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Testing in Aerospace Research

procedures for the simulation means. Table 1 illustrates some of the 
mutual benefits that experiments, simulation and inverse problems 
have gained by collaborating.

In this paper, a partial overview will be given of some techniques and 
results emanating from the signal processing theory and the inverse 
problem community, which have enhanced, made possible or increased 
the performance level of experiments. Emphasis will also be placed on 
the notion of a priori information in inverse problems, this information 
being extracted from all of the knowledge accumulated through experi-
ments. First, linear problems arising essentially from signal processing 
are addressed. Then, two problems coping with image capturing are 
investigated, since they are considered to be of utmost importance in 
aeronautical applications: the first deals with Particle Image Velocimetry 
for fluid flows, and the second one deals with full-field displacement 
measurement by digital image correlation in mechanics.

Introduction: Experiments, Simulation  
and Inverse Problems

From its very beginning, experiment has been indissolubly related to 
measurements and instrumentation, but it is only since a few decades 
ago that numerical processing, simulation and modeling have been 
deeply incorporated into the field. Symmetrically, the development of 
computational physics and mathematics in the mid-fifties opened the 
way to signal processing, and ten years later to addressing what was 
known as inverse problems (IP) but was studied until the eighties by 
a very small scientific community only due to a lack of computational 
power.

Since that period, a continuous development of the "accompani-
ment" of experiments by computation and modeling has led to new 
experiments, unprecedented accuracy, and measurements of "hid-
den" quantities. At the same time, the volume of experimental data 
has given rise to new capabilities for the identification of physical 
or geometrical parameters, and also to the emergence of validation 
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This paper offers a partial overview of some techniques and results emanating 
from inverse problems or signal processing with application to the development 

or enhancement of the exploitation of data obtained by experiments on physical 
systems pertaining to the aerospace domain. The first part deals with linear problems 
encountered in various problems of signal processing, whereas the second one 
addresses two specific image-based identification techniques. Finally, the conclusion 
strives to identify some future trends.

Benefits for Experiments gained from Simulation and IP Benefits for IP and Simulation gained from Experiments

• �Regularization, interpolation (super-resolution) and extrapolation of 
measurements

• �Extraction of information from highly noisy measured data

• �Optimization of instrumentation and location of sensors

• �Access to non-directly measured quantities or unreachable zones

• �Consideration of uncertainties

• �Enhancement of NDT-NDE processes and observation instruments

• �Hybrid experiments

• �Definition of new inverse and identification problems from experimental 
data and procedures

• �Identification of model parameters, boundary conditions, and internal 
sources

• �Forecasting

• �Enrichment of a priori information

• �Validation

• �New NDT- NDE processes and new observation instruments

• �Hybrid experiments

Table 1 – Cross-fertilization between Experimentation, Simulation and Inverse Problems



Issue 12 - December 2016 - Inverse Problems and Experiments: a Fruitful Symbiosis
	 AL12-01	 2

Linear problems

Many examples can be found of linear inverse problems arising from 
experimental instrumentation or, more directly, from the goal aimed 
at in the investigation of the reality. Most of the examples fall into the 
field of Image and Signal Processing: signal deconvolution, image 
restoration, computed tomography, microwave imaging, and fluores-
cence imaging, as well as adaptive optics [24] and SAR [65] imaging. 
The general form of linear inverse problems is written as:

	 g f ε= +H 	 (1)

where g is the measured data (output signal, blurred image, etc.), f 
is the unknown (input signal, original image) H can be called the for-
ward operator (as it appears in the usual "direct problem"), and lastly 
ε is the noise or the error. Whereas seeking g when the pair ( f, H ) is 
given is a direct or forward problem, seeking f with given ( g, H ) is 
called the estimation or inverse problem, and seeking H (or param-
eters describing it) with given ( f, g ) is the identification problem.

As an example, in the deconvolution problem, H is a convolution with 
kernel h:

	  ( ) ( ) ( )f h t f dτ τ τ= −∫H 	 (2)

H involves the impulse response of an instrument (called point spread 
function (PSF) in imaging, it is the spatial domain version of the imag-
ing system transfer function). When the PSF is totally unknown one 
speaks of blind deconvolution, whereas when some measurements or 
estimations of the PSF are available (but the PSF is not fully known), 
we have the myopic deconvolution problem, in which both the object 
and the PSF have to be restored [51].

The operator H generally arises from the modeling of the underlying 
physics, and can sometimes be a matter of design, like in radar where 
the H operator is designated as the sensing operator. Note that the 
general form (1) also encompasses the Bayesian inference approach 
([17], [18], [47]) where the pdf of the signal is now the unknown.

Once discretized (or sometimes directly resulting from the physics), 
H is a (rectangular) matrix, a Toeplitz matrix for deconvolution for 
example, and ( f, g ) will be vectors of respective lengths N and M 
(where generally N>M).

Ill-posedness and regularization 

Inverse problems are generically ill-posed. From the continuous view-
point, the ill-posedness arises either from the non-existence of a solu-
tion, the non-(finite) uniqueness of the solution or the non-continuity 
of the solution with respect to the data ([33], [44]). Box 1 gives some 
details about the ill-posedness of the Fredholm integral equation of the 
first kind, frequently arising in inverse problems. In the finite dimen-
sional context, these concepts move to a non-invertible (or rectangu-
lar with N >M ) matrix H, and severe bad conditioning.

