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We present 3DSCAN (3D Scene Characterization for Autonomous Navigation), a 
software application for state estimation and environment modeling using low-

cost 3D sensors, such as a stereorig and RGBD cameras. For state estimation, we 
describe an original keyframe-based stereoscopic visual odometry technique, which 
can run at more than 20Hz on a lightweight computer. This so-called ‘efficient Visual 
Odometry’ (eVO) has been evaluated on several datasets and provides accurate results 
and limited drift, even for indoor/outdoor trajectories. Environment modeling aggre-
gates instantaneous depthmaps in a volumetric Octomap [15] representation. Stereos-
copic depthmaps are computed by a very fast dense matching algorithm derived from 
eFolki, an optical flow code implemented on GPU. These developments are combined 
in the 3DSCAN software, which is successfully demonstrated on our MAV (Micro 
Aerial Vehicle) system, following indoor, outdoor or mixed trajectories.

Introduction

From an automation point of view, navigation consists in computing 
a safe and achievable trajectory and in controlling its execution. It 
requires a precise knowledge of both the dynamic state of the vehicle 
(position, attitude, speed) and of the 3D structure of the environment.

These prerequisites are very difficult to meet for a Micro Aerial Vehi-
cles (MAV) flying low through a cluttered environment. The first dif-
ficulty arises from the partial knowledge of the environment. Despite 
the spread of available georeferenced information (images and maps), 
they still cannot be considered to be of sufficient accuracy and den-
sity for a mission in an unprepared environment such as flying around 
a building, avoiding unmapped obstacles, such as trees or parked 
cars, and entering through an open window. In this context, the vehi-
cle should be able to build online a representation of its environment 
using embedded exteroceptive sensors.

The second difficulty is, of course, the very limited payload of MAV. 
Since 2005, demonstrations of on-line mapping have been done 
using heavy UAV (helicopter with weight > 25 kg) [1, 42] equipped 
with 3D vision sensors, such as lidar. However, a high resolution 
(HR) inertial measurement unit (IMU) and high grade differential GPS 
receiver were used to localize the vehicle. The very limited payload 
and power of MAV precludes the embedding of lidar and HR IMU. 

As a result, most current demonstrations of MAV use external re-
sources, in particular external systems, for the estimation of the MAV 
state, such as multi-camera localization systems.

In this paper, we present a solution for state estimation and envi-
ronment modeling based on low-cost 3D sensors, compatible 
with indoor and outdoor environments. There are now several 
solutions for these 3D sensors, which allow fast mapping of 
obstacles and lead to a well-behaved ego-localization problem, 
compared to solutions based on monocular 2D sensors subject 
to scale ambiguity and its drift. We first describe ego-localization 
using a stereoscopic visual odometer and then on-line modeling 
of the environment, the combination of the two functions being 
called 3DSCAN 3D Scene Characterization for Autonomous 
Navigation. This 3DSCAN system is demonstrated on publicly 
available data Kitti [12] and through several experiments perfor-
med at Onera using our MAV. In the latter demos, only the first 
function of 3DSCAN (ego-localization) runs on-board, but the 
proposed modeling solution is already compatible with recent 
embedded architectures.

Related Works and Contributions

Localization and mapping are active research fields since more than 
twenty years and an enormous amount of literature exists. In the fol-
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lowing, we review some relevant references on these two topics and 
discuss our contribution.

Ego-localization

Vision-based ego-localization has reached a high level of maturity 
over the last decade. For example, NASA’s two Mars Exploration 
Rovers (Spirit and Opportunity) have been successfully using stereo 
visual odometry since 2003. From a methodological point of view, 
two approaches are often opposed despite recent convergent trends: 
Visual Odometry (VO) and Visual Simultaneous Localization and Map-
ping (V-SLAM). These approaches are briefly summarized below. For 
a much more detailed review, we advise the reading of the recent two-
part tutorial by D. Scaramuzza and F. Fraundorfer [40, 11].

	 • Basically, VO estimates the relative motion of the camera 
between tk and tk+1 by the camera pose at tk+1 with regard to 3D 
reference data, for instance a cloud of 3D points, recorded in the 
camera frame at tk. VO can be distinguished based on 2D-3D as-
sociations [33, 14, 29], 3D-3D associations [20], 2D associations 
through 3 views using the trifocal constraint [18], or through 4 views 
using the quadrifocal constraint [6]. From relative motion information, 
the full trajectory can be estimated by simple dead-reckoning [14, 29] 
(Dead-Reckoning Visual Odometry, DRVO), or by fusion with inertial 
measurements; see [22, 3, 38] in the aerial context.

	 • V-SLAM addresses the problem of self-localization by construc-
ting a globally-consistent map of the environment. This map is usually 
a sparse representation made of a limited number of landmarks, often 
3D points. State variables (i.e., ego-localization and speed) and po-
sitions of 3D landmarks are estimated according to a joint criterion 
based on a 2D projection error. This can be done by filtering tech-
niques like Extended Kalman Filter (EKF) or by multi-view optimization 
methods like Bundle Adjustment (BA). It is interesting to note that 
these approaches differ in the frequency of map updating operations. 
Filtering approaches [7, 2] update the map at each new frame, so as 
to maintain the consistency of the linearization, which requires the 
map to be limited to a few hundred landmarks. In contrast, optimiza-
tion methods [28, 19, 39, 17, 32] wait until the baseline is sufficiently 
large to allow good localization of 3D landmarks. The latter approach 
leads to the notion of “keyframes”, i.e., the frames used to update the 
map. Though the selection of keyframes is generally done by consi-
dering statistics over the feature tracking, [47] proposes a criterion 
based on image projection error.

The proposed method, denoted by eVO (efficient Visual Odometer) 
combines characteristics of both approaches, while being oriented 
towards low computational cost rather than optimality [31]. There-
fore, as in VO, the 3D points of the reference map are estimated at 
one time instant and are not refined using others views. The notion of 
keyframe is also used, as in optimization approaches of V-SLAM: the 
3D map is computed only at keyframe instants. Cameras are localized 
by pose estimation with regard to the current map, using a 2D-3D 
association strategy. We show that this keyframe strategy not only 
reduces the cost of the algorithm, but also significantly reduces the 
drift of the estimation error with respect to DRVO. As a result, the 

proposed eVO is able to run at video frame rates (15 to 25 Hz) on the 
limited computer available on our MAV.

