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In order to assess the robustness of dynamical systems, an approach is to demarcate 
 the uncertain parameter space as safe set and unsafe set. Unsafe set represents the 

region within which the system lacks the required level of performance, or even loses 
its stability. However, determining the minimum distance metric for the unsafe set 
from the nominal operating point, the so-called parametric safety margin, for a higher 
dimensional dynamical system is not trivial and is often computationally demanding. 
In this paper, the parametric safety margin for a closed loop industrial standard launch 
vehicle simulator during its thrust vector control phase is computed. Imposing certain 
basic topological restrictions for the multi-dimensional uncertain parameter space, 
the computation of the parametric safety margin can be posed as a constrained non-
convex global optimization problem, and is thus extremely challenging in the case 
of high-fidelity aerospace simulators. Various performance requirements become 
the constraints in the optimization problem. An approach exploiting the use of non-
intrusive polynomial surrogate modeling is proposed for the efficient computation of 
the parametric safety margin for the industrial standard launch vehicle simulator. 

Introduction

In order to ensure the safety of a space mission, the controller needs 
to ensure robust stability and performance in the presence of various 
uncertainties and disturbances[1]. Uncertainties emanating from 
the mission parameters, such as aero-thermodynamic parameters, 
physical configuration parameters such as mass, inertia, actuator 
and sensor uncertain parameters, and flexible mode parameters, are 
to be considered. During the design cycle [2], the performance of the 
controller is assessed using a range of methods, such as analytical 
techniques that could be employed on lower order models, simula-
tion-based techniques that are applicable to more detailed, complex 
and high-fidelity models [3], hardware in loop analysis, where actual 
subsystems replace some of the mathematical models [4] and the 
flight tests [5]. Analytical techniques, such as gain/phase margins 
[6] and the nonlinear continuation/bifurcation analysis against single 
parameter variations [7] can be considered as the traditional ana-
lytical tools for worst-case analysis in the early phase of the design 
cycle. Multivariable methodologies, such as µ-analysis and v-gap 
metric analysis (Chapters 17 and 18, of Ref. [1]) became modern 
candidates for carrying out worst-case analysis based on a robust 
control theory, representing a given closed-loop system in a Lin-
ear Fractional Transformation (LFT)-based representation ([8] and 
Chapter 3, 4 and 5 of Ref. [9]). These techniques and their variants 

deal with multiple sources of uncertainty; however, the complexity 
in determining the exact µ value is claimed to be an NP-hard prob-
lem [10] and an excellent bound comparison using several variants 
of the algorithm on various benchmark problems can be found in 
[11]. Useful extensions of these approaches, which can handle cer-
tain types of nonlinear dynamics, have also recently been developed, 
such as Integral Quadratic Constraints (IQC)( [12, 13] and Chapter 
10 of Ref. [9]) and Sum Of Squares (SOS) programming [14].

The key advantages, as well as the conservatism and the limitations 
from the perspective of the requirements of the underlying uncertain 
model for many of these analytical methods, can be found in the 
conclusions of Chapter 3, 4, 5 and 10 of Ref [9]. Sampling and 
simulation-based analysis techniques, such as Monte Carlo and 
optimization methods, have specific advantages when dealing with 
nonlinear and complex models. Determining the worst case pertur-
bations that lead to large excursions of the desired design metrics 
can be formulated as maximization problems and can be solved 
using various optimization algorithms [3, 1, 15, 16, 17, 9]. Despite 
the common generic mathematical formulation of the maximization 
problem, the quality of the worst-case solution and the computa-
tional complexity depend on the underlying methods selected for the 
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analysis. However, relatively fewer limitations are imposed on the 
requirements of the closed-loop mathematical models. That said, 
the computational time required for each simulation can possibly 
impose restrictions, if excessive. In that case, one would be forced 
to limit their analysis based on the available computational budget, 
or depend on other surrogate modeling techniques.

Parametric safety margin metric estimation provides another method 
(based on a simulation and optimization-based analysis concept) to 
assess the robustness of the controller [18]. This metric is defined 
in the parameter space as the distance between the nominal param-
eter value and the parameter value that corresponds to the first viola-
tion instance of a performance criterion. The implementation of this 
method on an aerospace benchmark with a complex nonlinear model 
is computationally challenging. When dealing with highly complex 
nonlinear models, a single function evaluation might take several 
seconds, which when used in an optimizer can take several hours 
until a global optimum is reached. The computation requirement for 
the parametric safety margin may benefit from the use of surrogate 
models instead of the actual full-order model. The use of surrogate 
models to evaluate the parametric safety margin will give the con-
trol system designer an estimate of the robustness of the designed 
controller within a matter of minutes. The designer can then evaluate 
the full-order model only in the zone of interest to check the valid-
ity of the parametric safety margin. Although in the literature there 
are plethora of methods available to build surrogate models,[19, 20, 
21, 22, 23], to name a few. This paper focuses on the use of the 
polynomial chaos methodology, since it utilizes a limited number of 
input configurations to derive a surrogate model. In order to avoid 
large computation times to evaluate the complex nonlinear model, a 
surrogate model is developed using just a minimal number of evalu-
ations of the original model, without compromising on accuracy as 
per the polynomial chaos methodology. Such a surrogate model pro-
vides an approximation to the simulator for any input configurations, 
and hence may be used to replace the original simulator for the fast 
computation of responses. The contribution of this paper is in the 
application of three different schemes, such as the parametric safety 
margin method, surrogate modeling using polynomial chaos, and 
optimization-based worst case analysis, which are integrated with the 
analysis of a flexible launcher model.