In order to deal with this difficulty, the general procedure is regulariza-
tion, which was introduced in the sixties ([53], [63]); that is, loosely 
speaking, accepting to modify the operator or the model in such a 
way that well-posedness is recovered. The price to pay is a loss of 
accuracy. 

Basically, regularization is performed on a variational form of the inverse 
problem, in which f is sought as the minimum of a functional (usually 
chosen as a norm of the gap with respect to the measured data):

	 ( )
p

f ArgMin J p= 	 (3)

The regularization is achieved by adding a stabilizing functional S ( p ) 
with a (small) scalar regularization parameter α, which is a compro-
mise parameter between the fidelity to the data and the desired prop-
erties of the function f that are enforced via the stabilizing functional.

	 ( ) ( ) ( )J p J p S pα α= + 	 (4)

Again, the choice of the stabilizing functional relies on a priori knowl-
edge about the underlying physics. Usual choices for S are either 
based on regularity requirements on f, or guided by the vicinity of 
a given value f0 of f. Historically, the stabilizing functional was the 
quadratic norm of the gradient of f, in order to smooth out the spatial 
or temporal oscillations of the signal frequently encountered in ill-
posed problems, where the noise in the data is dramatically amplified 
in the solution. However, since this turns out to be too smoothing, and 
especially for edge-preserving applications, the total variation regu-
larization or L1 stabilizing functional are used ([21], [54]), or even 
more sophisticated L1-L2 functionals: quadratic for small gradients 
and linear for large ones ([14],[23]). 

Box 1 – Ill-posedness of the Fredholm integral of first kind

The equation is a typical example of an ill-posed problem and appears in numerous inverse problems: 

( ) ( ) ( ), ,
J

g x h x y f y dy x I= ∈∫
The Hadamard ill-posedness occurs under the following situations [3]:

•	 When the kernel h is continuous, g will be continuous for any measurable function f, therefore, no reasonable function f exists if g 
exhibits discontinuities,

•	 If the sign of the kernel is not constant, a non-finite set of solutions can exist. Simply by assuming that I=J=[0, π], h(x,y)=x sin y, g(x)=x, it 

is easy to verify that the set ( ) 1 sin ,
2nf y ny n = + ∈ 

 
  is a family of solutions,

•	 Thanks to the Lebesgue lemma (if p( y) is continuous, then ( )
0

sin 0p y nydy
π

→∫  when n tends to infinity), the perturbation of the 

solution can be set to be arbitrarily large whatever the norm of the data perturbation, so no continuity with respect to the data can be 
achieved.
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Although the choice of the regularization parameter is often made on 
the basis of trial and error procedures, it can also rely on supple-
mentary information about the measurement errors. The discrepancy 
principles ([10], [50]), for example, propose roughly speaking to 
determine the parameter α just by choosing the smallest value that 
makes the fidelity term of the functional be of the same order of mag-
nitude as that of the measurement error: that is, not requiring more 
fidelity than the error level for the data. A last call to experience for the 
solution of inverse problems can be the choice of the minimization 
algorithm starting point, usually called the initial guess.

However, the most striking example of the use of a priori informa-
tion in solving inverse problems is the Bayesian inference approach, 
where the philosophy is to consider the experiment as a means for 
adapting the a priori knowledge that we have about the situation at 
hand. More precisely, the Bayes theorem is used to build the posterior 
probability distribution of the parameters, given the prior distribution 
and the result of the experiment. In the linear case, the formulation 
obtained is very similar to the deterministic regularized least-square 
formulation (Gaussian prior corresponding to the weighted L2 fidelity 
norm, and the Laplacean prior to L1) with the noticeable difference 
being that there is no regularization parameter per se. The balance 
between the corresponding fidelity term and regularization term is 
provided naturally, given by the covariance matrices.

An additional benefit of the probabilistic approaches is that the ques-
tion of the model used for extracting information or parameters out 
of the measured data can be addressed. Indeed, using models leads 
inevitably in an approximation or a systematic error, and to quoting G. 
Box [15]: "The most that can be expected from any model is that it 
can supply a useful approximation to reality: All models are wrong; 
some models are useful". This is the reason why some authors plead 
for the incorporation of uncertainties (and thus for a probabilistic, 
generally Bayesian, approach [39]): A model that is wrong can only 
be useful if we acknowledge the fact that it is wrong […] model dis-
crepancy is an important part of uncertainty quantification and must 
not be ignored, even though it may be hard to account for [17].

Compressed sensing

Modeling and using a priori information also play a prominent role in 
the recent approach of compressed sensing [19]. One of its salient 
features is the identification of an orthonormal basis, say {Ψi}, where 
the unknown f has a S-sparse expansion, that is, a low number S of 
non-zero (or significant) components:

	
1

S

i i
i

f f ψ
=

= ∑  	 S "small"	 (5)

The second fundamental premise of compressed sensing is incoher-
ence, because it enables the possibility of performing the determina-
tion of fi with very few samples of the data g. More precisely, if the 
basis for "representation" of the data g is denoted by {φi}, the coher-
ence in IRn between the "sensing" basis {Ψi} and the representation 
basis {φi}, is 

	 ( )
1 ,

., max i j
i j n

nµ ϕ ψϕ ψ
≤ ≤

=  	 (6)

A lower value of μ (note that 1≤ μ ≤ n ) corresponds to a lower 
correlation between any two elements of each basis [28]. Classical 
examples of pairs with low coherence are the Fourier basis-Spikes 

basis ( μ =1), which represents maximal incoherence, or the Noise-
lets basis-Haar wavelets basis (μ = 2 ). Coherence is involved in a 
quite strong result stating that the number of data sufficient for a good 
identification of f can be significantly lower than the Nyquist rate given 
by the Shannon theory: for an IRn f signal that is S-sparse in the basis 
{Ψi} and a set of m measurements selected in the basis uniformly at 
random, then 