Note that Nister et al. have proposed in ref. [33] a VO approach with 
keyframes (they called them reference frames) for ground vehicle ap-
plications. More recently, the Pixhawk team [10] have reported scene 
modeling using a MAV with a stereo sensor and on-board VO; howe-
ver, there are very few details regarding the odometry in their paper, 
while we present here a parametric study of the performance of the 
algorithm on various datasets. In particular, eVO has been success-
fully tested on the online Kitti benchmark and ranks at the 6th position, 
and 4th among methods based on stereo data [12]1

Environment modeling

Let us first discuss 3D sensors. In the proposed solution, we use two 
concurrent 3D sensors: a stereorig and an active Asus Xtion RGBD 
camera, a type of sensor made popular by Microsoft’s Kinect device. 
They have complementary characteristics, the RGBD camera being 
very efficient indoors, but blind in outdoor situations, where the grea-
ter amount of natural textures allow a good stereovision performance. 
For stereo matching, we use a very fast dense algorithm eFolki, a 
dense Lucas-Kanade (LK) algorithm published in [4] and recently 
implemented on GPU (Graphic Processing Unit) architectures [34]. It 
allows dense and reliable 3D maps to be obtained at video rate on a 
lightweight laptop with a GT650M GPU.

Environment modeling amounts to aggregating noisy 3D point clouds 
into a consistent and compact 3D model. Note that the model should 
include not only the occupied areas, but also the free space and 
the unvisited areas. This data is required for trajectory planning and 
replanning. Proposed in the seminal work of Elfes [8], occupancy 
grids have become the standard for 2D and 3D environment models 
in mobile robotics [30, 1, 15]. In case of 3D modeling, a standard 
approach consists in subdividing the workspace into cubic volume 
elements of equal size called voxels [30].

This simplistic representation presents two disadvantages: (1) the 
maximal extension of the explored area must be known in advance; 
(2) the memory occupation becomes rapidly intractable for large 
scale environments. In [1], the authors propose a two-layer model, 
combining a local representation using standard voxel grid and a glo-
bal rough polygonal model organized by height slices. This model 
is successfully used for automatic navigation in urban canyons, but 
appears not easily scalable. In [16], the model consists in a 2D re-
gular grid, where each cell stores a list of parallelepipedic volumes 
corresponding to occupied or free areas. Memory efficient, this solu-
tion avoids sampling artifacts in the vertical direction but requires the 
knowledge of the horizontal workspace extension. In [15], occupied 
and free areas are also explicitly represented, but using a multi-resolu-
tion occupancy grid organized as an octree structure (hence its name: 
‘Octomap’). Such a structure offers a useful flexibility for modeling 
unknown areas. By adding levels to the tree, the spatial resolution can 
be adapted to the local 3D structure of the scene, or the global size 
of the workspace can be expanded easily. For these reasons, we use 
Octomap, thanks to the freely distributed C++ library2.

1Please refer to the Kitti benchmark at http://www.cvlibs.net/datasets/kitti/eval_odometry.php.
2Please refer to the website http://octomap.github.io/
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Organization of the paper

This paper is organized as follows. The overall architecture of 3DS-
CAN is presented in § " System overview". The description and perfor-
mance evaluation of the ego-localization module eVO are presented in 
§ " Efficient visual odometry (eVO)". § " Environment modeling" pre-
sents the 3D modeling module (stereo processing and aggregation). 
Reconstructions from Kitti data or from data obtained during test 
flights with our MAV are presented in § " 3DSCAN results". Finally,  
we conclude and propose some directions for future work.

System overview

Software architecture

Given image and depth data provided by sensors or read from files, 
the 3DSCAN processing chain builds a 3D environment model as an 
Octomap grid. Three processing modules, working as an individual 
thread at different frequencies, are combined: (1) the eVO module 
computes the camera pose at video rate, (2) the eFolki module com-
putes the depthmap from a rectified and equalized stereo pair provi-
ded by eVO and (3) the Octomap module uses the estimated pose and 
depthmap to aggregate relative 3D data into a global model. These 
components communicate using ROS (Robot Operating System, 
www.ros.org). ROS also provides interface modules to obtain images 
from sensors, or from files and visualization modules.

Figure 1 depicts the implemented software architecture and data ex-
changes through the module network. In this organization, eVO, the 
stereo odometry module, plays a central role. In addition to calcula-
ting the camera position, the module geometrically and radiometri-
cally rectifies a stereo pair and achieves a temporal sub-sampling 
of the sequence by automatically selecting keyframes. Note that the 
camera poses are saved by the Transform-Frame server (ROS/TF 
server) for further usage. When eVO selects a stereo pair as a new 
keyframe, the rectified stereo pair is processed by eFolki in order to 
compute a depthmap, which is converted into a relative-to-sensor 3D 
point cloud. In parallel to the stereo process, the RGBD sensor node 
emits depthmaps at 3Hz. The ‘3D data source selector’ selects the 

most appropriate sensor (stereo or RGBD camera) depending on the 
density of the RGBD depthmap and transmits a point cloud to the Oc-
tomap server for aggregation in the environment model. This involves 
searching in the pose database stored in the module TF server for the 
sensor pose at the date indicated in the point cloud message.

Since ROS performs an abstraction of the hardware layer, the 3DS-
CAN chain has been deployed on various hardware units: PC works-
tation, laptop, MAV + ground station. The implementation on a MAV 
and its ground station (e.g., a MAV system) is described in the fol-
lowing section.

Implementation on a MAV system

We have deployed 3DSCAN on a real MAV system composed of a 
mid-range laptop used as a ground station and the Ascending Tech-
nologies Pelican3 quadrotor depicted in figure 2.

Fig. 2 - Our AscTec Pelican MAV on its landing pad. The visual sensors 
- stereorig and RGBD camera - are located at the top of the vehicle. 
The vehicle has a total take-off weight of 2 kg (including the LiPo Battery).

3Please refer to the manufacturer website for details: http://www.asctec.de/uav-applications/research/products.

