
Issue 15 - September 2020 - Challenges in the Certification of Computer Vision-Based Systems
	 AL15-06	 1

Artificial Intelligence and Decision Making

Challenges in the Certification 
of Computer Vision-Based 

Systems for Civil Aeronautics

Computer vision techniques have made considerable progress in recent years. 
This advance now makes possible the practical use of computer vision in civil 

drones or aircraft, replacing human pilots. The question that naturally arises is 
then to provide a way to certify those types of systems at a given level of safety. 
The aim of the article is, firstly, to understand the gap between today’s computer 
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certifiable and, thirdly, to explore some recent works related to these key activities.
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Introduction

Computer vision techniques have made considerable progress in 
recent years. One of the most recent successes in computer vision 
has been achieved through the development of Deep Learning meth-
ods. It seems unlikely that this trend will backtrack radically on short 
notice: most signal and data analysis approaches will now include 
somewhere in their processing pipeline one or several components 
that have been designed using machine learning techniques. Before 
the advent of Deep Learning, more conventional methods based on 
geometric vision already offered very interesting performances for 
autonomous localization.

The performance gain obtained by these techniques now makes pos-
sible the practical use of computer vision in complex systems, and 
particularly in surface vehicles and in civil drones or aircraft, replac-
ing human pilots.

Driving Automation Systems for On-Road Motor Vehicles have been 
widely studied. A dedicated standard [80] has been published by SAE to 
propose a set of recommended practices and a taxonomy describing the 
full range of levels of driving automation in on-road motor vehicles. The 
concerns and risks associated with on-road autonomous vehicles are 
also discussed in [94]. To address these risks, the authors explore vari-
ous strategies that can be adopted and emerging responses by govern-
ments. They show that, thus far, authorities have generally avoided bind-
ing measures and have focused on creating councils and work groups, 
in order to not slow down the development of autonomous vehicles.

In this article, we focus on the civil aeronautics domain. In this domain, 
the strategy is quite different. An aircraft (autonomous or not) cannot 
enter service without being certified from a safety point of view. One of 
the main rules to ensure safety is "see-and-avoid": it is the responsibility 

of the (human or artificial) pilot to detect any abnormal situation or any 
risk of collision and to ultimately take control of the vehicle.

The issue that naturally arises for allowing the use of computer vision 
in civil aeronautical vehicles is to provide a way to certify a given level 
of safety. This is a difficult issue for such processes, which are effec-
tive in their empirical domain of expertise, but it is often not possible 
to state why they are so.

What is a computer vision based system?

Let us begin by illustrating what a computer vision-based system is. 
As an example, let us consider a vision-based navigation system rep-
resentative of embedded systems in robotics, drones, autonomous 
cars, or automated taxiway driving for an aircraft. A simplified generic 
architecture is sketched in Fig. 1. Visual information stems from two 
cameras (denoted as left and right camera) mounted together on a 
stereoscopic rig.
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Figure 1 – A stereovision-based system
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The Visual Odometer (VO) component exploits sequences of stereo-
scopic images to estimate the trajectory (position and orientation) 
with respect to some relative reference coordinate system.

The Scene Interpretation (SI) component uses frames from the left 
camera to build a description of the scene pertaining to the navigation 
task at hand. For instance, SI has been designed to provide bounding 
boxes (BB) around objects of interest, which are essentially of two 
types:

•	 Landmarks: objects referenced in a local GIS (Geographic infor-
mation system) of the area;

•	 Obstacles. 

SI should also be able to more precisely characterize detected objects 
of each type; for instance, providing an identification of landmarks 
(e.g., a traffic sign and its meaning, a ground sign and its class, 
etc.); and providing a category for each obstacle (e.g., moving/static 
object, person/car/truck, etc.).

The Absolute Localization box combines information from all other 
components to estimate the position/orientation of the mobile in an 
absolute world coordinate frame, such as WGS 84 (World Geodetic 
System 1984). The basic operation here is to match objects extracted 
by SI to landmarks in the GIS, so as to change and/or refine the esti-
mated trajectory. Matching landmarks is aided by characteristics 
provided by SI and by the approximate 3D localization deduced from 
VO information. We will not enter into further details regarding the 
Absolute Localization component.

In this paper, we will focus on the two functions VO and SI. For both 
of these we will identify the gap between the current standards and 
their specifics. Indeed, if such a vision-based system is to be embed-
ded into some operational system, these two components would have 
to be compliant with some certification framework, depending on the 
application field. The choice of these two functions is motivated by the 
fact that they represent two major trends in current vision resources. 
VO belongs to geometric vision, which is aimed at extracting geometric 
information from images, a field that has been theorized for instance 
in [41]. Although very different in their implementation details, many 
such geometric codes are used nowadays in robotic systems. SI is 
representative of the numerous recent codes for image-based scene 
understanding driven by machine learning techniques. Moreover, as 
said before, their combination opens the way to realistic vision-based 
systems.

Problem

The article focuses on the civil aeronautics domain. In this domain, 
an aircraft is allowed to enter in operation if the manufacturer has 
obtained a type certificate from the certification authorities. For that, 
the aircraft manufacturer must demonstrate the compliance of its 
product with the regulatory requirements [25]. An accepted means 
of compliance with the requirements is to rely on mature standards, 
such as the ARP 4754A [79] for the system’s development process, 
or such as the DO 178C [75] for the software development process. 
When using these means to prove that a product is trustworthy, the 
certification activities consist in providing a detailed documenta-
tion, and justifications, that argue how the development process is 
indeed compliant with the standard.

The certification activities must cover all of the levels of the develop-
ment process. In the embedded field, the development process is 
usually divided into four levels:
•	 function: specification of the expected behavior, the usage do-

main, and the constraints of an avionic function; 
•	 algorithm: i.e., the methods, the structure, the algorithmic prin-

ciples, etc., used to fulfil the avionic function; 
•	 source code: i.e., the software modules, which are compiled 

and transformed into executable object code; 
•	 item: i.e., all of the low level components, whether they are 

hardware (e.g., processors, cameras, etc.) or software (e.g., 
middleware, kernel devices, etc.).

For instance, Table 1 illustrates these four levels for the VO and SI 
functions.

Level VO SI 

Function Estimates the relative 
3D-position/orientation and  
provides error covariance 

Predicts position in image 
coordinates and the 
category of objects, and 
associates them with a 
confidence score

Algorithm Feature tracking in a frame 
flow + statistical estimation 

Machine learning based 
predictor – Neural networks

Source code C/C++ development Development frameworks in 
Python, C/C++ 

Item Executable object code + 
middleware + processor + 
camera, etc. 

Executable object code 
+ processor + GPU + 
libraries for neural networks 
+ camera, etc.

Table 1 – VO and SI implementation

Existing certification approaches for avionic functions, as shown 
in Section "Certification practice for civil avionic systems", require 
strong relationships between levels (such as conformity and trace-
ability) and strong properties (such as determinism). However, as 
discussed in Section "Certification practice for civil avionic systems", 
some of these properties are often not shared by vision systems. For 
instance, VO uses optimizer algorithms to compute the best position, 
and optimization partly relies on the random operation of outlier rejec-
tion (RANSAC, Random Sample Consensus, [29]). Similarly, SI is 
typically based on machine learning techniques applied to deep neural 
networks (DNN) [33]. In this case, it becomes difficult to ensure the 
traceability between each line of source code and the functional level.

Another difficulty arises from the notion of failure. In safety terminol-
ogy, random failure refers to item failures only, and systematic failure 
refers to software bugs. However, even in the absence of item and 
software failure, the perception functions may behave abnormally due 
to "bad" external conditions (e.g., bad weather conditions) or "bad" 
internal choices (e.g., bad random operation). The difficulty arises 
from the fact that these "bad" conditions partly depend on the internal 
algorithms, making the safety analysis more difficult.

As a result, most of today’s computer vision systems do not meet the 
current certification standards for civil aeronautical vehicles, although 
the evolution of technology makes it possible to integrate such per-
ception systems into drones or aircraft.
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Objectives and organization of the article

Following this observation, the objectives of the article are:
•	 First, to understand the gap between today’s computer-vision 

systems and the current certification standards; 
•	 Second, to identify the key activities to be fulfilled to make com-

puter-vision systems more certifiable; 
•	 And last, to explore some recent works related to these key 

activities.

