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An approach for extending classical robustness margins to linear parameter varying 
 (LPV) systems is presented. LPV systems are often used to model aircraft 

dynamics that are highly dependent on the operating conditions such as altitude and 
airspeed. Classical gain and phase margins are evaluated in the frequency domain 
and therefore cannot be applied to LPV systems. The proposed approach is based 
on a time-domain interpretation for disk margins. Specifically, a norm bounded 
linear time invariant (LTI) uncertainty is interconnected to the nominal LPV system. 
Next, a time-domain worst-case metric is applied to evaluate both the robustness 
margin and also the robust performance degradation. The approach does not require 
detailed uncertainty modeling. In addition, the analysis can be formulated as a convex 
optimization leading to reliable numerical analysis tools. As an example, the LPV gain 
margin of a flutter suppression controller for a flexible aircraft is evaluated. 

Introduction

This paper presents a method for extending the notion of gain and 
phase margins to linear parameter varying (LPV) systems. LPV sys-
tems are often used in aerospace engineering to model dynamics 
that strongly depend on the operating conditions, where the state 
matrices depend on measurable exogenous parameters that vary 
over time. If the state matrices of the LPV model have a rational 
dependence on the scheduling parameters, finite dimensional semi-
definite programs (SDPs) can be formulated for controller synthesis 
and analysis [1],[8],[14]. However, in many engineering applications 
the state matrices have an arbitrary dependence on the parameters. 
In this case, the analysis and synthesis problem leads to an infinite-
dimensional set of linear matrix inequalities (LMIs). A finite approxi-
mation approach based on gridding is proposed in [19]. The existing 
results on LPV modeling, as well as controller design and synthesis 
have been widely studied and successfully used for many industrial 
applications. Results on robustness analysis for LPV systems, which 
depend rationally on the scheduling parameter, can be found, for 
example, in [18]. However, there is still a gap in the literature when it 
comes to standard robustness analysis tools for LPV systems with 
arbitrary parameter dependence. The classical phase and gain mar-
gins are evaluated in the frequency domain and can therefore not be 
applied to LPV systems due to their time varying dynamics. A stan-
dard approach is to impose a grid on the scheduling-parameter space 
and to evaluate the robustness margins at each grid point. However, 
this does not guarantee the robustness for the entire LPV system. 
This paper seeks to combine the knowledge about standard robust-
ness margin analysis for linear time invariant (LTI) systems and new 
results for the analysis of uncertain LPV systems.

Recently, the framework of Integral Quadratic Constraints (IQCs) has 
gained a lot of attention in the research community. IQCs where first 
introduced in [7] as a general robustness analysis framework for LTI 
systems. The authors in [11] propose a time domain interpretation 
that can be used to extend the IQC framework to LPV systems. Spe-
cifically, a worst-case gain metric was proposed to extend the known 
performance analysis conditions for nominal LPV systems [19] to 
uncertain LPV systems. Here, the uncertain system is divided into 
a nominal system and a perturbation block. The IQC can then be 
imposed on the input/output behavior of the latter. The focus in this 
paper is on norm bounded LTI uncertainties, used to model simulta-
neous phase and gain variations in a system. The constraint can be 
directly obtained by reformulating the norm bound conditions of the 
uncertainty without having to go into too much detail concerning the 
IQC framework. The main contributions of this paper are based on the 
theoretical results in [12]. First, the worst-case metric is used to pro-
vide a notion of LPV stability margins. These margins are then used 
to formulate a simple robustness test for a gain scheduled controller, 
similar to the classical stability margins in LTI control. Additionally to 
the single margin point where instability occurs, this new technique 
can also be used to determine the robust performance of the LPV 
systems. The theory is finally applied to an aerospace engineering 
example. Here, the LPV robustness margins of a flutter suppression 
controller for a flexible aircraft are evaluated and compared to classi-
cal LTI analysis results based on µ -theory at each grid point.
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Background

In many aerospace applications the dynamics strongly depend on 
the operating conditions of the aircraft, such as altitude or airspeed. 
The LPV framework can be used to consider this dependency in the 
modeling procedure as well as the controller synthesis. The dynamics 
are expressed as a function of a scheduling parameter. This section 
provides a brief summary of LPV modeling and introduces the perfor-
mance of nominal LPV systems. This work is aimed at extending clas-
sical (LTI) robustness margins and robust performance analysis to 
LPV systems. The approach is based on the concept of disk margins 
for LTI systems as reviewed in Section "Disk Margins for LTI Systems".

