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In this article, we present planning and scheduling techniques that we developed 
for optimizing the operations of space telescopes. The latter are satellites 

whose mission is to observe celestial objects such as planets, exoplanets, stars, 
or galaxies. After a survey of some existing mission planning tools, we present 
three case studies that we tackled using a constraint-based optimization and 
operations research approach, with for each case study the lessons that we learned. 
Based on these, we propose future work directions related to the development 
of generic mission planning tools, to the management of uncertain events, and 
to the definition of a global mission planning concept for several telescopes.
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Introduction

Space telescopes (or space observatories) are satellites whose mis-
sion is to observe celestial objects such as planets, exoplanets, stars, 
or galaxies. As expressed in the European Space Agency (ESA) Cos-
mic Vision program,1 they are used by the scientists to answer ques-
tions concerning the formation of planets, the emergence of life, the 
way in which the Solar system works, and to understand the physical 
laws of the Universe and its origins.

To achieve this goal, space telescopes usually embed several instru-
ments such as gamma-ray imagers, gamma-ray detectors, X-ray 
imagers, optical cameras, photometers, photodetectors, infrared 
cameras, infrared spectrometers, ultraviolet sensors, etc. All instru-
ments are body-mounted on the satellite for acquisition quality rea-
sons, and to observe a specific target the whole satellite must be 
pointed at a specific direction, with a need for a high angular precision 
and for a very stable pointing.

For space telescopes, Artificial Intelligence (AI) can come into play to 
analyze the set of data produced by the instruments. It also comes 
into play for the construction of the telescope activity plans. The latter 
include tasks such as observation tasks requested by the scientists, 
calibration tasks used for setting up the instruments, maneuvers used 
for pointing the telescope toward particular directions, and communi-
cation tasks used to receive telecommands and to send observation 
data to ground stations. In this context, the plans constructed must be 
valid according to various constraints related to physical limitations 
or user requirements. They must also optimize the exploitation of the 
telescope over a given time period, for various objective functions 

1	 https://en.wikipedia.org/wiki/Cosmic_Vision

related to the priority of some targets, the temporal dispersion of 
groups of observations, or the amount of resources consumed. One 
reason that motivates the use of automated AI planning and schedul-
ing is that there are usually a lot of candidate tasks (thousands or tens 
of thousands), and it is not straightforward even for a system expert 
to manually define valid and efficient activity plans.

Globally, AI planning and scheduling is used both for the long-term 
planning phase, where the activity plans are constructed over long 
time periods (e.g., one year), and for the short-term planning phase, 
where the plans must be refined and where last-minute observation 
requests may be received. The latter include Targets of Opportunity 
(ToOs), corresponding to high-priority targets for which events are 
detected by other ground or space telescopes. The short-term plans 
sent to the telescope can also be updated directly on-board if highly 
relevant events such as Gamma-Ray Bursts (GRBs) are detected by 
the embedded instruments. It is then useful to be able to resched-
ule the parts of the observation plan canceled due to the arrival of 
ToOs and GRBs. It can also be noted that for the short-term planning 
phase all activities of the telescope are taken into account, but for the 
long-term planning phase some of them are sometimes not explicitly 
modeled. This can occur for maneuvers, when their duration is not 
significant compared to the duration of observations, or for operations 
that are carried out during specific parts of the orbit where no observa-
tion is possible.

In this article, we first give an overview of some mission planning 
systems available in the literature to manage space telescopes 
(Section "A survey of some mission planning systems"). After that, 
we provide feedback on our experience in the field, based on three 
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case studies that we tackled. On the latter point, Section "Planning for 
INTEGRAL" deals with long-term mission planning for the active ESA 
INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), 
Section "Planning for SVOM" describes mission planning for the 
future French-Chinese (CNES-CNSA) Space Variable Objects Moni-
tor (SVOM), and Section "Planning for ARIEL" presents long-term 
mission planning for the future ESA Atmospheric Remote-Sensing 
Infrared Exoplanet Large-survey (ARIEL) mission. We describe a 
constrained-based scheduling and operations research approach 
used for these missions, as well as the results obtained. The descrip-
tions provided for these three missions correspond to a global view of 
the full descriptions available in dedicated papers [35, 34, 38]. Last, 
Section "Conclusion and future work directions" provides future work 
directions concerning the development of generic constraint-based 
optimization tools, the production of robust plans that better anticipate 
the arrival of ToOs and GRBs, and the definition of a planning system 
for managing several telescopes.

A survey of some mission planning systems

Nowadays, a little over 100 space telescopes are referenced.2 This 
section gives a synthetic view of the mission planning systems devel-
oped for some of them, based on the restricted list given in Table 1 
composed of the Hubble Space Telescope (HST), X-ray Multi-Mirror 
(XMM)-Newton, INTEGRAL, Spitzer, Swift, Herschel, the James Webb 
Space Telescope (JWST), SVOM, the Exoplanet Characterization 
Observations (EChO) telescope, ARIEL, and the Advanced Telescope 
for High ENergy Astrophysics (ATHENA).

Telescope Space 
agency Orbit Launch 

date Termination References 

HST NASA Low-Earth Orbit 
(590km) 1990 - 21, 20, 22, 

26, 13, 14 

XMM-
Newton ESA 

highly elliptical 
orbit around the 
Earth 

1999 - 5 

INTEGRAL ESA 
highly elliptical 
orbit around the 
Earth 

2002 - 35, 24 

Spitzer NASA heliocentric orbit 
(372-day period) 2003 - 29 

Swift NASA Low-Earth Orbit 
(600km) 2004 - 31 

Herschel ESA around the L2 
Lagrange point 2009 2013 16, 4, 7 

JWST NASA around the L2 
Lagrange point 

2021 
(planned) - 37, 15 

SVOM CNES-
CNSA 

Low-Earth Orbit 
(625km) 

2021 
(planned) - 34, 19 

EChO ESA around the L2 
Lagrange point canceled canceled 32, 30, 12

ARIEL ESA around the L2 
Lagrange point 

2028 
(planned) - 38 

ATHENA ESA-
JAXA 

around the L2 
Lagrange point 

2031 
(planned) - 18 

Table 1 - Analyzed space telescopes and references to their mission planning 
systems

2	 https://en.wikipedia.org/wiki/List_of_space_telescopes

A previous generic analysis [8] is based on a list of telescopes different 
from the one considered here. Globally, similar conclusions are derived 
as regards the mission needs, but we try to give a few more details on 
the problem components with regard to standard constraint-based opti-
mization concepts. Note also that, for some telescopes such as Planck 
[11], there is no need for AI planning and scheduling since the succes-
sive pointings used by the satellite are given by a predefined pointing law.

Problem features

High-level observation requests

Many telescope missions involve high-level observation requests 
that cover multiple elementary observation tasks. These tasks can be 
linked by various kinds of constraints. For instance, some elementary 
tasks might have to be performed sufficiently close to each other or, 
more generally, the elementary tasks can be linked by minimum and 
maximum distance constraints. The latter are temporal constraints of 
the form [ ],y x a b− ∈ , where x and y are two variables representing 
the start or end times of two tasks, and where a and b are two con-
stants. Moreover, it might be forbidden to interleave the elementary 
observations of a given request with other elementary observations.

The elementary observations can also be linked by various kinds 
of preference functions. For instance, a preference for grouping the 
elementary tasks as much as possible, or a preference for performing 
them as periodically as possible, might exist.

Task selection

Almost all telescope mission planning problems are over-constrained, 
meaning that it is not possible to perform all of the candidate tasks, 
one exception being the long term mission planning for EChO, where 
the goal is to perform all tasks within a minimum amount of time 
[32, 30, 12]. Several constraints can be imposed on the selection 
of tasks, including (1) constraints forcing some mandatory tasks 
to be performed, (2) constraints linking the performance of several 
tasks, such as constraints imposing that a specific calibration task 
should be selected only if one of the observation task requiring this 
calibration is selected, or (3) constraints specifying that a high-level 
observation request is selected if and only if a sufficient number of its 
elementary observation tasks is scheduled.

In many missions, the observation tasks to be performed are fully 
specified by the users, but in some cases there is a freedom on some 
parameters. This occurs for HST and JWST, where an observation ori-
entation must be chosen within an orientation range specified by the 
users, and where relative orientation constraints can impose that the 
angular distance between the orientations chosen for two observation 

1 2,o o  must be within a given range.

Choice of realization windows

Usually, the target associated with an observation task is visible only 
during certain visibility windows, computed by taking into account 
elements like the positions of the Earth, the Sun, the Moon, and other 
planets, or the user requirements concerning the earliest and latest 
times at which observation data must be collected. One issue is then 
to choose, for each selected observation task, the visibility window(s) 
within which it is carried out, as in works on scheduling with multiple 
time windows. The time granularity used for representing the visibility 
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windows can differ from one mission to another: windows expressed 
in days, revolutions, hours, etc.