	 { }2 log *
i S

m C S n fµ
≤

≥ ⇒  is exact	 (7)

where f* is the solution of the following l1 minimization problem, con-
strained by the m measurements of (1):

	
{ }

{ } 1min
nf IR

f
∈

 subject to , 1,...,i ig f i mϕ=< > =H 	 (8)

the result (6) being true within an "overwhelming probability" [19]. 
It is readily seen that for a coherence equal to one, the number m of 
needed data is of the order S log n. If we now turn to noisy data, the 
question of robustness with respect to noise becomes central. The 
version of (8) is now a relaxed version, known as the LASSO or l1-l2 
regularization ([29], [62], [51], [24], [27], [67]), where advantage is 
taken of the knowledge of the noise level ε:

	
{ }

{ }
1

min
nf IR

f
∈

 subject to 2g f ε− <H 	 (9)

Using the concept of the isometry constant δS for the matrix H and 
any integer S defined by the smallest number such that:

	

2

2
2

2

1 1S S

x
S sparse x

x
δ δ− ≤ ≤ + ∀ −

H
	 (10)

[20] showed that the solution f* of (8) has the following error inequal-
ity, when 2 2 1Sδ < − :

	 0
12 1

* S
C

f f f f C
S

ε− ≤ − + 	 (11)

This means that the error in the reconstruction is just supplemented, 
in the case of noise, with a term directly proportional to the noise 
level. Furthermore, [20] claims that the constants C0 and C1 are 
"small" (typically, for δ2S = ¼ , C0 and C1 < 6).

Sparsity can also be enforced within the Bayesian approach to linear 
inverse problems [47], and also has a wide field of application in the 
identification of 3D vector fields ([25], [48]).

Completion and interpolation of velocity fields 
obtained by PIV

According to [64], "The great challenges of flow dynamics require 
the validation of physical models with relevant length ranges span-
ning dozens of orders of magnitude, from a few Angstroms, at which 
atoms and molecules collide and bond (particularly in combustion), 
to a meter range (the size of a combustion chamber or a wing). Optical 
diagnostics are ideal for addressing this enormous challenge as they 
can span these different scales, offering both a global view through 
imaging and a microscopic view through spectroscopy. Moreover, 
these techniques are non-intrusive, so that they do not disturb the 
system or bias the measurements as other probing techniques do."
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Unlike Particle Tracking Velocimetry [2], dealing with low seeding 
density and sparse estimation of the displacement, PIV is based either 
on direct correlation techniques between two successive images 
(including fast algorithms on GPUs, like the iterative Lucas-Kanade 
optical flow algorithm FOLKI [22]), or on image correlation tech-
niques using the optic flow conservation equation. This last equation 
just expresses the fact that, under the assumption of conservation 
of the luminance of the particles, the image (gray level) I(x,t) is only 
transformed by the velocity flow v between two time instants:

	 . 0t I I∂ + ∇ =v  	 (12)

It is clear that this equation only gives access to limited information 
about the velocity field, namely the component of v parallel to the 
gradient of the function I; ⊥v  remains undetermined (note in passing 
that no information is gained from a part of the flow with a uniform 
gray level in the image):

	 t
II
I

⊥∇
= −∂ +

∇
v v  , . 0I⊥ ∇ =v 	 (13)

Thus, a naïve least-square formulation like the following, striving to 
minimize the residual of the equation (12), is doomed to fail. 

	 ( )2( ) .
m

opt
tArgMin J I I dV

Ω
= ≡ ∂ + ∇∫

v

v v v  	 (14)

For two dimensional domains Ω, [59] showed that regularized func-
tionals consisting of two terms (the first measuring the closeness to 
the data and the second measuring desired smoothing properties of 
the solution):

 	 ( )2 2( ) .tJ I I dV dVα α
Ω Ω

= ∂ + ∇ + ∇∫ ∫v v v 	 (15)

or 

	

( ) 22

2
1 1 2 2

22

3

( ) .

. . . . ,

1 ,
2

I

I

t W

I I IW

J I I dV dV

v W v v W v W

I I Id I
I

e I

α α

γ
γ

Ω Ω

⊥ ⊥ ⊥

= ∂ + ∇ + ∇

∇ = ∇ ∇ + ∇

 = ∇ ⊗ ∇ + ∇ ∇ +

= ∧ ∇

∫ ∫v v v

v
	 (16)

are H 1(Ω)-elliptic (hence convex) for α > 0 and have a unique mini-
mizer, which depends continuously on the data. The second regu-
larized functional appears to be more physically grounded (since it 
turns out that it actually regularizes only the vector field component in 
the direction parallel to the intensity I, a component which is loosely 
controlled by the optical flow equation). Nevertheless, the first order 
Euler conditions for stationarity involve far more complicated bound-
ary conditions for the solution field than for the first functional.

