
Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 1

Aerial Robotics

3DSCAN: Online Ego-Localization
and Environment Mapping

for Micro Aerial Vehicles

M. Sanfourche, A. Plyer,
A. Bernard-Brunel, G. Le Besnerais
(Onera)

E-mail: martial.sanfourche@onera.fr

DOI : 10.12762/2014.AL08-09

We present 3DSCAN (3D Scene Characterization for Autonomous Navigation), a
software application for state estimation and environment modeling using low-

cost 3D sensors, such as a stereorig and RGBD cameras. For state estimation, we
describe an original keyframe-based stereoscopic visual odometry technique, which
can run at more than 20Hz on a lightweight computer. This so-called ‘efficient Visual
Odometry’ (eVO) has been evaluated on several datasets and provides accurate results
and limited drift, even for indoor/outdoor trajectories. Environment modeling aggre-
gates instantaneous depthmaps in a volumetric Octomap [15] representation. Stereos-
copic depthmaps are computed by a very fast dense matching algorithm derived from
eFolki, an optical flow code implemented on GPU. These developments are combined
in the 3DSCAN software, which is successfully demonstrated on our MAV (Micro
Aerial Vehicle) system, following indoor, outdoor or mixed trajectories.

Introduction

From an automation point of view, navigation consists in computing
a safe and achievable trajectory and in controlling its execution. It
requires a precise knowledge of both the dynamic state of the vehicle
(position, attitude, speed) and of the 3D structure of the environment.

These prerequisites are very difficult to meet for a Micro Aerial Vehi-
cles (MAV) flying low through a cluttered environment. The first dif-
ficulty arises from the partial knowledge of the environment. Despite
the spread of available georeferenced information (images and maps),
they still cannot be considered to be of sufficient accuracy and den-
sity for a mission in an unprepared environment such as flying around
a building, avoiding unmapped obstacles, such as trees or parked
cars, and entering through an open window. In this context, the vehi-
cle should be able to build online a representation of its environment
using embedded exteroceptive sensors.

The second difficulty is, of course, the very limited payload of MAV.
Since 2005, demonstrations of on-line mapping have been done
using heavy UAV (helicopter with weight > 25 kg) [1, 42] equipped
with 3D vision sensors, such as lidar. However, a high resolution
(HR) inertial measurement unit (IMU) and high grade differential GPS
receiver were used to localize the vehicle. The very limited payload
and power of MAV precludes the embedding of lidar and HR IMU.

As a result, most current demonstrations of MAV use external re-
sources, in particular external systems, for the estimation of the MAV
state, such as multi-camera localization systems.

In this paper, we present a solution for state estimation and envi-
ronment modeling based on low-cost 3D sensors, compatible
with indoor and outdoor environments. There are now several
solutions for these 3D sensors, which allow fast mapping of
obstacles and lead to a well-behaved ego-localization problem,
compared to solutions based on monocular 2D sensors subject
to scale ambiguity and its drift. We first describe ego-localization
using a stereoscopic visual odometer and then on-line modeling
of the environment, the combination of the two functions being
called 3DSCAN 3D Scene Characterization for Autonomous
Navigation. This 3DSCAN system is demonstrated on publicly
available data Kitti [12] and through several experiments perfor-
med at Onera using our MAV. In the latter demos, only the first
function of 3DSCAN (ego-localization) runs on-board, but the
proposed modeling solution is already compatible with recent
embedded architectures.

Related Works and Contributions

Localization and mapping are active research fields since more than
twenty years and an enormous amount of literature exists. In the fol-

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 2

lowing, we review some relevant references on these two topics and
discuss our contribution.

Ego-localization

Vision-based ego-localization has reached a high level of maturity
over the last decade. For example, NASA’s two Mars Exploration
Rovers (Spirit and Opportunity) have been successfully using stereo
visual odometry since 2003. From a methodological point of view,
two approaches are often opposed despite recent convergent trends:
Visual Odometry (VO) and Visual Simultaneous Localization and Map-
ping (V-SLAM). These approaches are briefly summarized below. For
a much more detailed review, we advise the reading of the recent two-
part tutorial by D. Scaramuzza and F. Fraundorfer [40, 11].

	 • Basically, VO estimates the relative motion of the camera
between tk and tk+1 by the camera pose at tk+1 with regard to 3D
reference data, for instance a cloud of 3D points, recorded in the
camera frame at tk. VO can be distinguished based on 2D-3D as-
sociations [33, 14, 29], 3D-3D associations [20], 2D associations
through 3 views using the trifocal constraint [18], or through 4 views
using the quadrifocal constraint [6]. From relative motion information,
the full trajectory can be estimated by simple dead-reckoning [14, 29]
(Dead-Reckoning Visual Odometry, DRVO), or by fusion with inertial
measurements; see [22, 3, 38] in the aerial context.

	 • V-SLAM addresses the problem of self-localization by construc-
ting a globally-consistent map of the environment. This map is usually
a sparse representation made of a limited number of landmarks, often
3D points. State variables (i.e., ego-localization and speed) and po-
sitions of 3D landmarks are estimated according to a joint criterion
based on a 2D projection error. This can be done by filtering tech-
niques like Extended Kalman Filter (EKF) or by multi-view optimization
methods like Bundle Adjustment (BA). It is interesting to note that
these approaches differ in the frequency of map updating operations.
Filtering approaches [7, 2] update the map at each new frame, so as
to maintain the consistency of the linearization, which requires the
map to be limited to a few hundred landmarks. In contrast, optimiza-
tion methods [28, 19, 39, 17, 32] wait until the baseline is sufficiently
large to allow good localization of 3D landmarks. The latter approach
leads to the notion of “keyframes”, i.e., the frames used to update the
map. Though the selection of keyframes is generally done by consi-
dering statistics over the feature tracking, [47] proposes a criterion
based on image projection error.

The proposed method, denoted by eVO (efficient Visual Odometer)
combines characteristics of both approaches, while being oriented
towards low computational cost rather than optimality [31]. There-
fore, as in VO, the 3D points of the reference map are estimated at
one time instant and are not refined using others views. The notion of
keyframe is also used, as in optimization approaches of V-SLAM: the
3D map is computed only at keyframe instants. Cameras are localized
by pose estimation with regard to the current map, using a 2D-3D
association strategy. We show that this keyframe strategy not only
reduces the cost of the algorithm, but also significantly reduces the
drift of the estimation error with respect to DRVO. As a result, the

proposed eVO is able to run at video frame rates (15 to 25 Hz) on the
limited computer available on our MAV.

Note that Nister et al. have proposed in ref. [33] a VO approach with
keyframes (they called them reference frames) for ground vehicle ap-
plications. More recently, the Pixhawk team [10] have reported scene
modeling using a MAV with a stereo sensor and on-board VO; howe-
ver, there are very few details regarding the odometry in their paper,
while we present here a parametric study of the performance of the
algorithm on various datasets. In particular, eVO has been success-
fully tested on the online Kitti benchmark and ranks at the 6th position,
and 4th among methods based on stereo data [12]1

Environment modeling

Let us first discuss 3D sensors. In the proposed solution, we use two
concurrent 3D sensors: a stereorig and an active Asus Xtion RGBD
camera, a type of sensor made popular by Microsoft’s Kinect device.
They have complementary characteristics, the RGBD camera being
very efficient indoors, but blind in outdoor situations, where the grea-
ter amount of natural textures allow a good stereovision performance.
For stereo matching, we use a very fast dense algorithm eFolki, a
dense Lucas-Kanade (LK) algorithm published in [4] and recently
implemented on GPU (Graphic Processing Unit) architectures [34]. It
allows dense and reliable 3D maps to be obtained at video rate on a
lightweight laptop with a GT650M GPU.