Disjunctive or cumulative telescope resource

For the short-term planning phase, the telescope is viewed as a dis-
junctive resource, that is, as a resource that cannot carry out two 
observation tasks in parallel. Indeed, given that all instruments are 
body-mounted on the satellite, two observations associated with dis-
tinct pointing directions cannot be performed simultaneously.

For the long-term planning phase, the telescope is also modeled as a 
disjunctive resource most of the time. In some missions, however, it is 
viewed as a cumulative resource that can carry out activities in parallel 
up to a certain limit. This is the case for HST and JWST, where the 
long-term planner computes, for each selected observation task, a soft 
realization window that is larger than the actual window required to per-
form the observation. Then, soft realization windows can overlap up to 
a certain limit, which leads to a model based on a cumulative resource 
instead of a disjunctive one. The rationale is that instead of choosing 
fixed windows in long-term plans, some level of temporal flexibility is 
kept in prevision of last-minute urgent observation requests.

Knapsack and cardinality constraints

For most of the missions a long-term plan is built, but it is necessary to 
take into account the fact that the occurrence of events such as GRBs or 
ToOs leads to new mandatory observation tasks, which induce a tem-
porary interruption of the nominal mission plan. To build long-term plans 
that are robust to such random events, the usage rate of some time 
periods is sometimes limited. For instance, for INTEGRAL, a maximum 
usage rate is imposed over every revolution [35], and for XMM-Newton 
a maximum usage rate is imposed over groups of 4-5 successive revo-
lutions [5]. In terms of optimization problems, the revolutions or groups 
of revolutions are kinds of knapsacks whose capacity corresponds to 
the maximum usage duration, and the observations carried out are items 
whose size corresponds to their duration. In some cases, cardinality 
constraints must be satisfied, such as when there is a limit on the num-
ber of observations per revolution, to indirectly minimize maneuvers.

State constraints

As mentioned previously, all telescopes considered embed several 
instruments. The latter can sometimes operate in different states, and 
setup operations are needed to reach a given state. For instance, in 
the case of Herschel [4], cool down operations are required to set 
up the instrument(s) before an observation, and these operations are 
quite long (several hours) and consume liquid Helium. In this case, 
to avoid spending too much time and energy for state changes, a 
(unique) state of the instrument(s) is chosen for each day of opera-
tion. Moreover, there exists a minimum number of successive days 
during which a given state must be maintained. From a scheduling 
point of view, if setup operations are explicitly modeled, the prob-
lem reached shares similarities with Job Shop Scheduling Problems 
with Sequence-Dependent Setup Times [1]. Another example where 
cool down operations are explicitly considered is the ATHENA mis-
sion [18], where one issue is to plan cryocooler regeneration cycles 
that allow one of the instruments to be cooled down and observations 
to be performed for a given duration. One issue is then to define cool-
ing strategies that allow the response time to ToOs to be optimized, 
in addition to being efficient for carrying out the long-term program.

Resources with consumption and production

 In terms of mission constraints, the more complex specifications 
are probably those of the JWST. Basically, due to its large surface, 
the JWST is subjected to a significant solar radiation pressure. The 
perturbation induced on the kinetic momentum is countered using 
reaction wheels available on board. However, the accumulation of the 
perturbations can lead to a saturation of the reaction wheels, when 
their maximum speed is reached. It is then necessary to desaturate 
these wheels by using some of the fuel available (so-called momen-
tum dumping operations). It is also possible to "produce" momentum 
by performing observations in a direction that allows the wheels to 
be slowed down. As a result, the mission planner for the JWST must 
handle a momentum resource [37] that is subject to both momentum 
consumptions and momentum productions.

Optimization criteria

One common point between the mission planning problems associ-
ated with the telescopes considered is that there is never a single opti-
mization criterion. Examples of objective functions encountered are:  

•	 maximization of the number of observation requests that are 
carried out, while potentially taking into account the priority as-
sociated with each request; 

•	 maximization of the total usage duration of the telescope for 
scientific purposes (useful mission time); 

•	 minimization of the cumulated slew required to carry out ma-
neuvers between the successive tasks of the plan; 

•	 minimization of the use of consumable resources, like the fuel, 
to increase the long-term lifetime of the mission; 

•	 maximization of preference degrees over the realization times of 
some observations: preference for earliest performance times, 
preference for grouping as much as possible the elementary 
observations associated with a single request, preference over 
the regularity of the performance of periodic observations, 
user-preference for performing observations during specific 
parts of the orbits, etc.;

•	 fair sharing of the satellite among the mission contributors or 
among the pointing directions;

•	 minimization of the degree of violation of some soft constraints, 
that should ideally be satisfied but for which partial satisfaction 
is allowed if needed;

•	 maximization of the robustness of the plans produced, with re-
gard to the arrival of GRBs and ToOs; one goal here is to provide 
the users with a good estimation of the time at which the data 
they requested will be available.

Planning techniques

The mission planning systems developed for the space telescopes 
analyzed all use incomplete search algorithms, which are able to 
quickly find good quality solutions but that offer no guarantee with 
regard to the optimality of the solution produced. The reasons for 
this are twofold. First, the size of the instances that must be solved 
precludes the use of systematic techniques guaranteeing that the 
whole search space is explored. Second, the notion of optimal solu-
tion is often hard to define due to the presence of multiple objective 
functions. As detailed below, two kinds of mission planning algo-
rithms are used in practice, namely (1) greedy search, and (2) local 
search coupled with metaheuristics (simulated annealing, tabu 
search, genetic algorithms, etc.).
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Greedy search

For space telescope planning, a greedy search consists in (1) choos-
ing at each step an elementary observation task or an observation 
request, (2) inserting exposure time (i.e., observation time) within 
the current plan so as to fulfill the observation task or the request 
selected, (3) iterating this process so as to obtain a plan that is filled 
as much as possible, given that an activity inserted into the plan at 
some step can never be removed.

The main parameters of such a greedy search scheme are the selec-
tion heuristic, used for selecting an observation at each step, and 
the insertion heuristic, used for choosing an insertion position in the 
current plan. As an illustration, for the Swift telescope, the greedy 
search scheme implemented in the TAKO planning tool [31] is based 
on a static selection heuristic that successively selects tasks based 
on fixed priorities, and on an insertion heuristic that inserts each task 
at the earliest position in which there is a sufficient idle period. For the 
SVOM mission [34] detailed later in this article, the selection heuristic 
is dynamic (depending on the content of the current plan), and the 
insertion heuristic also inserts tasks at the earliest position in which 
there is a sufficiently idle period, but in this case with the possibility of 
moving back the tasks of the current plan (manipulation of temporally 
flexible solutions). In the HST [22] or XMM-Newton [5], the selection 
strategy considers the observations that are more constrained first, 
since these observations become increasingly difficult to insert as the 
search progresses, especially the observations composed of several 
elementary observations that must be carried out following a specific 
pattern. It is also possible to consider first the observations that are 
the least constrained, the intuition being that these observations will 
be easier to rearrange in case GRBs or ToOs occur.

Greedy decision rules are also used for short-term replanning fol-
lowing the arrival of high-priority requests. In this case, the conflicts 
between the new mandatory observations and the observations of the 
current plan are analyzed and resolved based on fast priority-based 
decision rules.

Local search and metaheuristics

In another direction, several mission planners developed for space 
telescopes use local search and global optimization methods (or 
metaheuristics) that allow the exploration of the search space to be 
diversified and local optima to be escaped from.

On the local search side, the mission planners for the HST and JWST 
use the minconflicts algorithm [28], which starts from an inconsistent 
plan and reduces step-by-step the number of conflicts between the 
observations of the plan (iterative conflict resolution approach [22]). 
For other telescopes like INTEGRAL or XMM-Newton, the local search 
techniques proposed handle only consistent plans at each step of the 
search, where tasks can be successively added or removed.

Concerning metaheuristics, various global optimization methods 
were tested for space telescopes: multi-objective evolutionary algo-
rithms for the JWST [15], stochastic hill-climbing or tabu search for 
INTEGRAL [35, 24], iterated local search for SVOM [34], and simu-
lated annealing, or restart techniques that allow to diversify the explo-
ration of the search space thanks to the stochastic nature of some 
decision rules. Some works also use optimization strategies that first 

build a plan based on a coarse-grain model and then refine this plan 
based on a detailed model [24].

Generic techniques

For several missions, the low-level constraints of the problem are 
handled by core planning and scheduling frameworks. One example 
is the APSI framework [6] initially developed by ISTC-CNR (Rome, 
Italy) for ESA, and which was used for INTEGRAL [35] and XMM-
Newton [5] to determine whether scheduling a small set of observa-
tion tasks within a given revolution is feasible. It was also tested for 
planning the mission of Herschel [7].

A second example is the constraint-based Spike tool [22, 26], devel-
oped by the US Space Telescope Science Institute (STScI). This tool 
is used for planning the activities of many ground and space tele-
scopes, including the HST and JWST. Basically, Spike helps to prune 
the task insertion positions that would lead to dead-ends given the set 
of temporal constraints of the problem.

