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This article is dedicated to the design of a complete guidance & control system for 

the roll/pitch/yaw-channels of a 155 mm dual-spin projectile equipped with nose-
mounted trajectory correction canards. The projectile airframe parameter-dependent 
nonlinear model including aerodynamic and actuator/sensor uncertainty descriptions 
is given and the subsequently computed linearized models necessary for autopilot 
design are presented. The pitch/yaw-channel dynamics linearized system is useful for 
highlighting important properties specific to these dynamics, in particular in relation 
with the parameter vector dimension and the sensor position. The computation of a 
linear structured controller for the nose roll-axis and of a gain-scheduled structured 
compensator for the airframe pitch/yaw-axes, using an H∞ loop-shaping design 
approach, is detailed with the assessment of the obtained performance and 
robustness properties. Finally, various guided flight nonlinear 7DoF simulation results 
are exposed for the purpose of evaluating over the projectile flight envelope the 
effectiveness of the proposed guidance & control scheme.

Introduction

Destroying a target on a battlefield with an artillery unit traditionally 
requires several ballistic rounds to be fired due to the lack of accuracy 
of such weapons. Significant ballistic impact point miss distances 
can originate from incorrect launch initial conditions (muzzle velocity 
and gun barrel pointing and azimuth) or wind perturbations. However, 
the multiplication of the number of firings causes potential unwanted 
collateral damage, pushes the mission costs higher, and can lead to 
an excessive engagement time and logistical issues that render the 
artillery crew vulnerable to enemy counter fire. The interest of indus-
trial and academic communities in developing projectile trajectory 
correction mechanisms has grown over the last forty years, in order 
to improve the ballistic shell terminal accuracy and subsequently to 
overcome the aforementioned drawbacks.

An attractive approach consists in equipping a projectile with aero-
dynamic control surfaces, despite their fragile mechanical structure, 
which can be rotating or reciprocating nose-mounted canards, tail 
fins, or both [24, 31, 10, 26, 12, 9, 33, 13, 34]. Those possess 
the advantage of creating efforts that are quite easily modeled and 
the generated control is a continuous-time signal. In addition, these 
trajectory control mechanisms are very similar to the well-mastered 

ones mounted on traditional missiles [35, 29, 36, 3, 25, 37, 7]. The 
projectile concept studied here results from retrofitting an existing 
unguided 155 mm ballistic spin-stabilized shell with a roll-decoupled 
nose equipped with two pairs of rotating canards, hence leading to 
a so-called dual-spin control configuration. The latter is also, here, 
of a Skid-To-Turn (STT) type, i.e., the projectile trajectory correc-
tion is performed thanks to maneuvers in the pitch and yaw planes 
using the two pairs of canards, while the nose is maintained at a fixed 
angular position. The previous guided spin-stabilized projectile con-
cept, which is dynamically stabilized thanks to its high body roll rate 
[21, 6], is attractive for maintaining low development and production 
costs. However, spin-stabilization, which causes a strong coupling 
between the highly nonlinear pitch/yaw-channel dynamics, makes the 
design of a truly multivariable nose-embedded guidance & control 
(G&C) function necessary in order to devise a smart weapon, which 
is more challenging than for classical missiles with decoupled pitch 
and yaw axes.

The flight G&C system, which must retain a quite simple structure, 
easy to tune and implement while delivering high-performance over a 
large operating domain, has to handle additional constraints, such as 
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the use of low-cost, small and gun-hardened actuators and sensors 
with limited performance, which are also inevitably integrated in the 
projectile nose and not at the center of mass (CM), as is usually done 
in the literature regarding guided projectiles. Considering this severe 
practical position restriction constitutes a major novelty with respect 
to the previous works of [33, 34]. In addition, sensor measurement 
noise and aerodynamic and component uncertainty, along with exter-
nal disturbances, must be taken into account.

The linearization-based divide-and-conquer gain-scheduling control 
approach [19, 27] coupled with the linear robust control theory tools 
[41, 30] have proven their value in computing efficient autopilots for 
aerospace applications. Hence, the parameter-dependent nonlinear 
system dynamics are first linearized around an equilibrium manifold 
covering the operating domain [20]. The set of designed linear con-
trollers is then smoothly interpolated to yield a gain-scheduled con-
troller, in order to operate at any nonlinear system operating point. 
However, the previous local control design technique lacks global 
stability and performance property guarantee, hence necessitating a 
multitude of nonlinear simulations to be performed for validation. With 
regard to the design of guidance module, proportional navigation (PN) 
algorithms are traditionally used in the case of missiles.

This paper is aimed at extending and improving the works of [33, 34] 
concerning autopilot design for guided ammunition. A nonlinear 
model for the complete projectile dynamics is first presented, based 
on a more generic aerodynamic force and moment description, in 
addition to the aforementioned critical sensor position constraint. Dis-
tinct linearized models for the nose roll and for the complete projectile 
pitch/yaw dynamics are then computed to design, using an H∞ loop-
shaping design procedure [22, 23] offering an alternative to the stan-
dard robust control technique used in [34], separate two-degree-of-
freedom (2DoF) fixed structure and reduced order autopilots. Indeed, 
the regulated roll-channel dynamics must respond faster than the 
controlled pitch/yaw ones in the STT control configuration employed.

A single robust linear controller is sufficient for the purpose of con-
trolling the nose roll-channel throughout the projectile flight envelope, 
whereas a gain-scheduling control strategy is developed for the 
parameter-highly varying pitch/yaw dynamics. A robust stability anal-
ysis is then proposed for both linear controller designs using various 
robustness tools, such as μ-analysis [41, 30]. Finally, the effective-
ness of the obtained PN guidance & gain-scheduled control system 
to intercept a ballistic impact point is assessed through extensive 
nonlinear simulations.

This paper is organized as follows. The first part addresses the devel-
opment of the projectile nonlinear and linearized models. The second 
part presents the autopilot designs and robustness analyses for both 
the nose roll-channel and the complete projectile pitch/yaw-channels. 
The third part addresses PN guidance. Finally, the fourth part details 
nonlinear simulation results for the STT guided projectile.

Airframe Modeling

Canard-Guided Projectile Concept

The studied dual-spin STT canard-guided projectile concept is given 
in Fig. 1 with several of the flight mechanics state and control vari-
ables used in the nonlinear mathematical model representing its 

behavior. The rapidly spinning aft part incorporates the explosive 
charge, whereas the forward part embeds two servomotors deflect-
ing the steering canards and a coaxial servomotor used for decou-
pling and controlling the nose roll-axis dynamics. The forward part 
also integrates a three-axis IMU assisted by a GPS module, along with 
the necessary guidance and control processors.

Nonlinear Parameter-Dependent Dynamics & Kinematics

The 7DoF nonlinear model for a canard-guided dual-spin projectile 
is composed of translational & attitude dynamic equations. The first 
ones describe the linear motion of the projectile CM B with respect 
to the Earth inertial frame E, whereas the second ones represent the 
rotational movements of the forward "f " and aft "a " projectile parts 
Bf , Ba with respect to the inertial frame. Those dynamic equations, 
which are expressed in a coordinate system (CS) related to a non-
rolling frame B', are defined as:
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The nonlinear model comprises additional translational & attitude 
kinematic equations symbolizing a change from the inertial CS to the 
non-rolling frame CS that is applied to the linear and angular velocities 
of both projectile parts:
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Figure 1 – 155 mm canard-guided dual-spin projectile concept
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The system dynamic state variables in Eqs. (1), (2) are the projectile 
CM linear E

B
T B[ ] [ ]u v w ′= v  velocities and the forward and aft part 

angular faB E B
f a[ ] = [ ]p p q r ′Τ ω  rates. The system kinematic states 

are the CM linear E
e e e BE[ ] = [ ]x y z Τ s  positions and the body and 

nose angular faB E
f a[ ] =φ φ θ ψ Τ e  orientations. The external forces 

X, Y, Z are composed of gravitational (g) and aerodynamic contribu-
tions [drag/lift forces being mainly applied to the projectile body (dl), 
canards (c) and Magnus (m)] and are given by:
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The external moments consist of similar aerodynamic components, 
along with additional aerodynamic damping (d) and mechanical 
control/friction (cf ) terms: 
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The coaxial motor torque is denoted by coL , whereas the friction 
moment f aL −  created between the forward and aft parts is defined as: 

( ) ( )( )f a A0 F a f s v a f= , , signL qSd C p p K K p pα β− ⋅ − + − 	 (5)

The variables z y,δ δ  are the system virtual normal and lateral control 
signals, which depend on the actual canard pair deflections m n,δ δ  and 
on the nose roll angular position fφ  as: 
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The elements A0 Y0 N0, ,C C C  represent the drag/lift-induced, Y N,C Cδ δ  
the canard, and Y N,p pC C  the Magnus force aerodynamic coefficients, 
whereas the elements m0 n0,C C  symbolize the drag/lift-induced, 

m n,C Cδ δ  the canard, m n,p pC C  the Magnus, and l m n, ,p q rC C C  the 
damping moment aerodynamic coefficients. Due to imperfect wind-
tunnel measurements and computational fluid dynamics simulation 
results, those aerodynamic coefficients (and their partial deriva-
tives used below in the linearized model) take uncertain values with 
variations around the nominal values of up to 5% for A0C , 10% for 

Y0 N0,C C , m0 n0,C C , Y N,C Cδ δ  and m n,C Cδ δ , 20% for lpC , and 30% for 
Y N,p pC C , m n,p pC C  and m n,q rC C . All of the aerodynamic coefficients 

are tabulated in a highly nonlinear manner as a function of the Mach 
number = /V a , and of the aerodynamic angles of attack (AoA) α 
and sideslip (AoS) β  for some of them. The airframe velocity V and 
the angles ,α β  given in Fig. 1 are defined as follows under a no-wind 
assumption [40]:
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The preceding force and moment dynamic equations (1) also depend 
on the altitude-dependent ( e=h z ) gravitational acceleration ( )g h , 
on the projectile mass m and on the roll-axis projectile forward and aft 
part moments of inertia xf xa,I I , along with the transversal moment of 
inertia tI . Finally, the forces and moments (3)-(5) are parameterized 
by the reference area S, caliber d, and static and viscous friction coef-
ficients s v,K K , and they vary with the dynamic pressure 21

2=q Vρ , 
where = ( )hρ ρ  and = ( )a a h  are the altitude-dependent air density 
and speed of sound.