Environment modeling amounts to aggregating noisy 3D point clouds
into a consistent and compact 3D model. Note that the model should
include not only the occupied areas, but also the free space and
the unvisited areas. This data is required for trajectory planning and
replanning. Proposed in the seminal work of Elfes [8], occupancy
grids have become the standard for 2D and 3D environment models
in mobile robotics [30, 1, 15]. In case of 3D modeling, a standard
approach consists in subdividing the workspace into cubic volume
elements of equal size called voxels [30].

This simplistic representation presents two disadvantages: (1) the
maximal extension of the explored area must be known in advance;
(2) the memory occupation becomes rapidly intractable for large
scale environments. In [1], the authors propose a two-layer model,
combining a local representation using standard voxel grid and a glo-
bal rough polygonal model organized by height slices. This model
is successfully used for automatic navigation in urban canyons, but
appears not easily scalable. In [16], the model consists in a 2D re-
gular grid, where each cell stores a list of parallelepipedic volumes
corresponding to occupied or free areas. Memory efficient, this solu-
tion avoids sampling artifacts in the vertical direction but requires the
knowledge of the horizontal workspace extension. In [15], occupied
and free areas are also explicitly represented, but using a multi-resolu-
tion occupancy grid organized as an octree structure (hence its name:
‘Octomap’). Such a structure offers a useful flexibility for modeling
unknown areas. By adding levels to the tree, the spatial resolution can
be adapted to the local 3D structure of the scene, or the global size
of the workspace can be expanded easily. For these reasons, we use
Octomap, thanks to the freely distributed C++ library2.

1Please refer to the Kitti benchmark at http://www.cvlibs.net/datasets/kitti/eval_odometry.php.
2Please refer to the website http://octomap.github.io/

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 3

Organization of the paper

This paper is organized as follows. The overall architecture of 3DS-
CAN is presented in § " System overview". The description and perfor-
mance evaluation of the ego-localization module eVO are presented in
§ " Efficient visual odometry (eVO)". § " Environment modeling" pre-
sents the 3D modeling module (stereo processing and aggregation).
Reconstructions from Kitti data or from data obtained during test
flights with our MAV are presented in § " 3DSCAN results". Finally,
we conclude and propose some directions for future work.

System overview

Software architecture

Given image and depth data provided by sensors or read from files,
the 3DSCAN processing chain builds a 3D environment model as an
Octomap grid. Three processing modules, working as an individual
thread at different frequencies, are combined: (1) the eVO module
computes the camera pose at video rate, (2) the eFolki module com-
putes the depthmap from a rectified and equalized stereo pair provi-
ded by eVO and (3) the Octomap module uses the estimated pose and
depthmap to aggregate relative 3D data into a global model. These
components communicate using ROS (Robot Operating System,
www.ros.org). ROS also provides interface modules to obtain images
from sensors, or from files and visualization modules.

Figure 1 depicts the implemented software architecture and data ex-
changes through the module network. In this organization, eVO, the
stereo odometry module, plays a central role. In addition to calcula-
ting the camera position, the module geometrically and radiometri-
cally rectifies a stereo pair and achieves a temporal sub-sampling
of the sequence by automatically selecting keyframes. Note that the
camera poses are saved by the Transform-Frame server (ROS/TF
server) for further usage. When eVO selects a stereo pair as a new
keyframe, the rectified stereo pair is processed by eFolki in order to
compute a depthmap, which is converted into a relative-to-sensor 3D
point cloud. In parallel to the stereo process, the RGBD sensor node
emits depthmaps at 3Hz. The ‘3D data source selector’ selects the

most appropriate sensor (stereo or RGBD camera) depending on the
density of the RGBD depthmap and transmits a point cloud to the Oc-
tomap server for aggregation in the environment model. This involves
searching in the pose database stored in the module TF server for the
sensor pose at the date indicated in the point cloud message.

Since ROS performs an abstraction of the hardware layer, the 3DS-
CAN chain has been deployed on various hardware units: PC works-
tation, laptop, MAV + ground station. The implementation on a MAV
and its ground station (e.g., a MAV system) is described in the fol-
lowing section.

Implementation on a MAV system

We have deployed 3DSCAN on a real MAV system composed of a
mid-range laptop used as a ground station and the Ascending Tech-
nologies Pelican3 quadrotor depicted in figure 2.

Fig. 2 - Our AscTec Pelican MAV on its landing pad. The visual sensors
- stereorig and RGBD camera - are located at the top of the vehicle.
The vehicle has a total take-off weight of 2 kg (including the LiPo Battery).

3Please refer to the manufacturer website for details: http://www.asctec.de/uav-applications/research/products.

Fig. 1 - The 3DSCAN software architecture. Boxes correspond to ROS nodes. Boxes with a name beginning by ‘ROS/’ indicate a module provided in the
standard ROS library. Solid unidirectional arrows indicate data exchanges in streaming mode, while dot dashed bidirectional arrows indicate exchanges
in client/server mode.

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 4

The MAV equipment includes a MEMS-based IMU, a low grade GPS recei-
ver and a 3D magnetometer. These sensors are connected to the autopilot
providing a standard stabilization mode and waypoint-based navigation.
We have added an Asus Xtion RGBD camera and a stereorig composed of
two electronically synchronized USB cameras separated by a 28 cm long
baseline equipped with a 5.5 mm S-mount lens. This configuration provi-
ded a usable range of 10 meters for environment modelling4. The cameras
are two IDS-Imaging UI-1241LE based on a 1.3 MegaPixel global-shutte-
red CMOS from e2V. Since the native resolution is too large for onboard
processing, the binning mode is activated to capture VGA frames without
field of view reduction. These sensors are connected to an embedded PC
animated by an Intel dual-core Core2Duo 1.86 GHz.

The limited computational performance of the on-board PC and the
requirement of a Cuda Compliant GPU for dense stereo matching by
eFolki have led to the full processing chain being dispatched on two
computers. The ego-localization by eVO runs onboard, while the en-
tire environment modeling task is done on the ground station: a light
macbook laptop equipped with a mid-range Nvidia GT 650M GPU.
The datalink between the two computers is provided by Wifi-N. Since
the transmission of all video streams is impracticable through the
datalink, temporal subsampling is performed. For the RGBD camera,
the ROS module permits constant subsampling and we have set the
output frequency to 3Hz. For the stereo pairs, the subsampling is
done by the mechanism selecting keyframe in eVO. This aspect will
be discussed in the following section.

Efficient visual odometry (eVO)

Algorithm overview

As already mentioned in the introduction, eVO builds a map updated
in a keyframe scheme as in ref. [28, 19]. In the monocular SLAM
case, the keyframe structure is mainly motivated by the need for a
minimal baseline to localize new 3D landmarks. With our stereo set-
ting, landmarks are instantaneously localized in 3D. Improving the
accuracy of a landmark localization requires the stereorig to get subs-
tantially closer to the landmark or to displace the sensor lengthways
more than the baseline. Hence, in the case of a smooth motion of the
stereorig (with respect to the rate of odometry), updating the map at
each frame is useless and the keyframe scheme is a better choice.

In contrast to other keyframe-based SLAM, our system differs by the
way in which the map is updated. In standard approaches, the posi-
tions of visible landmarks are refined at each keyframe by minimizing
a multi-view re-projection criterion with bundle adjustment methods.
Here, we skip this step because of the limited computational capacity
of the embedded PC. In practice, landmarks are then localized once
- the first time they are seen - in the global frame using the current
estimated pose.

Direct combination of noisy measurements - camera pose and land-
mark position - brings eVO closer to DRVO, i.e. dead-reckoning
methods. However, using the keyframe approach, this update is done
at a lower rate in eVO than in DRVO, with the advantage of a reduced
drift. A comparison between these two approaches on real datasets
is presented in § "Tuning and advantage of the Keyframe Scheme".

Finally, the other advantage of this structure concerns the computatio-
nal cost. Indeed, 3D localization by a stereorig is not computationally
free. Combining a keyframe scheme with a pose computation algo-
rithm using 2D-3D associations avoids computing the 3D structure
at each new stereo frame. More interesting still, this approach allows
the global process to be divided into one monocular task, the Tracking
and Pose computation, executed for each left image acquired, and
one stereo task, (Mapping) executed on demand.

