 and 
let us imagine that CPM1 fails. Then PLMgt is lost. It could be interesting 
to reallocate it in the spare partition of CPM2. Such a mechanism 
could allow a reduction of the number of on-board processors, thereby 
saving weight, particularly for small UAV. Unfortunately, current IMA 
architectures do not allow in-flight reconfiguration. Recent research 
work conducted by Onera with Thales and Airbus has explored the 
reconfiguration issue for aircraft IMA architectures in the European 
SCARLETT project (http://www.scarlettproject.eu/) [6]. The solution is 
limited to on-the-ground reconfigurations, which seems to be enough 
for aircraft architectures. However, small UAV can only include a small 
number of embedded resources. Safe in-flight reconfiguration remains 
a strong challenge for UAV architectures. 

Software verification

A significant difference between aircraft and UAS resides in mission 
management software. As stated by [23], mission management 
software may be quite complex, in order to be able to respond to various 
situations; it may include various concurrent tasks, etc. Moreover, the 
development of mission management software typically does not follow 
stringent processes, such as those used for flight critical software; the 
verification of this software is currently mostly done through simulations 
and flight tests. The proliferation of UAV will call for the use of more 
rigorous means of verification for mission management software.

Requirements for this kind of software will first have to be identified 
and formalized. It may not be an easy task, due to the very nature of 

the software. In order to ensure the autonomy of the UAV, mission 
management software is designed to be “intelligent”, to be able to 
respond to many different situations by analyzing available information. 
An exhaustive enumeration of all possible situations might be a tedious 
and difficult task. Once the requirements have been expressed, formal 
verification techniques will also have to be adapted, or extended, to 
handle the specificities of mission software. A family of techniques 
that could be useful for the verification of mission software is runtime 
verification. The principle is to monitor the software with respect to a 
given set of formalized properties [18, 20].

Conclusion

In this paper, we have described the current state of avionics for UAV, 
identified challenges in this domain and proposed directions for future 
work. In conclusion, we would also like to mention an Onera initiative, 
called FORC3ES (Formal engineering for certified control-command 
embedded systems). This initiative is aimed at defining a set of 
techniques and tools for the formal development and verification of 
control-command systems. The framework is experimented with on a 
UAV and its associated Iron Bird (an Iron Bird is a system test bench; it 
includes the same sensors, actuators and avionics as the real aircraft; 
see pictures in figure 4). The first part of this project is dedicated to 
flight control software development and verification, but in the long 
run we also intend to study the verification of mission management 
software and to experiment with new concepts of IMA architectures 
for UAV n

Figure 4 – UAV (left) and associated Iron Bird (right)
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Acronyms

AFDX	 (Avionics Full Duplex Ethernet)
BAG	 (Bandwidth Allocation Gap) 
CPM	 (Computing Processing Module) 
FC	 (Flight Control)
IMA 	 (Integrated Modular Avionics)
MiF	 (Minor Frame)
PL Mgt	 (Payload Management) 
UAS	 (Unnamed Aerial System)
UAV 	 (Unnamed Aerial Vehicle)
VL 	 (Virtual Link)