Linear Parameter Varying Systems

Linear parameter varying (LPV) systems are a special class of 
time varying systems where the dynamics depend on an exog-
enous parameter vector ( )tρ  restricted to remain in a compact set 

( )    
n

t ρρ ∈ ⊂  for all 0t ≥ . An nth-order LPV system Gρ  as depicted 
in Figure 1 has the form 

	 ( ) ( )( ) ( ) ( )( ) ( )=x t A t x t B t d tρ ρ+ 	 (1)

	 ( ) ( )( ) ( ) ( )( ) ( )=e t C t x t D t d tρ ρ+ 	

with the continuous functions : , : , :x x x d e xn n nn n n n n nA B Cρ ρ ρ× × ×→ → →     , : , : , :x x x d e xn n nn n n n n nA B Cρ ρ ρ× × ×→ → →      , 
: , : , :x x x d e xn n nn n n n n nA B Cρ ρ ρ× × ×→ → →       and : e dn n nD ρ ×→  . In addition, ( ) xnx t ∈  is the 

vector containing the states of the system, ( ) yne t ∈  is the output 
vector and ( ) und t ∈  the input vector. Given by the physical restric-
tions of most practical applications the admissible parameter trajec-
tories are defined by 

	 ( ) ( ){ }:= : | , 0n t t tρρ ρ ρ+ → ∈ ∈ ∀ ≥

    	 (2)

where the admissible parameter rate is given by the subset 

	 { }:= || | , = 1, ,n
i i i nρ

ρρ ρ ν∈ ≤

 

  	

iν  is the fastest admissible parameter variation rate. 

The performance of an LPV system Gρ can be measured in terms of 
the induced 2 -norm. First define the norm of a signal d as 

( ) ( )2 0

Td d t d t dt
∞

= ∫ . The set of bounded signals, i.e. 2d ∈ , 

are those that satisfy 2 <d ∞ . The gain of the system from the input 
d to the output e can be defined using the signal 2 -norm: 

	
( )2

2

0 , , 0 =0 2

:= sup
d x

e
G

dρ
ρ≠ ∈ ∈ 

	 (3)

A bounded-real type result exists to bound the induced 2 -norm of 
an LPV system. First, define the following differential operator for a 
symmetric matrix function : xnP →  : 

	 ( ) ( )
=1

, =
n

i
i i

P
P

ρ ρ
ρ ρ ρ

ρ
∂

∂
∂∑  	 (4)

The theorem below provides a matrix inequality condition to prove sta-
bility and bound the induced 2  gain of an LPV system with bounded 
parameter variation rate.

Theorem 2.1 (Bounded Real Lemma [20])
An LPV System Gρ  as defined in (1) is exponentially stable and 
Gρ γ<  if there exists a continuously differentiable symmetric matrix 

function : xnP →   such that the following two conditions hold 
( ),ρ ρ∀ ∈ ×     

	 ( ) > 0P ρ 	 (5)

	

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )

( ) ( )2

,

1 < 0

T

T

T

T

P A A P P P B

B P I

C
C D

D

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ
ρ ρ

γ ρ

 + + ∂
 
 − 

 
 +   
  



	 (6)

Proof. This is a standard result but a sketch of the proof is provided 
since it will be extended for the robustness result. Multiply (6) on 
the left and right by ,T Tx d   and ,

TT Tx d   , respectively, to obtain 
(neglecting the dependence on time): 

	 ( ) ( ) ( ) 2

1, < 0T T T T Tx P x x P x x P x e e d dρ ρ ρ ρ
γ

+ + ∂ + −
 

	 (7)

Define a storage function : nxV +× →   as ( ) ( ), = TV x x P xρ ρ  . 
Evaluating V along the state and parameter trajectory gives 

	 2

1 < 0T TV e e d d
γ

+ − 	 (8)

Integrating over the time interval [ ]0,T  and applying ( )0 = 0x  yields 

	 ( ) ( ) ( ) ( ) ( )2 0 0

1 < 0
T TT TV T e t e t dt d t d t dt

γ
+ −∫ ∫ 	 (9)

Let T →∞  and use ( ) 0V T ≥ , as well as the definition of the 2 -norm, 
to obtain bound 2 2e dγ≤ . A slight modification of the arguments 
(using the compactness of  ) yields the strict inequality 2 2<e dγ  . 