Fig. 3 - Temporal sequencing of the eVO module. The P-box, E-box, K-box
and M-box stand respectively for the Image Pre-processing module, the Ego-
motion module, the Keyframe selector module and the Mapping module.

The eVO process can be described in four modules working sequen-
tially, as depicted in figure 3:
	 •Image pre-processing: preliminary image warping and
equalization;
	 •Egomotion: estimation of the position and the attitude of
the stereorig in the reference frame;
	 •Keyframe selection: deciding whether a new keyframe is
necessary;
	 •Mapping: stereo pair processing so as to update the landmark
map.

Each module is described in the following section; here we briefly
describe the eVO process. The algorithm starts by calling the Mapping
module, which initializes 3D landmarks. The next available stereo pair
is processed by the Egomotion module, which yields the current pose
and indicates how many landmarks are still visible. This indicator is
used by the keyframe selection module to decide that the current ste-
reo pair is a new keyframe. In figure 3, this loop is repeated until the
13th stereo pair (denoted S12), which is selected as a keyframe. At
this point, the mapping module is called to update the map: it adds
new landmarks and prunes older ones.

Description of the eVO components

Here we give a detailed description of the eVO components, in the
order in which they appear in figure 3.

Image pre-processing Module

The two images are stereo-rectified using the knowledge of the
intrinsic parameters. In order to deal with indoor to outdoor (or vice
versa) transitions, which lead to locally large illumination changes,
two adjustments were necessary. The first one concerns the
hardware: the cameras are set to automatically adapt their expo-
sure time, in order to reach a specified intensity average under the
constraint that the exposure time cannot exceed a maximal value.
The second adjustment consists in equalizing image histograms to
avoid dark images.

4Under the assumption of a mean disparity error of 0.5 pixels; the usable range is defined as the maximal distance before the precision of 3D localization exceeds the half-width of

a voxel (20 to 30 centimeters).

S0 S1

Initialisation

New Keyframe

New Keyframe

S2 S3 S4 S12 S13 S14 Sk-1 Sk Sk+1

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 5

Mapping Module

This module is called when the current stereo-pair is declared as a
new keyframe. It uses a stereorectified pair of images to generate an
initial map and to update it if necessary by extracting and matching
new interest points. The synoptic diagram of this module is shown in
figure 4.

Fig. 4 - Mapping Module structure

The first operation consists in extracting Nf (between 250 and 350 for
VGA images) interest points in the left image. This process is done
under two geometrical constraints: (i) a minimal separation distance
between two features; (ii) a maximal dispersion of the features over
the image plane. The former constraint is generally included in feature
extractors (like those in OpenCV), while the latter is enforced by a
classical bucketing strategy. The image support is subdivided into
Nr non-overlapping regions (8X6 regions for VGA images) and the
Nf / Nr more relevant features within each region are kept. In order to
deal with regions that do not have enough texture, a relaxation tech-
nique is used to increment the tolerated amount of features by region.
Note that the extraction accounts for mapped landmarks successfully
tracked from the previous keyframe, so as to detect only the correct
number of new features and maintain Nf features per keyframe.

Two feature detectors have been evaluated: the Harris detector (Shi-
Tomasi [43]) and the FAST detector [36]. As expected, the FAST
detector is faster than the Harris detector and allows a keyframe (VGA
format) to be processed in 55 milliseconds on average (see table 2).
On the tested sequence, the choice of the detector has a very limited
impact on the estimated trajectories.

In the second step, the features newly detected in the left images are
matched in the right image. Based on dense stereovision algorithms,
feature stereo matching is done by means of exhaustive searches along
the epipolar lines. In practice, the Zero-mean Normalized Cross-Cor-
relation (ZNCC) is used as the image similarity criterion and we test
a range of disparities corresponding to 3D points located at least 70
centimeters away from the stereorig. In order to reduce the processing
time, we adopt a coarse-to-fine multi-scale approach, with a two-level
image pyramid. At the lowest resolution, the image is reduced by a
factor of 4 in each direction and the size of the ZNCC window is set to
3X3 pixels. The match is then propagated to the full resolution level and
refined by a local search within a region with a radius of 6 pixels, using
a 9X9 ZNCC window. In practice, the number of tested disparity hy-
potheses is largely reduced. In our configuration (focal distance = 5.5
mm and depth greater than 70 cm), this approach allows the number of
tested hypotheses to be reduced from 220 to less than 70. Finally, the
ZNCC scores are thresholded to prune ambiguous associations

At this point, feature positions, disparities, stereorig parameters and
the current pose estimation are used to localize the new landmarks
in the reference frame by triangulation. Finally, new landmarks and

their image signature are inserted into the map, while the untracked
landmarks are removed.

Egomotion Module

As soon as some landmarks have been localized in 3D, the egomo-
tion module estimates the position and the attitude of the left camera
frame, by tracking the landmarks in the successive images acquired
by the left camera. Figure 5 shows the internal mechanism and the
module inputs/outputs.

Fig. 5 - Egomotion Module. This module uses the left image only.

As in [23], the features are tracked through the video sequence acqui-
red by the left camera using KLT [43]. In order to pre-emptively prune
wrong temporal matchings, the fundamental matrix is robustly esti-
mated using a Least Median of Squares scheme (LMedS) [37]; this
operation is henceforth referred to as ‘Fcheck’. Since this estimation
can be unstable in the case of small relative motion, it is automatically
disabled when the motion of features is less than a threshold.

We have also evaluated an active search process, where the search
for temporal matches is guided by a prediction of the motion. Without
inertial data, as for instance in the KITTI datasets, we use a simplis-
tic motion prediction model based on constant linear and angular
speeds. The motion estimated between the two previous frames is
then used for motion prediction. If inertial data is available (as for
instance in the MAV experiments), we only compensate for a global
rotation of the image. Both methods help to reduce the search area
for temporal matching.

Features SHI-TOMASI [43] FAST [36]

Frame type Keyframe Standard Keyframe Standard

Average (ms)

Std (ms)

Min (ms)

Max (ms)

74.2

4.6

62.3

99.9

12.4

3.6

5.8

32.8

56.1

5.6

40.8

72.7

12.4

3.6

5.6

31.5

Table 1 - eVO processing time for one 672_480 stereo pair on a Core2Duo
1.86GHz. Measurements obtained by averaging over 10 Monte-Carlo runs.

From the temporal matchings provided by KLT, associations are esta-
blished between 3D landmarks stored in the map and current image
features. Given these 2D-3D matches, the camera pose (position and
attitude) is robustly estimated within a RANSAC procedure [9]. In
practice, we have implemented our own RANSAC framework with an

Current pose

Disparity 3D
points

Left
rectified
image

Feature
detection

Stereo-
matching

Triangu-
lation

Map
managment

Right rectified image

Position of existing
landmarks in current frame

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 6

online adaptation of the number of iterations, as proposed by Peter
Kovesi [21]. For each random sample, the pose is estimated with the
Perspective-3-Point (P3P) algorithm [9, 45]. A bucketing strategy is
used to enforce a minimal separation distance between the image
features selected in the triplet given to the P3P algorithm. The P3P
method often produces multiple solutions (up to 4): in such a case,
all of the solutions are considered as random samples in the RANSAC
voting process.

The RANSAC procedure returns an initial pose solution and a set of
inliers. The pose is refined by minimizing the re-projection error of
inlier matches. This non-linear least-squares optimization is solved
using the motion-only optimization functions provided in the Lourakis
SBA code [24].

Keyframe selection Module

As proposed in [28], a new keyframe is initialized as soon as the ratio
between the number of successfully tracked features and the num-
ber of 3D points visible on the last keyframe drop under a threshold,
denoted by t and set by default to t = 0:8. We discuss the algorithm
sensitivity to parameter t in § "Tuning and advantage of the Keyframe
Scheme".