Fig. 1 - The 3DSCAN software architecture. Boxes correspond to ROS nodes. Boxes with a name beginning by ‘ROS/’ indicate a module provided in the 
standard ROS library. Solid unidirectional arrows indicate data exchanges in streaming mode, while dot dashed bidirectional arrows indicate exchanges 
in client/server mode.
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The MAV equipment includes a MEMS-based IMU, a low grade GPS recei-
ver and a 3D magnetometer. These sensors are connected to the autopilot 
providing a standard stabilization mode and waypoint-based navigation. 
We have added an Asus Xtion RGBD camera and a stereorig composed of 
two electronically synchronized USB cameras separated by a 28 cm long 
baseline equipped with a 5.5 mm S-mount lens. This configuration provi-
ded a usable range of 10 meters for environment modelling4. The cameras 
are two IDS-Imaging UI-1241LE based on a 1.3 MegaPixel global-shutte-
red CMOS from e2V. Since the native resolution is too large for onboard 
processing, the binning mode is activated to capture VGA frames without 
field of view reduction. These sensors are connected to an embedded PC 
animated by an Intel dual-core Core2Duo 1.86 GHz.

The limited computational performance of the on-board PC and the 
requirement of a Cuda Compliant GPU for dense stereo matching by 
eFolki have led to the full processing chain being dispatched on two 
computers. The ego-localization by eVO runs onboard, while the en-
tire environment modeling task is done on the ground station: a light 
macbook laptop equipped with a mid-range Nvidia GT 650M GPU. 
The datalink between the two computers is provided by Wifi-N. Since 
the transmission of all video streams is impracticable through the 
datalink, temporal subsampling is performed. For the RGBD camera, 
the ROS module permits constant subsampling and we have set the 
output frequency to 3Hz. For the stereo pairs, the subsampling is 
done by the mechanism selecting keyframe in eVO. This aspect will 
be discussed in the following section.

Efficient visual odometry (eVO)

Algorithm overview

As already mentioned in the introduction, eVO builds a map updated 
in a keyframe scheme as in ref. [28, 19]. In the monocular SLAM 
case, the keyframe structure is mainly motivated by the need for a 
minimal baseline to localize new 3D landmarks. With our stereo set-
ting, landmarks are instantaneously localized in 3D. Improving the 
accuracy of a landmark localization requires the stereorig to get subs-
tantially closer to the landmark or to displace the sensor lengthways 
more than the baseline. Hence, in the case of a smooth motion of the 
stereorig (with respect to the rate of odometry), updating the map at 
each frame is useless and the keyframe scheme is a better choice.

In contrast to other keyframe-based SLAM, our system differs by the 
way in which the map is updated. In standard approaches, the posi-
tions of visible landmarks are refined at each keyframe by minimizing 
a multi-view re-projection criterion with bundle adjustment methods. 
Here, we skip this step because of the limited computational capacity 
of the embedded PC. In practice, landmarks are then localized once 
- the first time they are seen - in the global frame using the current 
estimated pose.

Direct combination of noisy measurements - camera pose and land-
mark position - brings eVO closer to DRVO, i.e. dead-reckoning 
methods. However, using the keyframe approach, this update is done 
at a lower rate in eVO than in DRVO, with the advantage of a reduced 
drift. A comparison between these two approaches on real datasets 
is presented in § "Tuning and advantage of the Keyframe Scheme".

Finally, the other advantage of this structure concerns the computatio-
nal cost. Indeed, 3D localization by a stereorig is not computationally 
free. Combining a keyframe scheme with a pose computation algo-
rithm using 2D-3D associations avoids computing the 3D structure 
at each new stereo frame. More interesting still, this approach allows 
the global process to be divided into one monocular task, the Tracking 
and Pose computation, executed for each left image acquired, and 
one stereo task, (Mapping) executed on demand.

Fig. 3 - Temporal sequencing of the eVO module. The P-box, E-box, K-box 
and M-box stand respectively for the Image Pre-processing module, the Ego-
motion module, the Keyframe selector module and the Mapping module.

The eVO process can be described in four modules working sequen-
tially, as depicted in figure 3:
	 •Image pre-processing: preliminary image warping and 
equalization;
	 •Egomotion: estimation of the position and the attitude of 
the stereorig in the reference frame;
	 •Keyframe selection: deciding whether a new keyframe is 
necessary;
	 •Mapping: stereo pair processing so as to update the landmark 
map.

Each module is described in the following section; here we briefly 
describe the eVO process. The algorithm starts by calling the Mapping 
module, which initializes 3D landmarks. The next available stereo pair 
is processed by the Egomotion module, which yields the current pose 
and indicates how many landmarks are still visible. This indicator is 
used by the keyframe selection module to decide that the current ste-
reo pair is a new keyframe. In figure 3, this loop is repeated until the 
13th stereo pair (denoted S12), which is selected as a keyframe. At 
this point, the mapping module is called to update the map: it adds 
new landmarks and prunes older ones.

Description of the eVO components 

Here we give a detailed description of the eVO components, in the 
order in which they appear in figure 3.

Image pre-processing Module

The two images are stereo-rectified using the knowledge of the 
intrinsic parameters. In order to deal with indoor to outdoor (or vice 
versa) transitions, which lead to locally large illumination changes, 
two adjustments were necessary. The first one concerns the 
hardware: the cameras are set to automatically adapt their expo-
sure time, in order to reach a specified intensity average under the 
constraint that the exposure time cannot exceed a maximal value. 
The second adjustment consists in equalizing image histograms to 
avoid dark images.

4Under the assumption of a mean disparity error of 0.5 pixels; the usable range is defined as the maximal distance before the precision of 3D localization exceeds the half-width of 

a voxel (20 to 30 centimeters).

S0 S1

Initialisation

New Keyframe

New Keyframe

S2 S3 S4 S12 S13 S14 Sk-1 Sk Sk+1
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Mapping Module

This module is called when the current stereo-pair is declared as a 
new keyframe. It uses a stereorectified pair of images to generate an 
initial map and to update it if necessary by extracting and matching 
new interest points. The synoptic diagram of this module is shown in 
figure 4.

Fig. 4 - Mapping Module structure

The first operation consists in extracting Nf (between 250 and 350 for 
VGA images) interest points in the left image. This process is done 
under two geometrical constraints: (i) a minimal separation distance 
between two features; (ii) a maximal dispersion of the features over 
the image plane. The former constraint is generally included in feature 
extractors (like those in OpenCV), while the latter is enforced by a 
classical bucketing strategy. The image support is subdivided into 
Nr non-overlapping regions (8X6 regions for VGA images) and the 
Nf / Nr more relevant features within each region are kept. In order to 
deal with regions that do not have enough texture, a relaxation tech-
nique is used to increment the tolerated amount of features by region. 
Note that the extraction accounts for mapped landmarks successfully 
tracked from the previous keyframe, so as to detect only the correct 
number of new features and maintain Nf features per keyframe.

