
Issue 14 - September 2018 - Modelling the Damping at the Junction between Two Substructures
	 AL14-04	 1

Aeroelasticity and Structural Dynamics

Modelling the Damping at the 
Junction between Two Substructures 

by Non-Linear Meta-Models

We are interested in the modelling of the damping at the junction between 
 two substructures. We model the connection by a meta-model, which 

takes into account both dissipative and non-linear aspects of the connection. We 
use the Bouc-Wen meta-model. This model is adapted for insertion into a finite-
element model. We obtained a non-linear dynamical system, which can be solved 
in the time domain with a Runge-Kutta algorithm. A software tool corresponding 
to this method is developed. To decrease calculation costs, we reduce the 
size of the system by a Craig-Bampton method. We present an application on 
an academic test-case, and also a comparison with experimental results.
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Introduction

In structural dynamics, vibratory levels depend directly on damping. 
Therefore, it is necessary to have, from the design phase, tools and 
models that allow the damping to be correctly represented.

The origin of the energy dissipation in the aeronautical structures is 
double: on the one hand, material intrinsic damping and, on the other 
hand, dissipation generated by the friction phenomena at the interfaces 
between the sub-structures. We are interested here in the representa-
tion of this second source of dissipation. For the metallic structures, 
the dissipation generated at the interfaces is the main damping source.

Modelling friction and interface contact has been the subject of 
numerous studies (for instance, [1, 2, 3]). Most finite-element soft-
ware contains contact-modelling modules (Nastran, Abaqus, Aster). 
However, these approaches, used for the calculation of dynamic 
responses, lead to extremely long calculation times, which become 
prohibitive for industrial structures. Our objective is to propose a rela-
tively simplified modelling (meta-model) of the junction between two 
sub-structures, which allows dissipative and non-linear aspects to be 
correctly represented, without leading to an excessively long time in 
the calculations of the dynamic response.

Junction model

Single-degree-of-freedom model

Numerous non-linear dissipation models can be found in literature: 
we are mainly interested in the Bouc-Wen model [4], which allows 
the modelling of various dissipation phenomena.

For a single-degree-of-freedom system, the differential equations of 
this model are:
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The Bouc-Wen model introduces an additional degree of freedom z. 
The mass of the system is m, the excitation force is denoted by ( )ef t  . 
The variable z comprises both non-linear stiffness and non-linear 
damping aspects.

This model is described by 5 parameters: α, β, γ, A and n (n is not 
necessarily an integer).

We present Figure 1 to illustrate an example of a response of a single-
degree-of-freedom system (m=1, klinear=200, ( ) ( )2.sin 4ef t tπ=  , 
α=200, A=1 and n=1, for two sets of parameter values β and γ. For 
dissipative systems, the most representative curve is the hysteresis 
curve (hysteresis cycle): displacement x / force z.

Use in a finite-element model

The models presented above are well known. The originality of our 
approach is in their inclusion in finite-element models.

We consider a Bouc-Wen model inserted between two degrees of 
freedom of nodes A and B.
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It should be noted that this system is introduced between two degrees 
of freedom, and not between two nodes. For instance, one can choose 
to link only the x degree of freedom of node A and the x degree of 
freedom of node B by a Bouc-Wen model, without linking the y and z 
degrees of freedom for these two nodes.

The differential system is written as follows:
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The Bouc-Wen model introduces an additional degree of freedom z in 
the initial system. The non-linear force NLF  depends on this additional 
degree of freedom.

This model can be easily extended to several Bouc-Model models. We 
introduce as many additional degrees of freedom as Bouc-Wen models.

Resolution

System resolution 

The system described above is a time-domain non-linear system, 
which is well adapted to a resolution by the classical Runge-Kutta 
method of order 4.

The Runge-Kutta algorithm requires the system to be expressed in the 
form of a 1st order differential system:
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The function f  is defined by:
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where ( ) ( )3Y F FNL B NL Az i i= = + = −  and ( ) ( )1 1Y YB Ax i i= −

For several Bouc-Wen models, the last equation is modified:
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where ( ) ( ) ( )3Y F Fj NL Bj NL Ajj z i i= = + = −  and ( ) ( )1 1Y Yj Bj Ajx i i= −  , 
for j varying from 1 to the number of Bouc-Wen models.

We use the Nastran ® software. We have developed in the internal 
language of Nastran ® (DMAP) a module that allows several Bouc-
Wen models to be inserted between some degrees of freedom of the 
system (chosen by the user). We also developed in DMAP language 
the Runge-Kutta algorithm. This module has been implemented in 
SOL 109 (direct linear transient method).