Disk Margins for LTI Systems

In many applications, it is important to provide a high level of robust-
ness. Specifically, the system performance should be insensitive to 
deviations between the model used for the controller synthesis and 
the actual system dynamics. Classical robustness measures, e.g., 
gain and phase margins, can be easily evaluated given the frequency 
response of the nominal system dynamics. More modern tools, e.g. 
µ analysis, require more detailed descriptions of the uncertainty. In 
general, an uncertain system can be described by "pulling out the 
uncertainty", as shown in Figure 2 [21]. This corresponds to an inter-
connection of a nominal (not-uncertain) system G and an uncertainty 
block ∆, as shown in Figure 2. The signals d and e correspond to 
exogenous inputs and system outputs, respectively. The signals v and 
w correspond to the signals related to the modeling uncertainty. The 
notation ( , )uF G ∆  is used to represent this interconnection structure.

As noted above, classical gain and phase margins are common 
robustness metrics. These margins measure the amount of (individ-
ual) gain or phase that can be tolerated before a single closed-loop 

Gρ ed

Figure 1 – LPV System
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becomes unstable. On the other hand, symmetric disk margins, as 
described in [3, 5], allow for simultaneous variations in both gain and 
phase within a prescribed disk. The remainder of the section briefly 
reviews the disk margin concept, since this will be used to formu-
late the proposed robustness margins for LPV systems. Consider the 
interconnection shown in Figure 3 where G and K are single input / 
single output (SISO) LTI systems and ∆ is an LTI uncertainty. The 
symmetric disk margins are related to robustness with respect to this 
uncertainty interconnection.

The open loop transfer function, without ∆, from input w to output v is 

given by 
1

i iS T−
, where 

1
1

:=i GK
S

+
 and 

1
:=i

GK
GK

T
+

 are the sensi-

tivity and complementary sensitivity functions at the plant input. Thus 

the disk margin interconnection is equivalent to 
1 ,u

i k

F
S T

 
∆ − 

 (with 

no disturbance and error channels). By the small gain theorem  [6, 
21], the uncertain disk margin interconnection is stable if and only if 

1<
i iS T∞

∞

∆
−

. Thus, the stability radius (margin) can be defined 

as := 1/ i ir S T−  where 0 < < 1r  typically satisfies 0 < < 1r .

Block diagram manipulation can be used to bring the disk margin 
interconnection into the equivalent form shown in Figure 4. This alter-
native form provides a useful connection back to classical gain and 
phase margins. This implies that the interconnection is stable for all 

real gains from uK to u in the interval 
1 1,
1 1

r r
r r

− + 
 + − 

. This proves the 

following symmetric lower and upper disk gain margins: 

	
1 1GM = , GM =
1 1l u

r r
r r

− +
+ −

	 (10)

Similarly, stability of Figure 4 for all < r
∞

∆  can be used to show 
that the loop is stable for all additional phase (from uK to u) within the 
following disk phase margin limits: 

	 ( ) ( )PM = 2cot , PM = 2cotl ur r− 	 (11)

These are called disk margins due to a connection in the Nyquist 
domain. Specifically, stability of the interconnection in Figure  4 for 
all < r

∞
∆  implies that the open loop Nyquist curve of GK remains 

outside the disk containing –1 and with diameter passing through 
[ ],u lGM GM− −  . Figure 5 shows the disk margins for an example transfer 
function. The critical point (–1,0) is marked in red. The interval on the 
real axis between the disk (orange) and the critical point corresponds 
to the gain margin and the intersection of the disk and the circle around 
the origin with radius 1 marks the arc of the phase margin. For further 
information on disk margins the reader is referred to [5], for example.