Two feature detectors have been evaluated: the Harris detector (Shi-
Tomasi [43]) and the FAST detector [36]. As expected, the FAST 
detector is faster than the Harris detector and allows a keyframe (VGA 
format) to be processed in 55 milliseconds on average (see table 2). 
On the tested sequence, the choice of the detector has a very limited 
impact on the estimated trajectories.

In the second step, the features newly detected in the left images are 
matched in the right image. Based on dense stereovision algorithms, 
feature stereo matching is done by means of exhaustive searches along 
the epipolar lines. In practice, the Zero-mean Normalized Cross-Cor-
relation (ZNCC) is used as the image similarity criterion and we test 
a range of disparities corresponding to 3D points located at least 70 
centimeters away from the stereorig. In order to reduce the processing 
time, we adopt a coarse-to-fine multi-scale approach, with a two-level 
image pyramid. At the lowest resolution, the image is reduced by a 
factor of 4 in each direction and the size of the ZNCC window is set to 
3X3 pixels. The match is then propagated to the full resolution level and 
refined by a local search within a region with a radius of 6 pixels, using 
a 9X9 ZNCC window. In practice, the number of tested disparity hy-
potheses is largely reduced. In our configuration (focal distance = 5.5 
mm and depth greater than 70 cm), this approach allows the number of 
tested hypotheses to be reduced from 220 to less than 70. Finally, the 
ZNCC scores are thresholded to prune ambiguous associations

At this point, feature positions, disparities, stereorig parameters and 
the current pose estimation are used to localize the new landmarks 
in the reference frame by triangulation. Finally, new landmarks and 

their image signature are inserted into the map, while the untracked 
landmarks are removed.

Egomotion Module

As soon as some landmarks have been localized in 3D, the egomo-
tion module estimates the position and the attitude of the left camera 
frame, by tracking the landmarks in the successive images acquired 
by the left camera. Figure 5 shows the internal mechanism and the 
module inputs/outputs.

Fig. 5 - Egomotion Module. This module uses the left image only.

As in [23], the features are tracked through the video sequence acqui-
red by the left camera using KLT [43]. In order to pre-emptively prune 
wrong temporal matchings, the fundamental matrix is robustly esti-
mated using a Least Median of Squares scheme (LMedS) [37]; this 
operation is henceforth referred to as ‘Fcheck’. Since this estimation 
can be unstable in the case of small relative motion, it is automatically 
disabled when the motion of features is less than a threshold.

We have also evaluated an active search process, where the search 
for temporal matches is guided by a prediction of the motion. Without 
inertial data, as for instance in the KITTI datasets, we use a simplis-
tic motion prediction model based on constant linear and angular 
speeds. The motion estimated between the two previous frames is 
then used for motion prediction. If inertial data is available (as for 
instance in the MAV experiments), we only compensate for a global 
rotation of the image. Both methods help to reduce the search area 
for temporal matching. 

Features SHI-TOMASI [43] FAST [36]

Frame type Keyframe Standard Keyframe Standard

Average (ms)

Std (ms)

Min (ms)

Max (ms)

74.2

4.6

62.3

99.9

12.4

3.6

5.8

32.8

56.1

5.6

40.8

72.7

12.4

3.6

5.6

31.5

Table 1 - eVO processing time for one 672_480 stereo pair on a Core2Duo 
1.86GHz. Measurements obtained by averaging over 10 Monte-Carlo runs.

From the temporal matchings provided by KLT, associations are esta-
blished between 3D landmarks stored in the map and current image 
features. Given these 2D-3D matches, the camera pose (position and 
attitude) is robustly estimated within a RANSAC procedure [9]. In 
practice, we have implemented our own RANSAC framework with an 
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Disparity 3D
points

Left
rectified
image

Feature
detection

Stereo-
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Map
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Right rectified image

Position of existing
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online adaptation of the number of iterations, as proposed by Peter 
Kovesi [21]. For each random sample, the pose is estimated with the 
Perspective-3-Point (P3P) algorithm [9, 45]. A bucketing strategy is 
used to enforce a minimal separation distance between the image 
features selected in the triplet given to the P3P algorithm. The P3P 
method often produces multiple solutions (up to 4): in such a case, 
all of the solutions are considered as random samples in the RANSAC 
voting process.

The RANSAC procedure returns an initial pose solution and a set of 
inliers. The pose is refined by minimizing the re-projection error of 
inlier matches. This non-linear least-squares optimization is solved 
using the motion-only optimization functions provided in the Lourakis 
SBA code [24].

Keyframe selection Module

As proposed in [28], a new keyframe is initialized as soon as the ratio 
between the number of successfully tracked features and the num-
ber of 3D points visible on the last keyframe drop under a threshold, 
denoted by t and set by default to t = 0:8. We discuss the algorithm 
sensitivity to parameter t in § "Tuning and advantage of the Keyframe 
Scheme".

Implementation and processing time

The implementation of eVO uses two well-known open-source tools: 
OpenCV and ROS (Robot Operating System, www.ros.org). Most of 
the low level image processing — image warping, tracking, feature 
extraction and template matching — is based on the OpenCV library. 
This library is optimized for the SIMD instruction set of the on-board 
CPU (Intel SSE). At the system scale, eVO works on ROS to deal 
with the physical sensors and share the trajectory estimation with the 
environment modeling part of 3DSCAN.

In table 1 we present the processing times measured on the em-
bedded computer of our MAV: Ascending Technologies Mastermind 
Intel Core 2 Duo 1.86 GHz working on Ubuntu 12.04 32bits. Figure 
6 shows how the computational time is distributed over the various 
components of the processing chain. These results demonstrate the 
great difference between keyframe and standard frame processing 
time, due to the fact that the 3D landmark generation is bypassed for 
the latter.

Fig. 6 - Relative computing time of eVO components. Measurements made 
by averaging over 10 Monte-Carlo runs, using a FAST feature detector [36].