A last example is the InCELL library [36, 33], which was used for two 
of the three telescope mission planning problems detailed in the next 
sections. Basically, the scheduling layer of InCELL handles an order-
ing over the tasks of the plan and maintains the earliest and latest 
start times of these tasks as a consequence of the current order-
ing. InCELL also allows various optimization criteria to be modeled, 
whereas for instance on the HST specific work was necessary to for-
malize the objectives truly optimized by the Spike-based planner after 
several years of operations [14]. As for common points, both Spike 
and InCELL are constraint-based, and both can manage at some step 
temporally inconsistent plans. Compared to APSI, InCELL is dedi-
cated to the implementation of local searches and metaheuristics.

Interactive scheduling

A last point that is common to many space telescope planning sys-
tems is the availability of manual and interactive scheduling modes in 
addition to fully automated search. This aspect is highly relevant for 
missions where it is hard to aggregate several optimization criteria 
into a single one, and where it is useful to propose several mission 
plans to the end-users, with some statistics that help in evaluating the 
quality of each of the plans proposed.

Uncertainty management

Almost all space telescopes must manage uncertain events such as 
ToOs or GRBs. As seen before, the precise management of uncertainty 
varies depending on the mission. For example, in INTEGRAL [35], a 
maximum filling percentage is specified for revolutions located in peri-
ods of the year where GRBs are more likely to be observed. In XMM-
Newton [5], a maximum filling percentage is imposed over groups of 
successive revolutions. In Spitzer [29], uncertainty about data volume 
is handled on-board to avoid the over-filling of the spacecraft mass 
memory. In the long-term planning phase of the HST, soft realization 
windows are chosen for observations instead of fixed non-flexible win-
dows [26]. For SVOM, a task reschedulability measure is optimized 
[34]. On the execution side, in SVOM, GRB events directly erase parts 
of observation plans, whereas for telescopes such as the HST and 
JWST, the plans uploaded to the satellites are ordered lists of observa-
tions that can be postponed at execution time instead of being erased.
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Planning for INTEGRAL

In the following, we describe three case studies that we tackled in 
the past and show how the combination of incomplete search tech-
niques and constrained-based approaches allowed us to produce 
good-quality plans. The first realization presented was developed 
within the context of a study initiated in 2007 by ESA, involving ISTC-
CNR (Rome, Italy), VEGA (Darmstadt, Germany), the Politecnico di 
Milano (Milan, Italy), and ONERA. The objective of this study was 
to explore the use of AI Planning and Scheduling techniques for ESA 
missions [41]. ONERA was in charge of one of the test cases, namely 
the long-term planning (over one year) of the observation activities 
of the INTEGRAL space telescope. In the following, we give an over-
view of the specifications of the planning problem, the constraint-
based model defined, the planning algorithm developed, the results 
obtained, and the lessons drawn from this work.

Mission description

INTEGRAL is an ESA mission, managed in cooperation with Russia 
and the USA, whose goal is to observe gamma-ray emissions from 
the universe. Starting in 2002 for at least two years, it has now been 
extended until 2020. As shown in Figure 1, the INTEGRAL satellite 
is moving on a highly elliptical orbit around the Earth. One orbit cor-
responds to 72 hours and only about 58 hours of these, out of the 
Earth radiation belts, are available for observation. Due to the pres-
ence of the Sun, the Earth, the Moon, and other planets, a given target 
is not permanently observable during these 58 hours. The satellite 
embeds four instruments: a gamma-ray spectrometer named SPI, a 
gamma-ray imager named IBIS, an X-ray monitor named Jem-X, and 
an optical monitor camera named OMC. These four instruments are 
fixed on the platform and point in the same direction. The Attitude and 
Orbit Control System (AOCS) allows the platform (and thus the instru-
ments) to remain pointed in a given direction during an observation, 
and to move from one direction to another between two successive 
observations. For the long-term planning phase, the slewing time 
between two successive observations is indirectly considered by lim-
iting the number of different observations within each orbit. Moreover, 
in order to keep some time available for opportunistic observations of 
unexpected events, such as the appearance of new X-ray/gamma-ray 
sources, only a given percentage of the observation time within each 
orbit is considered to be available. Constraints related to energy, data 
recording and downloading are not taken into account at this step.

From the long-term planning point of view, an Announcement of 
Opportunity (AO) is emitted each year, to which scientists answer 
by posting observation requests over targets of interest. Then, a tar-
get allocation committee selects observation requests and assigns 

to each of them a priority and a realization percentage above which 
the request is considered to be achieved. In general, a percentage 
of 100% is not mandatory. The AO used here covers a period from 
August 2007 to August 2008 and involves 123 orbits and 35 obser-
vation requests.

Each high-level observation request r is decomposed into ( )NEO r  
elementary observations corresponding to precise pointings defined 
by an observation mask. Observations of a given request all have 
the same duration, and ( )NEO r  is within the interval [1,1023] in 
practice, most of the observation requests requiring several hundreds 
of elementary observations. It is not mandatory and it is often impos-
sible to perform all of these ( )NEO r  elementary observations within 
a single orbit of the satellite.

Figure 2 shows an example of a solution plan for an instance involv-
ing 5 orbits and 6 observation requests. For request 1r , we have 
6 observation windows and 4 observation activities: the first one 
involving 3 elementary observations in the first window and the 
other three involving each 2 elementary observations in the last three 
windows. For request 2r , we have 4 observation windows and 4 
observation activities, each involving only one elementary observa-
tion in each window. We can observe 2 observation activities in the 
same window for request 3r  in the last window. We can also observe 
that no observation activity is associated with requests 5r  and 6r . 
Finally, we can observe that the duration of an elementary observa-
tion depends on the request considered: for example, greater for 2r  
than for 1r .

o1 o2 o3 o4 o5

r1

r2

r3

r4

r5

r6

Figure 2 - Example of a solution plan for the long-term planning phase of INTEGRAL

In INTEGRAL, a type is associated with each observation request of 
a given target. This type specifies the way in which the observations 
must be performed, and there are four types of requests:

•	 normal observation requests (NO) which must be split as little 
as possible and ended as early as possible after they have 
started;

•	 no-splitting observation requests (NS), which must not be in-
terleaved with other observation requests;

•	 periodic observation requests ( ),PE p t , which must be de-
composed into elementary observations performed every p 
orbits with a tolerance t on the deviation from the period;

•	 spread observation requests ( ( )SP n ), which must be decom-
posed into n sub-observations to be spread as much as pos-
sible over the year.

The long-term planning problem consists in selecting and scheduling 
over the next observation period, generally of one year duration, the 
observations associated with the current AO, plus the observations 
selected at the previous AO but which were only partially carried out. Figure 1 - The INTEGRAL satellite and its highly elliptical orbit (image credit: ESA)
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The resulting problem is a kind of over-constrained scheduling prob-
lem [40, 25] where the objective is to fulfill requests as much and as 
well as possible, taking request priorities into account and knowing 
that observations cannot overlap. The long-term plan also serves as 
an input for regular short-term planning which decides on the detailed 
activities to be performed by the satellite, taking into account the 
arrival of new urgent observation requests.

Constraint-based modeling

In this study, following a constraint-based optimization approach, the 
first step was to formalize the problem by providing a clear defini-
tion of the input data, the decision variables, the constraints, and the 
objective function. The full model is available in [35], and we provide 
thereafter only its main features.

Input data

We consider a set O of orbits over the planning horizon, with a maxi-
mum observation duration allowed for each orbit. We also consider a 
set R of observation requests, with for each request r R∈ :

•	 a type ( )TY r  among the four possible ones (NO, NS, 
( ),PE p t , ( )SP n ); 

•	 a set ( )W r  of windows available for carrying out r over the 
year; each window is included in a single orbit and corresponds 
to a period where the telescope is outside the Earth radiation 
belts;

•	 a weight ( )WE r  reflecting the priority of the request; 
•	 a number ( )NEO r  of elementary observations that all have 

the same duration; 
•	 a percentage above which r is considered to be achieved.

To model the problem, the main difficulty is that the number of 
observation activities used for one request r is not known initially, 
where an observation activity corresponds to a set of contiguous 
elementary observations performed for r within a given visibility 
window ( )w W r∈ . For instance, in Figure  2, there is one obser-
vation activity composed of 3 elementary observations in the first 
visibility window of 1r . In practice, it is not feasible to introduce as 
many observation activities as the number of elementary observa-
tions, which is why the maximum number of observation activities 
per request is restricted. With each normal observation request 

( )( )r TY r NO= , we systematically associate two possible observa-
tion activities per window ( )w W r∈ , and with each special obser-
vation request ( )( )r TY r NO≠ , we associate only one observation 
activity per window ( )w W r∈ . For the instance we worked on, we 
ended up with 2731 candidate observation activities. In the sequel, 
OA denotes the set of candidate observation activities and ( )OA r  
(respectively, ( )OA o ) denotes the set of candidate observation 
activities associated with request r (respectively, orbit o). We also 
consider a maximum number of non-empty observation activities per 
orbit, to limit the overall slewing time.