Implementation and processing time

The implementation of eVO uses two well-known open-source tools:
OpenCV and ROS (Robot Operating System, www.ros.org). Most of
the low level image processing — image warping, tracking, feature
extraction and template matching — is based on the OpenCV library.
This library is optimized for the SIMD instruction set of the on-board
CPU (Intel SSE). At the system scale, eVO works on ROS to deal
with the physical sensors and share the trajectory estimation with the
environment modeling part of 3DSCAN.

In table 1 we present the processing times measured on the em-
bedded computer of our MAV: Ascending Technologies Mastermind
Intel Core 2 Duo 1.86 GHz working on Ubuntu 12.04 32bits. Figure
6 shows how the computational time is distributed over the various
components of the processing chain. These results demonstrate the
great difference between keyframe and standard frame processing
time, due to the fact that the 3D landmark generation is bypassed for
the latter.

Fig. 6 - Relative computing time of eVO components. Measurements made
by averaging over 10 Monte-Carlo runs, using a FAST feature detector [36].

As a consequence, the overall computational performance of eVO
depends on the ratio between standard frame and keyframe numbers.
In our implementation, this ratio is not fixed but varies with the suc-
cess rate of the tracking, which itself depends on the vehicle dyna-

mics. However, as discussed later in § "Tuning and advantage of the
Keyframe Scheme", the best tuning of the keyframe selector leads to
an average keyframe ratio of less than 30%. This means that the ave-
rage computing time is less than 25 ms/frame. We can also note that
the monocular egolocalization process (i.e., processing of a standard
frame) could be run at a very high frame rate (up to 80hz) on one core
of the embedded PC if the bandwidth of the USB-bus allowed it.

Evaluation

Datasets and performance measurements

Our system has been evaluated on multiple and varied data. Some of
it was acquired using our own stereorig, either hand-held or carried
by the MAV. No ground-truth state is available for this data, but we
have followed loop trajectories in order to use the drift between the
first and last frames as a performance indicator. An example of an
outdoor experiment with a 60m-long loop is presented in figure 7,
showing a drift of approximately 1% of the trajectory length.

We have also used the KITTI odometry dataset [12] composed of
22 video sequences acquired by a car equipped with several sen-
sors (Velodyne R lidar, high resolution IMU and GPS-RTK, stereorig).
The video collection covers a large range of environments (highway,
suburban or town center) and trajectory profiles (loops, road sec-
tions) from one hundred meters to a few kilometers. The first half
of the collection is supplied with ground-truth in order to adjust the
algorithm parameters. The second half of the collection is used to
benchmark algorithms.

The KITTI Team also provides some performance metrics, together
with a tool to compute them on the estimated trajectories. These
metrics are: a translational drift expressed as a percentage of the total
traveled distance and a rotational drift expressed in degrees by trave-
led meter. Scores are averaged over all possible sub-sequences of
variable lengths, from 100 m to 800 m.

Since our system includes a random sampling scheme (RANSAC),
we have performed Monte-Carlo simulations and measured statistical
indicators (average performance, standard deviation, median, min-
max values).

Figure 8 presents the estimated trajectories obtained after 25
Monte-Carlo runs on Sequence 08 of the KITTI odometry dataset.
This trajectory in a suburban environment is 2 kilometers long
and comprises many moving objects (vehicles, pedestrians and
cyclists). On average, the estimated trajectory in the horizontal
plane (XZ) is well estimated with a drift of only 4 meters. As usual
in odometry, large angular errors occur at each important turn
change. The estimation along the third dimension shows a bias at
the beginning, which is probably due to an error in the ground truth
and a significant variance at the end. We could constrain the eVO
estimator to maintain a constant height above the ground, but we
choose not to do so, since we intend to use the same algorithm
for MAV data.

In the following section, we study the advantage of the keyframe
scheme and discuss the tuning of the parameters of the Keyframe
selection module, before presenting the global evaluation of eVO on
the KITTI benchmark.

Track features
Compute pose
Add features
Stereo matching
Triangulate
Others

	 0	 10	 20	 30	 40	 50	 60	 70
Processing time (ms)

Standard

Keyframe

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 7

Fig. 7 - Trajectory estimated by eVO from the sequence 20120727.3 acquired during an outdoor flight of the MAV.
(a) 4 frames of the video sequence (the 1st, 509th, 913th and last image).
(b) Estimated trajectory. The red and black arrows indicate the attitude of our MAV (red: the front of the MAV, black: its right).
(c) Estimated attitude. The measurements provided by the embedded AHRS are not precise enough to serve as ground truth.
(d) Estimated height profile (the Y axis points downward). Note that the actual starting point is approximately 80 cm above the
landing pad; hence, the total drift is less than 50 centimeters.

	 -2	 0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20	 22
z

	 0	 200	 400	 600	 800	 1000	 1200	 1400	 1600
Image number

	 0	 200	 400	 600	 800	 1000	 1200	 1400	 1600
Image number

-8

-6

-4

-2

0

2

4

6

3

2

1

0

-1

-2

-3

1

0

-1

-2

-3

-4

-5

(a)

x Last image

At
tit

ud
e

(r
ad

)

y
(m

)

Roll
Pitch
Yaw

1st image

509thimage

913thimage

(b)

(c) (d)

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 8

Fig. 8 - Result of eVO on the“08” sequence of the KITTI odometry dataset.
(a) Four images of the sequence.
(b) Trajectories on the XZ plane (red: ground truth, blue: estimated). Shown in red: the ground truth. Shown in blue:
25 trajectories obtained after as many Monte-Carlo runs.
(c) Average angular errors (in radians).
(d) Trajectories in the 3rd dimension.

	 -400	 -300	 -200	 -100	 0	 100	 200	 300	 400
x (m)

400

350

300

250

200

150

100

50

0

0.04

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

20

10

0

-10

-20

-30

-40

-50

(a)

z
(m

)

An
gu

la
r e

rro
r (

ra
d)

y
(m

)

(b)

(c) (d)

	 0	 500	 1000	 1500	 2000	 2500	 3000	 3500	 4000	 4500
Image number

	 0	 500	 1000	 1500	 2000	 2500	 3000	 3500	 4000	 4500
Image number

Roll
Pitch
Yaw

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 9

Tuning and advantage of the Keyframe Scheme

Here, we discuss the advantages provided by the keyframe scheme
in regard to the ego-localization performance, beyond its computatio-
nal efficiency discussed previously. First, we compare our algorithm
with a classical dead-reckoning visual odometer (DRVO) built with the
same software components. Then, we investigate the influence of two
parameters controlling the keyframe generation, the threshold t defi-
ned earlier and the activation of the Fcheck module. All of the results
obtained on MAV-representative sequences are summarized in table
2, while results on the KITTI dataset are shown in table 3.

eVO vs. DRVO. As expected, the keyframe scheme allows the locali-
zation drift of eVO to be reduced compared to DRVO, even for settings
that favor the generation of new keyframes. This is the case when
choosing t = 1:0, which means generating a new keyframe as soon
as one landmark is lost by the tracking process. The gain is parti-
cularly important with MAV data, as shown by comparing the total
localization error presented in the two first rows of tables in table 2.
On the KITTI dataset, the advantage is less important but significant,
with a 10%-reduction of the drift, see table 3. This can be explained
by the fact that, due to the car’s speed, KITTI sequences exhibit larger
inter-frame motion, reducing the interest of the keyframe scheme.

Parameters controlling the key-frame selection. We first study how the
drift varies with respect to the ratio t, while the Fcheck module (which
checks for the consistency of matches with the epipolar constraint) is
activated. On the MAV sequences (table 2) the lower the parameter t,
the lower the average localization error, but the higher the dispersion
of the results. On the Kitti dataset (table 3) we observe that the choice
t = 0.6 leads to larger errors. This is due to a lower frame rate and
a higher vehicle speed, which means that the odometry uses trac-
ked features that are farther from the camera and are badly localized.
Finally, we choose t = 0.8 as a good trade-off.