This paper is organized as follows: at first, the problem definition is 
provided. The description of the launcher model along with its func-
tional performance criteria is given in Section "Closed-Loop System 
Description". A brief description of the theory of parametric safety 
margin estimation and the surrogate polynomial model is provided 
in Section "Analysis Methods". Section "Main Results" presents the 
results of the parametric safety margin with launcher, as well as poly-
nomial models. Finally, a worst-case analysis is performed, in order 
to ascertain the maximum deviations of the performance criteria.

Problem Definition

A closed-loop dynamical system representation of a flexible launcher 
is provided, and the control law design is carried out to meet a set 
of mission performance objectives in a robust manner. The given 
model is treated as a "black-box" with access limited to certain input 
and output parameters, as is often the case with many other indus-
trial models that are used for the purpose of validating and verify-
ing the controllers. Given a bounded, multi-dimensional uncertain 

space, m∆ ⊂ , the questions that we are trying to answer are the 
following:

•	 Determine an operational parametric safety margin; i.e., the set 
within which all different mission performance objectives as-
sociated with the closed-loop design are satisfied.

•	 Determine the combination of uncertain parameters associated 
with a maximum possible violation of a mission performance 
objective, * mδ ∈∆ ⊂ , which is identified as the worst-case 
perturbation.

•	 Address computational complexities due to the time consuming 
simulations, while determining the parametric safety margin, by 
replacing the actual closed-loop dynamics model with its repre-
sentative meta/surrogate model.

A constrained optimization problem is employed, in order to deter-
mine the parametric safety margin. The closed-loop functional per-
formance requirements are written as a set of inequality constraints 

( , , ) < 0Wδ
∞

s , where 
∞

  is the class of control law used and W 
is the wind gust disturbance profile and ( )dim δδ ∈∆ ⊂  . The closed-
loop design is said to be robust and acceptable if all of the constraints 

( , , ) < 0Wδ
∞

s  are satisfied in the presence of various combina-
tions of uncertain parameter perturbations.

The uncertain parameter space (∆ - space) can be classified as 
a safe or unsafe region, depending on whether the constraints 

( , , ) < 0Wδ
∞

s  are satisfied or not, respectively. The unsafe region, 
denoted as ( )( )u dim δ⊂ s , is given by 

	 ( ) ( )
( )

=1

=
dim

u u
i

i
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where, for 1 ( )i dim≤ ≤ s ,
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( )u s  is the union of all unsafe regions defined by the individual con-
straints. The boundary of the set is on ( , , ) = 0Wδ

∞
s . The comple-

mentary set ( )u′ s  becomes the safe set. At least one constraint 
must be violated in the unsafe region, while in the safe region all of 
the performance constraints are satisfied.

The method involves the definition of a reference set in the parameter 
space, with the nominal parameter vector 0δ  as the geometric cen-
ter. This reference set is then subjected to homothetic dilations (i.e., 
expansion and contraction) until the first instance of violation of the 
constraints < 0s  occurs. In other words, we are interested in evaluat-
ing the largest safe set, ( )u′ s , around the nominal parameter value. 
The size of this set is directly related to the operational uncertainty 
margin. Further details on the evaluation of the operational uncertainty 
margin can be found in Section "Analysis Methods".

The evaluation of the operational uncertainty margin becomes com-
putationally very expensive when applying it to an industry standard 
problem. Given that performance criteria are treated as constraints, 
a closed-loop dynamical system is simulated and performance 
criteria are evaluated in the constraint function of the optimization 
scheme. Since the dynamical system is evaluated in the constraint 
function, the process of evaluating the operational uncertainty margin 
becomes computationally expensive. Identifying the exact operational 
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uncertainty margin, which may be a non-convex multidimensional 
surface, or even disconnected regions, with an attractive and fea-
sible computational effort is challenging. Hence, an approximate 
operational margin that could be conservative, yet determined with a 
reduced computational effort, is preferred.

Computational effort could be considerably reduced if the constraint 
function were  in polynomial form. Hence, a polynomial model is pre-
ferred instead of a closed-loop dynamical model. However, depending 
on the accuracy of the polynomial model, the safety margin could be 
optimistic or conservative. A conservative margin will always be safe, 
but optimistic safety margins may contain regions of the parametric 
space where constraints are violated. In order to be absolutely sure that 
the uncertainty margin truly contains no constraint violation, we perform 
a worst-case analysis on the reduced region defined by the margin. If no 
worst cases are found inside this region, then the margin is valid.

Closed-Loop System Description

Launcher Model and Control

A single-axis, parameter-varying model [24], derived by linearization 
of complete non-linear dynamic equations of motion for a flexible 
launcher under various equilibrium flight conditions, is considered as 
the benchmark for this study. A H∞ controller is provided for the pitch 
control of the launcher during the atmospheric flight phase, from take-
off to tail-off [24]. Rigid and bending mode dynamics together with 
an actuator, bending mode filter and H∞ controller are modeled and 
implemented in MATLAB R2008b Simulink. The rigid-body dynamics 
during the atmospheric flight phase are described by the following 
three state representations:
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In which parameters such as aerodynamic efficiency 6 ( )A t , aerodynamic 
coefficient 1( )A t , aero thruster efficiency 1( )K t  and 2 ( )K t , and 3 ( )tα  
are time-varying along the trajectory and are defined as follows [24]:

	 ( )1 = refC S
A N

QSP PA C C
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+

− + − 	
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α 	

	 1 2 3=     =     =
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In (1), ( , , )ol Zθ θ   are states of the rigid mode dynamics and corre-
spond to the launcher pitch rate (deg/sec), pitch angle (deg) and drift 
velocity (m/s) in the body frame, respectively. β and W represent the 
control input deflections and the wind perturbation, respectively. In 
the definitions of the aerodynamic and thruster efficiency parameters 

( )iA t  and ( )iK t : , , , ,C SV P P Q , , , , ,ref A N F tuS C C L l Iα  and m repre-
sent the absolute velocity, commanded thrust level, thrust level along 
the longitudinal axis, dynamic pressure, reference area, axial force 
coefficient, normal aerodynamic force coefficient with respect to the 

angle of attack, distance between the center of gravity and center of 
pressure on longitudinal axis, position of nozzle rotation with respect 
to the center of gravity, total inertia and total mass, respectively.

A second-order model with a small damping value represents the flex-
ible bending mode dynamics associated with the flexible launcher, 
and is modeled as an additive perturbation on the rigid-body model. 
The flexible mode dynamics are represented as follows [24]:

( )( )22 =
i i i ii i i i i i C tu C T ptu tu tu tu tu ptu Cq q q P h I h M L h L hξ ω ω β β+ + − + − − 

  	 (2)

where iq , iξ , iω , 
ituh , TI , 

iptuh , tuM , tuL  and Cβ  represent the thi  
bending mode state, thi  bending mode damping, thi  bending mode 
pulsation, thi  bending mode deformation at the nozzle rotation point, 
total pitch inertia, thi  bending mode slide of deformation at the noz-
zle rotation point, nozzle mass, position of nozzle CoG respective to 
the nozzle rotation point and the commanded deflections around the 
nominal value to follow the reference trajectory. A total of five bending 
modes are considered in this benchmark. The actuator model for the 
pitch control is characterized by a second-order system having com-
manded deflection as a single input, and the realized deflection and its 
two derivatives as the three outputs.

	 2 22 =R R R Cβ β β ββ ξ ω β ω β ω β+ +  	 (3)

where, βξ  and βω  represent the damping of the actuator model and 
the actuator model pulsation. The final effective deflection angle β 
corresponds to the sum of the realized control input deflection ( Rβ ) 
and the misalignment deflection ( FZβ ), and is given as: 

	 = R FZβ β β+ 	 (4)

The pitch angle is derived from the attitude measurement by the Iner-
tial Measurement Unit (IMU) and the pitch rate is derived from the 
angular rate measurement by the gyrometer. IMUihp  is the thi  bending 
mode slide of deformation at the IMU location and GYihp  is the thi  
bending mode slide of deformation at the gyrometer location. Noises 
are added to these measurements. Angular noise and angular rate 
noises are treated as Gaussian with 0.02° and 0.15°/s standard devi-
ation, respectively. 
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A discrete time-robust gain-scheduled controller is used with the 
benchmark model (see the block interconnection in Figure 1), which 
consists of an H∞ rigid-mode controller and a filter, which is kept in 
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Figure 1 – Block description of the flexible launcher vehicle
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series with the controller, for robust attenuation of the bending modes. 
The angular position and rate are the inputs of the controller and the 
filtered commanded deflection is the output. Further details on the 
model can be found in [24, 25].

Disturbances

The external disturbance corresponds to the wind gradient and the 
wind gust. The wind gust is a sudden increase/decrease in wind speed. 
This wind disturbance is assumed to be applied at the center of gravity 
of the flexible launcher vehicle. In this study, the wind perturbation is 
modeled by synthetic wind from a wind envelope, wind shear (wind 
speed change divided by the altitude interval) and wind gust according 
to a NASA specification in [26]. Synthetic wind is commonly used by 
aerospace organizations for vehicle design computations. Wind enve-
lope and wind shear both come from wind measurements collected at 
the area of interest over a long period, and wind gust is an arbitrary 
characterization of the small scale motion. The NASA database given 
in [26] is followed. The synthetic wind is determined by an altitude, 
which corresponds to the maximum wind gradient. It is also the alti-
tude at which the wind takes the value of the envelope. In this tool, the 
input is a flight instant and altitude is computed from the trajectory 
data using this instant. We have considered a deterministic wind pro-
file occurring at five flight instances, 30, 35, 40, 45 and 50 seconds, 
as shown in Figure 2. Wind disturbance occurring early on in the flight 
interval can make the vehicle unstable and, hence, focus is on five 
instances between 30 to 50 seconds. Other wind instances were also 
considered during the analysis, but not reported here because they did 
not have any significant impact on the launch vehicle.

Uncertainties

For the given launcher controller/payload configuration, twenty eight 
uncertainties are considered in this study, which constitute eight 
rigid-mode parameters and five bending-mode parameters ( thi  bend-
ing-mode pulsation, deformation at the nozzle position, slide defor-
mation at the nozzle location, slide deformation at the IMU location 
and slide deformation at the gyrometer location), with four bending 
modes each, are considered. The entire list of uncertainties is given 
in Table 1. The uncertainty domain consists of two aspects: a pos-
sible nominal domain, which is not well-known prior to the flight, 
but can be known and reduced after the qualifications of the flights 

(reducible uncertainty) and, secondly, a dispersion domain in which 
the parameter value can change from one mission to another. In the 
framework of worst-case analysis, bounds on uncertain parameters 
are utilized by optimization tools to generate the worst case. These 
bounds should be able to incorporate both the uncertainties and the 
dispersions associated with the parameters. Such types of bounds 
were defined by ASTRIUM and the CNES for launcher application, as 
presented in [27], and are used in this study.