The paper is organized as follows:
•	 The current certification practices in the civil aeronautical field 

are presented in Section "Certification practice for civil avionic 
systems". More particularly, we discuss two certification stan-
dards: the ARP-4754A [79] dedicated to safety issues (see 
Section "Safety design process"), and the DO-178BC [75] 
dedicated to software issues (see Section "Algorithm and soft-
ware development process"). They are discussed with respect 
to computer-vision systems and we show that they are rather 
inappropriate for this type of systems. We also discuss in Sec-
tion "Computer vision based system development process: a 
data driven design logic" one of the novelties of computer vision 
("novelties" with respect to conventional certified systems); that 
is, its data driven nature: the behavior of the systems is mainly 
defined or tested via a great number of data (called dataset). 

•	 Section "Developing specific certification objectives for com-
puter-vision algorithms" then discusses a new certification 
approach (proposed by the Overarching Properties working 
group, and proposes 5 certification objectives dedicated to 
computer vision. 

•	 Section "Visual odometry" (resp. 5) discusses the certification 
issues in the specific case of the VO function (resp. SI). 

•	 Finally, Section "Conclusion and challenges" proposes a list 
of key scientific challenges to be explored to make the vision-
based perception systems certifiable. 

Certification practice for civil avionic systems

The two main certification standards that are concerned with civil 
avionic systems are: first, the ARP-4754A [79], which is a guideline 
for development processes under certification, with an emphasis on 
safety issues; and second, the DO-178BC [75], which provides guid-
ance for developing software under certification.

Given that they are central in civil aeronautics, we briefly present 
these two standards in the two following subsections (ARP-4754A 
in Subsection "Safety design process", and DO-178C in Subsection 
"Algorithm and software development process") and we discuss their 
limitations with respect to computer-vision systems.

Safety design process

ARP-4754A design process

A safety critical development process is the imbrication of a usual 
development process (that ensures the functional correctness) with 
a safety assessment process (that ensures the safety requirements 
compliance). Figure 2 provides a schematic overview of the develop-
ment process for a safety critical system compliant with ARP 4754A. 

The high-level functions define the main functionality expected from 
the system and are analyzed with regard to the risks that they may 
encounter through the FHA (Functional Hazard Analysis). For each 
risk, the experts must identify its causes and evaluate the severity of 
the consequences in dangerous situations. For instance, if a failure 
of a function could lead to a crash, it is classified as "catastrophic"; 
the function will not be lost with a probability lower than 10–9 / FH, and 
nothing less than a triple failure will lead to the loss of the function. If 
the failure of the function "only" causes serious or fatal injuries among 
the passengers, or could lead to physical distress of the crew, then 
the function is classified as "hazardous"; the probability of losing it 
will be lower than 10–7 / FH and only a double failure will lead to such 
a loss.

After such a risk analysis, the high-level functions are then refined 
as a preliminary functional architecture (second step of the devel-
opment cycle in Figure 2). Each high-level function is implemented 
as a set of sub-functions providing the expected functionality. This 
architecture is analyzed through the PSSA (Preliminary System Safety 
Assessment) to check whether the requirements from the FHA can 
be fulfilled assuming some properties (such as independence, failure 
modes and propagation rules). This step is an iterative activity: if the 
functional architecture does not fit the requirements, the designers 
must propose a new architecture with additional redundancies.

Once a consolidated architecture has been found (at the end of the 
second step in Figure 2), the next phase is the selection of the hard-
ware item, the allocation of levels of software criticality (called DAL 
for Dependability Assurance Levels) to each software function, and 
the coding of the functions and the platform services (third step). 
Five Dependability Assurance Levels are defined by the certification 
standards (by the DO178B), from DAL A (the highest criticality) to 
DAL E (the lowest criticality), with specific objectives and activities 
required for each level.

Then, during the ascent of the development cycle, several tests are 
applied and the SSA (System Safety Assessment) verifies that the 
hypotheses made in the previous steps are satisfied.

Applying this safety design process generally leads to a high level of 
safety for conventional avionic systems.
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Figure 2 – A compliant ARP-4754A safety design process 



Issue 15 - September 2020 - Challenges in the Certification of Computer Vision-Based Systems
	 AL15-06	 4

Application and limitations of the standard for perception systems

Now let us consider the Absolute Localization system. This system is 
a less conventional one in the sense that it involves computer vision. 
If we try to apply the current practices to this system, we obtain the 
following schematic reasoning:
•	 Absolute Localization is used for autonomous taxi driving. The 

FHA analysis (step one in Figure 2) concludes that the most 
risky situation is the failure condition FC = "the function pro-
vides a wrong position without the error being detected". If a 
FC occurs, it could lead to collision with other vehicles or with 
people on the taxiway. The severity of such a situation is classi-
fied as hazardous because it can cause serious injuries. Thus, 
the associated safety objectives are:  
–– no double failure should lead to the occurrence of a FC, and 
–– the probability of occurrence of a FC should be less than 

10–7 / FH.
•	 Let us suppose that the chosen architecture (designed during 

the second step in Figure 2) of the perception system is that 
shown in Figure 1. Absolute Localization relies on VO, SI and on 
the Other Sensors. According to the contribution of each com-
ponent to the whole function, the PSSA leads to new refined 
safety objectives for each component. In case of VO and SI, let 
us suppose that these refined safety objectives are:  
–– the probability of occurrence of an undetected erroneous 
output of VO (resp. SI) must be less than 10–4 / FH, 
–– no common failure can lead to an undetected erroneous be-
havior of VO and SI, and
–– the software functions VO and SI must be developed in ac-
cordance with the DAL B objectives. 

A cause of an undetected erroneous VO behavior could be internal or 
external "failures" leading to an erroneous estimated covariance of the 
provided position. Likewise, a cause of an undetected erroneous SI 
output could be internal or external "failures" leading to a high score 
on false hypotheses.

The issue is then: what are the "failures" that can lead to VO or SI 
undetected erroneous outputs.

Algorithm associated hazards
As mentioned in the introduction, random failures refer to hardware 
failures and systematic failures refer to software bugs. In the domain 
of computer-vision, it is well admitted that vision algorithms may 
enter in failure modes even in the absence of those types of failure. 
For instance, external objects moving together in the same direction 
can fool the VO function. Similarly, an overexposed image can negate 
the SI function. Other internal causes, such as non-deterministic 
divergence of internal random solvers (usually used to speed up the 
convergence of the algorithms), could also lead to undetected errone-
ous outputs.

As a consequence, to apply the aeronautical safety design process 
(Figure 2) to computer-vision it is necessary to revisit the notion of 
"failure". Failures must be extended to algorithm associated hazards, 
that is to say, to any internal or external ambiguous situations where 
the algorithm is not able to behave correctly, even if there is no hard-
ware or software failure.

The first difficulty is then to be able to identify, for a given vision-based 
perception system, all of the possible algorithm associated hazards.

Effect and failure modes of algorithm associated hazards
The second difficulty lies in the need to extend the safety analyses to 
take into account the effects of the algorithm associated hazards; that 
is to say, to determine what kind of hazard each algorithm is sensitive 
to, and what the associated failure modes are. These issues are new 
to the conventional safety aeronautical process.

Algorithm and software development process

With regard to the software level, the aim of the software assur-
ance process is to provide evidence that the software components 
behave as expected by their requirements and do nothing else. In 
the commercial aircraft domain, the software assurance process is 
based on the certification standard titled "Software Considerations 
in Airborne Systems and Equipment Certification", known as DO-
178C [76].

DO-178C

The DO-178C standard does not prescribe a specific development 
process, but identifies four mandatory steps:

•	 Development of High Level Requirements (HLR) from system 
requirements;

•	 Development of Low Level Requirements (LLR) and Software 
Architecture from the HLR requirements;

•	 Development of the source code;
•	 Production of an object code executable.

Certification objectives are then associated with each step. The 
schema depicted in Figure 3 summarizes all of these objectives for 
Dependability Assurance Levels A and B (the two highest ones). The 
five main points addressed by the software aeronautical certification 
standard are the following.