The Fcheck procedure also has a significant influence on the num-
ber of keyframes. If this validation step is bypassed, the number of
keyframes is reduced by half in all processed sequences (for the same
ratio t). In the majority of our tests, this entails an error growth, par-
ticularly on the KITTI dataset, where the translational drift increases
from 1.46 to 1.63. In practice, we choose to enable Fcheck by default.

Result on the KITTI Odometry Benchmark

Table 4 presents the average scores of eVO on the KITTI evaluation
dataset, compared to other published methods. eVO obtains a very
good performance, with an average translation drift of 1.76% and an
angular error of 0.0036°/m. As on the date of its first submission to
the IROS conference (March 2013), this performance allowed eVO to
rank first. One year later, it is still 4th among methods that use only
stereo data - note that methods using lidar data have been recently
introduced in the KITTI table and have taken the two first positions.

Environment modeling

In the previous section, we have described how the stereo data is
processed in order to estimate the pose of the system during its dis-
placement. These estimated poses are used to fuse ‘instantaneous’
3D data into a 3D model of the visited environment. 3D data can be
depth measurements provided by an active RGBD sensor or stereo

depthmaps. The latter are provided here by a fast and dense stereo-
matching code on GPU, which is described in § "Dense stereo-mat-
ching". The chosen environment modeling framework is presented in
§ "Dense stereo-matching".

Dense stereo-matching

Classically, dense stereo-matching algorithms are based on systema-
tic exploration in the disparity space, to evaluate radiometric similarities
between pixels of the two images. Here, dense disparity maps are com-
puted using a dense Lucas-Kanade (LK) algorithm [26] derived from
an original optical flow algorithm eFolki, described in [35]. The resulting
code is remarkably fast on a massively parallel architecture such as GPU.
In the following sections, we recall the equations of the algorithm, first pu-
blished in [4], discuss its implementation on GPU, describe some adap-
tations made to increase the robustness of the estimated disparity on real
stereo images, and finally present a local indicator of the consistency.

All evaluations are performed on data provided in the KITTI bench-
mark [12].

Efficient dense matching by the LK algorithm

The basic problem of the dense LK algorithm is to register local win-
dows centered around each image pixel x by minimizing a SSD (Sum
of Squared Difference) criterion over a 2D motion vector u(x):

() () ()()()21 2w I I
′

′ ′ ′− − +∑
x

x x x x u x 	 (1)

where w is a separable weighting function, uniform or Gaussian, of
limited support W, typically a square window parameterized by its ra-
dius r. Since we consider here dense matching of rectified stereo data,
where epipolar lines are aligned with the horizontal axis of the images,
the motion vector is reduced to a scalar disparity: u(x) = [d(x);0].

The minimization of criterion 1 is done by an iterative Gauss-Newton
coarse-to-fine pyramidal strategy, as in classical implementations of
LK. However, using the first order expansion described in [25], an
iteration can be completed with only one image interpolation per pixel,
while the well-known PyramLK algorithm [5] requires several image
interpolations per pixel. An iteration of this convergent dense mat-
ching strategy, denoted eFolki, consists in:

()
() () ()

() ()
() () ()

()
22

() () ()
1 12

()
1

1 2
1

,
0

interpolation
k

k

k k k
x

k k
x

k k
x

dI I

I I I I d

c w I I

d c I

δ

δ

+

  
 = + ∀     

= − −∇ ⊗

= ∗ ∇ ⊗

= ∅ ∇

xx x x

where d(k) is the previous disparity guess, x is the image gradient
operator in the x-direction and operator ⊗(respectively ∅) is the com-
ponent-wise multiplication (respectively division). One can readily
observe that eFolki is ideally suited for GPU implementation, because
each iteration requires only very regular operations on the images:
separable convolutions, pixelwise operations and image interpo-

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 10

Table 2 - Localization error at the end of two closed trajectories acquired with the stereorig of our MAV and ratio of keyframes for different algorithms or algorithm settings.

Table 3 - Angular and translation drift indicators measured on the KITTI Odometry dataset for various algorithms or algorithm settings.

Table 4 - Kitti Odometry benchmark chart at 2014-02-03. Please note that only stereo-based algorithms are presented; however, the ranks are those of the
published Kitti, where lidar-based methods occupy the two first places. The eVO result is obtained by tracking at the most 500 Shi-Tomasi interest points
extracted from 20 x 8 regions. The tracking is initialized with the previous motion. The ransac threshold is set to 1.0, while the parameter  is equal to 0.8.

Sequence Method Error X (m) Error Y (m) Error Z (m) Keyframe ratio

Name: 2010727.2
Image Number: 2039
Trajectory length: 150 m
hand-held

DRVO -2.4
±0.04

-0.5
±0.05

2.0
±0.04

100%

EVO
=1.0

-1.28
±0.08

-0.17
±0.11

1.20
±0.08

96%

EVO
=0.8

-0.95
±0.18

-0.30
±0.11

1.01
±0.14

36%

EVO
=0.6

-0.73
±0.21

-0.06
±0.25

0.83
±0.18

19%

Name: 20120724.3
Image Number: 1675
Trajectory length: 70 m
Acquired by MAV

DRVO -6.8
±0.4

2.05
±0.2

4.7
±0.4

100%

EVO
=1.0

-0.8
±0.2

0.23
±0.24

0.45
±0.12

91%

EVO
=0.8

-0.61
±0.34

0.23
±0.35

0.4
±0.17

27%

EVO
=0.6

-0.33
±0.60

0.35
±0.47

0.21
±0.3

13%

Sequence Method Translational drift (%) Rotational drift (deg/m) Keyframe ratio

Name: Kitti Benchmark
Training SDataset
Acquired by a car

DRVO 1.56
±0.007

0.00166
±0.00008

100%

EVO
=1.0

1.45
±0.015

0.00145
±0.0001

99.8%

EVO
=0.8

1.46
±0.014

0.00144
±0.0002

79.6%

EVO
=0.6

1.53
±0.017

0.00151
±0.0002

37.8%

Rank Method Setting Translation Rotation Runtime Environment

3
4
5
6
7
8
9

10
11
12

MFI
VoBa

SSLAM
eVO
SOVI

D6DVO
MICP_VO

SSLAM-HR
VIS02-S

GT_VO3pt

st
st
st
st
st
st
st
st
st
st

1.30%
1.46%
1.57%
1.76%
1.80%
2.04%
2.13%
2.14%
2.44%
2.54%

0.0030 [deg/m]
0.0030 [deg/m]
0.0044 [deg/m]
0.0036 [deg/m]
0.0079 [deg/m]
0.0051 [deg/m]
0.0065 [deg/m]
0.0059 [deg/m]
0.0114 [deg/m]
0.0078 [deg/m]

0.1 s
0.1 s
0.5 s
0.05 s
0.1 s

0.03 s
0.01 s
0.5 s

0.05 s
1.26 s

4 cores @ 2.5 Ghz (C/C++)
1 core @ 2.0 Ghz (C/C++)
8 cores @ 3.5 Ghz (C/C++)
2 cores @ 2.0 Ghz (C/C++)
4 cores @ 2.5 Ghz (Matlab)
1 core @ 2.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C++)

8 cores @ 3.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C/C++)
1 core @ 2.5 Ghz (C/C++)

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 11

lations. In 2009, we demonstrated a CUDA implementation of this
algorithm able to compute a dense OF estimation on a full HD video
(1920 x 1080) in less than 20 ms on a 285 GTX board [34].

Increasing robustness

As is well known, SSD is not a robust criterion and using the previous
algorithm on a real-world image leads to inhomogeneous results, as
illustrated in the second line of figure 9. However, following the work
of Sun et al. for Horn-Schunk OF methods [41], we have found that
simple modifications of the algorithm, essentially pre-filtering and
adaptation of the coarse-to-fine strategy, can greatly improve the
result.