As a consequence, the overall computational performance of eVO 
depends on the ratio between standard frame and keyframe numbers. 
In our implementation, this ratio is not fixed but varies with the suc-
cess rate of the tracking, which itself depends on the vehicle dyna-

mics. However, as discussed later in § "Tuning and advantage of the 
Keyframe Scheme", the best tuning of the keyframe selector leads to 
an average keyframe ratio of less than 30%. This means that the ave-
rage computing time is less than 25 ms/frame. We can also note that 
the monocular egolocalization process (i.e., processing of a standard 
frame) could be run at a very high frame rate (up to 80hz) on one core 
of the embedded PC if the bandwidth of the USB-bus allowed it.

Evaluation

Datasets and performance measurements

Our system has been evaluated on multiple and varied data. Some of 
it was acquired using our own stereorig, either hand-held or carried 
by the MAV. No ground-truth state is available for this data, but we 
have followed loop trajectories in order to use the drift between the 
first and last frames as a performance indicator. An example of an 
outdoor experiment with a 60m-long loop is presented in figure 7, 
showing a drift of approximately 1% of the trajectory length.

We have also used the KITTI odometry dataset [12] composed of 
22 video sequences acquired by a car equipped with several sen-
sors (Velodyne R lidar, high resolution IMU and GPS-RTK, stereorig). 
The video collection covers a large range of environments (highway, 
suburban or town center) and trajectory profiles (loops, road sec-
tions) from one hundred meters to a few kilometers. The first half 
of the collection is supplied with ground-truth in order to adjust the 
algorithm parameters. The second half of the collection is used to 
benchmark algorithms.

The KITTI Team also provides some performance metrics, together 
with a tool to compute them on the estimated trajectories. These 
metrics are: a translational drift expressed as a percentage of the total 
traveled distance and a rotational drift expressed in degrees by trave-
led meter. Scores are averaged over all possible sub-sequences of 
variable lengths, from 100 m to 800 m.

Since our system includes a random sampling scheme (RANSAC), 
we have performed Monte-Carlo simulations and measured statistical 
indicators (average performance, standard deviation, median, min-
max values).

Figure 8 presents the estimated trajectories obtained after 25 
Monte-Carlo runs on Sequence 08 of the KITTI odometry dataset. 
This trajectory in a suburban environment is 2 kilometers long 
and comprises many moving objects (vehicles, pedestrians and 
cyclists). On average, the estimated trajectory in the horizontal 
plane (XZ) is well estimated with a drift of only 4 meters. As usual 
in odometry, large angular errors occur at each important turn 
change. The estimation along the third dimension shows a bias at 
the beginning, which is probably due to an error in the ground truth 
and a significant variance at the end. We could constrain the eVO 
estimator to maintain a constant height above the ground, but we 
choose not to do so, since we intend to use the same algorithm 
for MAV data.

In the following section, we study the advantage of the keyframe 
scheme and discuss the tuning of the parameters of the Keyframe 
selection module, before presenting the global evaluation of eVO on 
the KITTI benchmark.
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Fig. 7 - Trajectory estimated by eVO from the sequence 20120727.3 acquired during an outdoor flight of the MAV. 
(a) 4 frames of the video sequence (the 1st, 509th, 913th and last image). 
(b) Estimated trajectory. The red and black arrows indicate the attitude of our MAV (red: the front of the MAV, black: its right). 
(c) Estimated attitude. The measurements provided by the embedded AHRS are not precise enough to serve as ground truth. 
(d) Estimated height profile (the Y axis points downward). Note that the actual starting point is approximately 80 cm above the 
landing pad; hence, the total drift is less than 50 centimeters.
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Fig. 8 - Result of eVO on the“08” sequence of the KITTI odometry dataset. 
(a) Four images of the sequence. 
(b) Trajectories on the XZ plane (red: ground truth, blue: estimated). Shown in red: the ground truth. Shown in blue: 
25 trajectories obtained after as many Monte-Carlo runs. 
(c) Average angular errors (in radians). 
(d) Trajectories in the 3rd dimension.
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Tuning and advantage of the Keyframe Scheme

Here, we discuss the advantages provided by the keyframe scheme 
in regard to the ego-localization performance, beyond its computatio-
nal efficiency discussed previously. First, we compare our algorithm 
with a classical dead-reckoning visual odometer (DRVO) built with the 
same software components. Then, we investigate the influence of two 
parameters controlling the keyframe generation, the threshold t defi-
ned earlier and the activation of the Fcheck module. All of the results 
obtained on MAV-representative sequences are summarized in table 
2, while results on the KITTI dataset are shown in table 3.

eVO vs. DRVO. As expected, the keyframe scheme allows the locali-
zation drift of eVO to be reduced compared to DRVO, even for settings 
that favor the generation of new keyframes. This is the case when 
choosing t = 1:0, which means generating a new keyframe as soon 
as one landmark is lost by the tracking process. The gain is parti-
cularly important with MAV data, as shown by comparing the total 
localization error presented in the two first rows of tables in table 2. 
On the KITTI dataset, the advantage is less important but significant, 
with a 10%-reduction of the drift, see table 3. This can be explained 
by the fact that, due to the car’s speed, KITTI sequences exhibit larger 
inter-frame motion, reducing the interest of the keyframe scheme.

Parameters controlling the key-frame selection. We first study how the 
drift varies with respect to the ratio t, while the Fcheck module (which 
checks for the consistency of matches with the epipolar constraint) is 
activated. On the MAV sequences (table 2) the lower the parameter t, 
the lower the average localization error, but the higher the dispersion 
of the results. On the Kitti dataset (table 3) we observe that the choice 
t = 0.6 leads to larger errors. This is due to a lower frame rate and 
a higher vehicle speed, which means that the odometry uses trac-
ked features that are farther from the camera and are badly localized. 
Finally, we choose t = 0.8 as a good trade-off.

The Fcheck procedure also has a significant influence on the num-
ber of keyframes. If this validation step is bypassed, the number of 
keyframes is reduced by half in all processed sequences (for the same 
ratio t). In the majority of our tests, this entails an error growth, par-
ticularly on the KITTI dataset, where the translational drift increases 
from 1.46 to 1.63. In practice, we choose to enable Fcheck by default.

Result on the KITTI Odometry Benchmark

Table 4 presents the average scores of eVO on the KITTI evaluation 
dataset, compared to other published methods. eVO obtains a very 
good performance, with an average translation drift of 1.76% and an 
angular error of 0.0036°/m. As on the date of its first submission to 
the IROS conference (March 2013), this performance allowed eVO to 
rank first. One year later, it is still 4th among methods that use only 
stereo data - note that methods using lidar data have been recently 
introduced in the KITTI table and have taken the two first positions.