Requirements
The expected behavior of the software must be explicitly and com-
pletely defined by high level software requirements (the HLRs). For 
instance, in the case of a VO function, the HLRs are the functional 
requirement depicted in Table 1 (e.g., "the VO estimates the relative 
position and provides error covariance" and "any erroneous output 
is detected by a high covariance"). HLRs must then be refined into a 
software architecture (i.e., the internal architecture of the VO function, 
shown in Figure 4) and low-level requirements (LLRs). In the case 
of VO, the LLRs describe the pseudo-code of each module of the 
function and the underlying methods (such as RANSAC). Like HLRs, 
LLRs must be complete and explicit. They must also be verifiable by 
an identified means.

Traceability and compliance
A second important certification objective is downward and ascend-
ing traceability. Downward traceability signifies the demonstration 
that a requirement of a given level is broken down into one or more 
requirements or software elements of the next level. Conversely, 
ascending traceability means the demonstration that a low level ele-
ment corresponds to a requirement of the previous level. Together 
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with traceability comes the compliance objective, which is the 
demonstration that the requirements or solution elements of a given 
level are correct with respect to the requirements of the previous level. 
In the aeronautical software certification scheme depicted in Figure 3, 
traceability and compliance concern more precisely:
•	 traceability between HLRs and system requirements and com-
pliance of HLRs with system requirements; 

•	 traceability between LLRs and HLRs, and compliance of LLRs 
with HLRs; 

•	 traceability between source code and LLRs, and source code 
compliance with LLRs. 

In other words, aeronautical certification requires evidence that 
all requirements are properly addressed, and that the source 
code does not contain unnecessary lines (i.e., not justified by the 
requirements).

Coverage
A third strong certification objective is the coverage of all require-
ments and all of the source code during verification activities: each 
expected behavior related to a given requirement must be verified and, 

conversely, each part of the source code must be covered by a veri-
fication activity.

Determinism
Determinism of the software is a fourth key point. The expected 
behaviors must be deterministic in the sense that to each input 
stimulation must correspond a single response. From a mathematical 
point of view, the software must implement a total function.

Bounded execution time
Finally, an embedded system is by definition immersed in a real 
environment. It must respond in real time: faced with an external 
situation, the system must be able to find a suitable answer within 
a limited time; this time bound must be compatible with the time 
constraints of the operating conditions under which the system is 
used.

Application of all of these certification objectives to conventional civil 
avionic software, such as a flight control software, provides the high 
level confidence required for the most critical systems (classified as 
catastrophic or hazardous).
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Figure 3 – Certification objectives required by DO-178C [76]
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Application and limitations of the standard for perception systems

Unfortunately, as shown in [7], the certification objectives for civil 
avionic software outlined above pose several difficulties when trying 
to apply it to computer-vision algorithms. In particular, only require-
ments and bounded execution time objectives can be achieved. The 
three others must be dealt with in a different manner.

Ambiguity (opposite to compliance)
First, ambiguity is inherent to the real world that the system has to 
perceive. For instance, even for human actors it is difficult to interpret 
without ambiguity a real scene in an airport under difficult weather 
conditions. In other terms, it could happen that the questions "What 
do I see?", "Do I see any the object on the landing track?", "Am I 
matching the right features from two consecutive input images?" do 
not have unambiguous answers. Thus, the possibility of ambiguous 
situations make the algorithm difficult to test and validate. Therefore, it 
is difficult (if not impossible) to prove compliance between each level 
of the development process (i.e., between LLR and HLR, and between 
the source code and LLR).

Algorithm associated hazards (opposite to compliance)
Second, as mentioned in Section "Safety design process", vision 
algorithms may return erroneous outputs even in the absence of 
hardware failures or software bugs. This is what we called "algorithm 
associated hazards". When such a hazard occurs, the system (i.e., 
the source code) does not fulfill the intended behavior, leading to a 
loss of compliance between the source code and the requirements 
(the LLR and the HLR).

Indeterminism
Third, several vision algorithms explicitly use random methods. 
This is the case, for instance, for algorithms that use optimization 
techniques to extract features from a frame. The advantage of using 
randomness is to improve the convergence of the algorithms (and 
thereby reduce their computation time). However, it may lead to unre-
peatable executions. Such unpredictability is a strong limitation for 
current certification objectives.

Coverage and traceability
Finally, as mentioned above, certification requires that the software 
implementation be completely covered in order to guarantee that each 
part of the code corresponds to an identified requirement. However, 
for perception systems implemented by neural networks (for instance 
aimed at detecting the landing track and detecting other aircraft in 
the airport) it is difficult to explicitly determine which part of the neu-
ral network is responsible for the track detection and which part is 
responsible for aircraft detection. This leads to a lack of traceability 
between requirements and source code.

To summarize, compliance, determinism and coverage requirements 
are difficult (if not impossible) to meet for computer-vision software. 
Therefore, we believe that the current certification standard for civil 
avionic software cannot apply to vision-based perception systems.

Computer vision based system development process: a data driven 
design logic

Another novelty, and issue, when developing computer vision based 
systems is the way in which they are calibrated and validated. For 

both VO and SI, the algorithms are designed and configured using 
large data sets. Identifying difficult cases is a key ingredient for 
building data-sets that can evaluate safety issues. Most of the avail-
able benchmarks, however, do not address the explicit definition of 
hazards, but rather favor the diversity of sources. There are at least 
two reasons for this situation. First, data acquisition or collecting is 
usually opportunistic, and is not able to fully control their content. 
Second, most such data-sets are aimed at ranking new algorithms in 
terms of some easy-to-compute discriminant performance index. The 
variety of data sources seeks to challenge the algorithms rather than 
to explore some predefined operational domain.

This issue has been investigated in [102] by means of the HAZOP 
method originating from the chemical process control industry, and 
codified since then in the IEC 61882 standard (IEC 61882:2001). As 
FHA, HAZOP applies to some systems operating within its environ-
ment, but is interface-oriented, given that hazards are formulated in 
terms of deviations of the input/output of the system with respect to 
their nominal values.

[102] applies the HAZOP method to computer vision (CV) expert 
knowledge and design CV-HAZOP, a checklist of more than 900 haz-
ards that could affect generic computer vision functions. They provide 
a guideline for evaluating existing data-sets or design new ones with 
respect to their coverage of hazards, and apply it to in-depth estima-
tion by stereovision. The authors have made the CV-HAZOP checklist 
freely available and intend to integrate contributions from the commu-
nity to extend it collaboratively in the future. While such an analysis of 
CV certainly pertains to vision systems, it does not fully describe the 
dynamical and environmental aspects of a vision process that could 
be embedded within an autonomous system. It would be interesting 
to update the CV-HAZOP checklist in this direction. [23] considers an 
autonomous system operating in open unconstrained environments 
in which interactions may occur outside the intended mission sce-
narios. The authors propose Environmental Survey Hazard Analysis 
(ESHA) as a way to exhaustively account for such non-mission inter-
actions.

All conclusions of the previous subsections meet a more general 
observation made by authors of [17], who claim that "the current 
standards may be inappropriate for very complex systems developed 
now and in the future".

Developing specific certification objectives for 
computer-vision algorithms

Given that current standards do not offer a proper way to deal with 
artificial intelligence, new approaches and methodologies have to 
be developed. To face these difficulties and to anticipate the devel-
opment of embedded vision-based systems, recent works regard-
ing certification have been proposed. The reader can refer to [7] for 
a detailed study on certification challenges for adaptive systems. 
The authors explore new solutions to improve trust in the behavior 
of such systems and to facilitate certification. Among these solu-
tions, they recommend that new certification processes be studied 
and, in particular, the OPs (Overarching Properties), which are a 
very promising methodology from which we derive five high level 
objectives.
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Development of new certification approaches

The starting observation is that new techniques and technologies are rap-
idly developed and are "vital for the modernization of avionic systems, so 
finding an [certification] approach that is more amenable to new technol-
ogy trends and capabilities is crucial" [17]. Alternative approaches have 
been explored in [17, 45] by a consortium composed of the European 
(EASA) and American (FAA) certification authorities, an industrial panel, 
and two aerospace research institutes (NASA and ONERA). The new 
certification framework that they propose is based on three "Overarching 
Properties" (OPs for short) that are fundamental characteristics of the 
system being certified and of any sub-element of it.