As is generally done in the literature [8, 5], the complete aforemen-
tioned translational nonlinear dynamic equations include the linear 
velocities ( ), ,u v w  as state variables, which are however less suited 
for pitch/yaw-channel autopilot design than the wind-frame W vari-
ables ( ), ,V α β . Equivalent (under a no-wind assumption) nonlinear 
translational dynamic equations using the states ( ), ,V α β  are hence 
preferred, and those are obtained by first differentiating Eqs. (7) with 
respect to time:
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The projectile linear velocities, which are obtained as follows by 
inverting Eqs. (7):

	 cos cosu V α β= 	 (9.a) 

	 sinv V β= 	 (9.b) 

	 sin cosw V α β= 	 (9.c)
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are then inserted into the wind-frame variable dynamics equations (8) 
along with the expressions of ( ), ,u v w    given in Eq. (1a), in order to 
provide the equivalent nonlinear translational state dynamics: 
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Equivalent nonlinear translational kinematics can be derived by insert-
ing Eqs. (9) into Eq. (2a).

The projectile nonlinear state dynamics & kinematics mathemati-
cal model in ( ), ,V α β  is then complemented with nonlinear output 
dynamics & kinematics equations providing the signals measured at a 
longitudinal distance IMU > 0x  from the projectile CM. The output Euler 
angles are directly the nose state angular positions fB E

f[ ] =φ θ ψ Τ e , 
whereas the load factors f fB E B

x,f y,f z,f[ ] = [ ]n n n Τ n  and the angular 
rates f fB E B

f,f f f[ ] = [ ]p q r Τ ω , which are obtained in the nose frame 
fB  CS from the accelerometer and gyrometer measurements, respec-

tively, are given as follows, together with the nose GPS inertial positions 
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where the load factors T BE B
CM,x CM,y CM,z[ ] [ ]n n n ′= n  at the projectile 

CM and expressed in the non-rolling frame CS are equal to the spe-
cific forces divided by the projectile weight.

Linearized Dynamics

Roll-Channel

The nose roll angular position and velocity state dynamics given in 
Eqs. (1b), (2b) are first augmented with the coaxial DC servomotor 
current i linear dynamics, and the result is rearranged into the follow-
ing linear parameter-dependent form: 
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with: 
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and the time-varying parameter vector [ ]R = V hα β Τλ  capturing 
the dependence of the system dynamics on the projectile operating 
condition, and taking its values inside an operating domain 4

R
λ ⊂Γ  . 

The system inputs are the control applied voltage eV  with a saturation 
level e,sat 60V = ± V  and the time-varying external disturbances 

, ,p id d dφ  defined as:
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The electromotive force constant bK , the motor inductance L , resis-
tance R, and torque constant mK  verifying co m=L K i, along with the 
viscous friction coefficient vK  are taken as real uncertain parameters 
with errors of 15% for b m, , ,L R K K  and of 40% for vK .

Finally, the projectile flight-condition dependence of the model 
( )R R

λ λ  is transformed into an uncertainty on the aerodynamic ele-
ment ( )a RK λ  corresponding to its variations over R

λΓ , and to the 
errors on the axial force aerodynamic coefficient A0C . This practice 
leads to defining a new unique uncertain linear (not parameter-depen-
dent) model R

λΣ  used for nose roll-channel autopilot design, with the 
nose angular position and rate being the feedback signals.

Pitch/Yaw-Channels

The STT projectile trajectory correction feedback system, which 
acts on the nonlinear pitch/yaw axis dynamics represented by the 
α ,q and β ,r state dynamic equations in Eqs.  (10), (1b), uses the 
canard deflections m n= [ ]δ δ Τδ  as the control inputs, the normal/
lateral load factors zy,f z,f y,f= [ ]n n Τn  as the tracking outputs, and 
the pitch/yaw angular rates ,f f f= [ ]qr q r Τω  as additional measured 
outputs. The state and output pitch/yaw dynamics are directly influ-
enced by the airframe airspeed V, the projectile nose and body rates 

f a,p p  and some of the kinematic states. Actually, the normal inertial 
position ez  enters the aerodynamic coefficient and dynamic pressure 
expressions, the pitch angle θ influence is due to the flight mechan-
ics equation structure, and the nose roll angle fφ  is used in the vir-
tual control and measured output expressions. A parameter vector 

PY f a f= [ ]V p p h φ θ Τσ  is then defined, takes its values from a set 
6

PY
σ ⊂ Γ  and is considered as a relatively slowly-varying external 

input to the pitch/yaw dynamics.

In the context of a linearization-based, divide-and-conquer gain-
scheduling control strategy, the computation of a pitch/yaw 
dynamics linearized model needs to calculate a set of equilibrium 
points for any admissible fixed value of the parameter vector PYσ  
by imposing = = = = 0q rα β   . The result is an underdeter-
mined system of four nonlinear algebraic equations with the six 
unknown states , , ,q rα β  and controls m n,δ δ . A solution for mak-
ing the problem solvable is to define an extended trimming vector 

[ ] 8
PY f a f PY= V p p h ρα β φ θ Τ ∈ ⊂ρ Γ  by imposing the aero-

dynamic angles ,α β . An efficient home-made trimming analytical 
procedure that is specifically developed for spin-stabilized projectiles 
with strongly coupled pitch/yaw-axes dynamics can be found in [33].
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The linearized model, whose state-space matrix elements are func-
tions of the trimming vector PYρ , and which possesses a q-LPV form 
due to the trimming vector dependence on the system states ,α β , is 
expressed in the following generic form:

	
( ) ( ) ( )

( ) ( )
PY, PY,PY PY

PY PY
PY, PY,PY PY

PY PY

( ) ( )
: =( ) ( )

,

t t
t t

t

ε ερ

ε ε

ρ +

    
    

        
∀ ∈ ∈






ρ ρ

ρ
ρ ρ

ρ

x x
y u

A B
C D

Γ 

,
	 (15)

with the state PY, PY PY PY( ) = ( ) [ ( )] = [ ]t t t q rε ε ε ε εα β Τ−x x x ρ , the 
control PY, PY PY PY m, n,( ) = ( ) [ ( )] = [ ]t t tε ε εδ δ Τ−u u u ρ  and the output 

PY, PY PY PY z, y,( ) = ( ) [ ( )] = [ ]t t t n n q rε ε ε ε ε
Τ−y y y ρ  deviation vectors. 

The state-space matrices PY( )A ρ , PY( )B ρ , PY( )C ρ  and PY( )D ρ  
are given below by Eqs. (16a)-(16d), in which the matrix ( )fφT  is 
the transpose of ( )fφT  defined in Eq. (6). Similar expressions for the 
force , ,Z Z Zαα αβ βα, Zββ and the moment 

z
, , , , ,q qq q qr qM M M M Mα β δ  

y
, , , ,r rq r rr rM M M M Mα β δ  elements of Eqs. (16a)-(16d) and for the 

load factor elements 
z z y

, , ,n n nN N Nα β α  
y z z y y

, ,n n nN N Nβ δ δ  of Eqs. (16c), 
(16d) can be found in detail in [34].

As shown in [33], the stability matrix of the q-LPV model given in 
Eq.  (16a) is very useful for highlighting the important pitch/yaw-
axes dynamics cross-coupling of spin-stabilized projectiles, which is 
caused by their high body roll rate ap . Hence, the design of a separate 
autopilot for each axis, as for missiles, is to be undoubtedly avoided 
since the resulting closed-loop system would experience poor perfor-
mance and even instability.

The pitch/yaw-dynamics q-LPV model finds also four important 
applications in addition to autopilot design, which are only summa-
rized here for brevity. The first application concerns a pitch/yaw-axis 
internal dynamics analysis [33], from which the two precession and 
nutation modes that are specific to spin-stabilized bodies as stated 

by the classical aeroballistic theory [6, 21], are clearly identified. The 
second application addresses the investigation of open-loop local 
stability properties and shows that a spin-stabilized projectile, which 
should be unstable statically by referring to non-spinning missile 
stability theory [36, 16], is however maintained stable dynamically 
thanks to the sufficiently high body roll rate [33].

The third application demonstrates, through a sensitivity analysis, 
that retaining only the airframe airspeed and altitude in a reduced 
dimension, slowly-varying and fully-measurable trimming vector 

PY PY PY= [ ]V h λ ρΤ ∈ ⊂Γ Γλ  is sufficient to maintain a good local 
approximation of the nonlinear dynamics with a resulting simplified 
q-LPV model PY PY( )λ λ  parameterized by PYλ . This practice leads 
to significantly attenuating the computational burden, thanks to a 
reduction in the number of controllers to be designed now for a trim-
ming envelope PY

λΓ  of a dimension of 2 only, instead of 8 initially. In 
addition, the gain-scheduling control design method is more easily 
adapted for any value of the reduced two-dimension trimming vector, 
and the complexity of the implemented controller interpolation law is 
reduced. However, this practice introduces additional uncertainty on 
the trimming operating point, making the design of an autopilot even 
more challenging.

Finally, the fourth application shows the influence of the accelerom-
eter position on the pitch/yaw load factor output nonlinear dynamics, 
and the necessity of considering the actual position for designing the 
best possible autopilot [28]. The actual position of the nose-embed-
ded accelerometers is critical and needs a specific treatment due to 
low-frequency non-minimum phase (NMP) transmission zeros in the 
I/O SISO load factor-related transfer functions of the linearized model, 
which are close to the autopilot desired bandwidth [2, 15].