Specifications

The controller structure ( H∞
 ), consisting of the H∞ controller and 

the bending-mode filter, must satisfy various functional performance 
requirements during the atmospheric phase control. The main func-
tional requirements are the compensation for external wind and wind 
gust perturbations, and compensation for the internal perturbations, 
which include the thrust misalignment, the static error of the servo-
actuators and thrust asymmetry. The compensation scheme must 
maintain minimum aerodynamic loads (Qα , which is the angle of 
attack times the dynamic pressure), for structural sizing reasons. The 
main temporal performance specifications that are to be validated and 
the margins to be assessed, in the presence of multiple uncertain 
parameter perturbations and dispersions, are listed in Table 2.
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Figure 2 – Wind Profile

Parameters Uncertainty Dispersion 

Ri
gi

d

Inertia (MI) ±10% ±3%
Thrust (MP) ±3% ±1%

Aerodynamic coefficient(MCz) ±20% ±10%
Centre of pressure (MXf ) ±1.79 m ±0.2 m
Dynamic pressure (MQ) ±20% ±4%
Centre of gravity (MXg) ±0.3 m ±0.05 m

Mass (MM) 5% –
Deflection Misalignment (∆β) 1° –

Be
nd

in
g 

m
od

e

Pulsation (Mpuls) ±20% –
Deformation at the nozzle location 

(Mhtu) ±30% –

Slide deformation at the nozzle location 
(Mhptu) ±30% –

Slide deformation at IMU location  
(MhpIMU) ±30% –

Slide deformation at the Gyrometer location 
(MhpIMU) ±30% –

Table 1 – Variability of rigid and bending-mode uncertain parameters

Specification Description Requirement Cost function

s1(.): �Maximum value of the aerodynam-
ic angle of attack ( ( ))Q tα  compat-
ible with general load specification 
simulated over a finite time period

< 500 kPadeg ( )
0

max
ft t t

Q tα∈  
 

s2(.): �Maximum final value of the attitude 
( ( ))ftθ  ≤ 2° ( )max ftθ

s3(.): �Maximum final value of the attitude 
rate ( ( ))ftθ  ≤ 0.8°/s ( )max ftθ

s4(.): �Maximum value of the deflection 
angle ( ( ))tβ  simulated over a 
finite time period 

< 6° ( )
0

max
ft t t

tβ
∈  

s5(.): �Cumulative deflection over a finite 
time period < 200°

0

max
ft

C
t

β∆∑

Table 2 – Functional performance requirements
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Analysis Methods

Parametric Safety Margin Assessment

The parameter space, ( )dim δ∆ ⊂   can be divided into safe and unsafe 
regions, where the safe region corresponds to a region where all of 
the functional performance criteria are satisfied and the unsafe region 
corresponds to a region where at least one of the functional perfor-
mance criteria is violated.

In this study, the chosen reference set, := [ , ]min maxδ δ δ⊂ ∆ ∈ , is 
assumed to be a hyper rectangle with each component of the uncer-
tain parameter vector, ( )dim δδ ∈ , defined over a bounded interval. 
Assume symmetry around the geometric center, which corresponds 
to the nominal parameter value ( 0δ ). Let m be the vector of half-
lengths of the sides of the hyper-rectangle. The hyper-rectangle 

0( , )δ m  is defined as 

	 ( ) ( ){ }0 0 0, := | [ , ],1i i i i i i dimδ δ δ δ δ δ∈ − + ≤ ≤ m m m 	 (6)

0( , )δ m  is called the reference set, which is chosen by select-
ing the values of the vector of half-lengths m. This reference set, 

0( , )δ m , is depicted by a dashed blue line in Figures 3(a) and 3(b). 
A homothetic scaling of the reference set by a scaling factor λ is 

0 0 0 0( , ) := { ( ) | ( , )}δ λ δ λ δ δ δ δ+ − ∈ m m . Suppose that λ is 
positive; the resultant set is expanded with respect to the reference 
set, in Eq. 6 and if λ is negative, the resultant set is contracted with 
respect to the reference set in Eq. 6. The ratio of expansion or contrac-
tion is called the similitude ratio, λ∈. The similitude ratio is a posi-
tive scaling factor. The similitude ratio condition 1λ >  corresponds 
to the expansion, and the similitude ratio in the range of 0 < < 1λ  
corresponds to the contraction of the reference set, 0( , )δ m . By 
successive dilations of the reference set, i.e., expansions and con-
tractions, the objective is to determine the largest safe set, ( )u′ s , 
around the nominal parameter value. The largest set is depicted by 
the red line in Figures 3(a) and 3(b) and is represented as 

0( , )δ λ m , 
where λ  is called the critical similitude ratio. The critical similitude 
ratio is a non-dimensional positive scaling value denoted as  λ . It is 
the similitude ratio of the dilation, and is interpreted as the operational 
parametric safety margin, ρ, for satisfaction of all of the functional 
performance requirements in the parameter space. The correspond-
ing uncertain parameter combination is termed as a critical parameter 
vector. Hence, although conservative, this would be viewed as the 

onset of a violation of at least one performance criterion in the cer-
tain parameter space. There could be certain directions in which an 
expansion might still be possible, depending on the complex topology 
of the safe uncertainty set.