The three Overarching Properties are:
•	 Intent: the intended behavior (i.e., the requirements of the system) 

must be explicitly defined, and it must be correct and complete 
with respect to the desired behavior (i.e., what the system is sup-
posed to do from an external point of view). The first Overarching 
Property also requires that the usage domain of the system (called 
"foreseeable operating conditions" in [45]) be clearly defined. 

•	 Correctness: the implementation of the system, that is, its ar-
chitecture (composed of a hardware item, algorithms, source 
code, etc.) is shown to be correct with respect to the defined 
intended behavior in the defined usage domain.

•	 and, finally, Innocuity: the system may contain some parts that 
are not required by the intended behavior (for instance, because 
the implementation uses a previously developed item that of-
fers more services than required for the specific usage of the 
system). In that case, the traceability requirement between the 
intended behavior and each part of the implementation is bro-
ken. This is not a problem anymore. However, it must be shown 
that these extra parts (e.g., extra lines of code, extra services, 
etc.) have no unacceptable safety impact on the system. 

The framework defined by these three high-level Overarching Prop-
erties no longer requires determinism, traceability and coverage, 
three of the four major difficulties related to the DO-178C standard 
identified in the previous subsection. It focuses on more fundamental 
objectives. Therefore, we believe that the Overarching Properties are 
the appropriate certification framework for computer-vision.

Five high-level objectives

From now on, we consider the framework defined by the Overarch-
ing Properties. Therefore, new questions arise: Is it possible to refine 
the three Overarching Properties into certification objectives that are 
specialized for computer-vision? And, if so, what are these special-
ized objectives? Let us enumerate the remaining high-level tough 
certification objectives (remember that determinism, traceability and 
coverage are no longer explicitly required):

•	 First, an applicant wishing to certify a computer-vision device 
shall define the usage domain and the intended behavior under 
this usage domain (first Overarching Property). 

•	 Second, the applicant shall identify all algorithm associated 
hazards and their effect on the system (see discussion at the 
end of Subsection "Application and limitations of the standard 
for perception systems"). 

•	 Third, the applicant shall show the correctness of the imple-
mentation (second Overarching Property). 

•	 Last, the applicant shall show that no unnecessary part has an un-
acceptable safety effect on the system (third Overarching Property). 

The two first points are related to a modeling problem: What kind of mod-
els are required and how can we be sure that the models are complete? 
The two last points require argumentation: How can correctness and inno-
cuity be shown, and what kind of evidence is required for that purpose?

We propose to segment the potential activities that could contribute to 
the certification of vision-based perception systems into five families:

1.	 Complete description of the intended behavior and of the us-
age domain. To explicitly enumerate all of the possible situa-
tions and to define what the system should "see" is a challeng-
ing task for most perception systems, even in the restricted 
area of an airport. For systems based on learning techniques, 
both the intended behavior and the usage domain are defined by 
data-sets (the test base). The challenge in this case is to show 
that this data-set correctly samples the real world and that the 
sampling is tight enough not to miss significant situations.

2.	 Safety hazard identification. The second activity to be carried out 
is twofold: to list the possible hazards, the difficulty here arises 
from the fact that some of the hazards are related to the internal 
weaknesses of the algorithms; and to define good benchmarks, 
that is, benchmarks that contain all of the identified hazards.

3.	 Run-time safety. As stated at the end of Subsection "Applica-
tion and limitations of the standard for perception systems", 
computer-vision algorithms can be fooled in some situations 
(the situations that we called hazards). The question in this 
case is "How can the algorithm be prevented from generating 
hazardous or unexpected behaviors?", which can be answered 
by developing specific functions used to detect bad operation 
and mitigation means. The third activity to be carried out is then 
to be able to define and develop appropriate detection functions 
and mitigation means that address all of the possible hazards.

4.	 Requirement satisfaction assessment. The goal of the fourth ac-
tivity is to answer the question "How can we ensure that the instan-
tiated algorithm actually implements the target function and does 
nothing else unacceptable from a safety point of view?", and de-
velop means of validating & verifying that requirements are satisfied. 
Some sub-requirements can also be considered, such as: stability 
(i.e., Is the algorithm stable to small changes in the environment, for 
instance, is there any adversarial image that the system is sensitive 
to?); convergence (i.e., If the algorithm contains an internal loop, 
how can we ensure that this loop converges in bounded time?).

5.	 Certification assessment methods. The question to be an-
swered is "How can we demonstrate to users and authorities 
that the algorithm is doing the right thing?" and propose meth-
ods/tools able to either show that the algorithm actually per-
forms well on the current data, or that the process has been 
correctly designed. In other terms, the keyword here is "explain-
ability": how to make the computer-vision algorithm explainable 
in order to convince both the user and the certification activity.

Note that this fifth activity does not stem from the current certification 
standards nor from the Overarching Properties. Explainability is not a 
usual objective in certification. However, we believe that when faced with 
complex systems in complex situations, it could be safer to reassure 
the user by giving him, if required, some explanation about the behavior 
of the system. Misinterpretation can cause inappropriate actions by the 
user. Therefore, making the perception more explainable makes it safer.

In the following, we discuss these five activities and the related state-
of-the-art in the case of VO (Section "Visual odometry") and SI (Sec-
tion "Vision-based scene interpretation").
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Visual odometry

Overview

Visual odometry denotes the estimation of the ego-motion of a vision 
system from the sequence of images that it provides. VO belongs to 
the field of artificial vision because it is essentially the implementation 
on an on-board computer of a sense common to many animals. It has 
been the subject of numerous research studies since the 80s. Nowa-
days, the subject is considered as mature, since complete formaliza-
tions were proposed in the mid-2000s and a number of hardware/
software realizations have been released since then. Among these 
realizations, we focus on eVO for "efficient Visual Odometer" [81], 
a stereovision-based odometer proposed at ONERA in 2013, [81]. 
eVO is indeed paradigmatic of several works on visual odometry and, 
moreover, it has been used in many robotic experiments conducted at 
ONERA, demonstrating its practical interest for autonomous systems.

Note that monocular odometers could have been considered (which 
make use of one camera only); however, stereovision systems offer a 
conceptually simple way to get 3D information from the world, which 
greatly facilitates the navigation task and also the qualification of the 
result. In other words, stereovision leads to a simpler topic for the 
present study about safety and certification.

Architecture

The general principle of VO is to locate a camera with respect to a 
known 3D map of the environment. eVO uses a stereorig: a set of two 
cameras rigidly assembled and separated by a known distance called 
the baseline. Stereorigs can be mounted on small autonomous plat-
forms, for instance UAV, as shown in Fig. 5. They allow the system to 
construct at each instant a map of the visible environment.

A simplified version of eVO’s architecture is presented in Fig. 4. In 
the initial step, a map is constructed by stereovision: some image 
features are extracted in the left frame, matched in the right one and 
associated with a 3D position by triangulation (green boxes in Fig. 4). 
The association of a 3D position and an image feature is called a 
landmark. The map is a cloud of landmarks.

When the system moves on, features are tracked in the left frame. 
Their apparent motions in the image are solely due to the ego-motion 
of the system, since they are supposed to be associated to fixed land-
marks. In the process, some of the landmarks may leave the camera 
field of view. However, if a sufficient number of the landmarks are still 
visible, the pose (position and orientation) of the current left camera 
can be computed by comparing the 3D positions of landmarks and 
their current localization in the image plane. VO must also provide an 
estimation of the covariance of the error on the outputted pose. Such 
a characterization of the estimation is required to update the state of 
the system and fuse visual information with that from other navigation 
sensors (GPS, IMU, wheel odometers). All of these operations, which 
are represented by blue boxes in Fig. 4, run nowadays at a framerate 
(i.e., 20Hz) even on small PCs embedded on UAVs such as the one 
shown in Fig. 5.

To summarize, eVO is the combination of two processes: pose com-
putation running at 20 Hz and map building invoked at each keyframe, 
typically every 1 second. The following section details the operations 
involved from the perspective of certification.