Reduction method 

The previous numerical resolution is directly performed from the 
initial finite-element system (physical degrees of freedom). This can 
lead to a prohibitive calculation time for industrial applications.

For linear problems, several model-reduction methods are available 
to reduce the calculation time. The problem is different for non-linear 
systems, and it is necessary to develop specific methods (see [5]). 
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Figure 1 – Hysteresis cycle for a one degree of freedom model
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Figure 2 – Diagram of the integration of the Bouc-Wen model between two 
sub-structures
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However, in our case, we are dealing with a non-linear system where 
non-linearities are spatially localized. Therefore, we choose a classi-
cal method for a linear system: the Craig-Bampton method.

We briefly recall the different stages of this method:
•	 the degrees of freedom of the finite-element model are sepa-

rated into two groups: internal degrees of freedom and bound-
ary degrees of freedom,

•	 the eigenmodes with clamped boundary degrees of freedom 
are calculated: modes Φm ,

•	 constrained modes are calculated: static response to a unitary 
imposed displacement of one boundary degree of freedom, with 
the other boundary degrees of freedom clamped: modes Φl ,

•	 the initial finite-element system is projected on the base 
Φ=[Φm  Φl ].

The degrees of freedom involved in the Bouc-Wen models are consid-
ered as boundary degrees of freedom: the value of these degrees of free-
dom can be accessed directly during the non-linear transient resolution.

The second software version, which uses the Craig-Bampton reduc-
tion method, includes two stages:

•	 in the first stage, we use Nastran to calculate clamped eigen-
modes Φm and constrained modes Φl , and to carry out the 
projection on the basis Φ=[Φm  Φl ],

•	 in a second stage, we carry out the time domain calculation, on 
the reduced system, with a Runge-Kutta algorithm. This second 
phase is computed in Fortran (this stage is independent from 
the Nastran software).

Academic application

Computing transient response

The above method is applied to a simple academic system, including 
masses and springs (see Figure 3). This model is the assembly of two 
sub-structures, and each sub-structure includes 4 masses ( m=10kg)  
and 3 springs ( k=105 N/m). substructure 1 is clamped at one end. 
The excitation force is applied to substructure 2 at the other end: 
( ) ( )0cos 2eF t f tπ= , where 0 2 Hzf = . A Bouc-Wen model (without 

linear elasticity linear 0k = ) links the two substructures.

First, in order to validate the software, we consider a non-dissipative 
and linear case: if we take the values of the Bouc-Wen model  
parameters β=γ=0, A=0, n=1, α=105, the junction is equivalent to 
a simple spring (non-dissipative and linear), whose stiffness is 

 k Aα=  . We can check that the result is the same as that obtained for 
a classical linear case, replacing the Bouc-Wen model by a spring.

Then, we calculate the transient response of the system for various 
parameter values. All of the calculations are performed on the time 
interval 0 5s− , with a constant time step ∆ t =10-3s.

Craig-Bampton reduction method

We verify, on the academic model, the Craig-Bampton reduction 
method. Indeed, the validity and efficiency of this method are well 
known for linear systems. The use of the Bouc-Wen model leads to 
a non-linear system. However, the non-linearities are localized and 
only concern the boundary degrees of freedom; therefore, clamped 
eigenmodes and constrained modes are calculated for the linear part.
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-1 -6 -4 -2 0-0.5 0
x x

N N

0.5 1 2
x 10-4 x 10-4

8

6

4

2

0

-2

-4

-6

-8

1.5

1

0.5

0

-0.5

-1

-1.5

Figure 4 – Hysteresis cycle for the mass/spring system
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Figure 3 – Mass/spring system
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Figure 5 – Comparison of direct responses and responses with the Craig-Bampton method for a linear case (on the left) and a non-linear case (on the right)
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We use the transient excitation force ( ) ( )0
0

sin 2
e

f t
f t F

t
π

=  with 

0f  =  20 Hz, which allows the two first eigenmodes (2.4  Hz and 
7.2 Hz) to be caught. In Figure 5, we compare the direct response 
(reference response) and the response obtained by the Craig-Bamp-
ton method, with various numbers of clamped modes.

We note that convergence is reached for this non-linear system, but 
for a higher number of modes than for linear systems.

Thus, we can consider that the use of the Craig-Bampton method is 
valid for non-linear systems with localized non-linearities. However, 
without general mathematical results, a convergence study is essential.