Variables

The problem is then to choose for each candidate observation activ-
ity oa OA∈ , its starting time ( )s oa  and the number ( )neo oa  of 
elementary observations that it involves.

From this, it is possible to compute the values of other variables that 
are functionally dependent on the ( )s oa  and ( )neo oa  variables. 

First, the ending time ( )e oa  of oa can be directly deduced from 
the fixed duration of each elementary observation. Then, for each 
request r R∈ , the total number ( )neo r  of elementary observa-
tions performed for r is defined as ( ) ( )

( )oa OA r
neo r neo oa

∈
=∑ . 

This number must not exceed ( )NEO r , the total number of elemen-
tary observations required for r. Last, for each request r, it is pos-
sible to compute the sequence of non-empty observation activities 
associated with r, ordered according to their starting times, and to 
get a start time ( )s r  (start time of the first observation activity car-
ried out for r) and an end time ( )e r  (end time of the last observation 
activity carried out for r).

Constraints

Several constraints must be satisfied by the variables of the model. 
Some of them are quite standard in terms of optimization:
•	 time windows: each observation activity must be included in 

the visibility window w with which it is associated;
•	 disjunctive resource constraints: given that there is a unique 

telescope resource over which the instruments are body-
mounted, observation activities cannot overlap; non overlap-
ping constraints can be expressed separately for each orbit, 
because windows associated with two distinct orbits are dis-
joint;

•	 knapsack constraints: for each orbit o, the maximum observa-
tion duration within o must not be exceeded; 

•	 cardinality constraint: for each orbit o, the maximum number of 
non-empty observation activities must not be exceeded.

Beside these standard constraints, each specific request type 
induces side constraints that are less standard for generic optimiza-
tion methods:

•	 for each no-splitting observation request r, there must be 
no interleaving between the observation activities associated 
with r and the observation activities associated with other re-
quests; 

•	 for each periodic observation request r, its period must be 
respected (up to the tolerance allowed) and only elementary 
observation activities must be used ( ( ) 1neo oa = );

•	 for each spread observation request r, there is a maximum 
number of elementary observations for each observation activ-
ity associated with r.

Objective functions

In INTEGRAL, the definition of the optimization criteria is not as easy 
as the definition of the constraints is. After discussion with the end-
users, we adopted the following approach. With each request r are 
associated:

•	 a quality of completion ( ) [ ]0,1qc r ∈ , which measures the per-
centage of completion of r; 

•	 a quality of realization ( ) [ ]0,1qr r ∈ , which measures to what 
extent the set of observation activities used for r are consistent 
with the type of r; the definition of this quality of realization de-
pends on the request type; for normal and no-splitting requests, 
the quality is higher when r finishes as early as possible after 
it started (maximum grouping objective); for periodic observa-
tion requests, the realization quality is higher when the deviation 
from the ideal period is lower; for spread observation requests, 
the realization quality is the mean realization quality of its ob-
servation activities;
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•	 an overall quality ( )q r  obtained as a linear combination of the 
two previous qualities: ( ) ( ) ( ) ( )1q r qc r qr rα α= ⋅ + − ⋅  with 

[ ]0,1α ∈  a parameter that can be adapted by the end-users. 

The global criterion q to be maximized is defined as the normalized 
weighted sum of request qualities:

	
( ) ( )

( )
r R

r R

WE r q r
q

WE r
∈

∈

⋅
= ∑

∑
	 (1)

Stochastic hill-climbing with restarts

Considering only variables ( )neo oa  for the real instance to be solved 
leads to 2731 variables whose domain size is between 2 and 1024. 
First experiments were made with generic constraint-based optimiza-
tion tools, which have, in theory, the capacity to find the optimal solu-
tion, but the results were not satisfying essentially due to the large 
size of the search space and to the complexity of the non-standard 
constraints and criteria. Instead, local search algorithms and meta-
heuristics were used in order to produce good quality solutions within 
limited computation times. The main features of the algorithm devel-
oped are the following:
•	 local search moves: The algorithm starts from an empty plan; it 

maintains a current plan and it modifies it iteratively using two 
kinds of local moves: either the enlargement of an observation 
activity oa (by adding to oa as many elementary observations 
as possible), or the enlargement of an observation activity oa 
after the removal of another observation activity oa′  located in 
the same orbit; after each step of the algorithm, the consistency 
of the current plan is maintained, meaning that all of the model 
constraints are satisfied;

•	 restricted neighborhood: at each step of the algorithm, a small 
subset of the set of possible local moves is pre-selected, by 
taking into account the weights associated with the requests; 
pre-selection is necessary because of the huge number of ob-
servation activities and thus of possible local moves; to avoid 
cycles around local optima, a tabu list of the T previous local 
moves is maintained, and the local moves included in the tabu 
list cannot be pre-selected;

•	 stochastic hill-climbing: all of the pre-selected local moves 
are evaluated by estimating their positive or negative impact 
on the optimization criterion; one candidate move is then ran-
domly selected among the best ones; the selected local move 
is effectively applied if the estimated impact is strictly positive 
and applied with a certain probability if the estimated impact is 
negative or null, as in simulated annealing [23];

•	 restarts: the algorithm restarts from an empty plan each time 
a maximum number of local moves without improvement is 
reached.

Inside the algorithm, the basic scheduling constraints associated with 
each individual orbit are managed by the core APSI toolbox [6]. Basi-
cally, the latter models dynamic systems based on a set of timelines, 
each of which represents the evolution of a component of the system. 
In APSI, different types of timelines can be used, including timelines 
modeling state variables or resources, and different kinds of con-
straints over timelines can be specified, including state and temporal 
constraints. For INTEGRAL, the specific constraints associated with 
no-splitting, periodic, and spread requests, as well as the optimization 
of the plan quality, are managed outside of APSI.

Experimental results

The planning tool implemented can be used to visualize the evo-
lution of the current plan during a search, the best plans found, 
and statistics on the quality of completion and realization of each 
observation request. Figure 3 shows some visualizations available. 
For advanced users, it is also possible to set parameters such as 
the probability of acceptance of a local move that does not increase 
the plan quality.

In the one-year instance described before, the algorithm takes in 
general only some minutes to achieve plans whose quality is close 
to 0.97 or 0.98, i.e., very close to 1, which is an upper bound on 
the plan quality. This means that, in the worst case, the best quality 
obtained is only 2 or 3% below the optimal one.

Figure 3 - Left: current plan over the year (one line per request, one blue 
rectangle per observation activity). Right: current completion percentage of 
each request

Lessons learned

In this study, it was possible to build an unambiguous constraint-
based model for the long-term planning phase of INTEGRAL. The 
main effort was made on the formal aspects related to the spe-
cific request types, on the partition between features modeled as 
constraints and features modeled as optimization criteria, and on 
the decomposition of observation requests into observation activi-
ties potentially spread over several visibility windows. On the solv-
ing side, the core APSI framework was able to manage the basic 
scheduling constraints, such as the constraints of no overlapping 
between observation activities within each orbit. Several aspects 
related to specific request types were, however, not manageable by 
APSI in its 2009 version, and specific developments were required 
for managing these specifications outside APSI. Also, a stochas-
tic hill-climbing algorithm with restarts was able to produce very 
good results in terms of plan quality and computing time, and in 
the end what previously required some days of manual work now 
requires only a few minutes of computing. Last, APSI was used 
as a non-incremental planning and scheduling engine in the sense 
that the scheduling problem associated with one orbit o is solved 
from scratch whenever one observation activity is added to o. The 
number of local moves carried out per second might have been 
higher by using an incremental solving strategy or a core planner 
tuned for local search.
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Planning for SVOM

We now consider a second mission and show the results obtained by 
following a similar methodology: definition of a formal constrained-
based model, definition of local search and metaheuristics, and 
development of visualization tools. One difference between SVOM 
and INTEGRAL is that between the two missions, we developed a 
core constraint-based optimization library dedicated to local search 
[36, 33].

Mission description

SVOM is a future Chinese-French space mission, which should be 
launched in 2021. It is dedicated to the study of the transient universe, 
which includes the observation of GRBs. The main partners involved 
are the Chinese Academy of Science, the Chinese and French space 
agencies (CNSA, CNES), the Shanghai Engineering Center for Micro-
satellite (SECM), and several Chinese and French science labs. The 
SVOM mission has a nominal duration of 3 years and an extension 
phase of 2 years.

As shown in Figure 4, the SVOM telescope carries four instruments: 
a coded-mask gamma ray imager named ECLAIRs, a gamma-ray 
spectrometer named GRM, a Micro-channel X-ray Telescope named 
MXT, and a Visible-band Telescope named VT. It will operate around 
the Earth at an altitude of 650km and follow a default attitude law 
called "B1 pointing law" which is roughly anti-solar. It provides an 
effective observation during the night hemisphere to enhance the 
follow-up possibilities and also avoids the Galactic plane and some 
bright X-sources to foster GRBs detection [9].