Hazards associated with eVO

As mentioned in Section "Safety design process", hazard identifica-
tion is a strong issue for safety analysis and then for certification. 
Hazards can come from algorithm weaknesses. We called such haz-
ards "algorithm associated hazards". In the case of VO (Figure  4), 
three groups of modules are the source of such hazards: (1) track 
features, extract features, and stereo matching; (2) triangulation; and 
(3) compute pose and covariance.

Hazards associated with feature extraction, tracking and stereo-
matching

These operations act on image pixels and, as such, they are both 
costly and critically dependent on image quality. "Good features" are 
a group of pixels that can be extracted unambiguously and tracked or 
matched with high accuracy [86]; for instance, corners appearing in 
a man-made environment [40]. While several recent proposals have 
been made to improve this step by using more robust features [6, 
74, 77], or by using strategies to improve their dispersion within the 
image field of view, failure cases are still encountered, with several 
causes: 

•	 Scene. Feature processing requires that the image contain lo-
calized and highly contrasted unambiguous details. Homoge-
neous or pseudo-periodic scenes can be found, for example, 
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Figure 4 – Architecture of eVO. Blue boxes pertain to the estimation of the 
pose at each recorded left frame; green boxes concern stereo-reconstruction, 
and are activated when the map is to be updated (keyframe). The final output 
of eVO is an update of the state of the system including an increment of the 
trajectory and a new posterior covariance 

Figure 5 – An UAV equipped with a stereorig
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robust loss functions to mitigate the influence of outliers [104]. 
Robust estimators (also called M-estimators) lead to iterative opti-
mization, but usually the extra computational load is limited because 
most vision problems are non-linear and already require an iterative 
linearization process. However, M estimation cannot cope with a high 
proportion of outliers, which is a situation that is common in practice. 
In such a case, a popular approach is RANSAC (Random Sample Con-
sensus) [29]. RANSAC iterates on pseudo random samples of data 
points to form putative estimates, which are then tested on the whole 
dataset. Given that it is very efficient for outlier removal, RANSAC is 
widely used in embedded vision despite its non-deterministic nature.

However, pose estimation can also lead to inconsistency, a situation 
where the effective error is higher than the predicted error according 
to the estimated covariance. There are mainly two sources of incon-
sistency. The simple one is the case of a confusing scene leading to 
a high confidence in a wrongly estimated motion, like when someone 
sees the train on the track next to his own start and feels like he is 
moving in the opposite direction. Such situations are mostly momen-
tary, but can destabilize the system. More tricky are the structural 
inconsistencies related to the non-linearity of pose or motion estima-
tion from images. In such situations, the error can increase continu-
ously while the estimated covariance remains low.

Diff﻿iculties regarding certification

Requirement satisfaction

If VO is part of a safety-critical function, demonstrating that the require-
ments associated with VO are met is a central issue for certification.

Formal approaches
VO is a particular instance of statistical estimation, where a quantity of 
interest, the state of the system, is involved in a criterion depending on 
some data (e.g., image features) and whose functional form derives 
from a statistical modeling of the various components (sensor noise, 
prior distribution on variables) and their relationships. Optimization of 
this criterion leads to the optimal estimate of the state given the data, 
with the (implicit) relationship between data and estimated state being 
referred to as the estimator. Modeling efforts allow the properties of the 
estimator to be theoretically characterized. Some properties concern the 
discrepancy between the estimated state and the true one, such as bias 
(e.g., systematic error) and variance (statistical dispersion). Bias and 
variance are usually associated with the performance of the estimation. 
They are, themselves, characterized by another level of properties, called 
structural properties. Efficiency refers to the optimality of bias and vari-
ance for the problem at hand; i.e., that no other estimator can achieve 
lower values. Consistency expresses the fact that they correctly charac-
terize the performance; that is to say, that the true state indeed lies within 
the interval of values defined by bias and variance. It clearly pertains to 
the safety of vision-based navigation: with a consistent estimator it is, 
for instance, possible to guarantee that the plane remains within some 
known bounds around the requested trajectory. Unfortunately, consis-
tency is very difficult to assess for vision-based odometry or SLAM 
estimators. This is due to the non-linearity of the relationship between 
image data and state parameters. Also, as already mentioned, vision is 
prone to outliers, which are not accounted for in the problem modeling 
and lead to inconsistency. Hence, consistency is not a definitive answer 
to VO/SLAM safety issues, yet the vast literature on the subject includes 
relevant works; for instance, regarding consistency check techniques, 
which can be used as a run-time safety process [36].

in indoor environments. In addition, contrasts should be stable 
when the observer’s point of view changes, which is not the 
case for reflective or semi-transparent scenes such as mirrors, 
glass or water surfaces. 

•	 Illumination. Low illumination decreases contrast, focused light 
sources lead to unstable contrasts between illuminated areas 
and shadows, etc. 

•	 Propagation conditions. Smoke, haze, rain or snow degrade 
useful and stable contrasts in the recorded images. 

•	 Camera settings. Aperture, shutter, and gain are camera pa-
rameters that tune the range, contrast, noise and defocus, and 
motion blur affecting the image. When the system moves, going 
for instance from a bright to a dark area, they should be adapted 
in real time. 

•	 Observer dynamics. When camera movements are too fast, the 
image quality becomes degraded due to motion blur. Reducing 
the shutter time is an option, but it also leads to an increase in the 
image noise. Moreover, fast and large rotations drastically modify 
the field of view and a large number of landmarks can be lost. 

Some of these conditions can be detected by testing the input image 
(low contrast, high noise, etc.), but usually it is done on the output. 
Indeed, computing a quality score usually involves some costly filter-
ing of the whole image field and most often a degraded quality will 
lead to an abnormally low number of extracted or tracked/matched 
features. Most efficient VO codes monitor at all times the number, and 
sometimes the spatial distribution, of extracted or tracked features. 
Observer dynamics can also be predicted thanks to accelerometers 
and gyroscopes included in modern inertial measurement units (IMU). 
We will return later to fusing image information with IMU or "visio-
inertial" navigation, which has undergone a major evolution recently.

Hazards associated with triangulation

Triangulation theoretically amounts to locating the intersection of two 
3D rays in 3D space. In practice, matching and calibration inaccura-
cies imply that the two rays do not cross. Only an approximate point 
can be found by means of a non-linear least-squares fit. Such inac-
curacies can be considered as a source of "hazards" for navigation 
functions, for instance in the case of high-speed vehicles moving in 
scenes with highly varying depths with respect to the observer. To 
face this problem, solutions are explored in [54].

Hazards associated with pose and covariance computation

Pose computation is also a non-linear least-squares process calling for 
an iterative optimization. Initialization usually stems from an approxi-
mate linearized system, and it is important to ensure that it is not too 
far from the true pose [41]. The estimated pose must be accompanied 
by an estimation of the error, generally in the form of a covariance 
matrix. Two situations may lead to a detectable failure of the process.

First, the 3D map can be in a particular configuration leading to a 
degeneracy of pose computation, i.e., the uniqueness and stability 
of the solution is no longer guaranteed. An example is the case of a 
planar surface. However, in many cases, there are tests to select the 
right solution, or stable solutions can be obtained from alternative 
estimation strategies, especially in the planar case.

Second, a least-squares estimation is highly sensitive to outlier data, 
which are unavoidable in video processing. A first answer is to use 
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Benchmarks
The subject of datasets and benchmarks has already been discussed 
in Sec. "Computer vision based system development process: a data 
driven design logic". It may be interesting though, to emphasize that 
benchmarking a VO algorithm is a difficult task. Acquiring real data on 
several trajectories with ground truth is a heavy and complicated bur-
den, which, in practice, cannot be done for all operating conditions. It 
is even more difficult when accounting for the fact that this process is 
supposed to be embedded in a robotic platform, with available IMU and 
low computing power. However, the design of benchmarks is still con-
sidered as useful, at least for assessing algorithm performances: as an 
example, [21] recently proposed a benchmark relating to visual-inertial 
navigation for UAV, made publicy available as a "Euroc" dataset [11].