Estimates of fluid flow velocity fields are often corrupted, however, 
due to various deficiencies of the imaging process, making the physi-
cal interpretation of the measurements questionable. Some authors 
have proposed to deal with vector field estimates from any method 
and return a "physically plausible denoised version" thereof [66], 
whereas some more physical considerations can be introduced in the 
regularization added functional ([36] and the review paper [37]). By 
designing variational PIV methods, [55] showed how physically con-

sistent flows should be estimated from PIV image sequences utiliz-
ing a distributed-parameter control approach. This has been extended 
in ([56], [57]) to a dynamic setting based on the vorticity transport 

equation formulation of the Navier-Stokes equation. [68] proposed 
to achieve spatial and temporal super-resolution of a measured flow. 
Applications are numerous in aerodynamics, for example in [26] for 
the analysis of turbulent jets, or for the interaction between shocks 
and boundary layer, [58].

Apart from the question of noise, which cannot be avoided, one can 
also be interested in extending the identification of the velocity field 
within the flow away from a "measurement box" or "measurement 
slice" Ωm and in identifying other parameters describing the flow, or 
involved in its modeling. Two approaches can be proposed, some-
times sharing the final form of the algorithms, but with a different 
reasoning behind them: the optimal control approach [46] and the 
data assimilation approach [45]. Figure 1 describes the kind of results 
that can be achieved.

An optimal control approach for a model problem

Let Ω be the total volume (or surface) where the velocity field v has 
to be identified, and let Ωm be the subdomain where the velocity mea-
surement is made. The inflow and outflow boundaries are denoted by 
Γ and let us denote the obstacle around which the flow is studied by 
w (Figure 2).
In order to then enhance the velocity identification or estimation v, 
and to extend the estimation outside of Ωm, the following functional is 
built involving two auxiliary fields as control variables: a volume force 
density f in Ω and a surface velocity field g on Γ

	 ( )( , ) ( , ), ,F H≡f g v f g f g  	 (17)

with the velocity field v over the entire domain Ω\w being related to 
the pair ( f, g) by a state equation E(v, f, g) =0; for example, consid-
ering the simplest one:
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Figure 1 – Reynolds-averaged Navier-Stokes-driven mean-flow reconstruction 
around a cylinder: (a) velocity magnitude measurements, (b) and (c) 
reconstructed components of the mean velocity field (from [31])
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Figure 2 – Sketch of the geometry of the flow data regularization/extension 
problem
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\ 0

e

in

ω

ν

Γ

∂Ω Γ∪∂

− ∆ = Ω
 = +
 =

v f   
v V g

v

	 (18)

This can be viewed as the Stokes equation without the incompress-
ibility constraint div v =0, which can hardly be fulfilled in a 2D setting 
where particles can exhibit a significant out-of-plane velocity com-
ponent. Ve is an estimation of the inflow and outflow condition. The 
recovery algorithm is then:

	
( , ) ( , )

and ( , )

opt opt

opt opt opt

Arg Min F
=

f g =   f g
 v v f g

	 (19)

where the velocity field vopt is computed through the state equation 
with the optimal values of the forcing terms. The functional Fi=Hi+S 
contains two terms. The first (fidelity term) can be the usual optical 
flow conservation residual, sometimes called the brightness change 
contrast equation, involving the intensity I (x,t) (particle image):

	 ( )2
1( ) .

m
tH I I dV

Ω
= ∂ + ∇∫v v 	 (20)

if one deals directly with the analyzed image sequences, or a least-
square error over the measured area:

	 ( )2
2 ( ) -

m
mH dV

Ω
= ∫v v v 	 (21)

if one deals with a first (rough) identified velocity field vm. The second 
term is a regularization (and bringing convexity) term, involving the 
stabilization of semi-norms on the control variables f and g:

 	 2 2( )Sαβ α β
Ω Γ

= +v f g 	 (22)

where (α, β) is a pair of (small) positive scalar parameters of the 
method. Whereas the semi-norm for the regularization of the veloc-
ity g can involve its tangential gradient 

s
∇ g  on Γ (in order to control 

more the spatial variation of the inlet and outlet velocities rather than 
their amplitude), the standard L2 norm should be preferred for the 
regularization of the source term f, as it stands for all of the irregular 
terms in the Navier-Stokes equation in the state equation.

Let us make a few remarks related to this formulation of the identi-
fication problem. First, the state equation is chosen in such a way 
that, given a pair of (regular) functions ( f, g), a unique velocity field 
v ( f, g) is solution of the equation (18), thanks to the coerciveness 
of the Laplace operator and to the Lax-Milgram theorem. Second, the 
regularization term is essential in order to select a solution v, just 
because the degree of freedom inserted in the formulation by the 
introduction of the unknown pair ( f, g) is very large. Indeed, one can 
easily convince oneself that given a pair ( f0, g0), and accordingly a 
velocity field v0 solution of the state equation, the following family of 
triplets ( f+∆φ, g, v+φ) satisfies the state equation and leads to the 
same values of the functionals Hi (i=1or 2) for every regular φ with 
compact support in \ ( )m ω∪Ω Ω  .The reason why is simply that for 
every v in the family: v ≡ v0 in Ωm. Thus, for α =β= 0, the convex 
functionals Fi cannot be strictly convex.

On the contrary, for α, β> 0, the functionals Fi are strictly convex and 
positive, hence they have a unique minimum (depending on the pair 
(α,β)). Thus, the regularized identification problem has a unique solu-
tion. It is readily seen, thirdly, that the functionals Fi are quadratic (as 
v ( f, g) has an affine dependence on ( f, g)). Nevertheless, the implicit 

dependence of v on ( f, g)) prevents any use of the first order Euler 
condition for determining the minimum. The solution method is then 
the direct minimization and, due to the ill-posedness of the problem 
and to the cost of the computation of the functional F for a given pair 
( f, g), it is essential to have a precise computation of its gradient. 
The more efficient way to compute it and to take into account the 
implicit dependence of F with respect to ( f, g), is the adjoint field 
approach. This can be achieved by using the following Lagrangian, 
involving two Lagrange multipliers (w, μ):

	
( , , ; , ) ( , , ) .