The projectile simplified q-LPV model PY PY( )λ λ  is now augmented for 
autopilot design by uncertain 2nd order linear models for the canard 

	

( )

( )

1 tan cos tan sin
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actuators, accelerometers and gyrometers, with additional amplitude 
and rate saturation levels sat = 30δ ± °  and sat = 100δ ± °/s for the 
actuators. Uncertainty represents here unstructured high-frequency 
neglected dynamics [30].

Autopilot Design

The same H∞ loop-shaping controller design approach [22, 23] 
detailed in the following section is applied for designing a robust 
structured controller, first for the nose roll-channel angular position 
dynamics, and second for the more complex projectile pitch/yaw-
channel dynamics linearized at any equilibrium fixed operating point. 
The pitch/yaw-channel gain-scheduled controller is also described.

H∞ Loop-Shaping Controller Design Methodology

The H∞ loop-shaping controller design method comprises two 
main distinct steps, named as open-loop shaping and robust sta-
bilization. As seen in Fig. 2, the first step consists in attaining a 
desired level of closed-loop performance by shaping over fre-
quency, using pre- and post-filters 1 2( ), ( )s sW W  for the initial open-
loop system ( )K sG , the singular values of the open-loop system 

S 2 1( ) = ( ) ( ) ( )Ks s s sG W G W . Typically, high gains at low frequen-
cies and low gains at high frequencies are desirable for reference 
tracking/disturbance rejection and for noise attenuation, respectively, 
with no excessive roll-off ( 20 dB/dec ) at intermediate frequencies 
around the crossover frequency.

The second step is dedicated to robustness optimization by calculat-
ing an H∞ controller ( )s∞K  robustly stabilizing S ( )sG  with respect 
to unstructured normalized coprime factor (NCF) uncertainties. 

The  maximal stability margin maxε  potentially reached can be cal-
culated exactly and before robust controller computation. This mar-
gin indicates the success of loop-shaping: an max 1ε   means an 
incompatibility between performance and robustness specifications 
and the pre- and post-filters must be adapted; an max 0.3ε   is sat-
isfactory. A good value for maxε  also indicates that the open-loop 
shaped plant singular values should not be degraded too much by the 
robust controller. Finally, the global implemented controller is obtained 
as 1 2( ) = ( ) ( ) ( )s s s s∞K W K W .

The previous design technique is an alternative to standard H∞ 
closed-loop shaping methods [41, 30], since the performance and 
robustness requirements are treated separately. It also tends to pro-
duce more robust controllers, since for robustness optimization those 
minimize implicitly the H∞-norm of a set of four closed-loop sensi-
tivity functions with each of them being associated with a specific 
uncertainty type.

Open-Loop Shaping

The definition of an open-loop shaped plant S ( )sG  is here facilitated 
using the results of a first mixed-sensitivity H∞ controller synthe-
sis [17, 41, 30] incorporating a model-matching constraint [14] 
whose design setup is given in Fig. 3. In the linearized-based gain-
scheduling control context for pitch/yaw dynamics autopilot design, 
this technique is relatively easy to adapt automatically to the syn-
thesis point. In addition, since the same fixed control structure can 
be imposed for any operating condition using the H∞ non-smooth 
optimization techniques proposed in [1], similar performance prop-
erties can be obtained over the whole projectile trimming envelope. 
Interpolation and implementation of the designed local controllers are 
also simplified.

	 Step 1	 Step 2	 Step 3

       

 

 

    

W1 W1

W1 W2

GK GK GK

K ∞ K ∞

W2 W2

Pre-filter Plant Post-filter
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Figure 2 – The H∞ loop-shaping controller design procedure
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Figure 3 – Mixed-sensitivity H∞ controller synthesis block diagram for open-loop shaping
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The H∞ synthesis problem of Fig. 3 consists in computing a control-
ler ( )sC  with output ( )su  and inputs c 1 2( ) = [ ( ) ( ) ( )]s s s s Τv y y y  
containing a reference signal c ( )sy , a tracking output 1( )sy  and an 
additional measured output 2 ( )sy , in order to maintain nominal (no 
uncertainty) internal stability and to guarantee that the closed-loop 
transfer function from the exogenous input c( ) = ( )s sw y  to the per-
formance outputs ( ) = [ ( ) ( ) ( ) ( )]S KS T Ms s s s s Τz z z z z  satisfies the 
following standard condition, given a performance index > 0γ  to be 
minimized [41, 30]:

( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

LS LS
l= , = <

M

S
zw C

KS

T

s s
s s

s s s
s s
s s

γ
∞ ∞

∞

 
 
     
 
  



W M
W S

T P C
W KS

W T

	 (17)

where the augmented nominal open-loop standard form ( )LS
C sP  is the 

interface between, on the one hand, the exogenous inputs and the con-
troller outputs and, on the other hand, the performance outputs and con-
troller inputs. The latter system comprises the nominal open-loop plant 

( )C sG  and a target closed-loop model ( )r sT  used for model match-
ing. It also contains the weighting filters ( ) ( ) ( ), ,M S KSs s sW W W  and 

( )T sW  which are used for shaping over frequency, in accordance with 
the desired closed-loop time and frequency objectives, the singular val-
ues of the closed-loop transfer functions related to the model-matching 
error r r 1( ) = ( ) ( )s s s−e y y  (model-matching sensitivity ( )sM ), track-
ing error c 1( ) = ( ) ( )y s s s−e y y  (sensitivity ( )sS ), control input ( )su  
(control sensitivity ( )sKS ), and tracking output 1( )sy  (complementary 
sensitivity ( )sT ), respectively.

If the sensitivity functions meet the design requirements, an open-
loop shaped plant S 2 1( ) = ( ) ( ) ( )Ks s s sG W G W  is obtained by open-
ing the closed-loop system 

1

LS ( )y w sT . The latter, which results from 
connecting the designed controller ( )sC  to the plant ( )C sG  to be 
controlled, is the closed-loop transfer function between the exoge-
nous reference c( ) = ( )s sw y  and the tracking output 1( )sy  of the 
block diagram in Fig. 3.

The closed-loop system 
1

LS ( )y w sT  is here broken at the level of the 
tracking error ( )y se . The initial open-loop system ( )K sG  contains 
the plant to be controlled ( )C sG , along with elements of the control-
ler ( )sC , whereas the pre- and post-filters 1 2( ), ( )s sW W  only com-
prise controller elements. In addition, the point where the closed-loop 
system is broken corresponds to the point where the H∞ controller 

( )s∞K  is subsequently included.

2DoF H∞ NLCF Robust Stabilization

The open-loop shaped plant S ( )sG  is factored as: 

	 ( )1
S S S S S( ) = ( ) ( ), ( ) ,s s s s s−

∞ ∞∈ ∈G M N M Nwith  H H 	 (18)

where S S( ), ( )s sM N  are stable normalized left coprime factors 
(NLCF). A family S,∆  of perturbed open-loop shaped plants S, ( )s∆G  
defined about the nominal open-loop shaped plant S ( )sG  and reflect-
ing the modeling uncertainty is given by:

	
( ) ( ) ( ) ( ) ( )
( ) ( )
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∆ ∆
	 (19)

where the stable unknown unstructured perturbations ( ), ( )M Ns s∆ ∆  
represent the uncertainty. The objective of H∞ NLCF robust stabili-
zation is to calculate a controller ( )s∞K  stabilizing both the nominal 

S ( )sG  and any perturbed S, ( )s∆G  open-loop shaped plants, and 
also verifying the following robustness condition with > 0γ  mini-
mized:

	 ( ) ( ) ( ){ } ( )1 1 1
S S =

s
s s s γ ε

− − −∞
∞

∞

 
− ≤ 

 

K
G K M


	 (20)

The stability margin 1/γ  obtained with the controller ( )s∞K  is upper 
bounded by the maximum achievable stability margin max min= 1/ε γ , 
which is calculated exactly as a function of the NLCF S S( ), ( )s sM N  
as follows: 

	 ( ) ( )
2

max S S H
= 1 , > 0s sε −   N M 	 (21)

where 
H
⋅  denotes the Hankel norm.

In this work, robust stabilization with an H∞ controller ( )s∞K  leads 
to significantly degrading the closed-loop system time-domain 
performance properties initially obtained with a good open-loop 
shaping. A solution is to devise a 2DoF controller for the set S,∆  
of perturbed open-loop shaped plants with input S ( )su  and output 

S 1( ) = ( )s sy y  due to the structure chosen above for S ( )sG , gener-
ally at the expense of an increase in the stability margin. The 2DoF 
controller f f( ) = [ ( ) ( )]s s s∞ ∞K K K  here possesses the structure of 
Fig.  4, comprising a robustifying controller ( )s∞K  acting on the 
tracking error ( )y se  and an injection filter f ( )sK  used for recover-
ing the time-domain performance specified by the target system 

r ( )sT .

A stabilizing structured 2DoF controller f ( )s∞K  is designed, again 
using the algorithms of [1], to minimize the H∞-norm of the closed-
loop system from the exogenous reference c ( )sy  and disturbance 

( ) = ( ) ( )NM N Ms s s+d d d  inputs symbolizing the NLCF uncertainty 
to the performance outputs r( ), ( ), ( )N Ms s sz z z , where r ( )sz  is the 
model-matching error: ( )RS2Tzw s γ

∞
≤  with > 0γ . The param-

eter η  permits the designer to adapt the weighted reference signal 
c, c( ) = ( )s sη η ⋅y y , in order to place more or less emphasis on model-

matching at the expense of robustness.

+  
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Figure 4 – 2DoF H∞ robustifying controller synthesis block diagram
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Robust stability is guaranteed if the closed-loop system RS2T ( )
NM NMz d s  

from the disturbance input ( )NM sd  to the performance output 
( ) = [ ( ) ( )]NM N Ms s s Τz z z  satisfies the following condition: 

	 ( )RS2 1T = , > > 0
NM NMz d s γ ε γ γ−

∞
≤ with 	 (22)

where γ  is the obtained stability margin.