Like several other vision tasks, VO is the subject of open access 
benchmarks, the most popular being the Kitti dataset oriented towards 
autonomous driving1. The release of Kitti was originally motivated by 
extending the operational field of CV methods to real-life sequences 
of autonomous driving [30]. However, although this dataset has cer-
tainly contributed to improving the performance of recent CV algo-
rithms, in particular in the field of urban visual navigation (and more 
precisely to navigation within a Western midsize town), it cannot be 
considered as a way to assess that an algorithm will behave correctly 
in other scenarios and environments, or even within the environment 
of the recordings. For instance, this dataset does not proceed from a 
systematic exploration of hazards.

Run-time safety

Detecting at run-time hazards and errors that can have a safety impact 
on the behavior of the system is required for certification.

Run-time safety check tests can be done at three levels: input (e.g., 
checking image quality), internal variables (e.g., number of tracked 
point features [81], [73]), and output (cross-validation with another 
sensor such as IMU, magnetometers array [14], etc.). It also includes 
tests about the status of internal operations, such as the monitor-
ing of optimization processes and consistency checking [36]. Like 
for the problem mentioned in Sec. "Computer vision based system 
development process: a data driven design logic", of ensuring a com-
plete coverage of hazards by a given database, an issue here is to 
guarantee a complete coverage of failures encountered at run-time. 
In this same way, [64, 47] formalize safety tests for hazard detection 
related to vision in a domain-specific language ViSaL (Vision Safety 
Language). ViSal allows the automatic generation of efficient code 
and opens the way to guaranteed safety check tests.

Vision-based scene interpretation

Overview

Scene interpretation is an expression that stands for a collection of 
functions, such as object detection and classification, semantic seg-
mentation or object tracking, that take an image frame, or a video, as 
input data and produce a symbolic representation of its visual content, 
usually associating geometry (the where part) and semantics (the 
what part), and often qualified by a score (see Fig. 6). These func-
tions have been addressed since the beginning of artificial intelligence 

1	 http://www.cvlibs.net/datasets/kitti/eval_odometry.php

and computer vision, with various paradigms. The modern approach, 
which is likely to last since it has demonstrated its capacity to equal 
or even surpass human performance in some contexts, involves 
a machine learning step able to specialize a complex parametric 
function to a dataset expected to be representative of the operating 
domain.

Description (white box)

Most of the current SI functions make use of Convolutional Deep Net-
works; i.e., neural networks chaining a rather large number of layers 
with local two-dimensional filters. A typical example of such networks 
is depicted in Fig. 7.

The current trend of algorithm design is to integrate all of the neces-
sary computations to complete the function in a common unifying 
deep network framework, making the learning step globally influence 
the whole chain, in a so-called end-to-end fashion. The resulting 
global function is therefore heavily dependent on the learning dataset 
that empirically specifies the function.

Difficulties regarding certification

The certification of software implementing a deep network should 
not modify current practices. Their architectures are homogeneous, 
exploit a small functional vocabulary (convolutional or fully con-
nected layers, non-linear activation functions, pooling), make use of 
software development frameworks (Tensorflow, PyTorch, etc.) and 
specific libraries able to implement the network on a Graphical Pro-
cessing Unit (GPU).

Figure 6 – Typical output of an SI algorithm, detecting objects of interest and 
their outlines. Obtained using Mask-RCNN [42]
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Figure 7 – A modern deep netw ork architecture for object detection [42]
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However, the question of certifying data-driven AI algorithms – not 
software – is another matter. It appeared rather recently to be a very 
hot topic, since this kind of technology is expected to invade our life 
at rather short notice2.

One can summarize the problems brought by data-driven algorithm 
design in the following way:

•	 Specification by examples: the high dimensions of input and 
output spaces involved in perception functions make their for-
mal and complete specification almost impossible. The usual 
way to describe the target function is to provide a distribution 
of good operating samples; i.e., a dataset of N  input/output 
samples { } 1, N

i i iX Y
=

. This distribution is expected to describe 
both the input operating domain (what the possible input iX  
are) and the desired output predictions (the system should pro-
duce iY  when fed with iX ). This way of specifying the per-
ception function thus assigns a central role to the quality and 
representativeness of the dataset.

•	 Probabilistic requirements: the approach of specification by 
examples has a direct consequence on the way functional re-
quirements are described: they depend on some uncertainty 
representation that expresses the lack of knowledge about the 
exact operating domain at the time of the algorithm design. 
Classical ways to define requirements are performance metric 
objectives, such as precision/recall for detection or retrieval, 
classification accuracy for recognition, mean square error for 
localization, etc. Many usual metrics are presented as trade-
offs between several measures. This requirement description 
approach leads to several issues: 1) How do they relate to the 
full system hazard analysis?, 2) How are the acceptable trade-
offs defined?

•	 Validation by testing: one consequence of specification by ex-
amples is that validation also becomes data-driven. The ques-
tion is to design fair evaluation protocols and metrics able to 
predict and estimate whether the requirements are satisfied. 
When dealing with machine learning, a key aspect is to find 
ways to compute unbiased estimates of the metrics and their 
variance, for instance by using cross validation.

•	 Robustness: deep networks are complex functional structures 
that are prone to instability or hyper sensibility that can be dis-
covered, for instance, by adversarial optimization techniques. 
The question related to certification is to either assess a suf-
ficient level of robustness, i.e., invariance to perturbation, or to 
detect potential instabilities or "attacks".

•	 Operational domain assessment: Defining an operational do-
main through a dataset is inherently problematic and can be 
broken down into two issues: 1) How do we state whether a 
given input data will be correctly processed? 2) How do we 
describe the set of correctly processed input data – the opera-
tional domain itself?

•	 Usability of formal verification: This has been a central approach 
in the aerospace domain, and is suitable when the problem can 
be expressed as a series of formal properties that have to be 
jointly satisfied, making possible the application of generic solv-
ers for verification. Several studies have proposed the adapta-
tion of this paradigm to neural network architectures, usually for 

2	 "A series of strategic themes [...] has to do with ethics, and the validation and 
certification of AI technologies, the aim being confidence by all stakeholders 
in their results: from validation in terms of theoretical proof to explicability, 
transparency, causality and fairness." p. 65 of Villani’s Report (https://www.
aiforhumanity.fr/pdfs/MissionVillani_Report_ENG-VF.pdf)

low-dimensional problems, but the question of their generic us-
ability for perception in very large dimensional spaces remains.

•	 Intelligibility of the predictive process: DNNs follow a series 
of complex nonlinear transformations of an input space, with 
a role for each step that is hard to assign clearly. The overall 
process is considered opaque. This makes the justification of 
both bad and good behaviors difficult, which is an obstacle to 
convincing of hazard-free functioning.

•	 Evolutivity and operational domain extension: the use of ma-
chine learning techniques implies that the algorithm operational 
domain is restricted to what the dataset samples. Making the 
system evolve to a different context with new requirements will 
require a new learning phase, often with no non-regression 
guarantee.

State of the art

Several solutions to the above problems have been proposed, but 
mostly remain in the academic domain. We will follow the catego-
rization described in "Developing specific certification objectives for 
computer-vision algorithms", with an emphasis on the last three to 
briefly give an idea of the current state of the art.

Run-time safety

Anomaly or novelty detection
A safe system should be able to warn its user when there is a risk of 
catastrophic consequences when exploiting its prediction; i.e., when 
it may be false, suggesting that it be rejected. In a prediction system, 
there are mainly two causes of rejection: uncertainty – the input data 
can be associated to more than one prediction – or novelty – the input 
data has not been considered during the design phase or is abnormal 
with respect to the underlying models exploited for the prediction.

An uncertainty measure is a way to score prediction quality, and can 
be used either in combination with other scored predictions in a fusion 
step to improve the overall result, dynamically when using sequential 
filters for instance, or statically when exploiting redundancy. Another 
common usage of an uncertainty score is to consider it as a rejection 
indicator of abnormal behavior. We focus in this section on this last 
case.

Novelty, anomaly or outlier detection are synonyms of the same formal 
problem: deciding whether a given item of data belongs to an underly-
ing distribution, usually described as samples, or as a set of charac-
teristic prototypes. It does not address the question of designing a 
system that is robust to anomaly or outliers, but is aimed at equipping 
a predictor with an explicit rejection capacity or out-of-distribution 
detector. In machine learning, this problem is also known as the "one-
class classification". The expression "anomaly detection" sometimes 
refers to a way of building "saliency" detectors [10] –  an anomaly 
being a pattern considered different from most of the others – but is 
not used for rejection purposes.