Comparison with experiment

Description of the mock-up

Within the framework of the MAIAS project, a mock-up, representa-
tive of an aeronautic structure, has been built. It is composed of a 
long part and a short part, linked by a bracket junction (see Figure 6). 
A detailed description of the mock-up can be found in [7]. We are 
especially interested in the modelling of this junction.

This mock-up has been used for experiments (see [7] and [8]). The 
experiments performed in [7] allowed he initial finite-element model 
to be improved, comparing experimental and computed eigenmodes.

We are interested in the experiment performed in [8] (see Figure 6): 
acceleration is applied at the base of the mock-up, and the response 
is measured at various points, for several excitation levels. In Refer-
ence [8], experimental curves clearly show a non-linear behavior (the 
frequency response functions depend on the excitation level).

Comparison: experimental and numerical results

In Reference [7], a detailed representation of the bracket junction has 
been used. Our purpose is to replace this refined junction model by 
a Bouc-Wen meta-model, and to compare the results thus obtained 
with experimental results [8].

We considered the finite-element model of [7], and then we removed 
the finite-element part corresponding to the junction and replaced it 
by springs and Bouc-Wen models. We introduced 8 springs on each 
small face, and 13 springs on each large face (42 springs in total), in 
the three directions x, y and z. At the center of each small face and 
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Figure 6 – Mock-up: experimental test (left) and finite-element mesh (right)
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Figure 7 – Eigenmodes (on the left Mode 1: 37.9  Hz simulation, 35  Hz 
experiment; on the right Mode 2: 72.7 Hz simulation, 69 Hz experiment)
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each large face, we introduced a mixed junction: a Bouc-Wen model 
in the vertical direction z, and springs in the two other directions.

In a first stage, the spring stiffness values were modified, in order to 
use the same values as in the experiment for the first two eigenmodes 
(see Figure 7).

In a second stage, we included in the finite-element system the 4 
Bouc-Wen models, and we performed transient dynamic response 
calculations, using the Craig-Bampton method. Simulations were per-
formed for several levels of the acceleration applied.

We present below the frequency response curves: experimental  
(Figure 8) and simulated (Figure 9). These curves are shown sepa-
rately, because they do not correspond exactly to the same excitations. 
In fact, experimental excitations are swept sines; the numerical simula-
tion of swept sines leads to very high calculation times. Moreover, 
numerical problems (divergence of the numerical scheme) occur after 
a certain period. Thus, for the numerical simulations, we have used the 

time excitation 
( )0

0
sin 2 f t

A
t
π

 with 0 200 Hzf = , which allows the 

first bending modes to be excited, for reasonable time calculations.

Comments

At first sight, the comparison between the simulation and experimen-
tal results is not very good. First, one can note significant differences 
for resonance frequencies. Moreover, on experimental curves, the 
resonance frequency decreases and the damping increases when the 
excitation amplitude increases, while the opposite seems to occur on 
simulation curves (however, the trend is not obvious).

With regard to the resonance frequency, as a first step, the conservative 
finite-element model was adapted to fit the experimental eigenvalues. 

Then, the introduction of damping and non-linear aspects through the 
Bouc-Wen model leads to a discrepancy between the initial conserva-
tive eigenfrequencies and the resonance peak frequencies.

For the second point, for the Bouc-Wen model, the evolution of a 
resonance frequency and damping rate with the excitation amplitude 
is not very clear (this fact has been checked in many other examples).

However, despite these differences between experiment and simula-
tion, this test case shows that the Bouc-Wen model allows both the 
dissipative and the non-linear aspects of the junction to be repre-
sented, with a much simpler model of the junction, and lower com-
putation time.

Of course, the approach has to be improved. In particular, a rigor-
ous method to identify the Bouc-Wen parameters must be developed. 
Moreover, this experimental mock-up was certainly too complicated 
for a first application.

Conclusion

We have presented a method to model the junctions in structural dynam-
ics with meta-models. This approach allows both the dissipative aspect 
and the non-linear aspect of the junction to be taken into account.

This approach could be completed by the development of a method 
for identifying the values of the meta-model parameters a priori. 
Methods to identify Bouc-Wen parameters from experimental hysteric 
loops are under investigation.

The resolution method itself could be improved, on the one hand by 
improving the time domain non-linear algorithm and, on the other 
hand, by using the latest research developments concerning reduc-
tion methods in non-linear cases 
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Figure 9 – Simulated responses of the mock-up
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