ECLAIRs
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GRM

F-GFT GWAC C-GFT

Figure 4 - Instruments of the SVOM space telescope (http://www.svom.fr/en/)

The SVOM scientific program is divided into three categories:  
•	 the Core Program (CP), dedicated to GRBs; the latter are de-

tected and managed autonomously on board; with an expected 
GRB rate of around 60-70 per year; GRBs are unpredictable 
by nature, and when a GRB is detected on board the current 
observation plan is interrupted and the satellite remains pointed 
towards the GRB source for 14 orbits (  1 day);

•	 the Target of Opportunity (ToO) program, which allows new 
and urgent observations to be triggered from the ground; ToO 
observations must be performed by the satellite within 48h for 
a standard ToO and within 12h for an exceptional ToO (e.g., 
galactic supernova or gravitational wave alert); the typical ob-
servation duration is between 1 orbit and 14 orbits;

•	 the General Program (GP), consisting in observations request-
ed by the scientific community and which are pre-planned one 

year in advance; the GP targets are classified into three catego-
ries: A-targets (high priority), B-targets (low priority), and Fill-In 
Targets used to provide a default target to the satellite if needed; 
in the following, we do not consider the fill-in-targets; the dura-
tion of a GP request is from 1 orbit up to 5 days; the observa-
tion time is allocated to scientific users’ requests with a ratio of 
60% for the Chinese users’ group and 40% for the French users’ 
group; also, the GP allows pointing at sources close (within 10°) 
to the default B1 attitude pointing law. 

Figure 5 gives an idea of the distribution of the mission time among 
these three programs, both for the nominal mission and for the 
extended mission. One challenge is then to maximize the GP comple-
tion at the end of the year, especially for the A-targets, despite the 
occurrence of GRBs and ToOs. This challenge must be tackled given 
that in SVOM the mission planning process works as follows:  

•	 a GP pool of proposals is established once a year after a Call for 
Obs and a selection process, and a first schedule is computed 
over the one year span; 

•	 every week the pool of proposals is updated to take into ac-
count the GP observations canceled or partially carried out 
the week before due to the occurrence of GRBs and ToOs; the 
schedule is fully recomputed up to the end of the year to plan 
again these missing parts if possible;

•	 if an observation is not finished by the end of the year, the miss-
ing part might be selected to be included in the set of candidate 
requests for the next year; for each GP observation, it is as-
sumed that at least 95% of the requested exposure time must 
be fulfilled to obtain usable data. 

Nominal mission
1 ToO per day, 10% of GP outside B1 law

TOO
15%

TOO
40%

GRB
25%

GRB
25%

GP
60%

GP
35%

Extended mission
5 ToOs per day, 50% of GP outside B1 law

Figure 5 - Distribution of the useful mission time over one year; GP 
observations are split between those performed outside the B1 pointing law 
(light green) and those performed around this default law (dark green)

Constraint-based modeling

As for INTEGRAL, we give an overview of the constraint-based model 
developed for SVOM. See [34] for a full description.

Input data

We consider a set R of observation requests that are candidates for 
being scheduled over the remaining part of the year, and a set of 
coarse-grain directions containing B1 (around the default B1 pointing 
law), HL (High Latitude), and MWC / MWEP / MWWP (Milky Way 
Center / East Part / West Part). Each request r R∈  is defined by 
several elements:

•	 a request category among ToO (Target of Opportunity), CAL 
(Calibration), and GP (General Program), with a priority level 
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targets to which the telescope must be pointed; this cumulated 
slew must be minimized; 

•	 ( )reschedulability r , which measures the reschedulability of 
each request r; this metric corresponds to the amount of time 
available for rescheduling r (or parts of r) in case of interrup-
tions due to the occurrence of GRBs and ToOs; for a request 
r in the observation sequence, this reschedulability index is 
maximum when the realization of r starts at the beginning of 
the earliest realization window of r (potentially many possibili-
ties to reschedule r in this case), and it is equal to 0 when the 
realization of r ends at the end of its latest realization window 
(no opportunity to reschedule r in this case); ideally, the mean 
reschedulability must be maximized and its standard deviation 
must be minimized, to achieve a fair distribution of reschedula-
bility between observation requests. 

 As shown in the next section, some choices were made at the level of 
the planning algorithms to establish an order between these objective 
functions.

Greedy search and iterated local search

We now describe the components of the planner developed for con-
structing plans every week over the rest of the year.

Core constraint-based reasoning engine

As mentioned before, the generic InCELL library is used to handle 
the constraint-based model of the mission. Basically, InCELL imple-
ments the Constraint-Based Local Search paradigm [17]. It allows 
us to incrementally evaluate the impact of additions or removals of 
observations on all constraints and objectives of the model, and to 
use predefined primitives for implementing local searches and meta-
heuristics.

Greedy search

The SVOM planner starts from a plan that contains only the set of 
regular calibrations placed in fixed windows and the set of mandatory 
ToOs known at planning time. The algorithm then tries to insert GP-
observations one by one into this plan. This search phase is greedy 
in the sense that once an observation is inserted into the plan, it is 
never removed. As discussed previously, in order to fully instantiate 
such a search procedure, two main parameters must be set, namely 
a selection heuristic to select a candidate observation at each step 
and an insertion heuristic to determine an insertion position into the 
current plan.

The selection heuristic defined for SVOM promotes: (1) the fair 
sharing of the telescope among the users (relatively to the ideal 
usage ratios defined in the input data), (2) the fair sharing of the 
telescope among the categories of directions (again, relatively to the 
ideal usage ratios defined in the input data), and (3) the realization 
of the highest priority requests. A fixed lexicographic ordering is 
used to combine these three aspects and obtain at each step a set 
of candidate requests. One candidate in this set is chosen based on 
a portfolio of possible decision rules, such as (1) the selection of 
one request that is the most constrained in terms of available time 
windows, (2) the selection of one request whose duration is mini-
mum, (3) the random selection of one request, or (4) the selection 
of one request whose observation has already been started in the 

(A or B) and the user requiring the observation ("CH" for Chi-
nese, "FR" for French) for GP requests; 

•	 a direction category in { }1, , , ,B HL MWC MWEP MWWP  and 
the precise coordinates of the target associated with the re-
quest;

•	 a list ( )W r  of time windows during which the target associated 
with r is visible;

•	 the observation duration associated with r, split between the 
remaining observation duration for r and the observation dura-
tion already elapsed (not null for observations truncated due to 
GRBs and ToOs).

As an input, we also have, for each user { },u CH FR∈  (respec-
tively, for each direction { }1, , , ,d B HL MWC MWEP MWWP∈ ), the 
desired satellite usage ratio for user u (respectively, for direction d). 
Considering usage ratios for directions is useful to make sure that the 
telescope does not point outside the B1 pointing law too much, which 
favors the observation of GRBs.

Decision variables

Following the specifications of the mission, we impose that obser-
vation requests must be planned in a single block. This means that 
the observations are non-preemptable at planning time, even if GRBs 
and ToOs might cause interruptions at execution time. An observation 
plan is then defined as a sequence [ ]1, , kseq r r=   of successive 
observation requests planned for the satellite, with for each request 
ir seq∈  a time window ( ) ( )i iwin r W r∈  chosen for carrying out ir .

Constraints

Two basic scheduling constraints must be satisfied: 
•	 time windows: each observation for a request r must be carried 

out within the window ( )win r  chosen for r;
•	 no overlap: the observations successively carried out must not 

overlap, since all instruments are body-mounted on the tele-
scope.

Such constraints lead to a standard scheduling problem with a unique 
machine (the telescope) and time windows.

Objective functions

From a scheduling perspective, the main challenge in SVOM is actu-
ally to be able to manage multiple objectives for the construction of 
good quality plans. The model considers six sets of objective func-
tions listed below:

•	 ( )nObs p , which measures the number of GP observations 
carried out for priority p; this number must be maximized, with 
a strict preference for priority A;

•	 ( )duPrio p , which measures the total observation duration for 
priority p; this duration must be maximized, with a strict prefer-
ence for priority A; 

•	 ( )duUser u , which measures the cumulated observation dura-
tion for user u; this duration must respect the desired usage 
ratio as much as possible; 

•	 ( )duDir d , which measures the cumulated observation dura-
tion for direction d; this duration must respect the desired usage 
ratio as much as possible; 

•	 slew, which measures the cumulated slew induced by the cho-
sen observation plan, given the coordinates of the successive 
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past, to favor the completion of observations interrupted by GRBs 
or ToOs. For the insertion heuristic, several strategies were tested, 
including (1) insertion at the earliest feasible position that exploits 
an idle period of the telescope; (2) insertion at a position that maxi-
mizes the mean reschedulability of GP requests of priority A; and (3) 
insertion at a position that minimizes the cumulated slew. For these 
insertion heuristics, moving back observations of the current plan 
is allowed, and only insertion positions leading to a feasible plan 
are considered.