Novelty detection is not a new problem, and is used in many applica-
tions, for instance in data stream analysis to detect intrusions (see 
[16, 61, 105, 72, 3] for various surveys). However, when data is 
highly dimensional, like images, applying generic methods is not 
powerful enough and depends on a projection over a much lower 
dimension feature space; e.g., Principal Component Analysis (PCA), 
auto-encoders or non-linear kernels, to make statistically relevant 
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inferences. [105] discusses the issue of high dimension and its rela-
tion to the dimensionality curse phenomenon.

Deep learning has been introduced in classical frameworks to better 
encode the data manifold, either for generic tasks (classification) or 
to specifically improve anomaly detection.

[15] describes a robust auto encoder that learns a nonlinear subspace 
that captures the majority of data points, while allowing some data 
to have arbitrary corruption, and evaluates their approach on three 
image datasets. [103] investigate two decision criteria (energy score 
and reconstruction error) for performing anomaly detection from an 
energy-based distribution representation computed on a deep network 
architecture. [26] presents a hybrid model where an unsupervised deep 
belief network (DBN) is trained to extract generic underlying features, 
and a one-class SVM is trained from the features learned by the DBN. 
[78] extends a one-class support vector approach to deep networks, 
using the same concept of a minimum volume hypersphere boundary.

Another series of works exploits or modifies the output scores before 
decision, and uses them to detect out-of-distribution data coming 
from datasets that contain classes different from those found in the 
in-distribution.

[43] shows the performance of a baseline approach on several data-
sets, relying on the idea that correctly classified examples tend to 
have greater maximum softmax probabilities than erroneously clas-
sified and out-of-distribution examples, allowing their detection. [53] 
describes a method improving the detectability of out-of-distribution 
from the output scores by adding a small perturbation to the input 
and output temperature scaling. [22] proposes a method that learns 
a confidence score jointly with the actual prediction by retraining the 
last layer of a classification network, and uses it on the task of out-of-
distribution detection. [60] also learns a confidence coefficient from 
the inner layers of a classification network and prediction, but with 
another loss measuring pairwise distance between different classes. 
[50] exploits a hierarchical class structure to detect data coming from 
new classes using confidence-calibrated classifiers, data relabeling, 
and a leave-one-out strategy for modeling novel classes under the 
hierarchical taxonomy.

As a binary decision problem, the evaluation of novelty detection algo-
rithms depends on measures of false positive/false negative tradeoffs 
(AUC under ROC curve, Precision at given Recall). Most evaluation 
frameworks exploit data acquired from "real" situations, e.g., by label-
ling several classes as outliers, or importing other datasets of similar 
origin and labelling them as novel (Cifar-10 vs. Imagenet). Algorithms 
are believed to be fairly compared under such settings. [12, 92] dis-
cusses the suitability of available benchmarks (datasets and metrics) 
and compares several algorithms using such metrics. Their evalua-
tion, however, is limited to low-dimensional data, and whether their 
conclusion scales to higher-dimensional perceptual data is open.

However, using such evaluation approaches it is difficult to tell 
whether the state of the art of novelty detection algorithms is usable 
to assess on-line safety of data-driven perceptual algorithms.

Detecting adversarial examples
The discovery of adversarial examples has motivated the develop-
ment of defense techniques able to counter or at least detect possible 
attacks. However, "few strong countermeasures exist for the many 

attacks that have been demonstrated" [34]. This can be a clear issue 
for APES safety, the fear being that attackers may purposely design 
malicious examples to fool the system.

There are have been mainly three different ways to address defense 
against adversarial attacks: 
•	 Modified training or input data: Changes in training data for 

learning or inputs during testing. [20] detects adversarial exam-
ples by testing the validity of Neural Fingerprints, a set of fixed 
perturbations that are expected to have a controlled behavior 
when added to real data and not when added to an adversarial 
example. [96] studies a technique that augments training data 
with perturbations transferred from other models.

•	 Modified networks or learning: Modifying networks, e.g., by 
adding more layers/sub-networks, changing loss/activation 
functions, etc. For instance, [18] control the Lipschitz constant 
of each layer through regularization. [70, 69] exploit the no-
tion of distillation, i.e., the extraction of class probability vec-
tors produced by a first model to train a second one of reduced 
dimensionality without loss of accuracy, to generate more regu-
larized deep networks. [88] augments model parameter updates 
with worst-case perturbations of training data in a Wasserstein 
ball. [59] studies the adversarial robustness of neural networks 
through a robust optimization perspective.

•	 Augmented networks: Using external models as network add-
ons when classifying unseen examples. [101] uses feature 
squeezed (pixel encoding depth reduction and spatial smooth-
ing) data to compare predictions from the original and the 
squeezed images. If a large difference is found, the image is 
considered to be an adversarial example.

The objective of these is to enable the system to be robust to adver-
sarial attacks, or simply raise an alert to initiate further mitigation 
means.

A rather large number of recent studies on adversarial example detec-
tors exploit the same intuition that they are far from being a manifold 
of clean data and can be identified by an out-of-distribution method in 
a given subspace spanned by inner activation layers of a deep neural 
network. [49] exploits a convex outer approximation of the set of acti-
vations reachable through a norm-bounded perturbation for learning 
and testing. [62] detects adversarial examples by projecting the data 
to the learned manifold of clean images. [28] uses kernel density 
estimates and Bayesian uncertainty through a drop-out to detect out-
of-distribution adversarial data. [55] learns a Radial Basis Function 
SVM to detect out-of-distribution data from the last stages of a deep 
network, where adversarial examples are expected to have the most 
different behavior. [52] defines a cascade classifier from convolu-
tional filter outputs of various layers in a deep network to detect adver-
sarial data. [58] uses local intrinsic dimension estimation of adver-
sarial regions and applies it to the detection of adversarial examples. 
[51] proposes a method for detecting any abnormal samples based 
on computing the Mahalanobis distance between class conditional 
Gaussian distributions with respect to (low- and upper-level) features 
of the deep models obtained through Gaussian discriminant analysis.

The high interest of the research community has fostered several chal-
lenges in designing defense methods against adversarial attacks: for 
instance, NIPS 2017: Defense Against Adversarial Challenge Attack3 

3	 https://www.kaggle.com/c/nips-2017-defense-against-adversarial-attack
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and NIPS 2018 Adversarial Vision Challenge4. Benchmarks in these 
competitions are usually of medium size (number of samples and 
data dimension): cifar-10, MNIST, Tiny ImageNet, Traffic sign5. Those 
challenges often come with adversarial example generation toolboxes 
such as the adversarial robustness toolbox6 [68] or CleverHans 
library7 as baselines. A thorough benchmarking action is proposed 
in [91] with the objective of examining the existence of empirical 
trade-offs between robustness and accuracy using multiple robust-
ness metrics, including distortion, success rate and transferability of 
adversarial examples8. Their conclusion is that low error networks are 
highly vulnerable to adversarial attacks and that network architecture 
has a larger impact on robustness than model size.

As regularly mentioned in papers, several attacks fool most of the 
currently proposed defenses, but are also increasingly detected. As 
is asked in [34], "Can we expect an arms race with attackers and 
defenders repeatedly seizing the upper hand in turn?", as is for 
instance instantiated in the NIPS 2018 Adversarial Vision Challenge.

Instead of playing such an endless game, a critical question regarding 
safety of APES would be to know whether defenses can be universal, 
and in what sense. If universality is not attainable, a secondary prob-
lem would be to state what kind of attack, i.e., hazard, can be reliably 
defeated. Adversarial machine learning is in its infancy – many phe-
nomena encountered in deep learning are not well understood – and 
is still not able to clearly define its operating domain.

Requirement satisfaction, coverage and robustness

The studies can be divided into three groups: evaluation benchmark 
design, adversarial example attack design, and formal verification.