Environment modeling

In the previous section, we have described how the stereo data is 
processed in order to estimate the pose of the system during its dis-
placement. These estimated poses are used to fuse ‘instantaneous’ 
3D data into a 3D model of the visited environment. 3D data can be 
depth measurements provided by an active RGBD sensor or stereo 

depthmaps. The latter are provided here by a fast and dense stereo-
matching code on GPU, which is described in § "Dense stereo-mat-
ching". The chosen environment modeling framework is presented in 
§ "Dense stereo-matching".

Dense stereo-matching

Classically, dense stereo-matching algorithms are based on systema-
tic exploration in the disparity space, to evaluate radiometric similarities 
between pixels of the two images. Here, dense disparity maps are com-
puted using a dense Lucas-Kanade (LK) algorithm [26] derived from 
an original optical flow algorithm eFolki, described in [35]. The resulting 
code is remarkably fast on a massively parallel architecture such as GPU. 
In the following sections, we recall the equations of the algorithm, first pu-
blished in [4], discuss its implementation on GPU, describe some adap-
tations made to increase the robustness of the estimated disparity on real 
stereo images, and finally present a local indicator of the consistency.

All evaluations are performed on data provided in the KITTI bench-
mark [12].

Efficient dense matching by the LK algorithm

The basic problem of the dense LK algorithm is to register local win-
dows centered around each image pixel x by minimizing a SSD (Sum 
of Squared Difference) criterion over a 2D motion vector u(x):

( ) ( ) ( )( )( )21 2w I I
′

′ ′ ′− − +∑
x

x x x x u x 	 (1)

where w is a separable weighting function, uniform or Gaussian, of 
limited support W, typically a square window parameterized by its ra-
dius r. Since we consider here dense matching of rectified stereo data, 
where epipolar lines are aligned with the horizontal axis of the images, 
the motion vector is reduced to a scalar disparity: u(x) = [d(x);0].

The minimization of criterion 1 is done by an iterative Gauss-Newton 
coarse-to-fine pyramidal strategy, as in classical implementations of 
LK. However, using the first order expansion described in [25], an 
iteration can be completed with only one image interpolation per pixel, 
while the well-known PyramLK algorithm [5] requires several image 
interpolations per pixel. An iteration of this convergent dense mat-
ching strategy, denoted eFolki, consists in:
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where d(k) is the previous disparity guess, x is the image gradient 
operator in the x-direction and operator ⊗(respectively ∅) is the com-
ponent-wise multiplication (respectively division). One can readily 
observe that eFolki is ideally suited for GPU implementation, because 
each iteration requires only very regular operations on the images: 
separable convolutions, pixelwise operations and image interpo-
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Table 2 - Localization error at the end of two closed trajectories acquired with the stereorig of our MAV and ratio of keyframes for different algorithms or algorithm settings.

Table 3 - Angular and translation drift indicators measured on the KITTI Odometry dataset for various algorithms or algorithm settings.

Table 4 - Kitti Odometry benchmark chart at 2014-02-03. Please note that only stereo-based algorithms are presented; however, the ranks are those of the 
published Kitti, where lidar-based methods occupy the two first places. The eVO result is obtained by tracking at the most 500 Shi-Tomasi interest points 
extracted from 20 x 8 regions. The tracking is initialized with the previous motion. The ransac threshold is set to 1.0, while the parameter  is equal to 0.8.

Sequence Method Error X (m) Error Y (m) Error Z (m) Keyframe ratio

Name: 2010727.2
Image Number: 2039
Trajectory length: 150 m
hand-held

DRVO -2.4
±0.04

-0.5
±0.05

2.0
±0.04

100%

EVO
=1.0

-1.28
±0.08

-0.17
±0.11

1.20
±0.08

96%

EVO
=0.8

-0.95
±0.18

-0.30
±0.11

1.01
±0.14

36%

EVO
=0.6

-0.73
±0.21

-0.06
±0.25

0.83
±0.18

19%

Name: 20120724.3
Image Number: 1675
Trajectory length: 70 m
Acquired by MAV

DRVO -6.8
±0.4

2.05
±0.2

4.7
±0.4

100%

EVO
=1.0

-0.8
±0.2

0.23
±0.24

0.45
±0.12

91%

EVO
=0.8

-0.61
±0.34

0.23
±0.35

0.4
±0.17

27%

EVO
=0.6

-0.33
±0.60

0.35
±0.47

0.21
±0.3

13%

Sequence Method Translational drift (%) Rotational drift (deg/m) Keyframe ratio

Name: Kitti Benchmark
Training SDataset
Acquired by a car

DRVO 1.56
±0.007

0.00166
±0.00008

100%

EVO
=1.0

1.45
±0.015

0.00145
±0.0001

99.8%

EVO
=0.8

1.46
±0.014

0.00144
±0.0002

79.6%

EVO
=0.6

1.53
±0.017

0.00151
±0.0002

37.8%

Rank Method Setting Translation Rotation Runtime Environment

3
4
5
6
7
8
9

10
11
12

MFI
VoBa

SSLAM
eVO
SOVI

D6DVO
MICP_VO

SSLAM-HR
VIS02-S

GT_VO3pt

st
st
st
st
st
st
st
st
st
st

1.30%
1.46%
1.57%
1.76%
1.80%
2.04%
2.13%
2.14%
2.44%
2.54%

0.0030 [deg/m]
0.0030 [deg/m]
0.0044 [deg/m]
0.0036 [deg/m]
0.0079 [deg/m]
0.0051 [deg/m]
0.0065 [deg/m]
0.0059 [deg/m]
0.0114 [deg/m]
0.0078 [deg/m]

0.1 s
0.1 s
0.5 s
0.05 s
0.1 s

0.03 s
0.01 s
0.5 s

0.05 s
1.26 s

4 cores @ 2.5 Ghz (C/C++)
1 core @ 2.0 Ghz (C/C++)
8 cores @ 3.5 Ghz (C/C++)
2 cores @ 2.0 Ghz (C/C++)
4 cores @ 2.5 Ghz (Matlab)
1 core @ 2.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C++)

8 cores @ 3.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C/C++)
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lations. In 2009, we demonstrated a CUDA implementation of this 
algorithm able to compute a dense OF estimation on a full HD video 
(1920 x 1080) in less than 20 ms on a 285 GTX board [34].