Iterated local search

Given that the heuristics used in greedy search are imperfect, a more 
efficient planning strategy was developed. The latter uses the Iter-
ated Local Search (ILS) metaheuristic [27]. It starts from the solution 
produced by the greedy search process, and then iterates two search 
phases until a maximum CPU time is reached:

•	 a perturbation phase, during which x % of the observations are 
removed from the current plan with x a parameter to be set; 
the observations removed are chosen using a uniform random 
distribution; 

•	 a reoptimization phase, during which the solution obtained after 
the perturbation phase is reoptimized; this phase reuses the 
greedy search scheme to fill the plan again; to diversify search, 
the heuristic used for filling the plan is chosen randomly among 
the portfolio of decision rules. 

Throughout the iterations, the best plan found is systematically 
recorded, based on a lexicographic ordering of the optimization criteria.

Post-processing: slew optimization

For SVOM, the cumulated slew can actually be considered as less 
important than the other objectives because the pointing of the tele-
scope will be perturbed anyway due to the commitment to carry out 
GRBs and ToOs. This is why the slew objective is considered only at 
the last optimization step.

To achieve an observation sequence [ ]1, , nseq r r=   that optimizes 
the cumulated slew, local search techniques developed for routing 
problems with time windows are used [39]. The corresponding tech-
niques are or-opt moves [2], which try to better position a block of k 
successive observations inside the observation sequence, and 2-opt 
moves [10], which consider k successive observations and try to 
perform them in the reverse order. Local moves are carried out while 
improvements are made, i.e., until a locally optimal cumulated slew 
is reached. Then, an ILS search scheme is used, with a perturbation 

phase that randomly updates the ordering of some observations and 
a slew reoptimization phase based on or-opt and 2-opt moves again. 
This mechanism is applied until the maximum CPU time allowed is 
reached.

Experimental results

Experiments were performed on several data sets to evaluate the 
performance of the algorithms for the initial planning phase, when 
the full-year schedule must be synthesized. Table 2 gives the results 
obtained on one data set involving approximately 600 GP requests. 
In this scenario, greedy search delivers good quality solutions in a 
few seconds. Experiments on the different selection and insertion 
heuristics indicate that the heuristic that fills the earliest idle periods 
is a good compromise between the computation times and the plan 
quality. Also, ILS leads to better results in terms of number of obser-
vations performed and in terms of observation duration, especially 
for GP requests of priority B. Using ILS can however penalize the 
reschedulability criterion a bit. In 5 minutes, ILS performs up to 100 
plan perturbation-reoptimization steps. Last, the slew optimization 
phase has a strong impact on the cumulated slew (50% reduction), 
while having little impact on the reschedulability objective.

We also simulated the dynamic behavior of the planning system by 
calling the planner every week to schedule the remaining part of the 
year. The objective was to determine whether GP requests were com-
pleted despite the random arrival of ToOs and GRBs. We conducted 
the experiments on a set R composed of 426 GP-real-life requests. 
For each set of scheduling parameters, 20 one-year simulations were 
completed, each time with random occurrence dates for ToOs and 
GRBs. For these 20 simulations, Table  3 shows the mean number 

GPn  (respectively, GP An − ) of GP requests (respectively, GP requests 
of priority A) that are completed up to 95% at least at the end of the 
year, and the mean observation time dedicated to these requests (col-
umns GPt  and GP At − ).

The results show that the ILS phase, which starts here from the solu-
tion found by the greedy search, improves the performance obtained 
after one year of mission time.

Algorithm 
CPU 
time 
(sec) 

Priority A Priority B 
user
ratios 

slew
(deg) nObs 

 
reschedulability in 

days 
nObs 

 
reschedulability in 

days 

greedy 21.4 190/193 115.5(70.2) 250/408 40.0(38.3) 0.41/0.59 23483 

ILS (perturb 0.1) 300 192/193 99.1(74.7) 261/408 41.2(43.0) 0.40/0.60 24338 

slew optimization 300 192/193 98.3(73.1) 261/408 42.9(44.8) 0.40/0.60 13219 

Table  2 - Results obtained in a one-year scenario including more than 600 observation requests (Intel i5-520 1.2GHz 4GBRAM processor, time limit of 
5 minutes); for the reschedulability, we give the mean value and the standard deviation in parentheses

 GPn GPt  (days) GP An − GP At −  (days) 

greedy 206 142 177 116 

ILS - perturb 10% 218 160 186 132 

Table 3 - Number of observations and observation duration after a one-year 
simulation
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Short-term planning

The techniques presented so far concern the long-term planning 
phase of SVOM. For the short-term planning phase, another approach 
is defined to deal with the arrival of ToOs [19]. The main idea is that 
when a ToO request is received, there is a need to construct a ToO 
observation plan over a one-day span. For this, the relevant sky areas 
are decomposed into tiles, and the main task of the short-term plan-
ner is to select a subset of the tiles and define the order in which the 
selected tiles are observed, given constraints on stabilization times, 
visibility windows, and maximum number of tiles per orbit, and given 
the likelihood that a given tile contains the source sought. Basically, 
this tile-sequencing process is a chronological greedy algorithm that 
iteratively inserts tile observation activities at the end of the current 
plan. At each step, the algorithm selects either a tile that has the maxi-
mum likelihood of containing the source (static selection heuristic), or 
a tile that maximizes a value depending both on the source presence 
likelihood and on the last tile of the plan (dynamic selection heuristic).

Lessons learned

On the modeling side, the mission constraints for SVOM are very 
simple but the optimization criteria required a bit more effort to be 
derived. On the implementation side, one lesson is that it was very 
useful to have a generic tool for managing the core constraint-based 
model. It allowed the lexicographic ordering between the different 
objective functions to be easily updated during the project. It also 
allowed various search parameters to be tested. Also, to optimize the 
slew, the use of standard Operations Research techniques was very 
beneficial.

Last, even if there is no theoretical guarantee on the stability of 
the plans produced for GP observations, some settings used favor 
replanning observations that have already been started or that are 
more time-constrained. This is why the approach manages to com-
plete observations up to 95% at the end of the year. More precisely, 
the uncertainty about GRBs and ToOs is handled through two main 
mechanisms: (1) regular replanning each week during the year, 
which allows parts of GP observations aborted because of high 
priority events to be programmed again, and (2) optimization of the 
reschedulability metric. Given that GRB events will cover around 25% 
of the useful mission time, and given that ToOs will cover between 
15% and 40% of the time, more proactive planning strategies have 
been sought. In particular, we started to develop a planning process 
in which, in a first phase, all observation durations are scaled propor-
tionally to the percentage of useful mission time covered by random 
events. Returning to nominal durations, opportunistic observations 
can then be added to avoid under-using the telescope. This process 
has the potential to produce more stable plans, since the plan in 
which all observation durations are scaled could serve as a reference 
to be followed, as much as possible, over the year.

Planning for ARIEL

Mission description

We present in this section the ARIEL mission, which is the fourth 
medium-class mission within the ESA Cosmic Vision science pro-
gram, with a launch planned in 2028. The total lifetime duration is four 
years and could be extended for two additional years.

In astronomy, a transit, or occultation, is the phenomenon when a 
planet passes directly in front of or behind its host star from the satel-
lite point of view. ARIEL will analyze the atmospheres of around 1000 
planets (warm and hot transiting gas giants, Neptunes and super-
Earths) orbiting around a range of host star types, using transit and 
occultation spectroscopy in the ~2 – 8 µm spectral range and broad-
band photometry in the optical to determine their chemical compo-
sition and physical conditions. The results will help scientists better 
understand planet formation, putting our own Solar System in context.

Transit and occultation spectroscopy methods, whereby the signal 
from the star and planet are differentiated using precise knowledge 
of the planetary ephemerides, allow atmospheric signals from the 
planet to be measured. Figure 6 illustrates the orbital lightcurve of the 
transiting exoplanet HAT-P-7b as observed by Kepler [3], which the 
methods adopted by ARIEL are based on.
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Figure 6 - Orbital lightcurve of exoplanet HAT-P-7b [3]

Observation objectives

ARIEL will visit a large and well-defined set of a few hundred targets. 
Repeated visits are required to build up the Signal to Noise Ratio (SNR) 
of individual target spectra. Most of the targets will require between 
one and a few tens of transit/occultation observations, depending on 
the brightness and spectral type of the host star and planetary radius 
and temperature. The maximum duration of a visit to a target sys-
tem will be less than 10 hours. The time between successive transit/
occultation observations will depend on the orbital period and could 
be as little as a fraction of a day to as long as a few days, with the 
exception of highly eccentric orbit planets.