The first problem is that the motion estimation greatly depends on the
local image texture and fails in the event of illumination changes. To
correct this, we apply a Rank -n transform [46] to the images before
SSD minimization. Each pixel x is replaced by the number of neighbo-
ring pixels with an intensity lower than I

(x)
. This transform is fast and

has only one parameter: the radius n of the neighborhood. Transfor-
med images have a compressed intensity range, which increases the
robustness and homogeneity of the eFolki result.

The second issue is related to convergence: ensuring the conver-
gence of the LK iteration often requires large windows to be chosen,
at the cost of a lower resolution of the estimated flow. The solution
proposed here is to vary the radius of the window during the itera-
tions: we denote this strategy ‘WRA’ for Window Radius Adaptation.
In practice, our solution consists in adding a loop at each pyramid
level and progressively reducing the window size.

The effects of these modifications are illustrated in figure 9 on an
image of the Kitti Stereo Dataset. The modifications lead to an esti-
mate (third line of the figure), which appears significantly more ac-
curate and reliable than the previous one. Quantitative comparative
measures are given in table 5. The proposed modification leads to a
reduction by a factor of 2 in the number of erroneous pixels and the
average disparity errors. According to the current Kitti stereo bench-
mark, our algorithm ranks only at around the 40th position; howe-
ver, it is among the fastest methods. In addition, its limited accuracy
appears sufficient for our 3D modeling task.

A local indicator of reliability

An important issue when using dense stereo-matching for environ-
ment modeling and autonomous navigation is to be able to assess
locally the reliability (and the accuracy) of the estimated disparity.

In particular, it is important to detect regions where disparity estima-
tion has failed, so as to avoid dangerous movements toward undetec-
ted obstacles or to plan a revisit to fill up the map.

We propose to compare depth values estimated respectively from the
forward disparity d1←2 computed using criterion (1) and the backward
disparity d1←1 computed by exchanging I

1
 and I

2
 in (1). More preci-

sely, for each pixel x in I
1
, we compute the error εZ defined as:

()
() ()()()
() ()()

1 2 2 1 1 2

1 2 2 1 1 2
Z

fb d d d

d d d
ε ← ← ←

← ← ←

− +
=

+

x x x
x

x x x

where f is the focal distance in pixels and b is the stereo baseline in
meters. The threshold (in meters) is typically chosen equal to the
voxel resolution of the 3D model.

Fig. 9 - Stereovision results on the 172th image of the KITTI Stereo bench-
mark. From top to bottom: the left image of the stereo pair; disparity map
estimated with SSD minimization; disparity map estimated using the modifi-
cations (rank transform and window radius adaptation); Ground Truth acqui-
red by a Velodyne sensor.

Table 5 - Evaluations of the different variants of the eFolki dense matching technique on Kitti stereo training databases.
‘Rank’ denotes Rank-n pre-filtering and ‘WRA’ means Window Radius Adaptation; see text.
Columns 4 and 5 give the percentage of pixels with an error greater than 3 pixels.
The average computing time for a mid-range GPU is shown in the last column.

Method out noc out all avg noc avg all density GT650M

SSD
SSS+Rank+WRA

32.9%
13.7%

34.2%
15.4%

7.2 pix
2.9 pix

7.9 pix
3.3 pix

100%
100%

27 ms
108 ms

100

200

300

400

500

600

700

800

900

1000

1100

120

100

80

60

40

20

0
		 200	 400	 600	 800	 1000	 1200

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 12

Building the 3D model of the environment

Octomap model

As discussed in the introduction, a volumetric representation of the
3D environment can be obtained by subdividing the visited space
with a regular 3D grid. Each elementary part is called a voxel and
stores, for instance, the occupancy probability, as proposed in [27].
Occupancy probabilities are updated by ray-tracing techniques. For a
sensor (stereo or active RGBD) delivering a depthmap in some known
image geometry, each pixel of the depthmap defines a ray and a 3D
point located on this ray approximately at the depth stored in the pixel.
All of the voxels that belong to the segment linking the sensor pixel
and the 3D point are processed, i.e., their probability of occupancy is
updated according to some model of the 3D sensor accuracy.

In the probabilistic 3D mapping framework Octomap of [15] a multi-
resolution grid based on an octree data structure replaces the standard
regular 3D grid. This solution permits an automatic adaptation of the
map resolution to the local 3D geometry, with the advantage of smal-
ler memory requirement and faster data access. Moreover, the octree
representation can be defined without a precise prior knowledge of the
size of the visited environment. Indeed, when room is needed for new
areas, the octree is expanded by a new level. In practice, Octomap is
limited to 16 levels, hence to 215 voxels. Note that the Octomap fra-
mework provides labels to denote voxels that are in free space and also
voxels that have not been explored yet, see figure 10.

Fig. 10 - Octomap model of a parking area in the basement at Onera.
Top left: 3D occupancy model at the finer scale. Voxels with a probability
higher than 80% are colored with a colormap related to their height above
the reference plane, which is the horizontal plane at the starting position of
the MAV.
Top right: rough 3D model, which can be readily obtained from the octree
representation.
Bottom line: freespace voxels (fine scale) colored in transparent green.

Fig. 11 - Illustration of online 3D scene modeling, outdoor flight.
Voxel resolution: 20 cm.
Top: estimated stereo depthmap and left image recorded by the stereorig.
Bottom: current estimated trajectory of the MAV (red curve), re-projected 3D map
(graylevels) and current 3D model (voxel in colors)

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 13

3DSCAN results

Outdoor MAV flight

Figure 11 presents a 3D reconstruction obtained on-line from
stereo data during an outdoor flight of the MAV (sequence
20120727.3). The estimated trajectory, shown in red in the 3D
representation of figure 11, is presented in more detail in figure 7:
it is a loop approximately 60 m long. We present, not the final
reconstructed model, but images extracted from a screenshot of
the ground station during the flight. The current frame taken by the
left camera and the corresponding stereo depthmap are presented
in the top part of the figure. The forward/backward consistency
check described previously has been used to eliminate areas near
the edges of the trees that cannot be seen in the two images. The
instantaneous 3D map is re-projected in the 3D model with grayle-
vel texture from the current left image. The occupancy model re-
presents obstacles previously detected during the flight. The voxel
size is 20 x 20 x 20 cm and the color is related to the height above
the initial horizontal plane. Since this reference plane was not alig-
ned with the ground, the color level of the reconstructed ground
is variable. Note that the shapes of the scene 3D objects are elon-

gated along the view axis of the onboard stereorig, because of the
limited accuracy of 3D triangulation. However, this model provides
a good localization of the obstacles that are closest to the MAV
during its flight, which is the main objective for this exploration
mission. A refined model could be built by getting around the 3D
structures, as illustrated in Fig. 13 below.

Indoor MAV flight

Figure 12 presents a 3D reconstruction obtained on-line from stereo
data during an indoor flight of the MAV in a parking area located in the
basement of a building at Onera. The complete model of the visited
part of the parking area was presented in figure10. The estimated tra-
jectory, shown in red in the 3D representation of figure 12 is again a
loop approximately 30 m long. As before, we present the left image,
the associated depthmap and the current 3D model during the final part
of the flight. Details such as the obstacle on the ground and the pipes
on the left wall are clearly visible in the reconstructed model. Figure 13
shows how the post in the middle of the parking area is refined as the
MAV flies around it: it is at first reconstructed with a large elongation
in the viewing direction (left image) then, as the MAV gets around, its
shape is refined and fits its actual support more precisely (right image).

Fig. 12 - Illustration of online 3D scene model, indoor flight. Voxel resolution: 20 cm.
Top: estimated stereo depthmap and left image recorded by the stereorig.
Bottom: current estimated trajectory of the MAV (red curve), re-projected 3D map (grayle-
vels) and current 3D model (voxel in colors)

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 14

Fig. 13 - Refining the shape of 3D objects by flying around them, see text.