Increasing robustness

As is well known, SSD is not a robust criterion and using the previous 
algorithm on a real-world image leads to inhomogeneous results, as 
illustrated in the second line of figure 9. However, following the work 
of Sun et al. for Horn-Schunk OF methods [41], we have found that 
simple modifications of the algorithm, essentially pre-filtering and 
adaptation of the coarse-to-fine strategy, can greatly improve the 
result.

The first problem is that the motion estimation greatly depends on the 
local image texture and fails in the event of illumination changes. To 
correct this, we apply a Rank -n transform [46] to the images before 
SSD minimization. Each pixel x is replaced by the number of neighbo-
ring pixels with an intensity lower than I

(x)
. This transform is fast and 

has only one parameter: the radius n of the neighborhood. Transfor-
med images have a compressed intensity range, which increases the 
robustness and homogeneity of the eFolki result.

The second issue is related to convergence: ensuring the conver-
gence of the LK iteration often requires large windows to be chosen, 
at the cost of a lower resolution of the estimated flow. The solution 
proposed here is to vary the radius of the window during the itera-
tions: we denote this strategy ‘WRA’ for Window Radius Adaptation. 
In practice, our solution consists in adding a loop at each pyramid 
level and progressively reducing the window size.

The effects of these modifications are illustrated in figure 9 on an 
image of the Kitti Stereo Dataset. The modifications lead to an esti-
mate (third line of the figure), which appears significantly more ac-
curate and reliable than the previous one. Quantitative comparative 
measures are given in table 5. The proposed modification leads to a 
reduction by a factor of 2 in the number of erroneous pixels and the 
average disparity errors. According to the current Kitti stereo bench-
mark, our algorithm ranks only at around the 40th position; howe-
ver, it is among the fastest methods. In addition, its limited accuracy 
appears sufficient for our 3D modeling task.

A local indicator of reliability

An important issue when using dense stereo-matching for environ-
ment modeling and autonomous navigation is to be able to assess 
locally the reliability (and the accuracy) of the estimated disparity. 

In particular, it is important to detect regions where disparity estima-
tion has failed, so as to avoid dangerous movements toward undetec-
ted obstacles or to plan a revisit to fill up the map.

We propose to compare depth values estimated respectively from the 
forward disparity d1←2 computed using criterion (1) and the backward 
disparity d1←1 computed by exchanging I

1
 and I

2
 in (1). More preci-

sely, for each pixel x in I
1
, we compute the error εZ defined as:

( )
( ) ( )( )( )
( ) ( )( )

1 2 2 1 1 2

1 2 2 1 1 2
Z

fb d d d

d d d
ε ← ← ←
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− +
=

+

x x x
x

x x x

where f is the focal distance in pixels and b is the stereo baseline in 
meters. The threshold (in meters) is typically chosen equal to the 
voxel resolution of the 3D model.

Fig. 9 - Stereovision results on the 172th image of the KITTI Stereo bench-
mark. From top to bottom: the left image of the stereo pair; disparity map 
estimated with SSD minimization; disparity map estimated using the modifi-
cations (rank transform and window radius adaptation); Ground Truth acqui-
red by a Velodyne sensor.

Table 5 - Evaluations of the different variants of the eFolki dense matching technique on Kitti stereo training databases. 
‘Rank’ denotes Rank-n pre-filtering and ‘WRA’ means Window Radius Adaptation; see text. 
Columns 4 and 5 give the percentage of pixels with an error greater than 3 pixels. 
The average computing time for a mid-range GPU is shown in the last column.
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Building the 3D model of the environment

Octomap model

As discussed in the introduction, a volumetric representation of the 
3D environment can be obtained by subdividing the visited space 
with a regular 3D grid. Each elementary part is called a voxel and 
stores, for instance, the occupancy probability, as proposed in [27]. 
Occupancy probabilities are updated by ray-tracing techniques. For a 
sensor (stereo or active RGBD) delivering a depthmap in some known 
image geometry, each pixel of the depthmap defines a ray and a 3D 
point located on this ray approximately at the depth stored in the pixel. 
All of the voxels that belong to the segment linking the sensor pixel 
and the 3D point are processed, i.e., their probability of occupancy is 
updated according to some model of the 3D sensor accuracy.

In the probabilistic 3D mapping framework Octomap of [15] a multi-
resolution grid based on an octree data structure replaces the standard 
regular 3D grid. This solution permits an automatic adaptation of the 
map resolution to the local 3D geometry, with the advantage of smal-
ler memory requirement and faster data access. Moreover, the octree 
representation can be defined without a precise prior knowledge of the 
size of the visited environment. Indeed, when room is needed for new 
areas, the octree is expanded by a new level. In practice, Octomap is 
limited to 16 levels, hence to 215 voxels. Note that the Octomap fra-
mework provides labels to denote voxels that are in free space and also 
voxels that have not been explored yet, see figure 10.

Fig. 10 - Octomap model of a parking area in the basement at Onera. 
Top left: 3D occupancy model at the finer scale. Voxels with a probability 
higher than 80% are colored with a colormap related to their height above 
the reference plane, which is the horizontal plane at the starting position of 
the MAV. 
Top right: rough 3D model, which can be readily obtained from the octree 
representation. 
Bottom line: freespace voxels (fine scale) colored in transparent green.

Fig. 11 - Illustration of online 3D scene modeling, outdoor flight. 
Voxel resolution: 20 cm. 
Top: estimated stereo depthmap and left image recorded by the stereorig. 
Bottom: current estimated trajectory of the MAV (red curve), re-projected 3D map 
(graylevels) and current 3D model (voxel in colors)
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3DSCAN results

Outdoor MAV flight

Figure 11 presents a 3D reconstruction obtained on-line from 
stereo data during an outdoor flight of the MAV (sequence 
20120727.3). The estimated trajectory, shown in red in the 3D 
representation of figure 11, is presented in more detail in figure 7: 
it is a loop approximately 60 m long. We present, not the final 
reconstructed model, but images extracted from a screenshot of 
the ground station during the flight. The current frame taken by the 
left camera and the corresponding stereo depthmap are presented 
in the top part of the figure. The forward/backward consistency 
check described previously has been used to eliminate areas near 
the edges of the trees that cannot be seen in the two images. The 
instantaneous 3D map is re-projected in the 3D model with grayle-
vel texture from the current left image. The occupancy model re-
presents obstacles previously detected during the flight. The voxel 
size is 20 x 20 x 20 cm and the color is related to the height above 
the initial horizontal plane. Since this reference plane was not alig-
ned with the ground, the color level of the reconstructed ground 
is variable. Note that the shapes of the scene 3D objects are elon-

gated along the view axis of the onboard stereorig, because of the 
limited accuracy of 3D triangulation. However, this model provides 
a good localization of the obstacles that are closest to the MAV 
during its flight, which is the main objective for this exploration 
mission. A refined model could be built by getting around the 3D 
structures, as illustrated in Fig. 13 below.