The sets 0( , )δ m  and the scaled set 

0( , )δ λ m  are proportional. 
In Figure 2, the reference set, 0( , )δ m  has expanded to 

0( , )δ λ m , 
which implies that the unsafe region u  is outside the reference set. 
Whereas in Figure 2, the reference set 0( , )δ m  has contracted to 



0( , )δ λ m , implying that the unsafe region is inside the reference 
set. Naturally, good robustness is associated with the expansion of 
the reference set, whereas the contraction implies poor robustness, 
since even a small perturbation around the nominal parameter value 
would result in violation of performance criteria. This is a measure 
of robustness of the controller, 

∞
 , implying how large an uncertain 

parameter set can be to be identified as safe with respect to the nomi-
nal point. The constraint ( , , )Wδ

∞
s  might have a nonlinear depen-

dency on the parameters, and hence the computation of the critical 
parameter value becomes a non-convex global optimization problem. 
Furthermore, for the purpose of checking the satisfaction of the con-
straints, a simulation of the closed-loop model and the evaluation of 
each performance constraint is required.

The critical parameter value corresponding to the dilation of the refer-
ence set 0( , )δ m  in the case of the thi  constraint can be computed 
by solving

	  ( ){ }0= | , , 0i
iargmin W

δ
δ δ δ δ∞

∞
− ≥m

s 	 (7)

where 0
0 := i

i i

arg sup
δ δ

δ δ ∞  −  −  
  

m m
, is the m-scaled norm. Con-

sidering all of the performances, the overall critical parameter value is 

= kδ δ  , where { }0
1

= i
j

j dim
k argmin

δ
δ δ

∞

≤ ≤
−

m
, which is associated with the 

critical requirement. The resultant set 

0( , )δ λ m  is proportional to 
0( , )δ m , where 0=λ δ δ

∞
− 

m
, in a non-dimensionalized setting.

The operational parametric safety margin is =ρ λ m . The robust-
ness is ensured when ρ ≥ m  for a given controller design. In such 
situation, all of the performance constraints ( , , ) 0H Wδ

∞
≤s   are 

	

m2

δ2

(a) Expansion

δ 1

Si (δ) > 0

Si (δ) < 0

R (δ0, m)

m1

δ

m
ρ

λ=


( )1 2
0 0,δ δ

( )0 ,R mδ λ

	

m2

(b) Contraction

δ 1

Si (δ) > 0

R (δ0, m)
Si (δ) < 0

δ2

m1

δ mρ λ= 

( )1 2
0 0,δ δ

( )0 ,R mδ λ

Figure 3 – Dilation of Uncertainty Set
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satisfied in the region 0= ( , )δ δ∆  m . Eq. 7 is reformulated as a con-
strained optimization problem, as follows:

	
( )

0min

Subject to : , , 0i H W

δ δ

δ
∞

∞−

≥
m

s 
	 (8)

where (.)is  are the functional performance constraints listed in 
Table 2.

Surrogate assisted analysis

The evaluation of a parametric safety margin metric is computationally 
very expensive. Often, simulation-based optimization techniques,[18, 
28, 29], can be computationally expensive and thus very time con-
suming. Further, the complexity of models can contribute to the time 
complexity. Here, we investigate the potential of surrogate polynomial 
models instead of the original launcher model, in order to save in 
terms of computational time overhead.

Polynomial models have been used in various applications, including 
solid mechanics [30, 31], stochastic finite elements [32] and sto-
chastic fluid dynamics [33, 34]. In [35], power series expansion and 
polynomial chaos expansion are used to quantify the uncertainty in 
the output of nonlinear systems, and to illustrate it on a batch crys-
tallization process. In [36], Polynomial Chaos is used to analyze the 
stability and control of a dynamical system with probabilistic uncer-
tainty on the system parameters. Singh, [37], used the generalized 
polynomial chaos (gPC) method to design robust input shapers for 
precise control of mechanical systems. In aerospace applications, 
Fisher, [38], provided a framework based on gPC to analyze a linear 
flight-control design for an F-16 aircraft model.

The basic concept is to approximate the response of the model using 
a polynomial function of uncertain parameters. The polynomial func-
tion is constructed using an orthogonal polynomial basis ( ( )q δΦ ). 
The underlying idea is as follows: the random variables, i.e., various 
uncertain parameters to be perturbed, are represented as orthogonal 
functions of a stochastic variable with deterministic coefficients:

	
=0

= ( )q q
q

F a δ
∞

Φ∑ 	 (9)

As shown in [39], a truncated version of the expansion ( = 0,1, ,q M ) 
is possible, where the order M depends on the number of uncertain 
parameters and the order of the polynomial sought.

	
=0

= ( )
M

q q
q

F a δΦ∑ 	 (10)

where 
( )!= 1
( ! !)

v o

v o

q qM
q q
+

− , vq  is the number of independent sources 

of uncertainty and oq  is the maximum order of the polynomial. Here, 
the coefficients qa  for = 0, ,q M  have to be determined.

In [40], Wiener introduced homogeneous chaos for the Gaussian pro-
cess, which utilized the span of the Hermite polynomial functionals 
to quantify uncertain parameters. This was later expanded to incor-
porate a non-Gaussian random process with polynomials from the 
Wiener-Askey scheme [39]. The connections between the choice of 
distribution and random variable, the Wiener-Askey polynomial and 

the support set are listed in Table 3. For example, for a continuous 
uniform distributed random variable, a Legendre polynomial basis 
with corresponding support set [ , ]a b  is selected.