Fig. 14 - 3D Model of the “Caponière”, a historical underground location at Onera.
The thick red line denotes the MAV trajectory. The screenshots on the bottom row present
the available data during the experiment, at 4 instants indicated by numbers on the trajec-
tory. For each instant, we present the stereo depthmap (top image in green levels), the left
image (B/W image in the middle) and the Xtion depthmap (bottom image in graylevels).

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 15

Indoor/outdoor trajectory

Figure 14 shows a large and complex reconstructed model of the
“Caponière” area at Onera’s Center in Palaiseau (France). The MAV,
which is hand-held in this experiment for security reasons, travels
along a 200m trajectory passing through a tunnel and a wooded area
before going inside a long gallery leading to a centenary underground
gunpowder warehouse. The trajectory is computed online and on-
board at a 20Hz rate by eVO using stereo data. Note that the esti-
mated trajectory is smooth, despite the transitions between indoor
and outdoor areas. The model aggregates stereo or 3D data from
the embedded Asus Xtion RGBD camera. The default device is the
Xtion, which is, when available, usually more accurate than stereo
depths. However, in many situations, especially outdoors, the depth-
map delivered by the Xtion is incomplete, or even empty. When less
than 80% of the pixels are measured by the Xtion, we use the stereo
depthmap. Examples of data delivered by stereo and Xtion, and the
switch between them, are presented in the lower part of figure 14.
Essentially, stereo is used outside and Xtion inside the tunnels. Note
however that, in some situations (see times 2 and 4 in figure 14),
both sensors deliver useful information. Designing better fusion rules
for both sensors during the modeling and odometry processes is the
subject of future studies.

Conclusion

In this paper, 3DSCAN, an efficient framework for egolocalization and
3D modeling of the environment from stereo and RGBD data, has
been presented. First, we have demonstrated state estimation from
stereo data at 20Hz using one core of the Core2Duo 1.86 GHz on-

board the MAV. Higher rates, typically 50Hz, could easily be obtained
using multi-threading and with a more recent computer. This visual
odometer, denoted eVO, has been evaluated on publicly available ste-
reo data with very good results. Second, a non-supervised 3D mo-
deling software application has been developed using the Octomap
framework. It uses stereo data, processed by our fast dense matching
code eFolki on GPU and 3D data obtained from an Xtion active RGBD
sensor. On our ground station, a light laptop with a mid-range GT
650M GPU, the depthmap computation (limited to the 1-8 m range)
and integration into the 3D model runs in 1 to 2 s, which is sufficient
for the dynamics of our quadrotor. In the Kitti setup, the 3D data range
is greater (up to 30 m), the vehicle is much faster and explores larger
areas; hence, the 3D modeling requires a powerful workstation to run
with the same rates.

Our current work is aimed at using 3DSCAN for autonomous naviga-
tion of MAV in unknown environments, with control and planning is-
sues. Some improvements and adaptations are necessary to improve
its robustness and to embed the system on the MAV (using a novel
embedded CPU board). We intend to add a multi-view refinement step
in eVO for the fusion of eVO with other sensors available onboard
(IMU and GPS) to improve the quality, rate and reliability of state esti-
mation. In terms of perception, in the absence of GPU onboard, eFolki
will be replaced by an efficient dense stereo-matching algorithm,
such as SGBM [13]. We are also working on long-term modeling,
including loop closure detection and the associated correction of the
3D model. Finally, we also intend to make use of recent advances in
computational photography to obtain 3D data with more compact and
lightweight co-designed sensors, such as the 3D chromatic depth-
from-defocus camera presented in [44] 

Acronyms

CPU	 (Central Processing Unit)
eVO	 (Efficient Visual Odometer)
GPS	 (Global Positioning System)
GPS-RTK	(GPS Real-Time Kinematic)
GPU	 (Graphics Processing Unit)
IMU	 (Inertial Measurement Unit)
KITTI	 (Karlsruhe Institute of Technology
	 and Toyota Technological Institute)
KLT	 (Kanade-Lucas-Tomasi (feature tracker))

MAV	 (Miniature Aerial Vehicle)
RANSAC	 (Random Sampling Consensus)
RGBD	 (Red, Green, Blue + Depth (4-channel cameras))
ROS	 (Robotic Operating System)
SGBM	 (Semi-Global Block Matching)
SIMD	 (Simple Instruction Multiple Data)
SSD	 (Sum of Squared Differences)
UAV	 (Unmanned Aerial Vehicle)
ZNCC	 (Zero-mean Normalized Cross-Correlation)

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 16

References

[1] F. ANDERT, F. ADOLF - Online World Modeling and Path Planning for an Unmanned Helicopter. Autonomous Robots, 27:147–164, 2009.
[2] P.F. ALCANTARILLA, L.M. BERGASA, F. DELLAERT - Visual Odometry Priors for Robust Ekf-slam. IEEE International Conference on Robotics and Auto-
mation (ICRA), pages 3501–3506, 2010.
[3] M. ACHTELIK, A. BACHRACH, R. HE, S. PRENTICE, N. ROY - Stereo Vision and Laser Odometry for Autonomous Helicopters in gps-denied Indoor
Environments. Proceedings of the SPIE Unmanned Systems Technology XI, volume 7332, Orlando, Florida, 2009.
[4] G. LE BESNERAIS, F. CHAMPAGNAT - Dense Optical Flow Estimation by Iterative Local Window Registration. IEEE International Conference on Image
Processing (ICIP), pages 137–140, Genova, Italy, September 2005.
[5] J.Y. BOUGUET - Pyramidal Implementation of the Affine Lucas Kanade Feature Tracker - Description of the Algorithm. Technical report, Technical report.
Intel Corporation, 2001.
[6] A. I COMPORT, E. MALIS, P. RIVES - Accurate Quadrifocal Tracking for Robust 3d Visual Odometry. IEEE International Conference on Robotics and
Automation (ICRA), pages 40–45, Roma, Italy, April 2007. IEEE.
[7] A.J. DAVISON, I.D. REID, N.D. MOLTON, O. STASSE - Monoslam: Real-time Single Camera Slam. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 29(6):1052–1067, 2007.
[8] A. ELFES - Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer, 22(6):46–57, June 1989.
[9] M.A. FISCHLER, R.C. BOLLES - Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Carto-
graphy. Communications of the ACM, 24(6):381–395, 1981.
[10] F. FRAUNDORFER, L. HENG, D. HONEGGER, G. HEE LEE, L. MEIER, P. TANSKANEN, M. POLLEFEYS - Vision-based Autonomous Mapping and
Exploration Using a Quadrotor Mav. IEEE/RSJ International Conference on Intelligent robots and systems (IROS), pages 4557–4564, Algarve, Portugal,
October 2012.