Every targeted planet is associated with one or more of the following 
scientific objectives:  

•	 Basic survey objective (denoted by Survey): it requires a mini-
mal number of transit or occultation observations in order to 
assess the scientific interest of the planet and its main coarse 
characteristics. It basically addresses all of the targeted planets. 

•	 Deep survey objective: it requires additional transit or occulta-
tion observations in order to obtain a better SNR and to achieve 
a detailed characterization of the planet and its atmosphere. It 
addresses a large sub-sample of the set of targeted planets. 

•	 Benchmark objective: it requires even more transit or occultation 
observations to reach the best possible SNR allowing a very de-
tailed knowledge of the chemistry and dynamics of the planet. It 
addresses a few tens of planets orbiting very bright stars.

According to the definition of these objectives, the global observing 
strategy that is promoted is to prioritize, at the beginning of the lifetime, 
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the observations for planets with either a benchmark objective first or 
a basic survey objective, and to postpone the observations account-
ing only for a Deep objective after a period of about 1 or 1.5 years 
from the beginning of the mission.

Payload calibration needs and operational constraints

During the mission, it is assumed that the operational needs are as 
follows:

•	 one housekeeping sequence during 4 hours every 28 days, with 
a tolerance of +/- 2 days; 

•	 one long calibration sequence during 6 hours every 30 days, 
with a tolerance of +/- 10 days; 

•	 one short calibration sequence during 1 hour every 36h, with a 
tolerance of +/- 12h; 

•	 some specific targets may require a short calibration sequence 
to be performed just before/after the transit observation. 

All of the calibration sequences use dedicated targets to point to 
numerous wide spread predefined G-stars. The mission data down-
links are assumed to not conflict with the observations.

Mission planning challenges and constraints

A mission planning process is required to establish the observation 
schedule from a set of requests R initially selected and classified by a 
scientific board. It provides, in particular, the allocations for the three 
objectives and the types and numbers of observations needed. The 
mission planning process must take into account the observing strat-
egy promoted for ARIEL and all of the relevant system constraints.

Note that at the time when the study on ARIEL was performed, it 
was still a mission candidate. Consequently, the goal of the study 
presented was the evaluation of the global scientific impact of the 
mission in the following way:

•	 the various objectives could be achieved for the highest number 
of targeted planets. In particular, the Benchmark objective could 
be met for all of the planets concerned and a high number of 
Survey objectives could be met at the beginning of the lifetime 
(500 surveys done the first year);

•	 a sufficient part of the useful mission time was devoted to sci-
entific observations (the goal is of 80%) avoiding long time pe-
riods without observation activities;

•	 the regular calibration and housekeeping tasks could be fulfilled 
most of the time.

We describe here the main outcomes of this study [38]: a constraint-
based model, two algorithmic approaches, experimental results, and 
lessons learned.

Constraint-based modeling

Input data

We consider the following input data:
•	 mission dates – start and end dates of the mission, and desired 

dates before which the Benchmark, Survey and Deep objec-
tives should be performed; 

•	 satellite features – slew speed and duration to wait after each 
slew in order to be thermally and mechanically stable; 

•	 operational tasks – each operational task can either be a short 
calibration, a long calibration or a housekeeping task. Each type 
has an associated duration, period and flexibility; 

•	 calibration stars – stars (name, right ascension and declina-
tion) that are the targets to point to for calibration tasks; 

•	 exoplanets – each planet is characterized by a name, its orbiting 
star, its period and its coordinates (right ascension and declina-
tion). Candidate transit and occultation events for each planet 
can be pre-computed along with their start and end dates. The 
duration of each event is also given as an input; 

•	 scientific requests – description of all of the planet observa-
tions that can be carried out during the mission. Each scientific 
request targets one planet and can focus either on its transit 
events or occultation events.

The numbers of observations required to achieve each objective 
(among Survey, Deep, or Benchmark) are also given as an input. A 
request is called a Survey request if and only if its number of Deep 
and Benchmark observations is equal to 0. We define Deep and 
Benchmarks requests along the same lines.

Orthogonally to the objective dimension, requests can also be parti-
tioned into:

•	 a set of simple requests, for which there is no required task 
before and after observations of events; 

•	 a set of requests with calibration, for which each observation 
must be preceded and/or followed by a short calibration that is 
performed on the closest G-star to the planet; such requests 
can be considered as simple requests with a longer duration, 
for which the pointing target can be either the planet or the 
G-star depending on the calibration requirement; 

•	 a set of requests with additional observations, for which a spe-
cific task must be performed before and/or after each observa-
tion of an event. 

Variables

There are two classes of discrete decision variables:
1.	 Boolean variables for deciding which observation candidates 

are in the final plan; the start and end dates of these observa-
tions are fixed (dates associated with transit and occultation 
events) and therefore do not require any decision;

2.	 Boolean variables for deciding which operational tasks are in 
the final plan and integer variables for their start and end dates. 

Constraints

We consider the following constraints:
•	 no overlap: the tasks performed by the telescope should not 

overlap. This takes into account the slewing duration between 
the pointing targets of tasks and the stabilization duration; 

•	 requests with additional observations: for a request with addi-
tional observations, a candidate observation is part of the final 
plan if and only if the observation just before and/or just after is 
also part of the final plan; 

•	 operational tasks periodicity: operational tasks must be performed 
periodically, with a given flexibility as specified by their types; 

•	 deep observation release date: observations that allow the ob-
jective of Deep requests to be achieved cannot be made before 
a fixed date. 



Issue 15 - September 2020 - Planning for Space Telescopes: Survey, Case Studies, and Lessons Learned
	 AL15-05	 13

Objective functions

We first list the different elementary criteria taken into account for the 
mission and then describe two combinations considered.  

•	 crit_nReq - maximize the number of completed requests;
•	 crit_nB (respectively, crit_nD and crit_nS) - maximize the 

number of completed Benchmark (respectively, Deep and Sur-
vey) requests;

•	 crit_nB_d (respectively, crit_nS_d) - maximize the number 
of Benchmark requests (respectively, Survey objectives) com-
pleted before the desired date;

•	 crit_nOp - maximize the number of operational tasks carried 
out;

•	 crit_nHk (respectively, crit_nLc and crit_nSc) - maximize the 
number of housekeeping (respectively, long and short calibra-
tions) carried out during the mission. 

All of the criteria above do not have the same weight, because of the 
mission observation objectives. Following these mission priorities, 
we considered two main criteria:
•	 Upper bound criterion. This criterion does not take into account 

the request types, but rather focuses on the maximizations of 
the number of completed requests and the number of opera-
tional tasks in the plan, thus giving a clue of what could be an 
upper bound for the planning of ARIEL regarding the number of 
completed requests. Formally, the upper bound criteria UBcrit  
is defined by a vector [ ],crit_nReq crit_nOp  that is optimized 
lexicographically. 

•	 Criterion with request types. This criterion, denoted as Typecrit , 
takes into account the type of requests and the date before which 
Benchmark requests should be completed. Formally, Typecrit  
is vector [crit_nB_d, crit_nB, crit_nD, crit_nS, crit_nHk, 
crit_nLc, crit_nSc] and is optimized lexicographically.

Greedy search and local search

We developed two different approaches. The first one is greedy-based. 
The second one uses a Constraint Based Local Search paradigm.

Note that a third approach could be adapted from the one used 
for EChO [30], which is an earlier version of the ARIEL problem in 
which there was no distinction between Survey, Deep and Bench-
mark requests. EChO used a two-phase strategy, where first sci-
entific requests are planned using genetic algorithms, and then as 
many operational tasks as possible are inserted to fill in the gaps 
in the plan. We did not experiment with this approach on the ARIEL 
benchmarks.

Greedy approach

Many greedy-based algorithms were developed for solving the ARIEL 
planning problem. We describe here a hierarchical greedy algorithm 
that gives the best results, as described in Section "Experimental 
results".

Starting from an empty plan, the algorithm selects a candidate task 
and tries to insert it into the plan. More precisely, all requests and 
candidate observations are first labeled as unprocessed. While there 
is an unprocessed request, one request r is selected by consider-
ing first Benchmark requests, then Deep and Survey ones and with 

a tie-break favoring those with the least flexibility in further obser-
vations. Then,  the first unprocessed observation for this request is 
inserted into the final plan if and only if its insertion does not vio-
late any constraint. The observation is marked as processed. If the 
objective is achieved or if all candidate observations of r have been 
processed, then r is also labeled as processed. If the Survey objec-
tive of r is not achieved, then all of the observations inserted for r are 
removed. When all requests have been considered, a similar proce-
dure is followed for operational tasks.

This algorithm tends to maximize the number of completed requests, 
while taking into account the priority of the tasks. The dates before 
which benchmark requests and survey objectives should be com-
pleted are also considered, since the inserted task is always the first 
one chronologically.

In order to increase the cumulated duration of activity of the satellite, 
two procedures have been defined. First, we try to insert into the plan 
as many observations as possible but only for requests that have at 
least achieved their Survey objective. The second procedure extends 
the time during which calibration associated with scientific events are 
carried out.