. .( )p

L H dV

dV dS

ν
Ω

Ω Γ

= − ∇ ∇ +

+ − −

∫
∫ ∫

v w f g v f g v w

f w v V g

µ 

µ
	 (23)

The equation for the adjoint field w is obtained by stationarity of the 
Lagrangian with respect to v, and is written as:

	

( )

\

' ( , ), ,

. ( , ).

0

vH inν

ν ν
Γ Γ

∂Ω Γ

− ∆ = Ω
 ∇ = − ∇
 =

w v f g f g   

w n v f g n

w

	 (24)

where H’v is the partial derivative of the H functional with respect 
to v; that is, for the two possible choices described previously:

	
( ) ( )
( ) ( )

1

2

' ( , ), , 2 .

' ( , ), , 2
m

m

v t

v m

H I I I for H

H for H

χ

χ
Ω

Ω

= ∂ + ∇ ∇

= −

v f g f g   v

v f g f g   v v
	 (25)

where m
χΩ  is the characteristic function of the set Ωm. Equipped with 

the initial and adjoint fields, the gradients of the functional are simply 
computed from the equalities, which are none other than the partial 
derivative of L:

	
( )

( )
( , ). 2 .

( , ). 2 . .

f

g t t

D F dV

D F dV

δ δ

δ δ δ
Ω

Ω

= +

= ∇ ∇ +

∫
∫

f g f f w f

f g g g g w g
	 (26)

The choice of the state equation results clearly from a compromise 
between the simplicity of the state equation and the physics that it 
contributes to the problem; here, the simplest state equation has been 
retained (no inertial terms, no incompressibility constraint): the arbi-
tration will be returned by the experience.

The (variational) data assimilation approach

Taking advantage of the measurements performed on a system, the 
general idea behind the data assimilation is to mix the information 
gained from the experiment, including the related uncertainties, the 
information gained from the modeling of the underlying physics, 
possibly including model uncertainties or imperfections and, lastly, 
a priori information on the system, substantially on its initial state 
(background information). The objective was initially to build a more 
precise estimation of the state, present or future, of the system. There 
are broadly two main families of methodologies for achieving this 
goal: filtering methods based on the (statistical) estimation theory 
[40] and variational methods [45] originally designed for meteoro-
logical forecasting applications. The general form of the functional to 
be minimized in data assimilation along a time interval of duration D 
is the following [32]:

22 2
00 0

( , ) ( , )
D D

R BF
J u H m dt dt dV

Ω
= − + + −∫ ∫ ∫g v g u g u u  	(27)
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where the following ingredients appear: 
•	 v is the flow, governed by a state equation: 

( ) ( ) ( ), ; 0 , ,0t M x x∂ + = =v g u v v v  involving the initial 
state u, taken here as a control variable, and g, the perturbation of 
the inflow, taken as a control variable (like in Equation 18) as well;

•	 H is the observation operator, which maps the flow v to the 
measurements m, so that the first term of the functional J is 
simply a fidelity term to the data. The norm .

R  used to mea-
sure the gap to the data in the data assimilation process, is built 
form the knowledge of measurement errors and is a covari-
ance-based norm. In a finite dimensional setting, it reduces to 
the Manahobis norm generated by the inverse of the covariance 
matrix R: 

2 1 ,x R x x−= .

•	 The second term appearing in the functional term is a regular-
ization term on the control variable g. Again, the norm .

F  is a 
covariance based norm.

•	 The last term involves the control variable u constituted by the 
initial condition of the flow, and here the regularization is related 
to the closeness of a background (a priori) information u0. The 
norm .

B  is grounded in a finite dimensional setting to the 
covariance matrix B in the initial state.

As mentioned before, the probabilistic approach of variational data 
assimilation can be viewed as a regularization variational least-square 
identification method, but with a different reasoning behind it in the 
building of the regularization terms, which are based on a priori infor-
mation (covariance matrix, backgrounds) and the peculiar feature that 
the regularization parameters are directly incorporated into the stabi-
lizing functional terms via the choice of the covariance matrices. This 
last choice is nevertheless a delicate matter, with major concerns 
about cross-correlation and dependency.

In the previous example, a control variable has been added to the initial 
condition u, which is the only control variable in the so-called 4D-Var 
data assimilation method. For several years, there has been a growing 
demand for simultaneous identification of parameters and the estima-
tion of state variables. Beyond the interest of exploiting large amounts 
of data for enhancing the simulation models (identification of model 
parameters) or the description of the experiments (identification of 
boundary conditions), a great potential can be expected either in hav-
ing simulations or performing analysis for systems that do not yet 
exist, or even in revisiting the process of simulation itself. Joint state 
and parameter estimation can be simply addressed by augmenting 
the state variable space with the parameters {p} and correspondingly 
the state equation on the parameters with the simple equation 0p =  
([52], [60]). Apart from the issue of defining the related covariance 
operators, the adaptation of the previous formulation is straightfor-
ward. Nevertheless, this approach can be questionable on two points. 
First, the augmented state equation mixes quantities and equations of 
a very different nature, and the parameter evolution equation is some-
how artificial given that the parameters are, by nature, fixed param-
eters. However, considered now as a function of time, it simply has to 
be expected that it will tend to a stationary value p∞, in order for this 
value to be able to be recognized as the "true value" of the parameter. 
Secondly, for situations where it is impossible to have significant a 
priori statistical information about the parameters, it will be impos-
sible to build the covariance operator and to calibrate the level of 
uncertainties in relation to one of the other control variables. 