LPV Robustness Margins

Classical gain and phase margins are widely used as a standard for-
mulation for robustness requirements in the aerospace industry. They 
do not require specific, detailed uncertainty models and, hence, these 
margins are easy to evaluate. Additionally, engineers have significant 
experience on the interpretation of the analysis results. At the same 
time, gain scheduling is a commonly used design method in aero-
space. Since the classical margins are evaluated in the frequency 
domain, they cannot be directly applied to LPV systems due to the 
time varying nature of the dynamics. It is typical to simply evaluate the 
margins at "frozen" flight conditions. However, this fails to capture the 
effects of varying flight conditions. This motivates the proposed gener-
alized robustness margins for LPV systems. The approach presented 
in this section provides two main extensions to the classical margins. 
A time domain worst-case metric can be used to formulate a general-
ized robustness margin for LPV systems. Additionally, this approach 
also considers the performance degradation before instability occurs.

eG

∆

d

w v

Figure 2 – Uncertain LTI System
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∆

w

v uuK y

Figure 3 – Input Disk Margin Interconnection
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Figure 4 – Equivalent Input Disk Margin Interconnection
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LPV Disk Margins

The generalized disk margin interconnection in Figure 6 will be used 
for the analysis. This contains two significant differences from the 
previous disk margin interconnection in Figure  3. First, the plant 
Gρ  and controller Kρ are allowed to be LPV systems. Here ρ  is a 
parameter vector defining the flight condition. Second, an input d and 
output e are added in order to consider performance criteria. This 
corresponds to a plant input disturbance and plant output error. More 
generally, performance inputs/outputs can be included at any point in 
the feedback diagram depending on the specific application.

It is common to evaluate the classical margins with Gρ  and Kρ  evalu-
ated at specific grid points of ρ . With a constant ρ , both the plant 
and controller are then LTI systems at the fixed operating condition. 
The disk margin analysis presented in Section "Disk Margins for LTI 
Systems" can be directly applied to this LTI interconnection. However, 
the resulting analysis does not consider the actual time varying nature 
of ρ . The approach proposed in this paper directly deals with the time 
varying operating conditions using the framework developed in [12].

Two basic robustness analysis problems will be considered, based on 
the LPV interconnection in Figure 6:

•	 LPV Disk Margins: Let ∆ be an LTI uncertainty. Compute a sta-
bility margin r such that the LPV interconnection is stable for all 

< r
∞

∆  and all ρ ∈ . 

•	 Worst-Case Gain: Again let ∆ be an LTI uncertainty. In addi-
tion, assume that the uncertainty satisfies a given norm-bound 

<b r , i.e., < b
∞

∆ . Compute the worst-case gain from d to e 
over this set of uncertainties and all ρ ∈ . 

The analysis requires a time-domain characterization of the uncer-
tainty. Let ( )w v= ∆ , where both w and v are assumed to be sca-
lar signals, in order to simplify this discussion. The norm-bound 

< b
∞

∆  implies the following frequency-domain constraint on the 
input-output signals: 

	
( ) ( ) ( )( ) ( )

2 2 2

* *2

| ( ) | | ( ) | =

0

b V j W j d

V j b j j V j d

ω ω ω

ω ω ω ω ω

∞

−∞

∞

−∞

−

− ∆ ∆ ≥

∫
∫

	 (12)

where ( )V jω  and ( )W jω  are the transforms of the signals ( )v t  and 
( )w t . By Parseval's theorem [21], this inequality is equivalent to an 

infinite-horizon, time-domain constraint: 

	
( )
( )

( )
( )

2

0

0
0

0 1

T
v t v tb

dt
w t w t

∞     
≥    −    

∫ 	 (13)

The causality of ∆ implies that this constraint also holds for all finite 
intervals [ ]0,T , for all ( )2 , =v w v∈ ∆  and > 0T  [12]. The time-
invariance of ∆ can be used to formulate a tighter constraint, as is stan-
dard in structured singular value ( )µ  analysis [9, 13]. Specifically, ∆ is 
LTI and, hence, it commutes with any stable, minimum-phase LTI sys-
tem D, i.e., ( ) ( ) ( ) ( )=D s s s D s∆ ∆ . This property is the basis for the 
use of frequency-domain "D"-scale conditions in µ analysis [9, 13]. The 
equivalent time-domain formulation is obtained by noting that if =w v∆  
then =Dw Dv∆ . Hence, the filtered signals ( ) ( ), := ,v w Dv Dw   satisfy 
the same norm bound constraints as D. To simplify notation, combine 
the scalings D and stack the filtered signals as follows: 

	
0

:= = :=
0

v v D
z where

w w D
     

Ψ Ψ     
     





	 (14)

As noted above, the filtered signals ( ) ( ), := ,v w Dv Dw   satisfy the 
same norm bound constraints as ( ),v w . This leads to the following 
time-domain inequality.