Roll-Channel Autopilot

The complete nose roll-channel autopilot structure illustrated in Fig. 5 
is composed of two cascaded loops. The internal fast loop contains 
the rate controller ( )pK s  that is used for reducing the nose rate 

f,f ( )p t  following the reference signal f,c ( )p t , during the ballistic flight 
subphase ( start switch<t t t≤ ). The preceding rate loop also aids the 
outer slow loop containing the position controller ( )sφK  to ensure 
tracking of the reference position f,c ( )tφ  during the guided phase 
( switch impactt t t≤ ≤ ). The two controllers are designed separately, with 
the rate controller obtained first and the position one subsequently 
computed using the compensated internal rate control loop.

The design of a SISO PID rate controller ( )pK s  using the classical 
loop-shaping approach [30] is not detailed here for brevity purposes. 
This controller is sufficient to provide good performance properties 
in terms of robustness, as well as reference tracking and disturbance 
rejection, as shown from the nonlinear simulation results given at the 
end of the paper. A position controller ( )sφK , which must satisfy 
critical and stringent performance and robustness specifications, is 
calculated by applying the particular H∞ loop-shaping design tech-
nique proposed in the previous Subsection "H∞ Loop-Shaping Con-
troller Design Methodology".

The uncertain open-loop transfer function R ( )sG  of the uncertain LTI 
model of Eqs. (12)-(14) can be written as follows: 

	
( )
( ) ( ) ( )

( ) ( ) ( ) ( )
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d d
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where the control R, ( )u sG  and disturbance R, ( )d sG  dynamics are 
expressed as: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

R, R,

R, R, R, R,

R, R, R,

=

0
p i

p i

d u

d d d u

pd pd pu

s s

G s G s G s G s

G s G s G s
φφ φ φ φ

  
 
 
 
 

 

   

  

G G (24)

Only the control dynamics R, R, R, ( )( ) = [ ( ) ]u u pu ss G s Gφ
ΤG    are used 

here to design a nose position controller, since the effects of the dis-
turbances ( )sd  of Eq. (14) are insignificant.

Open-Loop Shaping

The design of a position controller uses the open-loop system 
R, ( )uF sφ , which is obtained as the series interconnection of the nomi-

nal (no uncertainty) control dynamics of the compensated internal 
loop of Fig. 5 with the nominal position control dynamics R, ( )uG sφ  
and which is given by: 

	 ( ) ( )
( ) ( ) ( )

( ) ( )
f

R, R,
f,c R,

= =
1

p
u u

pu p

K ss
F s G s

p s G s K sφ φ

φ
⋅
+

	 (25)

Following the general H∞ linear controller design setup of Fig.  3, 
where the open-loop system R,( ) = ( )C uG s F sφ  has f,c( ) = ( )u s p s  
as input and 1 f( ) = ( )y s sφ  as tracking output (no additional output 

2 ( )y s ). With the reference signal c f,c( ) = ( )y s sφ , the controller 
inputs are c 1 f,c f( ) = [ ( ) ( )] = [ ( ) ( )]s y s y s s sφ φΤ Τv  and the tracking 
error f,c f( ) = ( ) = ( ) ( )ye s e s s sφ φ φ− . The target model r ,r( ) = ( )T s T sφ  
with input f,c ( )sφ  and output r f,r( ) = ( )y s sφ  is chosen as a second-
order filter with a desired natural frequency ,rφω = 14.5 rad/s and a 
damping ratio ,r =φξ = 0.79, giving a settling time ,s = 0.254t sφ = 0.254 s for a 
2% envelope around steady state. The settling time ,stφ  is taken as 
sufficiently large compared to that of the nose-channel internal rate 
loop and sufficiently small compared to that of the projectile pitch/
yaw-channel control loop without leading to saturation of the coaxial 
motor.

Controller design is here performed by shaping only the closed-loop 
model-matching, sensitivity and control sensitivity functions using 
the following model-matching filter ( )MW s :

	 ( )
1

= Mk M
M

M M

s
W s

s
ω

ω ε
+

+
	 (26)

whose inverse is a high-pass filter, since the model-matching transfer 
function frequency content is in the shape of a bell centered on the 
intermediate frequencies (see Fig.  7b). The error between the 
responses of the target and shaped closed-loop transfer functions is 
reduced as much as possible at low frequencies in order to ensure a 
good reference tracking and, at intermediate frequencies, to improve 
the transient response. The values given to the parameters M Mandkε  and M Mand kε  
adequately adjust the gain of 1( )MW s−  at low and high frequencies, 
respectively, whereas the critical parameter Mω , initially set to the tar-
get closed-loop system bandwidth ,cφω , is used to adapt the cutoff 
frequency. The tracking error filter ( )SW s  is chosen as:

	 ( )
2 2

,r ,r ,r
2

,r ,r

2
=

2S
S

s s
W s

s s
φ φ φ

φ φ

ξ ω ω
ξ ω ε

+ +
+ +

	 (27)

whose inverse is equal to the 2nd -order low-pass filter 
,r ,r( ) = 1 ( )S s T sφ φ− , in which a small > 0Sε  is added to obtain a 

stable filter. The weighting ( )SW s  is used to adjust the closed-loop 
system bandwidth, steady-state error and overshoot. The control filter 

( )KSW s  is defined as:

	 ( ) = KS KS KS
KS

KS KS

k sW s
s

ε ω
ω ε

  +
⋅  + 

	 (28)

whose inverse is a 1st -order low-pass filter with a static gain 1
KSk − , a 

bandwidth KSω  and a high-frequency negative real zero ensured by 
> 0KSε  and used to obtain a proper and stable weighting ( )KSW s . The 

control signal weight limits the control bandwidth at high frequencies 
by adjusting KSω , initially fixed to ,cφω , in order to limit the risk of 
coaxial motor saturations.

  + 
_ 
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Figure 5 – Complete nose roll-channel autopilot architecture
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Controller synthesis results
The designed reduced-order (RO) controller ( )sC  of Fig. 3 possesses 
the PI-P (proportional-integral & proportional) structure illustrated in 
detail in Fig. 6. It comprises a tracking error PI servo-controller ( )eK sφ , 
an output feedback regulation proportional gain Kφφ  and a roll-off/pro-
tection 1st-order filter ( )pK sφ . The control signal is given by: 

	 ( ) ( ) ( ) ( ) ( ) ( ){ }f,c f,c f= p e ep s K s K s s K s K sφ φ φ φφφ φ − +  	 (29)

with:

	 ( ) p, i,  e e
e

K s K
K s

s
φ φ

φ

+
= 	 (30a)

	 ( ) 1
1p

p

K s
sφ

φτ
=

+
	 (30b) 

Figures 7a-7d give the RO and fixed structure controller synthesis 
results (blue), which are compared to those obtained for the design 
of a full-order (FO) controller (magenta). The target (red) and shaped 
(magenta for FO and blue for RO controllers) closed-loop transfer 
functions possess the desired properties conforming to robust con-
trol theory [11, 30]. For the sensitivities ( )sS , the small low-frequency 
gains indicate a very good minimization of the steady-state tracking 
error and the peak at intermediate frequencies, which remains small, 
leads to a good robustness with respect to unstructured inverse mul-
tiplicative uncertainties. For the model-matching sensitivities ( )sM
, the small gains, in particular at intermediate frequencies, show a 
good target model following. For the control sensitivities ( )sKS  that 
present a peak around the desired closed-loop system bandwidth 

,cφω , those possess a good roll-off from the intermediate frequencies 
avoiding large controller gains and limiting the control bandwidth, and 
hence maintaining moderate actuator usage. Finally, for the comple-
mentary sensitivities ( )sT , the low-frequency gains close to 0  dB 
also indicate the excellent steady-state tracking error reduction, the 
absence of a peak at intermediate frequencies denotes robustness 
with respect to unstructured multiplicative uncertainties, and small 
high-frequency gains help with measurement noise attenuation.

Open-loop shaped plant
A nominal RO open-loop shaped plant S 2 1( ) = ( ) ( )KG s W G s W s , 
which is illustrated in Fig. 8, is here defined by breaking the closed-
loop system of Fig.  6 at the level of the tracking error ( )e sφ , as 
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Figure 6 – Structure of the nose position PI-P controller ( )sC
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Figure 7 – Frequency responses of the position loop target (red) and shaped (magenta: FO, blue: RO) closed-loop transfer functions related to the: (a) tracking 
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explained in Subsection "H∞ Loop-Shaping Controller Design Meth-
odology". The gain of S ( )G s  (blue), along with that of a similar FO 
open-loop shaped plant built with the closed-loop system containing 
the FO controller (magenta), are shown in Fig. 9 and compared to the 
initial open-loop system R, ( )uF sφ  (black). The RO and FO open-loop 
shaped plants have close gains with desired properties, and possess 
crossover frequencies larger than that of the open-loop system denot-
ing a faster system response obtained thanks to open-loop shaping. 
Finally, the very good value max = 0.5942ε  is achieved for the maxi-
mum stability margin associated with S ( )G s .

2DoF NLCF H∞ Robust Stabilization

A 2DoF fixed structure and reduced order controller f ( )sφ ∞K , which 
is calculated for the open-loop shaped plant S ( )G s  depicted in Fig. 8 
using the linear controller design setup of Fig. 4, here comprises a 
robustifying gain Kφ ∞  and an injection 1st-order lead-lag filter f ( )K sφ  
with time constants lead

fφτ  and lag
fφτ  and defined as: 

	 ( )
lead
f

f lag
f

1
=

1
s

K s
s

φ
φ

φ

τ
τ

+
+

	 (31)

The target system ,r ( )T sφ  is used again for NLCF H∞ robust stabi-
lization, and controller tuning using η  =  0.1 gives the reasonable 
performance index RO2 = 1.8473γ . The actually achieved stabil-
ity margin RO2 RO2= / = 0.5487ε γ1   is excellent and close both to 
the stability margin FO2 FO2= / = 0.5933ε γ1   obtained with a robus-
tifying FO 2DoF controller and to the very good maximum stability 

margin max = 0.5942ε . Consequently, the degradation of the low and 
high-frequency gains of the initial open-loop shaped plant S ( )G s  is 
very limited.