 Random variable δ Wiener-Askey Scheme Support Set

Continuous

Gaussian Hermite ( , )−∞ ∞  

Gamma Laguerre [0, )∞

Uniform Legendre [ , ]a b  

Beta Jacobi [ , ]a b  

Table 3 – Wiener-Askey polynomials with corresponding distribution

The Galerkin projection method is generally used to evaluate the coef-
ficients ( qa ) in Eq. 10 [39, 38, 30]. This projection method involves 
solving multiple definite integrals, which could be computationally 
expensive and time-consuming in the presence of a large number of 
uncertain parameters. A non-intrusive method, called the probabilis-
tic collocation method [41], is used to evaluate the coefficients ( qΦ ) 
of the surrogate polynomial model. The model is treated as a "black 
box" type with access limited to a few uncertain input parameters and 
the output response. The method involves evaluation of the original 
model at specific selected points in the uncertain parameter space, 
identified as collocation points. The required number of collocation 
points also depends on the order of the polynomial and the number 
of uncertainties. The collocation points are chosen in such a way 
that the dynamical behavior of the original model should be captured 
as closely as possible. In order to do this, the collocation points are 
generated by evaluating the roots of the next higher-order polynomial 
in the orthogonal polynomial basis qΦ . The pseudo-code for deriving 
the surrogate model is given as Algorithm 1 in [42].

Polynomial model of the Launcher

A polynomial model is derived by treating the flexible launcher model 
in a closed loop with the H∞ controller as a black box, and consider-
ing the uncertain parameters as inputs and the cost function value as 
the output. In order to incorporate the effect of the noise acting on the 
outputs, the original Simulink model in MATLAB uses a random num-
ber generator. A seed value of the random number generator ensures 
repeatability of the results. In order to truly randomize the noise act-
ing on the outputs and also to incorporate the effect of noise in the 
surrogate model, we consider an additional uncertainty, which gives 
the seed values used by the random number generators in MATLAB 
to generate random noise signals in the original launcher model. This 
increases the total number of uncertainties considered to 29. The 
cost function is the performance specification against which the con-
troller is validated. The entire list of cost functions is given in Table 2. 
Second-order polynomial models are generated for each of the cost 
functions. For a second-order model, the number of coefficients 
of the polynomial model is 465 ( refer to Eq. 10). For each of the 
cost functions, 465 collocation points are generated and the flexible 
launcher model is evaluated at these points. These collocation points 
are common to all of the cost functions and, hence, all polynomials 
can be modeled by evaluating the original model just 465 times. A set 
of linear equations can be formed by substituting these collocation 
points and their corresponding output responses in Eq. 10. The coef-
ficients of the polynomial are obtained by solving these set equations. 
comparison between the polynomial model and the original model is 
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shown in Figure 4. The comparison is shown for two performance 
criteria (along each column) at five different wind perturbations (along 
each row), which indicates a very good approximation.

Evolutionary-Based optimization: Hybrid Differential Evolution

The Differential Evolution (DE) method was first introduced by Storn 
and Price in [43] and is based on evolutionary principles. This method, 
like GA, starts with a random initial population. A new search point 
is generated by adding the weighted vector difference between two 
randomly selected individuals from the population with a third ran-
domly chosen individual. The vector difference determines the search 
direction and a weighting factor decides the step size in that particular 
search direction. HDE employs a local optimization when no improve-
ment is found from DE in successive iterations. Hybrid Differential 
Evolution (HDE) is used for optimization-based analysis in this paper. 
The results obtained by DE have been observed to be better than 
those of other evolutionary algorithms, both in terms of accuracy and 
computational overhead [44]. Please refer to [16, 17, 45] and the 
references therein for the HDE algorithm and its implementation.

Main Results

This section presents the results used to determine the efficacy of the 
controller. As a first step, a safety margin is evaluated and a compari-
son is made between the original launcher model and the polynomial 
model. The second step is to perform a worst-case analysis inside 
the safe region defined by the safety margin metric evaluated using 
the polynomial model. No constraint violations were found, thus indi-
cating that the region defined by the metric is truly safe. Furthermore, 
a worst-case analysis is performed over the entire parameter space to 
gain insight into the level of performance deviations that could occur.

Results: Safety margin assessment

The safety margins for the given set of control laws H∞
  at five differ-

ent wind perturbations occurring at 30, 35, 40, 45 and 50 seconds 
are determined by solving the constrained optimization in Eq.  8. A 
population-based optimization technique, specifically a Hybrid Differ-
ential Evolution (HDE) method, has been used to solve for the critical 
parameter values and the safety margins over the δ −  space sat-
isfying the performance requirements listed in Table 2. The critical 
similitude ratio (λ ) and the safety margin (ρ ) are evaluated for differ-
ent wind perturbation cases, using a flexible launcher and polynomial 
model, and are given in Table 4. A high computation time, i.e., more 
than 5 hours, is required to evaluate the parametric safety margin for 
each wind instance when the flexible launcher model is utilized.