Definition 3.1
Let ∆ be an LTI system satisfying <Delta b

∞
. In addition, let D be 

a stable, minimum phase LTI system. Define Ψ as in Equation 14 and 

2 0
0 1= bM

−
 
  

. Then ∆ satisfies 

	 ( ) ( )
0

0
T Tz t M z t dt ≥∫ 	 (15)

for all ( )2 , =v w v∈ ∆  and 0T ≥ . 

Equation 15 is a specific example of a time-domain Integral Quadratic 
Constraint (IQC). It is worth noting that IQCs provide a general frame-
work, introduced in [7], for studying various uncertainties, such as 
infinite dimensional systems or hard non-linearities. There is an exist-
ing library of IQCs ( ),MΨ  for particular classes of uncertainties. The 
( ),MΨ  given in Definition 3.1 is for the particular class of LTI norm-
bounded uncertainty. The more general IQC framework can be used 
to obtain worst-case stability margins for other cases, e.g., systems 
with saturation. However, this paper will focus on norm bounded LTI 
uncertainties, in order to assess LPV disk margins.

LPV Worst-Case Gain

The (nominal) stability conditions of Section "Linear Parameter Vary-
ing Systems" can now be combined with the time domain constraint 
on the input/output behavior of the uncertainty block ∆. This can be 
used to assess the robust performance of an uncertain LPV system. 
First note that the LPV disk margin interconnection (Figure  6) is a 
special instance of the more general uncertain LPV system intercon-
nection in Figure 7. Here, the nominal (not uncertain) LPV system Tρ 
is connected to the uncertainty block. In addition, the dynamic filter 
Ψ , used to describe the IQC in Definition 3.1, is also appended to the 
diagram. The combined dynamics of Tρ and Ψ  are described by the 
following LPV system: 

	
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

1 11 12

2 21 22

=
=
=

x A x B w B d
z C x D w D d
e C x D w D d

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

+ +
+ +
+ +



	 (16)

The state vector combines the state of G and the state of Ψ ,  
i.e., [ ]= , TT T

Gx x xΨ . The perturbation block ∆ is unknown and is not 

–

∆

w

v u

d

uK

y

eGρKρ

Figure 6 – Input Disk Margin Interconnection for LPV Systems
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considered for the purposes of analysis. Instead, w is treated as an 
external signal subject to the constraint on z given in Equation 15. 
This effectively replaces the precise relation ( )=w v∆  by the impre-
cise time domain inequality.

The robust performance of this general uncertain LPV system  
(Figure 7) can be measured by the worst-case induced 2  gain from 
input d to output e over all uncertainties ∆ satisfying the finite-time 
horizon constraint in (15). The following Theorem (from [12]) pro-
vides a matrix inequality condition to compute the upper bound on the 
worst case 2 -gain of ( ),u Tρ ∆ .

Theorem 3.2 (Extended Bounded Real Lemma [11])
Let ( ),u Tρ ∆  be well posed for any ( ),IQC M∆ ∈ Ψ . Then, the worst 
case gain of ( ),uF Tρ ∆  is upper bounded by <γ ∞ if there exists a 
continuously differentiable : xnP →   and a scalar > 0λ  such that 
the following conditions hold for all ( ),ρ ρ ∈ ×    : 

	 ( ) > 0,P ρ 	 (17)

	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

1 2

1

2

,

0 0

0

T

T

T

P A A P P P B P B

B P

B P I

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

ρ ρ

 + + ∂
 
 
 

−  



	

( )
( )
( )

( ) ( ) ( )
1

11 1 11 12

12

T

TT

TT

C

D M C D D

D

ρ

λ ρ ρ ρ ρ

ρ

 
 
 +    
  

	 (18)

	

( )
( )
( )

( ) ( ) ( )
2

21 2 21 222

22

1 < 0

T

T

T

C

D C D D

D

ρ

ρ ρ ρ ρ
γ

ρ

 
 
 +    
  

	

Proof. The proof is similar to Theorem 2.1. The uncertainty ∆ 
is assumed to satisfy the IQC defined by ( ),MΨ , and therefore 
the signal z satisfies (15) for any > 0T . Define a storage func-
tion ( ) ( ), = TV x x P xρ ρ  as in the proof of Theorem  2.1. Left/right  
multiplication of Equation 18 by [ ], ,T T Tx w d  and [ ], , TT T Tx w d  leads 
to the following dissipation inequality 