The complete external nose-channel position 2DoF structured con-
troller ( )sφK  of Fig. 5 is obtained by combining the PI-P controller 

( )sC  used for open-loop shaping, along with the 2DoF robustifying 
RO controller f ( )sφ ∞K , as illustrated in detail in Fig.  10. A static 
pre-filter scKφ  is added after robust stabilization, in order to ensure 
a unitary steady-state gain for the closed-loop transfer function 
between the reference f,c ( )sφ  and the output f ( )sφ  signals, given 
the integral action in the PI-P controller. This pre-filter is obtained 
as follows: 

	
( )sc

f =0

=
s

K
K

K K s
φ

φ
φ φ

∞

∞ +
	 (32)

The control signal f,c ( )p s  is given by: 

	
( ) ( ) ( ) ( ){ } ( )

( ) ( ){ } ( )
f,c f sc f,c

f

= p e

p e

p s K s K s K s K K s

K s K s K K s

φ φ φ φ φ

φ φ φ φφ

φ

φ

∞

∞

+

− +
 	 (33)

The singular value of the complete nose position 2DoF RO controller 
( )sφK  (green) possesses a limited bandwidth with a good roll-off at 

high frequencies, as shown in Fig. 11. It also remains close to the sin-
gular values of the PI-P controller used for open-loop shaping (black), 
and of a 2DoF controller built with the PI-P and the robustifying 2DoF 
FO controllers (magenta).
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Finally, Figs. 12a, 12b give the step responses for the transfer func-
tions of the complete nose position control loop of Fig. 10, which 
are related to the output f ( )tφ  and voltage e ( )V t  (green), for a step 
amplitude of π rad corresponding to the maximal value potentially 
taken by f,c ( )tφ  at the beginning of the projectile flight guided phase. 
In Fig. 12a, the output-related time response follows very well the tar-
get system response (red), contrary to that of a closed-loop system 
obtained with the open-loop shaped plant S ( )G s  and a 1DoF robusti-
fying controller (blue). Hence, the time performance initially obtained 
for the closed-loop system used for open-loop shaping (black) is 
perfectly recovered. The use of the robustifying 2DoF FO controller 
does not give satisfactory performance results. In Fig. 12b, the volt-
age e ( )V t  applied to the coaxial motor remains reasonable.

Robust Stability Analysis

The preceding complete nose position autopilot is tested for robust sta-
bility, first with respect to an NLCF uncertainty block [ ( ), ( )]N Ms s∆ ∆  , 
using the robustness criterion of the H∞ loop shaping design proce-
dure. The estimated size ε = 0.0627 of this unstructured uncertainty, 
which corresponds to the various uncertain parameters considered 
in the nose-channel dynamics linear model of Eq.  (12), verifies 

RO2 = 0.5413ε ε≤  and hence robust stability is guaranteed1.

Robust stability is also tested by applying the µ-analysis theory 
tools [41, 30] to the uncertain closed-loop system 

f f ,c
( ) =sφ φ

T  
l[ ( ), ( )]K s sφ
 P K  associated with the nominal closed-loop model of 

Fig. 10. The uncertain open-loop augmented plant ( )K sP  enclosing 
all of the real parametric uncertainties can be written as the u-LFT of 
a nominal open-loop system ( )K s∆P  and of a stable, diagonal, real, 
normalized parametric perturbation ∆  as:

	 u( ) = [ ( ), ]K Ks s∆P P  ∆ 	 (34)

with:

{ }a b m v1 1 1 1 1 1= diag , , , , , : 1,K K K K L R i iδ δ δ δ δ δ δ δ  ≤ ∈       ∆ 	(35)

1	 It is worth noting that a good robustness to coprime uncertainty to the open-shaped 
plant S ( )G s  of Fig. 8 does not necessarily lead to good robustness margins at the input 
and outputs of the actual nominal control dynamics plant R, ( )u sG  given by Eqs. (23), 
(24), the latter plant being contained in the system R, ( )uF sφ  given by Eq. (25). Satisfac-
tory multi-loop disk gain and phase margins [4] are, however, obtained here at the actual 
plant input ( 10.4= ±MDG dB and 56.4= ±MDP °) and outputs ( 3.7= ±MDG dB and 

24.1= ±MDP °).

The uncertain closed-loop system 
f f ,c

( )sφ φT  can hence be obtained as 
the following l-LFT: 

	
( ) ( )

( ) ( ) ( ) ( )
f f,c u

1,22 ,21 ,11 ,12

= ,K

K K K K

s s

s s s s

φ φ
∆

−∆ ∆ ∆ ∆

  

 + − 

T N

N N N N

 ∆

∆ ∆ 
 	(36)

where the nominal system ( )K s∆N , internally stabilized by the control-
ler ( )sφK , is given by: 

	 ( ) ( ) ( )l= ,K Ks s sφ
∆ ∆  N P K 	 (37)

The only source of instability in the uncertain closed-loop system 
of Eq. (36) can originate from the feedback term ,11 1[ ( ) ]K s∆ −−N ∆  
between the stable systems ,11( ) = ( )K Ks s∆ ∆M N  and ∆. Robust sta-
bility (RS) of the uncertain closed-loop system with respect to the 
uncertainty ∆ is guaranteed if and only if:

	 ( ) < 1,K jµ ω ω∆ +
∆  ⇔ ∀ ∈ M RS 	 (38)

where ( )µ∆ ⋅  is the structured singular value (SSV).

Upper and lower bounds for the SSV are numerically calculated over 
a frequency grid for the levels of parametric uncertainties presented 
in Subsection "Roll-Channel" of Part "Airframe Modeling". Given that 
the upper bound is always smaller than 1, as seen in Fig. 13, RS is 
confirmed with an important stability margin here.
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Figure 12 – Closed-loop step responses: (a) roll angle f ( )tφ , (b) actuator input voltage e ( )V t  
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Two additional linear simulation results are given in Figs. 14, 15. The 
first figure depicts nose-channel output angle f ( )tφ  and actuator volt-
age e ( )V t  step responses of 200 uncertain closed-loop system ran-
dom samples, from which robust stability can be verified again and 
no excessive input voltage to the coaxial motor is demanded. The 
second figure shows step responses related to the output roll position 
and rate f f,f( ), ( )t p tφ , internal loop input roll rate f,c ( )p t , and voltage 

e ( )V t , given actuator input transmission delays of up to 9 ms, i.e., 
around 5 times a rate of 1/600 s with which the control signal could 
be sampled. Stability is preserved, the degradations appearing on the 
different time responses remain more or less limited with respect to 
the nominal case, and there is no actuator saturation. Hence, the nose 
position control loop can handle realistic delays of up to 3 times the 
control signal sampling rate [32], i.e., 5 ms.

Pitch/Yaw-Channel Autopilot

Augmented Plant for Controller Synthesis

Autopilot design for the pitch/yaw-channel dynamics linearized at any 
operating point is based on the open-loop actuator/projectile/sensor 
dynamics q-LPV model described in Subsection "Pitch/Yaw-Channels" 
of Part "Airframe Modeling". The load factor output measurements are 
actually provided at the projectile nose, and hence those do not match 
the necessary feedback signals, which must be available here at the 
projectile CM, since the nonlinear force dynamic equations are written 
for this point. The load factor feedback signals are calculated at the CM 
through a transformation based on an inverse Grubin transformation 
[40] and using the measured load factor and angular rate outputs. The 
angular rate measurements remain valid for any point of the projectile. 
The transformation system PY( , )n sρ

ωT ρ , which calculates in the non-
rolling frame B′ CS at the CM the load factors zy, z, y,( ) = [ ( ) ( )]s n s n sε ε ε

Τn    
and angular rates , ( ) = [ ( ) ( )]qr s q s r sε ε ε

Τ  ω , from the measurements 

zy, ,m z, ,m y, ,m( ) = [ ( ) ( )]s n s n sε ε ε
Τn  and , ,m ,m ,m( ) = [ ( ) ( )]qr s q s r sε ε ε

Τω  
obtained in the nose frame Bf  CS, is defined as:

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
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f b, PY
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s
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with the matrix ( )fφT  given in Eq. (6). The diagonal parameter- 
dependent 1st-order approximated derivative filters d, PY( , ) =sωW λ  

d, PY d, PYdiag[ ( , ), ( , )]W s W sω ω−λ λ  are applied to the angular rates, 
and the identical diagonal parameter-dependent 2nd-order low-pass 
filters b, PY b, PY b PY b PY( , ) = ( , ) = diag[ ( , ), ( , )]n s s W s W sωW Wλ λ λ λ , 
which are obtained as the product of two 1st-order systems, are used 
for measurement noise attenuation. Tuning the parameters of the pre-
vious filters is critical due to their significant influence on closed-loop 
system performance and robust stability.

Finally, controller synthesis following the strategy presented in Subsec-
tion "H∞ Loop-Shaping Controller Design Methodology" is performed 
with an augmented open-loop uncertain plant PY PY( , )sG λ , which is 
composed of the simplified q-LPV model of the uncertain actuator/
projectile/sensor dynamics parameterized by PY = [ ]V h Τλ , and of 
a simplified transformation system PY( , )n sλ

ωT λ  obtained by imposing 
f f,f( , ) = (0,0)pφ  in Eqs.  (39). The multivariable plant PY PY( , )sG λ , 
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Figure 14 – Uncertain closed-loop system step responses: (a) roll angle, (b) actuator voltage

0 0 00.2 0.2 0.20.4 0.4 0.40.6 0.6 0.60.8 0.8 0.81 1 1

Am
pl

itu
de

 (r
ad

)

Am
pl

itu
de

 (r
ad

/s
)

Am
pl

itu
de

 ( 
V 

)

Time (s) Time (s) Time (s)

3.5

3

2.5

2

1.5

1

0.5

0

30

20

10

0

–10

–20

–30

60

40

20

0

–20

–40

–60

	 (a)	 (b)	 (c)

Figure 15 – Closed-loop time responses with transmission delays at actuator input: (a) roll angle (blue: perturbed, red: nominal), (b) reference (black: perturbed, 
green: nominal) and output (blue: perturbed, red: nominal) roll rates, (c) actuator voltage (blue: perturbed, red: nominal)
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having the actuator commands mn, ,c ( )sεδ  as inputs and the feedback 
signals zy, ,( ), ( )qrs sε ε

 n ω  as outputs, contains zeros in its SISO load 
factor transfer functions that are potentially NMP as a function of 
the operating condition. These zeros are, however, sufficiently fast 
compared to the desired closed-loop bandwidth, contrary to those 
of the projectile pitch/yaw-channel dynamics (see Subsection "Pitch/ 
Yaw-Channels" of Part "Airframe Modeling").