Indoor MAV flight

Figure 12 presents a 3D reconstruction obtained on-line from stereo 
data during an indoor flight of the MAV in a parking area located in the 
basement of a building at Onera. The complete model of the visited 
part of the parking area was presented in figure10. The estimated tra-
jectory, shown in red in the 3D representation of figure 12 is again a 
loop approximately 30 m long. As before, we present the left image, 
the associated depthmap and the current 3D model during the final part 
of the flight. Details such as the obstacle on the ground and the pipes 
on the left wall are clearly visible in the reconstructed model. Figure 13 
shows how the post in the middle of the parking area is refined as the 
MAV flies around it: it is at first reconstructed with a large elongation 
in the viewing direction (left image) then, as the MAV gets around, its 
shape is refined and fits its actual support more precisely (right image).

Fig. 12 - Illustration of online 3D scene model, indoor flight. Voxel resolution: 20 cm. 
Top: estimated stereo depthmap and left image recorded by the stereorig.
Bottom: current estimated trajectory of the MAV (red curve), re-projected 3D map (grayle-
vels) and current 3D model (voxel in colors)
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Fig. 13 - Refining the shape of 3D objects by flying around them, see text.

Fig. 14 - 3D Model of the “Caponière”, a historical underground location at Onera. 
The thick red line denotes the MAV trajectory. The screenshots on the bottom row present 
the available data during the experiment, at 4 instants indicated by numbers on the trajec-
tory. For each instant, we present the stereo depthmap (top image in green levels), the left 
image (B/W image in the middle) and the Xtion depthmap (bottom image in graylevels).
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Indoor/outdoor trajectory

Figure 14 shows a large and complex reconstructed model of the 
“Caponière” area at Onera’s Center in Palaiseau (France). The MAV, 
which is hand-held in this experiment for security reasons, travels 
along a 200m trajectory passing through a tunnel and a wooded area 
before going inside a long gallery leading to a centenary underground 
gunpowder warehouse. The trajectory is computed online and on-
board at a 20Hz rate by eVO using stereo data. Note that the esti-
mated trajectory is smooth, despite the transitions between indoor 
and outdoor areas. The model aggregates stereo or 3D data from 
the embedded Asus Xtion RGBD camera. The default device is the 
Xtion, which is, when available, usually more accurate than stereo 
depths. However, in many situations, especially outdoors, the depth-
map delivered by the Xtion is incomplete, or even empty. When less 
than 80% of the pixels are measured by the Xtion, we use the stereo 
depthmap. Examples of data delivered by stereo and Xtion, and the 
switch between them, are presented in the lower part of figure 14. 
Essentially, stereo is used outside and Xtion inside the tunnels. Note 
however that, in some situations (see times 2 and 4 in figure 14), 
both sensors deliver useful information. Designing better fusion rules 
for both sensors during the modeling and odometry processes is the 
subject of future studies.

Conclusion

In this paper, 3DSCAN, an efficient framework for egolocalization and 
3D modeling of the environment from stereo and RGBD data, has 
been presented. First, we have demonstrated state estimation from 
stereo data at 20Hz using one core of the Core2Duo 1.86 GHz on-

board the MAV. Higher rates, typically 50Hz, could easily be obtained 
using multi-threading and with a more recent computer. This visual 
odometer, denoted eVO, has been evaluated on publicly available ste-
reo data with very good results. Second, a non-supervised 3D mo-
deling software application has been developed using the Octomap 
framework. It uses stereo data, processed by our fast dense matching 
code eFolki on GPU and 3D data obtained from an Xtion active RGBD 
sensor. On our ground station, a light laptop with a mid-range GT 
650M GPU, the depthmap computation (limited to the 1-8 m range) 
and integration into the 3D model runs in 1 to 2 s, which is sufficient 
for the dynamics of our quadrotor. In the Kitti setup, the 3D data range 
is greater (up to 30 m), the vehicle is much faster and explores larger 
areas; hence, the 3D modeling requires a powerful workstation to run 
with the same rates.

Our current work is aimed at using 3DSCAN for autonomous naviga-
tion of MAV in unknown environments, with control and planning is-
sues. Some improvements and adaptations are necessary to improve 
its robustness and to embed the system on the MAV (using a novel 
embedded CPU board). We intend to add a multi-view refinement step 
in eVO for the fusion of eVO with other sensors available onboard 
(IMU and GPS) to improve the quality, rate and reliability of state esti-
mation. In terms of perception, in the absence of GPU onboard, eFolki 
will be replaced by an efficient dense stereo-matching algorithm, 
such as SGBM [13]. We are also working on long-term modeling, 
including loop closure detection and the associated correction of the 
3D model. Finally, we also intend to make use of recent advances in 
computational photography to obtain 3D data with more compact and 
lightweight co-designed sensors, such as the 3D chromatic depth-
from-defocus camera presented in [44] 

Acronyms

CPU	 (Central Processing Unit)
eVO	 (Efficient Visual Odometer)
GPS	 (Global Positioning System)
GPS-RTK	(GPS Real-Time Kinematic)
GPU	 (Graphics Processing Unit)
IMU	 (Inertial Measurement Unit)
KITTI	 (Karlsruhe Institute of Technology 
	 and Toyota Technological Institute)
KLT	 (Kanade-Lucas-Tomasi (feature tracker))

MAV	 (Miniature Aerial Vehicle)
RANSAC	 (Random Sampling Consensus)
RGBD	 (Red, Green, Blue + Depth (4-channel cameras))
ROS	 (Robotic Operating System)
SGBM	 (Semi-Global Block Matching)
SIMD	 (Simple Instruction Multiple Data)
SSD	 (Sum of Squared Differences)
UAV	 (Unmanned Aerial Vehicle)
ZNCC	 (Zero-mean Normalized Cross-Correlation)
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