	 2

1 < 0T T TV d d z Mz e eλ
γ

− + + 	 (19)

Integrating (19) over the finite time horizon [ ]0,T  and using the initial 
condition ( )0 = 0x  along with the conditions > 0λ  and ( ) > 0P ρ  leads 

to the gain bound e dγ≤ . This holds for any input 2d ∈ , admis-
sible parameter trajectory ρ ∈  and uncertainty ( ),IQC M∆ ∈ Ψ . 
Therefore the worst-case gain is upper bounded by γ. 

The robustness analysis therefore consists in searching for decision 
variables, namely the matrix function ( )P ρ , gain bound γ, and the 
constant λ, that lead to the feasibility of the conditions in Theorem 3.2.  
If the linear matrix inequality (LMI) conditions are feasible, then the 
system is stable for the selected uncertainty bound b. A bisection can 
be used to find the largest value of b for which the LMI is feasible.  
This largest uncertainty bound corresponds to the stability (disk) 
margin, denoted by r, for the LPV system. For example, the intercon-
nection in Figure  6 is stable for all real gains from uK to u in the  

interval 1 1,
1 1

r r
r r

− + 
 + − 

. The other disk margin interpretations given in 

Section "Disk Margins for LTI Systems" have similar extensions to the 
LPV interconnection. The key point is that the plant and controller are 
LPV and the time-domain analysis enables the robustness with 
respect to LTI (disk-margin) uncertainty to be evaluated.

Theorem 3.2 can also be used to evaluate performance, in addition to 
the stability margin. In particular, it is important to emphasize that the 
performance can become unacceptable before the system becomes 
unstable. Thus, it is useful to evaluate the performance degradation 
for uncertainty bounds within the stability margin. In other words, a 
plot of worst-case gain vs. uncertainty bound b will approach infinity 
as b r→ . The performance degradation as the bound b increases 
provides additional useful information beyond simply knowing the 
stability margin r. It should also be mentioned that this approach can 
be used to obtain generalized delay margins for LPV systems, using 
existing time-domain IQCs for time delays. The work in [10] provides 
detailed information on IQCs for time-delayed LPV systems.

Numerical Implementation

The conditions in Theorem  3.2 involve infinite dimensional LMIs, 
i.e., the conditions must hold for all ρ ∈ . In the case of Sys-
tem  (1),depending only rationally on ρ , a guaranteed solution of 
the parameter dependent LMI conditions can be found, as proposed 
in [14]. In many practical applications, for example, the aeroelastic 
vehicle considered here, (1) depends arbitrarily on ρ . For this class 
of systems, an approximation of the parameter dependent constraints 
based on gridding is proposed in [19]. Specifically, the parameter 
space is approximated by a finite grid over ( )×   . It should be 
emphasized that the gridding approach is only an approximation for 
the parameter-dependent LMI conditions. Hence, no rigorous perfor-
mance guarantees are provided by this approach, and special care 
must be taken when drawing conclusions. A pragmatic implementa-
tion of this approach is as follows: Enforce the LMI conditions on 
a "coarse" grid consisting of a small number of points, in order to 
reduce computation time. The resulting solution can then be checked 
on a "dense" grid of many points to ensure the accuracy of the solu-
tion. The SDP can be re-solved on a less coarse grid if required.

Another issue is that the matrix function P in Theorem 3.2 is itself 
parameter dependent. This function P can be expanded in terms of a 
finite number of basis functions: 

	 ( ) ( )=
n

j j
j

P b P
ρ

ρ ρ∑ 	 (20)

∆

w v

d e

z
Ψ

Tρ

Figure 7 – Worst-Case Gain Analysis Interconnection
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where : n
jb ρ →   can be any user-defined differentiable basis 

functions. The matrices Pj appearing in this expansion describe the 
function P with a (finite) number of decision variables. In general, 
there is no specific rule on how to choose the basis function. It has 
been reported that a similar parameter dependence as that in the sys-
tem equations leads to satisfying results [2]. However, there is no sci-
entific validation of this method in the literature. The choice of basis 
function used in the following application example will be described in 
Section "Robustness Analysis".