Open-Loop Shaping

The various systems and signals, appearing in the H∞ linear controller 
design diagram of Fig. 3 used here for defining at any fixed synthesis 
point PYλ  a pitch/yaw-channel open-loop shaped plant,  are explicitly 
presented. The system to control ( )C sG  is equal to the augmented 
plant PY PY PYPY PY, PY,( , ) = [ ( , ), ( , )]ns s sω

Τ
  

G G Gλ λ λ  with input 
mn, ,c( ) = ( )s sεu δ  and outputs 1 zy, 2 ,( ) = ( ), ( ) = ( )qrs s s sε ε

 y n y ω . The 
target model r ( )sT , with input c zy, ,c z,c y,c( ) = ( ) = [ ( ) ( )]s s n s n sε

Τy n  
and output r zy, ,r z,r y,r( ) = ( ) = [ ( ) ( )]s s s sε

Τy n n n , is a block-diagonal 
2nd-order system ,r ,r ,r( ) = diag[ ( ), ( )]n n ns T s T sT  with a natural fre-
quency ,r = 4.9nω rad/s  and a damping ratio ,r = 0.79nξ  giving a 
settling time ,s = 0.751nt s for a 2% envelope around steady state. 
The obtained pitch/yaw-channel closed system response is hence 
sufficiently fast without saturating the canard actuators, while being 
sufficiently slow with respect to the nose-channel position control 
loop response.

The parameter-dependent model-matching PY( , ) =M sW λ  
PY PYdiag[ ( , ), ( , )]M MW s W sλ λ  and the performance ( ) =S sW

diag[ ( ), ( )]S SW s W s  weights are defined as for nose position auto-
pilot design, whereas the control signal weight PY( , ) =KS sW λ

PY PYdiag[ ( , ), ( , )]KS KSW s W sλ λ  is: 

	 ( ) ( ) ( )
( )

2
1/2

PY PY
PY

1/2
PY

, = KS KS
KS

KS KS

s k
W s

s

ω

ε ω−

 +
 
 + 

λ λ
λ

λ
	 (40)

The inverse of PY( , )KSW s λ  is equal to the product of two identi-
cal 1st-order low-pass filters with a steady-state gain 1/2

PY( )KSk − λ , a 
bandwidth adjusted with PY( )KSω λ , and a high-frequency negative 
real zero ensured by > 0KSε  and making the weight proper and 
stable. For any synthesis point PYλ , the steady-state gain 1

PY( )KSk − λ  
of PY( , )KSW s λ  is conditioned by the low-frequency minimal singu-
lar value of the synthesis system: PY PYPY( ) [ (0, )]KSk σ



λ λG . The 
frequency PY( )KSω λ , which is initially set to the target closed-loop 
system bandwidth ,r = 4.9nω rad/s, can be increased for specific 
operating conditions where a faster control signal is needed, such 
as, for example, at a low airspeed/high altitude flight point. Finally, 
the output signal weight ( ) = diag[ ( ), ( )]T T Ts W s W sW  is defined as: 

	 ( )
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2 2
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22 1
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n n n
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n T

s s
W s

s

ξ ω ω

ω ε −

+ +

+
	 (41)

The filter ( )TW s  is the result of inverting the target system and add-
ing two high-frequency negative real poles > 0Tε  to render it proper 
and stable. The output signal weight leads to attenuating noise on the 
feedback output load factors zy,ε

n  and helps both the performance 
filter to minimize the steady-state error ( )n se  and the model-matching 
filter to reduce the difference between the target and shaped closed-
loop system at intermediate frequencies.

Controller synthesis results
The PI-P-P fixed and RO structure chosen for the controller ( )sC  of 
Fig. 3 comprises four blocks, as shown by Fig. 16: a tracking error 
PI servo-controller PY( , )ne sK λ  containing the gain matrix pi

PY( )neK λ , 
two output feedback regulation proportional controllers PY( )nnK λ  and 

PY( )ωK λ  applied to the output load factors and angular rates, respec-
tively, and finally a block-diagonal roll-off and actuator protection filter 

( )sδK  composed of 1st -order low-pass systems. The control signal 
zy, ,c ( )sεδ  is given by:

( ) ( ) ( ) ( )
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n
n  	(42)

where, i.e., PY( ) = ( , )ne nes sλK K λ , and with:
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The actual controls mn, ,c ( )sεδ  sent to the canard actuators are com-
puted from the virtual ones zy, ,c ( )sεδ  using the matrix f( )φT  of Eq. (6). 
The preceding controller structure, including only gains and simple fil-
ters with particular symmetries, permits the designer to significantly 
reduce interpolation and implementation efforts and costs compared 
to a FO controller. The eight controller gains are tuned for any synthe-
sis point, whereas the roll-off filter bandwidth remains fixed.
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Figure 16 – PI-P-P structure of the pitch/yaw-channel linear controller 
PY( , )sC λ
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The RO and fixed-structure controller synthesis frequency results 
(blue) for a fixed critical low airspeed/high altitude operating point are 
illustrated in Figs. 17a-17d and compared to the results obtained with 
a FO controller (magenta). The various shaped closed-loop transfer 
functions verify the constraints imposed by the weighting filters (red), 
and hence possess the desired properties as in the case of nose posi-
tion autopilot design (see Figs. 7a-7d).

Open-loop shaped plant
A nominal RO open-loop shaped plant S 2 1( ) = ( ) ( )Ks s sG W G W  
defined by breaking the computed closed-loop system before the 
tracking error PI servo-controller is shown in Fig. 18. Figure 19 gives 
the singular values for the RO open-shaped plant (blue), for a FO one 
that is similarly defined using the previously calculated FO control-
ler (magenta), and for the initial airframe load factor open-loop sys-
tem PYPY, ( , )n s



G λ  (black). The RO and FO open-loop shaped plant 
singular values are close to each other, with desired properties. In 
addition, open-loop shaping leads to significantly dampening (more 
than 60 dB) the precession and nutation modes. Finally, the maximum 
stability margin calculated for the RO S ( )sG  plant is very good, with 

max = 0.6131ε .

2DoF NLCF H∞ Robust Stabilization

A 2DoF H∞ controller f ( )n s∞K  computed with the loop-shape of 
Fig. 18 using the controller design diagram of Fig. 4 is chosen with the 
parameter-dependent RO and fixed structure robustifying static part 

PY PY PY( ) = diag[ ( ), ( )]n n nK K∞ ∞ ∞K λ λ λ  and injection dynamic part 
f PY f PY f PY( , ) = diag[ ( , ), ( , )]n n ns K s K sK λ λ λ . The latter is composed 

of two identical 1st-order lead-lag systems f PY( , )nK s λ  with a steady-
state gain f PY( )nk λ  and time constants lead lag

f PY f PY( ), ( )n nτ τλ λ : 
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n n
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+
⋅

+
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λ
	 (44)

The parameters to be tuned are the controller PY( )n∞K λ  and the 
steady-state gain and time constants of the injection filter PYf ( , )n sK λ . 
For the same target model ,r ( )n sT  as that used for open-loop shaping 
in the previous Subsection "Open-Loop Shaping" and = 0.1η , con-
troller parameter tuning at the critical low airspeed/high altitude oper-
ating point gives the very good performance index RO2 = 1.7588γ . The 
excellent stability margin RO2 RO2= 1/ = 0.5721ε γ   remains close to a 
stability margin FO2 FO2= 1/ = 0.6114ε γ   offered by a robustifying 2DoF 
FO controller and to the maximum stability margin max = 0.6131ε . 
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It can be then noticed, using the RO and FO actual open-loop shaped 
plants PYRO ( , )K sG K λ  and PYFO ( , )K sG K λ 2, which are obtained at 
system ( )K sG  output and plotted in Fig. 20a, that the degradations at 
low and high frequencies in the initial open-loop shaped plant due to 
the H∞ controller are very small.

The complete 2DoF RO and fixed structure obtained at any synthesis 
point for a pitch/yaw-channel linearized dynamics controller is shown 
in Fig. 21. It particularly comprises a parameter-dependent diagonal 
static pre-filter PY PY PYsc sc sc( ) = diag[ ( ), ( )]n n nK KK λ λ λ , which is 
added after robust stabilization to ensure a unitary steady-state gain 
for the closed-loop transfer function between the reference zy, ,c ( )sεn  
and tracking output zy, ( )sε

n  signals, given the integral action in the 
PI controller. The expression of the diagonal components PYsc ( )nK λ  is 
similar to Eq. (32). The controller fixed structure, which remains sim-
ple and easy to interpolate and implement, generates the virtual con-
trol signal zy, ,c ( )sεδ  given by Eq. (45), in which, i.e., PY= ( )λ

ω ωK K λ . 
The actuator commands mn, ,c ( )sεδ  are computed again using Eq. (6).

2	 RO and FO actual loop-shapes: RO 1 2=K K n∞G K G W K W  and FO
FO 1 2=K K n∞G K G W K W .

Figure 20b shows the singular values for the complete RO controller 
of Fig. 21 (green), for a complete FO controller containing the robus-
tifying 2DoF FO controller instead (magenta), and for the PI-P-P con-
troller of Fig. 16 used for open-loop shaping (black). All of the singular 
values remain close to each other and hence the good properties of 
the PI-P-P controller (low-frequency integral action, high-frequency 
sufficient roll-off, reasonable bandwidth) are well preserved.