[11] F. FRAUNDORFER, D. SCARAMUZZA - Visual Odometry: Part ii - Matching, Robustness, and Applications. IEEE Robotics and Automation Magazine,
19(2):78–90, June 2012.
[12] A. GEIGER, P. LENZ, R. URTASUN - Are we Ready for Autonomous Driving? the Kitti Vision Benchmark Suite. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3354 – 3361, Providence, RI (USA), June 2012.
[13] H. HIRSCHMÜLLER - Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 30(2):328–341, 2008.
[14] A. HOWARD - Real-time Stereo Visual Odometry for Autonomous Ground Vehicles. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 3946– 3952, 2008.
[15] A. HORNUNG, K. M.WURM, M. BENNEWITZ, C. STACHNISS, W. BURGARD - OctoMap: an Efficient Probabilistic 3D Mapping Framework Based on
Octrees. Autonomous Robots, 34(3), 2013.
[16] W. MORRIS, I. DRYANOVSKI, X. JIZHONG - Multi-volume Occupancy Grids: an Efficient Probabilistic 3d Mapping Model for Micro Aerial Vehicles.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1553–1559, Taipei (Taiwan), October 2010.
[17] K. KONOLIGE, M. AGRAWAL, J. SOLA - Large-scale Visual Odometry for Rough Terrain. 13th International Symposium of Robotics Research, Hiro-
shima, Japan, November 2007.
[18] B. KITT, A. GEIGER, H. LATEGAHN - Visual Odometry Based on Stereo Image Sequences with Ransac-based Outlier Rejection Scheme. IEEE Intelligent
Vehicles Symposium (IV), pages 486–492, San Diego, CA (USA), June 2010. IEEE.
[19] G. KLEIN, D. MURRAY - Parallel Tracking and Mapping for Small ar Workspaces. International Symposium on Mixed and Augmented Reality, Nara,
Japan, November 2007.
[20] M. KAESS, K. NI, F. DELLAERT - Flow Separation for Fast and Robust Stereo Odometry. IEEE International Conference on Robotics and Automation
(ICRA), pages 3539–3544, Kobe, Japan, May 2009.
[21] P. D. KOVESI - MATLAB and Octave Functions for Computer Vision and Image Processing. Centre for Exploration Targeting, School of Earth and Envi-
ronment, The University of Western Australia. Available from: <http://www.csse.uwa.edu.au/_pk/research/matlabfns/>.
[22] J. KELLY, G. S. SUKHATME - An Experimental Study of Aerial Stereo Visual Odometry. IFAC Symposium on Intelligent autonomous vehicles, 2007.
[23] J. KELLY, S. SARIPALLI, G. SUKHATME - Combined Visual and Inertial Navigation for an Unmanned Aerial Vehicle. Christian Laugier and Roland
Siegwart, editors, Field and Service Robotics, volume 42 of Springer Tracts in Advanced Robotics, pages 255–264. Springer Berlin / Heidelberg, 2008.
10.1007/978-3-540-75404-6 24.

[24] M.I. A. LOURAKIS, A.A. ARGYROS - SBA: a Software Package for Generic Sparse Bundle Adjustment. ACM Trans. Math. Software, 36(1):1–30, 2009.
[25] G. LE BESNERAIS, F. CHAMPAGNAT - Dense Optical Flow by Iterative Local Window Registration. IEEE International Conference on Image Processing
2005, pages I–137. IEEE, 2005.
[26] B. D. LUCAS, TAKEO KANADE - An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, volume 81, pages 674–679, 1981.
[27] H.P. MORAVEC, A. ELFES - High Resolution Maps from Wide Angle Sonar. International Conference on Robotics and Automation (ICRA), pages
116–121, St Louis, MI (USA), March 1985.
[28] E. MOURAGNON, M. LHUILLIER, M. DHOME, F. DEKEYSER, P. SAYD - Real Time Localization and 3d Reconstruction. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 1, pages 363–370, 2006.
[29] A. MALLET, S. LACROIX, L. GALLO - Position Estimation in Outdoor Environments Using Pixel Tracking and Stereovision. IEEE ICRA, 2000.
[30] H.P. MORAVEC - Robot Spatial Perception by Stereoscopic Vision and 3d Evidence Grids. Technical Report CMU-RI-TR-96-34, Carnegie Mellon Uni-
versity, September 1996.
[31] V. VITTORI, M. SANFOURCHE, G. LE BESNERAIS - evo: a Realtime Embedded Stereo Odometry for Mav Applications. IEEE/RSJ International Confe-
rence on Intelligent Robots and Systems (IROS), pages 2107–2114, Tokyo, Japan, November 2013.

Issue 8 - December 2014 - Online ego-localization and environment mapping for Micro Aerial Vehicles
	 AL08-09	 17

[32] C. MEI, G. SIBLEY, M. CUMMINS, P. NEWMAN, I. REID - Rslam: a System for Large-scale Mapping in Constant-time Using Stereo. International Journal
of Computer Vision, pages 1–17, 2010. Special issue of BMVC.
[33] D. NISTER, O. NARODITSKY, J. BERGEN - Visual Odometry for Ground Vehicles Applications. Journal of Field Robotics, 23(1):3–20, 2006.
[34] A. PLYER, G. LE BESNERAIS, F. CHAMPAGNAT - Folki-gpu: a Powerful and Versatile Cuda Code for Real-time Optical Flow Computation. GPU Tech-
nology Conference, San Jose, CA (USA), October 2009.
[35] A. PLYER, G. LE BESNERAIS, F. CHAMPAGNAT - Real-time Lucas-kanade Optical Flow Estimation for Real-world Applications. 2014.
[36] E. ROSTEN, T. DRUMMOND - Machine Learning for High-speed Corner Detection. European Conference on Computer Vision, volume 1, pages
430–443, May 2006.
[37] P. J ROUSSEEUW - Least Median of Squares Regression. Journal of the American Statistical Association, 79(388):871–880, 1984.
[38] C. HUERZELER S. WEISS L. KNEIP R. VOIGT, J. NIKOLIC, R. SIEGWART - Robust Embedded Egomotion Estimation. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2694–2699, San Francisco, Ca (USA), September 2011.
[39] D. DUBE S. A. SCHERER, A. ZELL - Using Depth in Visual Simultaneous Localisation and Mapping. IEEE International Conference on Robotics and
Automation, St. Paul, Minnesota, USA, May 2012.
[40] D. SCARAMUZZA, F. FRAUNDORFER. Visual Odometry: Part i - the First 30 Years and Fundamentals. IEEE Robotics and Automation Magazine,
18(4):80–92, December 2011.
[41] D. SUN, S. ROTH, M. J. BLACK - Secrets of Optical Flow Estimation and their Principles. Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, pages 2432–2439, 2010.
[42] S. SCHERER, S. SINGH, L. J. CHAMBERLAIN, M. ELGERSMA - Flying Fast and Low Among Obstacles: Methodology and Experiments. The International
Journal of Robotics Research, 27(5):549–574, May 2008.
[43] J. SHI, C. TOMASI - Good Features to Track. 1994 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 593 – 600, 1994.
[44] P. TROUVÉ, F. CHAMPAGNAT, G. LE BESNERAIS, J. SABATER, T. AVIGNON, J. IDIER - Passive Depth Estimation Using Chromatic Aberration and a
Depth from Defocus Approach. Applied optics, 52(29):7152–7164, 2013.
[45] S. UMEYAMA - Least-Squares Estimation of Transformation Parameters Between Two Point Patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 13(4):376–380, April 1991.
[46] R. ZABIH, J. WOODFILL - Non-Parametric Local Transforms for Computing Visual Correspondence. Computer Vision—ECCV’94, pages 151–158,
1994.
[47] M. MEILLAND, A.I. COMPORT, P. RIVES - Dense Visual Mapping of Large Scale Environments for Real-Time Localisation. Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francsiso, 2O11.

AUTHORS

Martial Sanfourche graduated from Universite de Cergy-Pon-
toise in computer Sciences (2001) then received the Ph.D.
degree in image and signal processing from the Universite de
Cergy-Pontoise in 2005. After a postdoctoral position at CNRS-
LAAS, he joined Onera/DTIM in 2007 where is now a research

engineer in computer vision. His current research interest include online and
offline visual localization and mapping for robotic systems.

Aurelien Plyer graduated from Universite Pierre et Marie Curie
(Paris 6) in 2008 and received the Ph.D degree in Image Pro-
cessing from the Universite de Paris 13, in 2013. His research
deals with low level video processing and 3D environement
perception for robotics, he uses GPU programming in order to

implement real-time processing.

Anthelme Bernard-Brunel holds a technological university le-
vel diploma in Electrical and Computer Engineering issued by
the IUT de Ville d'Avray (2012). Since, Anthelme follows an
apprenticeship for being graduated in electrical engineering and
computer science. It alternates between courses at UPMC

Polytech 'Paris and his job at the Onera/ DTIM.

Guy Le Besnerais graduated from the Ecole Nationale Supe-
rieure de Techniques Avancees in 1989 and received the Ph.D.
degree in physics from the Universite de Paris-Sud, Orsay,
France, in 1993. He joined the Onera in 1994, where he is now
a senior scientist in the Information Processing and Modeliza-

tion Department. His work concerns inversion problems in imagery and com-
puter vision.