This is the reason why some other approaches have been pro-
posed ([34], [3]), based on a hierarchical identification process 
(with a first deterministic step and a related functional energy error 
functional E), and with the choice of the covariance operator as the 
Hessian of E. As an extension of the parameter identification within a 
predetermined model, [1] proposed to estimate conjointly a flow and 
the parameters of its POD-reduced model.

Expanding, inside a body, measured surface fields

Advances in the development of digital cameras, image correlation 
techniques (DIC) and infrared cameras now make it possible to have 
measurement means for full-field surface displacements or tempera-
tures that are cheap and relatively easy to manage and, more impor-
tantly, leading to very large amounts of information [61]; an example 
of estimated surface displacements on a cracked mock-up is given 
in Figure 3. Nevertheless, the use of these surface data is still largely 
restricted either to qualitative estimation or to quantitative analysis 
based on a plane mechanical or thermal state, or on homogeneous-
through-the-thickness assumptions [12]. Aimed at a true 3D quan-
titative imaging process, the problem of reconstruction of the fields 
inside the solid from images obtained on parts of its boundary must 
be addressed. 

One approach in dealing with this problem in mechanics is to first 
reformulate it within the continuous framework, taking advantage of 
the fact that the amount and spatial density of the information obtained 
using the digital image correlation techniques make it possible to con-
sider that the complete displacement field is available on a part of 
the boundary and is not reduced on it to pinpoint data only. Then, it 
is possible secondly to formulate it as a Cauchy or Data Completion 
Problem, taking into account the fact that an overspecified data pair 
is given on a part Γm of the boundary: the capture of displacement 
fields via the DIC on a stress-free boundary with unit normal n gives 
access to the Dirichlet-Neumann pair (U, σ.n). The Cauchy Problem 
is an archetypal ill-posed problem ([13], [33]).
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Figure 3 – Surface tangential displacement field obtained by DIC for a cracked 
mock-up (ONERA)
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In the generic situation, the usual boundary conditions are given 
on Γb. Γm is the part where, using DIC acquisition measurements, 
both displacement and stress vector components (Um, Fm=0) are 
available. Lastly, Γu is the remaining part of the boundary, where no 
boundary data is known. For the sake of simplicity, we will assume 
that Γb is empty, but the extension of the method to situations with 
non-empty Γb is straightforward. The boundary Γu is generally non-
connected and can possibly contain internal surfaces such as cracks 
or boundaries of cavities and inclusions (see Figure 4).

Within the framework of linearized strain and for isothermal transfor-
mation, the constitutive equation for the material constituting the solid 
is written in an abstract format as a relation between the Cauchy stress 
tensor σ and the linearized strain tensor ε, and can also involve internal 

variables α: ( , , ) 0f α =σ ε . This equation is complemented with the 
evolution equation for the internal variables α: ( , , ) 0g α =σ ε . All of 
these equations can also, and generally will, be inclusion equations 
within the framework of convex analysis, using the notion of sub-dif-
ferential. The functions f and g entering the constitutive relation can be 
also functions of the space variable x, given that the solid Ω can be 
heterogeneous; however, for the sake of clarity, it will be omitted.

The form of the Data Completion Problem (or abusively the Cauchy 
Problem) that we can select, is to determine the missing Neumann 
boundary data η=σ.n) on the part Γu of the boundary of the solid 
such that there exists (u, σ, α) in the domain Ω over the time interval 
[0, D] fulfilling the following:

	 0 0 00 0 0

0
( , , ) 0, ( , , ) 0

,
, .

.
m m

u

t t t

m m m

u

div in
f g in

in
on

on

σ
α α

α α
= = =

Γ Γ

Γ

= Ω
 = = Ω
 = = = Ω
 = = Γ


= Γ

σ ε σ ε
σ σ
σ

σ η

u u
u U n F

n

	 (28)

where [ ]( ) symε = ∇u u  is the linearized strain operator. The general 
variational method, derived firstly in [5] for the Laplace operator (sta-
tionary isotropic conduction equation), for solving this problem is 
based on two steps. First, two auxiliary usual well-posed problems 

Ω

Γm

Γb

Γu
Γb Γu

Figure 4 – The geometry of the problem with the partition (Γm, Γb, Γu) of the 
boundary of the considered body Ω

Box 2 – The Bregman divergence

Introduced within the context of convex optimization ([16], [41]), the Bregman distance, or Bregman divergence, is akin to a metric, 
although not satisfying the triangle inequality nor symmetry. Let J be a convex function, the generalized Bregman distance between e1 and 
e2 with respect to J is the non-negative scalar: 

1 2 2 1 1 2 1 1 1( , ) ( ) ( ) , for ( )JD e e J e J e p e e p J e= − − − ∈ ∂

where ( )J e∂  stands for the subdiffential of J at e.