Finally, Figs.  22a-22d illustrate the step responses for the transfer 
functions of the pitch/yaw-channel complete RO linear control loop 
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that are related to the load factor output zy, ( )sε
n  (green in Fig. 22a), 

the angular rate output , ( )qr sε
ω  (green in Fig. 22b), the control sig-

nal mn,c, ( )sεδ  (green in Fig.  22c), and the control signal derivative 
mn,c, ( )sε
δ  (green in Fig.  22d). The sufficiently large reference step 

amplitudes used on the pitch and yaw-axes are coherent with nonlin-
ear simulations. In Fig. 22a, the pitch/yaw-channel load factor-related 
responses match the target system responses (red), and hence the 
time performance in terms of reference tracking (solid lines) and load 
factor output decoupling (dashed lines) obtained before robust stabi-
lization (black) is very well recovered using the 2DoF RO structure for 
the robustifying controller, as with the robustifying 2DoF FO controller 
(magenta). The use of a robustifying 1DoF RO controller is clearly 
not satisfactory (blue). In Fig. 22b, the output angular rates used for 
feedback remain small and help to enhance closed loop damping. In 
Figs. 22c and 22d, the control signals behave well without any satura-
tion nor fast variations.

Robust Stability Analysis

The pitch/yaw-channel linear controller of Fig. 21 is tested for robust 
stability at the critical operating condition with respect to the projec-
tile dynamics aerodynamic parametric uncertainties, as well as the 
unstructured uncertainties representing neglected dynamics in the 
actuator and sensor models. As for the nose position autopilot design, 
robustness is first assessed using the criterion of the H∞ loop-shap-
ing design procedure. The estimated size = 0.3424ε  of NLCF pertur-
bations corresponding to all of the aforementioned modeling uncer-
tainties remains smaller than the stability margin RO2 = 0.5685ε , and 
hence robust stability is guaranteed.

The μ-analysis theory presented in Subsection "Robust Stability 
Analysis" of the previous Section "Roll-Channel Autopilot"  is also 
applied to the uncertain pitch/yaw-channel linear closed-loop system, 
in which the aerodynamic parametric uncertainty block nω∆  similar 
to Eq. (35), along with the unstructured actuator ( )sδ∆  and sensor 

,m ,m( ), ( )n s sω∆ ∆  perturbation blocks, are regrouped in a single block-
diagonal ,m ,m( ) = diag[ ( ), , ( ), ( )] , ( ) 1n ns s s s sδ ω ω ∞ ∞

∈ ≤∆ ∆ ∆ ∆ ∆ ∆H . 
Figure 23 gives the upper and lower SSV bounds calculated over a fre-
quency grid, which remain smaller than one and thus indicate robust 
stability with a good stability margin.

Figures 24a-24f present pitch/yaw load factor, actuator angle and rate 
time responses for 200 uncertain closed-loop system random sam-
ples, using pulse signals of constant amplitude for the reference pitch/
yaw-channel load factors. Robust stability of the closed-loop system 
can be verified, and performance in terms of reference tracking and 
load factor output decoupling is relatively well ensured, with no canard 
actuator saturation despite the various sources of modeling uncertainty.
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Figure 24 – Uncertain closed-loop simulations: (a) pitch load factor, (b) yaw load factor, (c) pitch actuator angle, (d) yaw actuator angle, (e) pitch actuator angle 
rate, (f) yaw actuator angle rate
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Finally, robust stability of the closed-loop system is verified with respect 
to transmission delays injected simultaneously at each canard actua-
tor input. For delays of up to 30 ms, i.e., 18 times a rate of 1/600 s with 
which the control signal could be sampled, Figs. 25a-25f show deg-
radations, on the different time responses considered, which become 
significant only for the biggest delays. However, for realistic delays of 
up to 3 times the control signal sampling rate [32], i.e., 5 ms, closed-
loop system stability and performance properties are well maintained.

Gain-Scheduled Nonlinear Controller

The development of a gain-scheduled nonlinear controller valid for the 
entire operating domain PY

λΓ  of the projectile parameter-dependent 
pitch/yaw-channel dynamics permits the designer to suitably adapt 
the control signal level to changes occurring in these dynamics, 
contrary to a single linear controller, which would be insufficiently 
robust to ensure desired stability and performance properties for all 
operating points. Linearly interpolating the eight tuned parameters of 
a set of controllers, each of which possesses the same structure of 
Fig.  21 computed by repeating the design procedure of the previ-
ous subsections over a grid of equidistant synthesis points covering 
the trimming envelope PY

λΓ , produces, for the simplified q-LPV model 
PY PY( )λ λ  of Subsection "Pitch/Yaw-Channels" in Part "Airframe 

Modeling", a gain-scheduled controller [18]. Implementing directly 
its structure with the projectile pitch/yaw-channel nonlinear dynam-
ics provides the gain-scheduled nonlinear controller of Eq. (46) in 
which, i.e., PY= [ ( )]tλ

ω ωK K λ . The time-dependent scheduling 
vector PY ( ) = [ ( ) ( )]t V t h t Τλ  is assumed to be measurable as well as 
slowly-varying for preserving closed-loop system stability. The actua-
tor commands mn,c ( )sδ  are computed again using Eq. (6).

The transformation system PY( , )n sρ
ωT ρ  of Eqs. (39) is also directly 

implemented with the nonlinear system dynamics in order to compute 
for any operating point the necessary feedback signals at the projec-
tile CM, depending on the simultaneously controlled nose angle and 
rate. The various parameters of the derivative d, PY( , )sωW λ  and low-
pass b, PY( , )n sW λ  and b, PY( , )sωW λ  filters are linearly interpolated 
using the selected values for the design point grid.

The design of 1886 linear controllers is performed for the same target 
performance level demanded throughout the entire operating domain. 
Both the derivative and low-pass filters contained in the transforma-
tion system and the model-matching and control signal weighting 
filters included in the linear controller design setup of Fig.  3 used 
for open-loop shaping are automatically and smoothly adapted. The 
PI-P-P controller gain surfaces obtained as a function of the projectile 
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Figure 25 – Closed-loop time responses with transmission delays at actuator inputs: (a) pitch load factor, (b) yaw load factor, (c) pitch actuator angle, (d) yaw 
actuator angle, (e) pitch actuator angle rate, (f) yaw actuator angle rate
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airspeed V and altitude h are given in Figs. 26, 27, whereas the val-
ues of the different parameters of the pre-filter and of the robustify-
ing 2DoF H∞ controller, which remain almost constant over the flight 
envelope, are not shown for brevity purposes. The reasonable values 
of the PI-P-P controller gains vary relatively smoothly3, hence aiding 

3	 Whereas the proposed controller design procedure provides gain surfaces which 
are already relatively smooth, a subsequent smoothing could be applied to the gains in 
order to obtain smoother variations.

the obtainment of a good continuity of the gain-scheduled control 
signal during transitions between synthesis operating points, which is 
desirable for preserving the performance and robustness properties 
[19, 27].
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Figures 28a, 28b illustrate for all synthesis points the closed-loop pitch/
yaw load factor output-related step responses (blue, green) indicating 
that the reference tracking and output decoupling local performance 
objectives specified by the reference dynamics (red) are very well met 
over the trimming envelope. Figures 29a, 29b indicate that closed-loop 
system local robust stability is proved at each design point using both 
the robustness criterion of the H∞ loop-shaping design procedure and 
μ-analysis theory. For the considered modeling uncertainty, the inequal-
ities PY RO2 PY( ) < ( )ε ελ λ  and PYmax [M ( , )] < 1,K jω µ ω ω∆ +

∆ ∀ ∈λ   
are verified for any synthesis point PY PY

λ∈λ Γ .

The nonlocal stability and performance properties provided by the 
gain-scheduled controller are now verified using the simplified q-LPV 
model PY PY( )λ λ  proposed in Subsection "Pitch/Yaw-Channels" of 
Part "Airframe Modeling". The latter is simulated during 28 s along a 
parameter vector test trajectory PY ( )tλ  covering the flight envelope 

PY
λΓ , as shown in Fig. 30. The altitude trajectory originates from a 

ballistic simulation of 28 s between the apogee and the impact point, 
whereas the airspeed is a chirp sinusoidal signal whose frequency 
increases from 0.01 Hz to 0.1 Hz at a linear rate with time during 
15 s and then at the same rate up to 28 s. The simulation time results 
obtained with reference pitch/yaw load factors taken as pulse signals 
of constant amplitude are presented in Figs. 31a-31d. Performance 
in terms of reference tracking and decoupling is satisfactory and the 
pitch and yaw actuator angular position and rate signals behave well.

Proportional Navigation Guidance Algorithm

This part describes the gravity-compensation pure proportional 
navigation (PPN) guidance algorithm, which generates the suitable 
reference pitch/yaw-channel load factor orders commanded to the 

autopilot in order to steer with accuracy the projectile to a given tar-
get. The load factor commands expressed in the non-rolling frame CS 
are given by [40]:

	
[ ] [ ]

[ ]

B B B E EOE E
B BBE

c E
=

N
′ ′ ′

′    × −     
Tv g

n
g

ω
	 (47)

The vector OE B[ ] ′ω  is the line of sight O rate of change with respect to 
the inertial frame E and is defined as:

	 [ ]
[ ]

[ ]

EE E
B B E TB TBOE

2E
TB

=
′ ′  ×    ω T

s v

s
	 (48)

where the line of sight vector E E E
TB TE BE[ ] = [ ] [ ]−s s s  is the differen-

tial inertial position vector between the projectile CM B and the target 
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CM T positions, which are considered as perfectly known, and the 
differential velocity vector E E E E E E

TB T B[ ] = [ ] [ ]−v v v  of the projectile CM 
B with respect to the target frame T is the difference between the 
inertial projectile and target velocity vectors.