Min-conflicts approach

The second approach is a Constraint Based Local Search (CBLS) 
approach [17]. It is particularly suited for handling constraint pro-
gramming problems with large benchmarks, especially because vari-
ous parts of the search space can be explored in a short time. The 
algorithm built on top of that approach is based on a min-conflicts 
algorithm [28]. It starts with an initial plan in which all requests are 
randomly fulfilled and constraints are all satisfied except for the no-
overlap ones. Then, the objective of the algorithm is to remove all 
conflicts due to overlaps and then optimize the criteria crit that can be 
equal to UBcrit  or Typecrit . The steps are as follows:

1.	 while there exists an overlap conflict or the criteria can theoreti-
cally be improved, we select an observation oldo  in the plan;  

2.	 we select a candidate observation newo  of the same request 
that, if inserted into the plan in place of oldo , either decreases 
the number of overlaps, or improves the value of crit without 
deteriorating the number of overlaps. The insertion of newo  
must also satisfy all constraints except for the no-overlap ones. 
A random tie-breaking is used to choose between candidate 
observations that improve the criteria in the same way;

3.	 we remove oldo  from the plan and insert newo  instead;
4.	 we insert all housekeeping tasks in their corresponding tempo-

ral interval as early as possible if and only if they do not overlap 
with already inserted observations. We then proceed the same 
way for long and short calibrations. 

These steps are repeated until the criteria reach the maximum theo-
retical value or until a maximum number of iterations is reached. If 
overlap conflicts still exist, an observation from the plan is chosen 
and removed. The algorithm starts again from Step 1 and the proce-
dure is repeated.

Note that crit_nReq cannot be improved if its value is the number of 
requests. Likewise, crit_nOp cannot be improved when its value is 
the number of operational tasks. These are the maximum theoretical 
values of criteria.
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Experimental results

In this section, we present experiments carried out on a set of data 
provided by scientists working on the design of ARIEL.

Scenario

The benchmark that we worked on includes 710 planets and 728 
corresponding requests. 61 are Benchmark, 240 are Deep and 427 
are Survey requests. 709 requests have a Survey objective. A short 
calibration is required before and after each observation of an event 
for 34 requests. The benchmark does not contain requests with addi-
tional observations.

There are 128439 candidate observations and 4345 observations are 
required to complete all of the requests. The corresponding duration 
is equal to 3.52 years, which is longer than the mission duration.

Implementation

The greedy approach was implemented with Scilab on a Intel Core i3 
processor with 2GB of RAM. The CBLS experiments were run on a 
four-Xeon 2.80GHz processors with 8GB of RAM. We implemented 
the algorithm in Java on top of library InCELL [36].

Results

Results of the experiments are illustrated in Figure 7 and Table 4. For 
analyzing these results, we consider the various different objectives 
of this study.
•	 Number of completed requests - As expected, crit_nReq is 

maximized with the CBLS approach along with the upper-bound 
criteria. When the types are taken into account, the best ap-
proach is CBLS with the criterion Typecrit .

•	 Cumulated duration of activity - All approaches generate a plan 
in which the satellite is active for more than 80% of the mission 
duration. 

•	 500 Survey objectives during the first year - The best result is 
obtained by the CBLS approach with the criterion Typecrit . Bet-
ter results might be hard to obtain, since the plan is saturated 
during the first year because of Benchmark requests. 

•	 Operational tasks - All approaches have rather low results 
for that objective. The best approach is the greedy one: giv-
en that there is less time dedicated to observations, there 
is more time for operational tasks. If the inser tion of op-
erational tasks were to be a constraint instead of a prefer-
ence, the overall results would really be lower. For instance, 
in this case the number of completed requests falls to 502 
for CBLS with Typecrit  (44 Benchmark, 178 Deep and 280 
Survey), and the cumulated activity duration of the satel-
lite represents 74% of the mission duration. Given that this 
objective has a lower priority, it is not really achieved by the 
proposed approaches.

Lessons learned

The planning problem associated with the ARIEL mission stresses 
several challenges. First, it combines both an allocation problem 
for scientific observations and a scheduling problem for opera-
tional tasks, which implies the use of different types of decision 

variables. Second, there are several non-classical criteria, such as 
deadlines. Then, it requires requests covering multiple observa-
tions to be dealt with, also known as linked observations. Four th, 
the number of requests can also be quite challenging. For the stud-
ied benchmark, there are more than 3 million potential conflicts 
between candidate observations. Finally, as the design of the mis-
sion was still on-going, there was a real need for a generic model 
and implementation.

Given that the ARIEL mission has been selected, the next step is to 
define more precisely the operational constraints on the system and 
make them high-priority. Moreover, the scheduler should be modified 
in order to dynamically integrate new sets of requests.

From a technical point of view, the initial plan produced maximizes 
the criteria but violates some constraints. While this outperforms 
the greedy approach along with several heuristics, some other 
approaches should also be investigated, such as CBLS starting from 
an empty plan or Iterated Local Search as mentioned earlier.
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Figure 7 - Features of the plan generated by each approach. The first column 
contains the number of observations inserted into the plan, the second one 
contains the number of completed requests, and the three next columns 
detail how requests are satisfied per type. The last three columns contain the 
number of operational tasks that are part of the plan

Approach Activity dur. Scientific activity dur. Survey obj. 1st year

Greedy 80% 72% 411

CBLS - critUB 89% 83% 295

CBLS - critType 83% 77% 467

Table 4 - For each approach, the percentage of the mission duration during 
which the telescope is active, the percentage of the mission duration 
dedicated to scientific activities and the number of requests with Survey 
objective completed during the first year of the mission among the 709
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Conclusion and future work directions

This article presented three telescope mission planning systems 
developed in the past, giving for each a description of the model, 
the algorithms, the results, and some lessons learned. Based on this 
experience, we believe that it may be relevant to address the three 
following challenges in the future.

A generic tool for space telescope planning

Given that many space telescopes share similarities in terms of plan-
ning, it would be useful to develop a generic mission manager. At 
the moment, we have a generic constraint-based optimization tool 
(InCELL) that allows us to quickly define new mission specific plan-
ners. To gain in genericity, we could try to define a generic telescope 
mission planning tool on top of InCELL, as done by the Space Tele-
scope Science Institute (STScI) with Spike [22, 26]. In such a generic 
tool, we could have a domain specific language, a set of predefined 
decision rules (e.g., selection heuristics and insertion heuristics for 
greedy search), and a set of predefined local search and metaheuris-
tics. On this basis, it would be possible to more easily compare sev-
eral search algorithms (stochastic hill-climbing, iterated local search, 
min-conflicts, etc.). Also, the precise settings of the search param-
eters could be optimized by machine learning techniques.

Uncertainty management

Another challenge concerns the way in which the uncertainty is man-
aged for space telescope missions. As seen previously, the degree 
of uncertainty is quite high for space telescopes, due to random 
events like ToOs or GRBs. The current practice is that in each mission 
specification, there is an indirect way of dealing with such events: 
limitation of the planned observation time during some periods, 
optimization of reschedulability measures, computation of flexible 
realization windows, etc. On this point, there is a need to compare 
the different approaches proposed in the literature. It is likely that it 

could be relevant to exploit a coarse-grain model of these random 
events and let the mission planner optimize the plans by using explicit 
stability measures in addition to the other performance measures. By 
doing so, the behavior of the telescope would be more predictable 
for the end-users. From an algorithmic point of view, the approach 
could be to search for an easily reschedulable backbone plan, and to 
add opportunistic observations when the occurrence rate of random 
events is lower than expected. Moreover, to manage uncertainty, it 
could be useful to develop on-board autonomy concepts, not only to 
automatically trigger follow-up observations when relevant events are 
detected, but also to abort observation activities when some condi-
tions are not met.

Planning for several telescopes

Lastly, nowadays there is a significant number of space telescopes. 
Even if they do not embed the exact same instruments, it could be 
interesting to globally optimize their activities given a set of candidate 
targets, that is, to have a kind of centralized telescope planning tool 
or a kind of distributed planning engine with automated negotiation 
steps, at least at the level of each space agency to manage its "con-
stellation" of space telescopes. Several reasons could motivate this 
choice. First, scientists might want to post an observation request r 
requiring several telescopes embedding complementary instruments. 
In this case, to maximize the scientific return, there would be a need 
to coordinate the decisions of the telescope mission planning centers, 
so that the elementary observations associated with r are either all 
selected or not selected, and so that these observations are carried 
out during similar periods of the year if needed. Another reason would 
be to share the use of the telescopes among the possible GRBs and 
ToOs. As an example, if a single random event is detected, it is not 
an issue to point all telescopes to the corresponding target. However, 
when several random events occur simultaneously, there could be 
some level of coordination between the mission centers to share the 
usage of the ground and space observatories because, in the end, all 
telescopes share common long-term goals 
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