  Wind perturbations 

30 sec 35 sec 40 sec 45 sec 50 sec 

Launcher 
Model 

λ 1.05 0.71 0.66 0.68 0.88 

ρ ≥ 2.65 2.78 1.88 1.75 1.8 2.32 

CPU Time (sec) 20914.33 16524.17 16948.07 18085.58 18381.9 

Polynomial 
Model 

λ 1.05 0.756 0.685 0.718 0.899 

ρ ≥ 2.65 2.78 2 1.81 1.9 2.38 

CPU Time (sec) 181.27 442.16 211.41 366.65 204.07 

Table 4 – Critical similitude ratio (λ) and safety margin (ρ ) results for the 
launcher & the polynomial models

In order to reduce the computational time, surrogate polynomial 
models are utilized as constraints. It can be seen from Table 4 that 
the computational time is significantly reduced, by a factor of 100, 
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when the surrogate models are utilized. Due to the inherent error in 
the approximation, the critical parameter value found using the poly-
nomial model is not the same as that found using the original launcher 
model.

It is found that  < 1λ  for the wind perturbations occurring at 35, 40, 
45 and 50 seconds. This indicates a reduced level of robustness, 
whereas for the wind perturbation occurring at 30 s, the value of λ is 
slightly greater than 1, indicating good robustness. For wind perturba-
tions occurring at 40 and 45 seconds, the critical similitude ratio (λ) 
is 0.66 and 0.68 (for the launcher model), respectively, indicating that 
the reference set has contracted to a small safe region around the 
nominal parameter value.

Worst-case analysis inside the safe region

The worst-case analysis is carried out at five different wind perturba-
tions occurring at 30, 35, 40, 45 and 50 seconds. The hybrid differ-
ential evolution is employed with a fixed termination criteria of 1200 
simulations, a population size of 50, a mutation scale factor of 0.8 
and a crossover factor of 0.8. The local optimization, sequential qua-
dratic optimization "fmincon", is used for the hybridization purpose, 
and the maximum local iteration number is set to 30.

A worst-case analysis is performed on the original launcher model, 
in order to gain further insight about the levels of each performance 
deviation that could occur within the safe region defined by the para-
metric safety margin. In each case, the perturbations are limited within 
the set defined by the values of the parametric safety margin given in 
Table 4 respectively. Optimization-based worst-case analysis is per-
formed for the cost functions listed in Table 2. The parameter space 
is restricted to be within the reference set defined by 

0( , )δ λ m , 
where m was kept fixed at 0.5 and λ  at the value from Table 4. The 
results of the worst-case analysis are shown in Table 5. None of the 
performance criteria were exceeded as expected and the maximum 
excursions for the performance requirements within the safe region 
are obtained. It is clear that the deflection angle performance require-
ment approached its limits and it is the first constraint violation in all 
of the cases.

Worst-case analysis over the entire parameter space

The numerical results for six different cost functions at five different 
wind perturbations are given in Table 6 - Table 7. In Table 6, consider 
the cost function representing the performance on the aerodynamic 
load | ( ( )) |Q tα  and wind occurring at 45 seconds. Among the 1200 
candidate uncertain parameter vectors in the search space, the maxi-
mum cost function value associated with the worst case is 561.91 
and has a mean of 436.11, with a standard deviation of 79.57. Mean 
and standard deviation statistics give us an idea of the variability of 
the cost function values in the search space. A high value of the stan-
dard deviation indicates that the cost function values are spread out 
over a large range in the search space, whereas a low value indicates 
that the cost function values lie too close to the mean. This shows 
the exploration property of the optimization algorithm, which is its 
ability to access uncertain parameter vectors spread out in the search 
space. In order to find the global solution, the optimization algorithm 
should be able to explore the search space as thoroughly as possible. 
In this case, the standard deviation is high and indicates that the algo-
rithm was able to access uncertain parameter vectors spread out over 
the search space. Also, among the candidate points, 383 cases out 

Cost 
Function Worst case values

30s 35s 40s 45s 50s

( )
0[ ]

max
ft t t

Q tα∈

max 388.11 393.44 423.09 467.65 476.51
mean 340.85 355.41 385.65 425.83 423.46
std 42.84 37.24 39.71 44.25 47.84

failures 0 0 0 0 0

( )
0[ ]

max
ft t t

tβ
∈

 max 5.78 5.85 5.94 5.91 5.993
mean 4.10 4.62 4.84 4.76 4.45
std 0.85 0.71 0.67 0.68 0.83

failures 0 0 0 0 0

( )
0[ ]

max
ft t t

tθ
∈

 max 4.51 4.24 4.21 4.53 4.13
mean 3.51 3.46 3.56 3.51 3.04
std 0.58 0.44 0.45 0.52 0.5

failures 0 0 0 0 0

( )max tftθ  max 0.199 0.152 0.144 0.145 0.138
mean 0.038 0.033 0.032 0.035 0.034
std 0.026 0.026 0.024 0.030 0.025

failures 0 0 0 0 0

( )max tftθ  max 0.477 0.465 0.456 0.568 0.385
mean 0.124 0.119 0.118 0.134 0.121
std 0.095 0.095 0.090 0.101 0.101

failures 0 0 0 0 0

Cumulated 
deflection 

max 136.15 138.19 135.54 137.95 135.44
mean 125.43 125.92 125.76 124.95 124.57
std 12.1 12.31 12.00 11.81 11.42

failures 0 0 0 0 0

Table 5 – Worst-case results inside the safe region

Cost 
Function 

Worst-case values 

 30s 35s 40s 45s 50s

( )
0[ ]