The PPN constant is here set to N = 2.5, since this value leads to 
reasonable amplitudes for the reference load factors, and to smaller, 
slower-varying and more homogenous over time amplitudes for the 
canard actuator control signals. Hence, the risk of actuator saturation 
is limited, while a very good impact accuracy is maintained.

The gravitational acceleration vector is given by E[ ] = [0 0 ]g Τg  in 
the inertial CS and it is expressed in the non-rolling frame CS using the 
transformation matrix B E[ ] ′T , which is defined as follows as a function of 
the projectile pitch and yaw Euler angles assumed as perfectly known:

	 [ ]B E
cos cos cos sin sin

= sin cos 0
sin cos sin sin cos

θ ψ θ ψ θ
ψ ψ

θ ψ θ ψ θ

′
− 

 − 
  

T 	 (49)

There exists an alternative true PN (TPN) guidance law [39, 40] 
which possesses a similar expression to that of the PPN law. The 
difference comes from the use in Eq. (47) of the differential velocity 
vector expressed in the non-rolling frame CS E B

TB[ ] ′v  instead of the 
projectile CM velocity vector E B

B[ ] ′v . A PPN guidance law generates a 
commanded load factor vector that is normal to the inertial velocity 
vector E E

B[ ]v , whereas a TPN guidance law orders a load factor vector 
normal to the line of sight, i.e., normal to the differential inertial veloc-
ity vector E E

TB[ ]v  . However, both PPN and TPN laws yield identical 
commanded load factors in the case of a non-maneuvering target.

Nonlinear Simulation Results

This part proves the effectiveness of the guidance & gain-scheduled 
nonlinear control (G&C) system designed for an STT canard-guided 
dual-spin projectile, when it is implemented with the complete 7DoF 
nonlinear model of Part  "Airframe Modeling" augmented with the 
transformation system, throughout various simulation scenarios of a 
complete guided flight. Such a guided flight here comprises two main 

phases: the ballistic phase (from launch to a few seconds after the 
projectile trajectory apogee) and the guided phase (from the end of 
the ballistic phase to the projectile impact).

The ballistic phase ( guid0 <t t≤ ), where no guidance func-
tion is engaged, starts at projectile launch with a muzzle velocity 
V0  =  803  m/s, and gun barrel pointing 0 899.9 = 50.62θ  mil ° 
and azimuth 0 2026.7 = 114ψ + + mil ° (south-easterly direction). 
The ballistic phase comprises three subphases: a first starting sub-
phase ( start0 < = 20t t≤ s), a second nose rate reduction subphase 
( start switch= 20 < = 40t t t≤s s), and a third nose position reset sub-
phase ( switch guid= 40 <t t t≤s ). During the first subphase, the nose 
embedded electronic components (G&C modules, actuators and sen-
sors) are started only a few seconds after launch, in order to avoid 
their potential degradation caused by the extreme launch accelera-
tions. Large disturbances appearing in different system signals are 
also sufficiently reduced during this first subphase. During the second 
subphase, the high roll rate of the nose initially fixed with the projectile 
body is reduced to zero using the rate autopilot. During the third sub-
phase, the nose angle is reset to f = 180φ ° by the position autopilot 
and the steering canards are deployed at eng = 40.5t s .

The guided phase ( guid impactt t t≤ ≤ ) starts after the trajectory apogee, 
when the projectile arrives at less than 10 km from the target. With the 
projectile maneuvering with an STT mode for trajectory correction, the 
nose angle is permanently regulated about f = 180φ ° from guidt . The 
pitch/yaw-channel PPN guidance function, which is however engaged 
only as from guid 3t + s when the large disturbances on the feedback 
signals due to canard deployment are sufficiently reduced, actively 
directs the projectile with accuracy towards a ballistic impact point.

Nonlinear simulation results are given in Figs. 32 and 33, considering 
nominal initial conditions (IC), no wind and no modeling uncertainty. 
Figures 32a-32f illustrate on the left for the pitch/yaw-channels the 
tracking load factors and the canard actuator deflection angles and 
rates, whereas on the right the nose roll-channel controlled angle, 
the angular rate and the input voltage to the coaxial motor are given. 
Figures  33a-33b show the aerodynamic angles AoA and AoS and 
their derivatives with respect to time. During the ballistic phase 
(0 49t≤  s), the nose roll rate is correctly reduced to zero from 
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Figure 31 – Closed-loop simulations: (a) pitch load factor, (b) yaw load factor, (c) pitch/yaw actuator angles, (d) pitch/yaw actuator angular rates
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start = 20t s (Fig. 32d), and the nose angle is then well reset to the 
position f = 180φ ° from switch = 40t s  (Fig.  32a), despite the distur-
bances of Eq. (14) appearing in the nose position and rate dynamics. 
In addition, the voltage applied to the coaxial motor never exceeds the 
saturation value e,sat = 60V V  and behaves almost always smoothly 
(Fig. 32f), hence aiding in saving energy.

During the guided phase (49 s  t  83 s), the nose position autopilot 
keeps on performing well (Figs. 32b, 32f) and does not inject any 
perceptible lag into the controlled pitch/yaw-channels, for which the 
commanded load factor tracking starting at t  52 s is excellent even 
for fast reference load factors sent by the PPN guidance loop at the 
end of the flight (Fig. 32a). The ballistic impact accuracy for a range 
of more than 20 km is very good, using here a perfect navigation, as 
the range and crossrange errors are both smaller than 25 cm.

The STT projectile globally maneuvers more in the vertical plane 
rather than in the horizontal plane, as shown in Figs. 32c and 32e, 
where the pitch canard actuator is the most solicited. However, the 

canard actuator deflection angles and rates remain all the time quite 
far from the saturation limits sat = 30δ ± °  and sat = 100δ ± °/s.

The large disturbances caused on the load factor output signals by 
canard deployment at teng = 40.5 s are well rejected. The gain-scheduled 
nonlinear controller also provides a very good nonlocal performance, 
although the aerodynamic angles illustrated in Fig. 33a take values more 
or less far from the zero values imposed in the trimming vector for com-
puting the set of linear controllers. Hence, the obtained performance is 
robust with respect to the resulting uncertainty on the trimming vector. 
In addition, performance is well maintained even though the pitch/yaw-
channel dynamics system does not actually operate at equilibrium, as 
seen from the non-zero values of ,α β  given in Fig. 33b.

Three additional nonlinear simulation scenarios are finally addressed. 
The first scenario considers uncertainty on the launch IC's through 
errors placed on the muzzle velocity V0 and on the gun barrel 
pointing θ0 and azimuth ψ0. The second scenario studies the capa-
bility of the autopilot to reject wind disturbances. The third scenario 
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Figure 32 – Nominal scenario: (a) pitch/yaw load factors, (b) nose angle, (c) pitch/yaw actuator angles, (d) nose angle rate, (e) pitch/yaw actuator angle rates, 
(f) actuator voltage
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Figure 33 – Nominal closed-loop simulations: (a) AoA and AoS, (b) AoA and AoS time derivatives
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evaluates the robustness to the uncertainty modeled in the projectile 
aerodynamic coefficients and in the actuator and sensor dynamics 
(see Part "Airframe Modeling").

Concerning the first scenario, 200 random cases are simulated, in 
which the variables V, θ, ψ are independent, normally distributed, 
random numbers with a mean value equal to their nominal values  
V0 = 803 m/s, θ  899.9 mil, ψ0  +2026.7 mil and a standard 
deviation of 10 m/s for V and of 0.5°  8.9 mil for ,θ ψ . Figure 34a 
illustrates the top view of the various projectile trajectories, where it 
can be seen that the designed G&C system performs well to always 
direct the projectile to the target with good precision and accuracy. 
Figure 34c gives the trajectories for the pitch/yaw-channel control-
ler scheduling vector PY = [ ]V h Τλ . For the flight conditions corre-
sponding to the projectile guided phase, all of the trajectories belong 
to the controller scheduling envelope PY

λΓ .

Concerning the second scenario, the MATLAB/Simulink Horizon-
tal Wind Model 07  is used for a latitude of 47.1° north, longitude
of 2.4° east and altitude covering the interval [0.12000m], at 1 a.m. 
UTC of October 2nd 2015, using an Ap index of 48. As seen from 
the 3D projectile trajectories given in Fig. 34b, even though the wind 
leads to significantly modifying the projectile trajectory compared to 
the no-wind case, the wind disturbances are very well rejected by the 
autopilot and the projectile hits the target.

Concerning the third scenario, 300 trajectories are simulated using for 
each of them independent, uniformly distributed, random values for the 
16 aerodynamic coefficients and the 5 coaxial motor parameters, along 
with random perturbed systems for the pitch/yaw-channel actuator and 
sensor uncertain models. Figure 34d shows that closed-loop system 

robust stability is ensured and that the guidance commands are suc-
cessfully followed, permitting the projectile to hit the target in each case.

Concluding Remarks

This paper deals with the development of guidance and control func-
tions for the roll, pitch and yaw-channels of a 155 mm Skid-To-Turn 
canard-guided spin-stabilized projectile. The complete 7DoF nonlin-
ear and subsequently derived linearized models are addressed, and 
those consider the actual nose-mounted sensor position for modeling 
realism improvement. The application of an H∞ loop-shaping design 
approach provides a linear autopilot for the nose roll-channel, along 
with a gain-scheduled controller for the complete airframe pitch/yaw-
channels. Both separately designed autopilots offer high performance 
and robustness linear properties despite their quite simple fixed and 
reduced order structures. The proposed pure proportional navigation 
guidance and gain-scheduled control scheme is proved to be very 
efficient for hitting a ballistic target with a high level of precision and 
accuracy, through various guided flight scenarios considering nomi-
nal, perturbed or uncertain nonlinear operating conditions.

Future works for autopilot design could focus on developing an anti-
windup control scheme for handling potential actuator amplitude and 
rate saturations. Alternative controller interpolation laws, theoretically 
guaranteeing global closed-loop system stability, contrary to the lin-
ear interpolation technique used here, could also be studied. In addi-
tion, it would be interesting to design a purely LPV controller and 
compare it to the gain-scheduled autopilot proposed here 
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