Dj(e1, e2)
J(e2)

e2

e1

Πxi

x2J(e1)

J

Geometrical interpretation of the Bregman divergence 

Π is the tangent plane to J at e1

In IRn, it is readily seen that the squared Euclidean distance 
2

1 2e e−  or Mahalanobis distance ( ) ( )1 2 1 2
Te e Q e e− −  are Bregman diver-

gences, respectively generated by 
2( )J x x=  and ( ) TJ x x Qx= . In probability theory, the Kullback–Leibler divergence or relative entropy 

[43]: 

( , ) log i
i i i

i

e
D e a e e a

a
= − +∑

is generated by the function 

 
( ) logi i iJ e e e e= −∑
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Pi, i = 1,2 are defined, each using only one of the overspecified 
boundary data on Γm and a given normal stress vector field η on Γu:

	
0 00 0 0

0
( , , ) 0, ( , , ) 0

,
.

u

i

i i i i i i

i i it t t

i u

div in
f g in

in
on

σ
α α

α α
= = =

Γ

= Ω
 = = Ω
 = = = Ω
 = Γ

σ ε σ ε
σ σ

σ η
u u

n

	 (29)

And respectively for P1 and P2:

	 ( ){ } ( ){ }1 1 2 2 .m m m mon on= Γ = Γu U n FσP P 	 (30)

With the additional condition (global equilibrium) on η: 

0
m u

mdS dS
Γ Γ

+ =∫ ∫F η .

It is clear that if a surface traction field ηopt on Γu is such that  
u1 = u2 + RBM, where RBM is a Rigid Body Motion, the two 
problems P1 and P2 will have the same solution (σ, α). Therefore, 
the Cauchy problem is solved with u1, and the solution of the Data 
Completion Problem is ηopt; furthermore, the Dirichlet-Neumann data 
pair on Γu is (u1, ηopt). 

The second step will therefore be to minimize a suitable gap func-
tional E between the two states ( )1 1 1, ,αu  σ  and ( )2 2 2, ,αu  σ  solu-
tions of P1 and P2, as a function of the sought stress vector field η on 
Γu, leading then to the variational method:

[ ]( ) [ ]( )( )1 1 1 2 2 2( ) , , , , ,opt ArgMin G α α= ≡ E u u
η

η η  σ η  σ η 	 (31)

Clearly, the choice of the gap E is of primary importance, in view of 
the overall performance of the method. The gap functional takes into 
account first that the dimensions of the state variables are various, 
and second that the states involved are not any collections of the 
state variables, but rather obey a conservation law and a constitu-
tive relation. What is needed is therefore a kind of metric defined on 
a geometric variety, rather than a distance in the vector space into 
which it is plunged.

It is therefore proposed to turn to Bregman divergences, which can be 
built from any convex function (see Box 2). More precisely, after hav-
ing selected a convex function J of the state variables suited to each 
kind of constitutive relation, the gap functional is written as:

	 1 2 1 2, ) ( ), ( ))( (s
J JD x x dVe e e e

Ω
= ∫E 	 (32)

Where 1 2( , )s
JD e e  is the symmetrized Bregman divergence:

	 1 2 1 2 2 1

1 2 1 2

( , ) ( , ) ( , )
,

s
J J JD e e D e e D e e

p p e e
= +

≡ − −
	 (33)

The properties of the Bregman divergence are closely linked to the 
Legendre-Fenchel inequality in convex analysis ([30], [38]), espe-
cially in establishing the following property, which is of upmost 
importance in the perspective of building a gap functional.

Proposition: �If J is strictly convex, then the following equivalences 
hold true

	 1 2 1 2 1 2( , ) 0 ( ) ( )s
JD e e e e J e J e= ⇔ = ⇔ ∂ = ∂ 	 (34)

Indeed, coming back to the solution process (13) for solving the data 
completion problem (10), using a gap functional based on the sym-
metrized Bregman divergence (33) leads to a functional correctly 
suited for the minimization:

	 1 2

1 2

1 2 1 2

1 2 1 2

, )

, )

, 0

0

(

(
J

J

p p e e dV

e e and p p

e e
e e

Ω
= − − ≥

= ⇔ = =
∫E

E
	 (35)

It is worth noting that the strictly convex function J does not appear 
anymore in the expression of the symmetrized Bregman divergence, 
so there is no need to compute it: it is sufficient for such a function 
to be able to be identified in order for the property (35) to hold true. 
Returning to the Data Completion Problem for extending mechanical 
fields inside the solid, the primal state variables are (ε(u), α), and 
seeking convex functions J generating an appropriate and effective 
gap functional EJ, one is naturally led to the convex framework of 
modeling for the constitutive equation. Actually, the Standard General-
ized Materials [35] theory rests on the definition of a convex potential 
W (the free Helmholtz-Gibbs energy) and a convex pseudo-potential 
of dissipation Ψ (positively homogeneous of Degree 1), such that the 
constitutive equations appearing in (28) are written:

	

( , ), ( , )

,

,p

p p

p

W W
W W WA

A αε

ε ε α ψ ψ ε α

σ
ε αε

σ ψ ψ

= − =
∂ ∂ ∂

= = − = −
∂ ∂∂

∈ ∂ ∈ ∂




 

	 (36)

Here the plastic strain εp appears separately in the internal variable 
list, and the free energy is a function of the elastic strain εe = ε – εp in 
order to comply with the usual presentations. 