max
ft t t

Q tα∈
 

HDE 

max 432.23 460.61 509.65 561.91 543.23
mean 336.68 369.56 406.95 436.11 430.48
std 62.53 66.12 75.46 79.57 77.49

failures 0 0 37 383 370

MC

max 424.74 449.14 493.08 549.26 532.14
mean 319.58 340.42 376.16 411.67 402.38
std 41.6 46.62 50.13 53.76 54.26

failures 0 0 0 60 40

( )
0[ ]

max
ft t t

tβ
∈

HDE 

max 6.5 6.5 6.5 6.5 6.5
mean 4.29 4.72 4.27 4.86 4.43
std 1.32 1.38 1.44 1.35 1.38

failures 187 516 582 517 366

MC

max 6.47 6.5 6.5 6.5 6.5
mean 3.79 4.26 4.36 4.4 3.88
std 0.95 1.05 1.08 1.12 1.01

failures 13 67 93 111 29

( )
0[ ]

max
ft t t

tθ
∈

HDE 

max 5.85 Unstable Unstable Unstable 6.91
mean 3.51 3.41
std 0.87 1.12

failures 0 0

MC

max 4.65 7.03 8.8 8.2 5.54
mean 3.14 3.24 3.35 3.34 2.73
std 0.59 0.7 0.76 0.95 0.63

failures 0 0 0 0 0

Table 6 – Worst case results for entire parameter range
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of 1200 violated the performance requirement on ( ( ))Q tα  ≤ 500 kPa 
during the execution of the HDE optimization algorithm. It was noticed 
that the rigid uncertain parameters were the main cause for the worst-
case performance in all of the cases, and the flexible modes were well 
suppressed by the bending-mode filters. Worst-case directions are 
oriented towards the parameters, which are simultaneously the most 
influent ones (dynamic pressure MQ, aerodynamic coefficient Cz, 
center of pressure Xf, center of gravity Xg) and the more dispersed 
ones (deflection misalignment).

Unstable cases are found for attitude when the wind perturbation cor-
responds to 35, 40, and 45 seconds. Sustained actuator saturation 
is observed in these cases. Monte Carlo analysis is also performed 
and the results are also tabulated in Table 6 - Table 7. These results 
are provided to compare with those found by optimization-based 
analysis. Due to the computational complexity involved with the origi-
nal launcher model, 1000 Monte Carlo campaigns were performed 
for each cost function. It was observed that the optimization-based 
method is able to find more worst-cases and even better ones than 
those found by the Monte Carlo method, which can be attributed to 
the intelligence embedded in the search process of the optimization 
scheme. The Monte Carlo method is unable to capture any unstable 
cases corresponding to the performance criteria of attitude, attitude 
rate and cumulated deflection. Also, apart from Qα  and ( )tβ , no fail-
ures, i.e., performance criteria violations, were recorded.

Conclusion and future work

Parametric safety margin assessment provides means to quantify 
robustness in the parameter space. The methodology involves trans-
lating the performance criteria into constraints, which are used in an 
optimization problem. This optimization problem is formulated in such 
a way that dilations of the reference set are performed in order to find 
the largest hyper-rectangle in the parameter space around the nomi-
nal parameter value where all of the performance criteria/constraints 
are satisfied. This procedure involves a large number of simulations 
of the launch vehicle and the problem becomes computationally very 
expensive.

In order to reduce the computational burden, surrogate polynomial 
models were developed using the polynomial chaos theory. These 
models provided a relatively inexpensive way of calculating the opera-
tional parametric safety margin metric. Although polynomial models 
are computationally very cheap to utilize, they may be less accurate 

when compared with the original launcher model. The accuracy 
depends on the order of the polynomial. As the order is increased, 
the accuracy increases while significantly increasing the computa-
tion time to derive the polynomial models. Even so, this paper shows 
that the second order polynomial models could be used to generate 
results with a fair degree of accuracy.

Future work is aimed at investigating the method of Bernstein expan-
sion on polynomial models to determine the parametric safety mar-
gin. The method of Bernstein expansion could further reduce the 
evaluation time of the safety margin by eliminating the use of the 
optimization procedure [46]; however, a stumbling block that needs 
to be overcome are the issues emanating from the dimensionality of 
the uncertainty space 

Cost 
Function Worst case values 

30s 35s 40s 45s 50s

( )max tftθ

HDE

max 0.15 0.16 Unstable Unstable 0.139
mean 0.038 0.035 0.04
std 0.027 0.029 0.03

failures 0 0 0

MC

max 0.22 0.18 0.19 0.184 0.177
mean 0.04 0.04 0.04 0.04 0.04
std 0.03 0.03 0.03 0.03 0.03

failures 0 0 0 0 0

( )max tftθ

HDE

max 0.595 0.498 Unstable Unstable 0.493
mean 0.117 0.138 0.112
std 0.09 0.101 0.088

failures 0 0 0

MC

max 0.556 0.54 0.53 0.58 0.536
mean 0.13 0.13 0.13 0.13 0.122
std 0.1 0.09 0.1 0.1 0.09

failures 0 0 0 0 0

Cumulated 
Deflection

HDE

max 136.44 153.7 Unstable Unstable 141.64
mean 125.87 127.28 125.43
std 14.05 13.55 12.85

failures 0 0 0

MC

max 136.52 142.51 151.14 142.18 135.63
mean 126.81 127.3 127 127 126.36
std 3.07 3.5 3.5 3.43 3.07

failures 0 0 0 0 0

Table 7 – Worst-case results for the entire parameter range
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