The final issue is the description of the IQC, which involves the scal-
ing D. In µ-analysis the search over the D-scales is performed in the 
frequency domain on a grid of frequencies. This approach cannot 
be replicated for LPV analysis, since the condition in Theorem 3.2 
is formulated in the time domain. Instead, many different D-scales, 
e.g., { } 1

N
i i

D
=

 can be selected. Each Di defines a valid IQC with cor-
responding filter iΨ . An approach for selecting basis functions for 
IQCs is proposed in [17]. The LMI conditions in Theorem 3.2 can be 
augmented in order to handle these multiple dynamic filters iΨ . The 
extended system then includes the additional dynamics of all iΨ . The 
corresponding LMI condition in (18) is modified to include one term 
corresponding to each selected Di : 

	

( )
( )
( )

( ) ( ) ( )
1

11 1 11 12
1

12

T
i

N
T

i i i i i i
i T

i

C

D M C D D

D

ρ

λ ρ ρ ρ ρ

ρ
=

 
 
     
  

∑ 	 (21)

The constants λi are decision variables each of which must be 0≥  . 
The output state matrices ( ) ( )( )1 11 12, ,i i iC D Dρ ρ  corresponding to the 
output zi of filter iΨ . The analysis includes a search for the constants 
λi that lead to the feasibility of the LMI conditions in Theorem 3.2. It 
is worth noting that, in principle, Ψ  and M do not have to be LTI but 
could potentially be LPV. However, the use of LPV ( ),MΨ  has not 
been fully developed in the literature and will not be pursued here.

Application on a Flexible Aircraft

The proposed method is used to evaluate the LPV robustness margins 
of a flutter suppression controller for a flexible aircraft. The airframe 
is a small, radio-controlled aircraft denoted mini-MUTT, as shown in 
Figure 8. The design is based on Lockheed Martin's Body Freedom 
Flutter vehicle [4]. The mini-Mutt has a mass of 6.7 kg and a wing 

span of 3 meters. It was built completely in-house at the University 
of Minnesota to study the usage of active control for suppressing 
detrimental structural and aerodynamic interactions. These unde-
sired interactions lead to a phenomenon called flutter, which is an 
unstable oscillation that can potentially destroy the aircraft. Given the  
catastrophic consequences of flutter, it is paramount to have an 
insightful and accurate robustness metric available.

System Description

The modeling of the aircraft incorporates structural and rigid body 
dynamics, as well as aerodynamics. The procedure can be found in 
[15]. The final model which is used is adapted from [11] and describes 
the longitudinal dynamics for straight and level flight. The system has 
a total of six states as well as one input and three output signals.

A schematic overview of the aircraft is depicted in Figure 9, showing 
the available sensors and actuators. The aircraft has a total of 8 flaps 
on the back of the wing. The body flaps are unused in this example, 
while the inner two are the aileron and elevator, respectively. The flut-
ter suppression controller has full authority over the outboard flap 
deflection denoted by δ, such that =u δ . The plant output signals are 
the pitch rate q and the vertical acceleration at the center of gravity 
aCG and the wing tips aWT , such that [ ]= CG WTy qa a . A short period 
approximation of the full model as proposed in [16] is used. The first 
two states of the state space representation are associated with the 
rigid body dynamics and consist of the angle of attack α and pitch 
rate q. The remaining states represent the generalized displacement 
and velocity of the first flexible mode, denoted by η  and η , respec-
tively. Therefore, the approximated plant model is of 4th-order and 
consists of the four states , , ,qα η η. The dynamics strongly depend 
on the airspeed and it is therefore straightforward to represent the air-
craft model as a parameter varying model. Specifically, the airspeed 
is assumed to be a measurable exogenous signal, which can be used 
as the scheduling parameter ( )tρ . Additionally, the sensor and actua-
tor dynamics and the assumed time delay as described in [16] are 
included, leading to the final 6th-order LPV model.

The LPV controller is mainly based on the H∞ design, which is also 
proposed in [16]. In this work, the airspeed is assumed to be con-
stant, 30 m/s. To adapt the controller design to the LPV description of 
the system, the loopshaping approach can be systematically extended 
using the synthesis algorithm provided in [20]. Weighting filters can 
be used to shape the individual transfer functions of the individual 
performance channels. The modal velocity η  of the first flexible mode 
is used as a non-measurable performance output. Since the main 
objective of the flutter suppression controller is to attenuate the mode, 
this can be achieved by pushing down the peak in the associated 
transfer function using a constant weighting filter.