For linear elasticity and non-linear elasticity (in a small strain context) 
where neither internal variables nor dissipation pseudo-potential are 
involved, the variational method (31) for solving the Data Completion 
Problem has been applied to the extension of surfacic displacement 
fields for various applications, such as identification of contact areas 
[6], of material parameters in inclusions, of geometry of crack fronts 
[7], of internal pressure in cavities [9], or determination of linear 
fracture mechanics parameters [8]. The following gap functional has 
been used: 

[ ] [ ]( ) ( ) ( )1 2 1 2 1 2( ) ( ( ) ), ( ( ) ) :WG u u dVε ε σ σ ε ε
Ω

= − −∫= Eη η η (37)

In the case of linear elasticity (quadratic potential W), the symmetrized 
Bregman divergence turns out to be simply twice the elastic energy of 
the displacement field u1 – u2: ( ) ( ) ( )1 2 1 2 1 2: 2 )(Wσ σ ε ε ε− − = −u u .

For the elastoplastic case with implicit incremental formulation [4] and 
taking advantage of the linearity of the Bregman divergence, that is:

	 ( ) ( ) ( )1 2 1 2 1 2, , , , 0J F J FD e e D e e D e eλ µ λ µ λ µ+ = + ∀ ≥ 	 (38)

the following single-parameter family of gap functions can be built 
(0≤χ≤1):

( ) ( )(1 ) 1 2 1 2 1 2

1 2 1 2

: ( ) (1 2 )( )

, (1 2 )( )

p p
W dV

A A dV

χ χ ψ σ σ χ ε ε χ ε ε

χ α α

+ − Ω

Ω

= ∆ − ∆ ∆ − ∆ + − ∆ − ∆

+ − − ∆ − ∆

∫
∫

E

(39)
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The condition of strict convexity of χW+(1-χ)Ψ can be ensured only 
for χ>0, because the potential Ψ is not strictly convex (as a posi-
tively homogeneous function of Degree one: Ψ(λ x)=λΨ(x) for λ≥0). 
Within this family, the gap function obtained for χ= 1/2, which bal-
ances exactly between the free energy gap and the dissipation gap, 
has the peculiar feature of involving only the stress and strain tensors 
and can then be called the Drücker Gap:

	 ( ) ( )1 2 1 2:D dVσ σ ε ε
Ω

= ∆ − ∆ ∆ − ∆∫E 	 (40)

The Drücker Gap leads to the only computable function G(η) by a 
boundary integration over the entire external boundary of the solid, 
as is the case in linear elasticity and hyperelasticity, using the vir-
tual power principle. This feature has been widely used previously to 

improve the global performance of the solution algorithm for a linear 
Cauchy problem and to reduce the computational burden [6].

The following figures show the kind of results that can be achieved 
with respect to the extension of the mechanical field inside a solid 
from surface displacement measurements. The method and algo-
rithm are summarized in Box 3. Results for linear elastic behavior 
were obtained with very few iterations (~ 10), whereas for strongly 
non-linear materials such as elastoplatic materials (elastoplaticity 
with linear hardening), a hundred minimizing iterations are needed. 

It can be seen that either the contact surface for an elastic complex 
structure (Figure 5), or the residual stress after unloading for an 
elastoplatic solid (Figure 6) can be recovered with good accuracy. 
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Figure 5 – 3D Identification of the displacement on the interior surface of an elastic mock-up loaded by a flexured rod (from [6])

Box 3 – Solution algorithm for the data completion problem (extension of mechanical fields for surface displacement data)

Given a Dirichlet-Neumann data pair on Γm: (Um, Fm)
i)	� Pick an initial value η0 of the sought stress vector on boundary Γu
ii)	� Solve the two auxiliary problems: P1

k with (Um,ηk) as boundary conditions, P2
k with (Fm,ηk) as boundary conditions

iii)	� Compute the Gap between the two solutions of P1 and, P2: Gk=E (e1
k,e2

k)
iv)	� If Gk < tol then end, else
v)	� Compute the gradient of G by solving two adjoint problems
vi)	� Update ηk by any descent algorithm, go to ii)
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The proposed approach, using the minimization formulation (31), 
does not explicitly incorporate any kind of regularization, although 
the Cauchy problem is very ill-posed. Nevertheless, the use of a 
conjugate gradient algorithm entails a form of regularization in the 
numerical applications: the value of the stopping criterion can also 
plays the role of a regularization parameter [42]. For moderate noise 
in the data (under 2%), this regularization appears to be sufficient, as 
shown for the thermal conductivity equation [5].

Conclusions

This paper overviewed some results and techniques of inverse prob-
lems that can be used in signal processing on data emanating from 
various experimental situations arising in the aerospace domain. 
Two specific topics related to image-based identification problems 
have been focused on. 

With regard to the near future, some leads or trends can be pointed 
out. Two promising, and already fruitful, ways can be identified in 

the perspective of combining measurements of distinct data acquisi-
tion nature. The first is the coupling between the 3D-PIV techniques 
and the 3D Background Oriented Schlieren (BOS), which is aimed 
at the reconstruction of the density field of instantaneous flows via 
the analysis of the light deflection through a medium with inhomo-
geneous optical index. The second is the simultaneous exploitation 
of the DIC displacement field measurements and the thermal camera 
temperature field measurements through nonlinear thermomechan-
ics modeling. Originated by an interesting change of perspective,  
the passive approach to wave probing, which uses ambient noise or 
diffuse fields (nondestructive testing, seismic identification, echogra-
phy, etc.) or non-cooperative sources of illumination (radar), stimu-
lates a wide field of research. The deep learning applied to the analy-
sis of a large amount of experimental data would also generate high 
hopes, although the number of really convincing results remains still 
low in the aerospace domain. From the numerical simulation side, 
progress can be expected thanks to the development of data assimi-
lation, taking into account uncertainties both in the results and in the 
methods themselves, and enhancing performances through the use 
of model reduction techniques. 
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