Figure 8 – mini MUTT

Wing Tip 
Accelerometer

Wing Tip 
Accelerometer

Center 
Accelerometer

Pitch Rate Gyro

Outboard Flap Outboard Flap

Figure 9 – Schematic Overview
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Robustness Analysis

The LPV robustness margin analysis is performed on the closed-
loop system of the aircraft and the LPV flutter suppression control-
ler as shown in Figure 10. The parameter range is assumed to be 

[ ]= 20, ,40ρ  m /s and the parameter variation rate is bounded by 
±10 m /s2. The worst-case performance is computed for increasing 
values of b by solving the LMI conditions in Theorem 3.2. The results 
are then normalized by the 2  gain of the nominal system ( )= 0b . Let 
us recall that a norm bounded uncertainty is assumed to satisfy an 
IQC of the form

	
2

1 2
0

= =
0 1
b

I M
 

Ψ  − 
	 (22)

A second filter with simple first order dynamics

	 2

1 0
1=

10
1

s

s

 
 +Ψ  
 
 + 

	 (23)

is added to the analysis. Let us recall that, in general, it is possible 
to choose any stable minimum phase LTI system as a basis for the 
filter Ψ . However, including more complicated filters into the analysis  
did not lead to a significant improvement of the results. Initially, a 

constant matrix function P is used for the LMI conditions in Theo-
rem 3.2. The analysis is then repeated, using linear and quadratic 
basis functions for the approximation of ( )P ρ , i.e., ( ) 0 1=P P Pρ ρ+  
and ( ) 2

0 1 2=P P P Pρ ρ ρ+ + . As a comparison, for each value of b 
the largest worst-case gain of the LTI systems over all individual grid 
points is computed, using the µ-Analysis framework and the Matlab 
function wcgain. Specifically, for a fixed value of b the LTI worst-
case gain is computed at each grid point. The largest gain of all grid 
points is then plotted as a function of the uncertainty norm bound b.

Evaluation

The optimization algorithm could not find any feasible solutions using 
a constant P and a linear basis functions. The analysis results using 
quadratic basis functions are shown in Figure 11. It can be seen that 
the worst-case gain using wcgain as well as the proposed method 
for LPV systems converges to the gain of the nominal plant ( )= 0b  . 
The gain slowly increases for uncertainty bounds below 0.1. Even 
further, the upper bound on the worst-case LPV gain is very close to 
the lower bound given by the largest LTI worst-case gain over all grid 
points. Using a constant matrix P as well as affine parameter depen-
dence clearly introduces too much conservatism. Additional basis 
functions for the matrix function ( )P ρ , such as a third-order poly-
nomial were tested as well, but did not lead to a significant improve-
ment of the results. Adding an additional IQC with internal dynamics 
shows only minimal improvement of the results. Both curves indi-
cate an upper bound for the robustness margin of 0.27maxb ≈ , cor-
responding to a real gain at the plant input of about 1.7 (4.6 dB). In 
comparison, the lowest LTI input-disk margin over all individual grid 
points is 4.9 dB. Let us recall that evaluating the classical LTI margins 
at each grid point has only been assumed to give a valid statement for 
the overall LPV system, so far. However, the results obtained by the 
worst-case LPV gain are very close to the LTI margin results, which 
indicates that the LTI analysis is indeed a useful first indicator of the 
LPV robustness in this application.

Conclusion

The IQCs framework can be used to extend classical robustness mar-
gins to LPV systems. The approach is independent from the plant and 
therefore no specific uncertainty modeling is required. Simultaneous 
gain and phase variations can be expressed using a norm bounded 
LTI perturbation block in connection to the nominal LPV system. The 
worst-case gain metric can be used to determine the robustness 
margins in the time domain, as well as the robust performance. The 
applicability was demonstrated on a flutter suppression controller 
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–
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v
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q
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∆

δK δ
Aircraft Model
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Figure 10 – Equivalent Input Disk Margin Interconnection
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Acronyms

IQC	 (Integral Quadratic Constraint)
LMI	 (Linear Matrix Inequality)
LPV	 (Linear Parameter Varying)
LTI	 (Linear Time Invariant)
SDP	 (Semidefinite Program)
SISO	 (Single Input/Single Output)
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