Evaluation benchmark design
Many datasets are now available thanks to the availability of modern 
sensors and storing capacities. The CVonline site9 maintains a rather 
up-to-date list of current sets, showing the variety of data and annota-
tions that have been gathered.

Several specific domains have gathered a large amount of data, espe-
cially to be used as learning databases. This is the case, for instance, 
for data targeting autonomous vehicles (Berkeley Deep Drive10, 
Cityscape11, Kitti12, etc.), or remote sensing13.

One possibility to overcome the lack of data instantiating hazards is to 
simulate data14. Computer graphics simulation has been used for a long 
time in robotics, for instance, using modern game engines [85, 67]: 
data realism is achievable with such generators (see for instance [8] 
for scene synthesis for research on ADAS), but essentially depends 
on the models fed to the simulator. They are in practice very costly to 

4	 https://www.crowdai.org/challenges/adversarial-vision-challenge
5	 http://benchmark.ini.rub.de/index.php?section=gtsrb&subsection=dataset
6	 https://github.com/IBM/adversarial-robustness-toolbox
7	 https://github.com/tensorflow/cleverhans
8	 https://github.com/huanzhang12/Adversarial_Survey
9	 http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
10	 http://bdd-data.berkeley.edu/
11	 https://www.cityscapes-dataset.com/
12	 http://www.cvlibs.net/datasets/kitti/
13	 https://github.com/chrieke/awesome-satellite-imagery-competitions
14	 A list of resources exploiting simulated data for computer vision is given at 

https://github.com/unrealcv/synthetic-computer-vision.

create, and what is often exploited by those simulations is more the 
controlled diversity of situations than the realism of sense data.

More recently, style transfer techniques have been applied to enhance 
data quality from low resolution models, and have been shown to 
improve performance [87, 99, 5]. The goal of these approaches, 
however, is more to increase the number of learning samples with 
easily obtained annotations than to design a good test set.

All benchmarks come with associated evaluation metrics aimed at 
measuring the discrepancy between the algorithm output and the 
required ground truth. The current trend is to compute a series of 
measures, possibly correlated, each one being used to address either 
a certain type of phenomenon or specific input data, and select a 
master one for ranking. The proposed metrics are multidimensional: 
algorithms may fail in various ways and for various types of input data, 
which motivates the proposition of several corresponding measures.

Adversarial attacks
A complementary approach is to start from a given instantiated func-
tion and discover its possible failure cases through specific stress 
tests or attacks.

A particular and notorious approach to build hard examples for deep 
networks, the current state of the art approach for perceptual func-
tions, is the creation of adversarial examples: they reveal the fact that 
specifically designed small perturbations may have a dramatic impact 
on algorithm behavior; i.e., that current deep networks are unstable in 
several input dimensions.

Since the seminal articles of Szegedy et al. [93] and Goodfellow 
et al. [35] that have identified the phenomenon, adversarial examples, 
both from the attacking and defending sides, have generated a rather 
huge literature in a very short time. [2] is a recent survey in the 
computer vision domain, and contains more than 180 references. It 
distinguishes between white box [13] and black box [71] strategies, 
between universal [66] and image specific [65] attacks, and whether 
the fooled output is controlled; i.e., whether its output predicted class 
is a parameter or not.

Whether adversarial examples are a real threat for real-world or 
embedded applications is still a debated question. [27] describes real 
world attacks and shows that simple stickers on road signs may fool 
the classifier for various viewing conditions.

However, some advocate that the theoretical existence of such a phe-
nomenon is not critical for embedded applications like autonomous 
driving [56], especially for object detection [57] where the technique 
proposed in [27] is hard to reproduce.

Given the maturity of this research domain, it is hard to say whether 
adversarial examples are a real concern for safety issues, or whether 
their occurrence in real situations is negligible compared to other haz-
ards [31]. However, the already large body of techniques developed 
can be used to tailor benchmarks of various difficulty levels or simply 
to improve the robustness of algorithms.

Formal verification

Deep networks are rather complex objects: their behavior is not fully 
understood, and there are no definite results stating the impact of 
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optimization, architecture, and data sets on performance stability and 
accuracy. However, several approaches have attempted to adapt sev-
eral formal results, or practice validation & verification techniques.

A first series of methods makes use of verification algorithms to 
evaluate the stability of a network; i.e., their output invariance to per-
turbations at a given operating point. [46] presents work on verifying 
the absence of adversarial inputs in generic feed-forward multi-layer 
neural networks using Satisfiability Modulo Theory (SMT), while 
[48] develops Reluplex, a simplex formulation of local invariance for 
networks combining linear and ReLU type non-linearities. [95] for-
mulates verification of piecewise-linear neural networks as a mixed 
integer program. Those verification processes are exponential in the 
number of features, and their scaling for large images is an issue. 
[39] presents a general recent account of a formal method developed 
to assess safety of deep networks.

A second series of studies examines a global network from a func-
tional point of view, and measures stability through an evaluation of 
their Lipschitz constant [82, 100].

Finally, [19] takes a statistical learning perspective and extends the 
Probably Approximately Correct (PAC)-learning framework to account 
for the presence of adversaries.[97, 98] formally define machine 
learning safety in terms of risk, epistemic uncertainty, and the harm 
incurred by unwanted outcomes.

Those methods are related to the emerging topic of Verified AI, which 
proposes to extend the current validation & verification practices to AI 
[63]. Seshia et al. [84] identified five main challenges from a formal 
method perspective (environment modeling, formal specification, 
system modeling, computational engines, and correct-by-construc-
tion design), and defined several corresponding design principles.

Those principles target generic AI systems and are general, with a 
twist towards model-based approaches as a prerequisite of many 
formal methods. The question whether they are relevant to modern 
perceptual data-driven algorithms is open.

Certification assessment tools

Certification must be understood as a global process that may involve 
activities not necessarily directed towards operation design or con-
trol, but that may be used to assess the safety of the resulting system. 
When dealing with SI, which relies on machine learning techniques, 
two activities may help to improve certification.

Explainability
Explainability is the ability of a system to justify the cause or origin of its 
prediction by providing a dedicated representation: a text or a visual sign.

The idea of providing prediction processes with better intelligibility is not 
new, and is central to the symbolic approach of AI, sometimes referred 
as GOFAI (Good Old Fashioned AI) [9], which promotes explicit, i.e., 
step-by-step understanding and reasoning in its models. The involve-
ment of machine learning techniques in modern methods and the opac-
ity of the resulting prediction processes has encouraged the develop-
ment of mixed approaches that could benefit jointly from both worlds.

A prominent initiative is the XAI program from the DARPA [38], initi-
ated in 2016, with the final objective of bringing to the user a series of 

elements that would make him trust and efficiently exploit the predic-
tions made by the automated system. The declared objective of this 
project is to move the trade-off between process interpretability and 
performance.

Explainability of artificial intelligence is becoming a research domain 
in itself, led by various dedicated workshops. Several recent surveys 
give an idea of the state of the art in this matter: [83] addresses deep 
network visualization, [44, 1] present a recent literature analysis on 
deep network visual explanations through a user oriented perspective. 
[32, 37, 4] are other recent papers that give a broad view of the field.

The fact that a system is able to deliver reliable explanations or proof 
of good operation is an element that may be used to improve its trust-
worthiness. The values of explanations can be checked to verify in 
specific cases that everything is right.

Another use of explanations for authorities is to log them in recording 
devices for further analysis in case of failure. Explanations usually 
have a smaller size than the system inner states, and may encode 
informative features.

The black boxes produced by modern deep learning techniques are 
not meant to be intelligible – after all, their computing principle is to 
distribute subsymbolic information [90] among large sets of simple 
components – but they may be completed by side representations 
that refer faithfully to understandable behaviors. A residual and 
unsolved problem of explainability is its evaluation: How faithful can 
those representations be? And who is expected to understand them?

A last issue is related to the deployment of machine learning enabled 
components: Do they really need explainability? If it is accepted that 
interpretability can be increased at the expense of accuracy, given that 
such a trade-off is achievable and that interpretability is measurable, 
the trustworthiness gain may be worth it. It seems too soon, however, 
to state that explainability is really achievable and in what sense.

Good practices
The application of machine learning techniques to real SI situations 
has several pitfalls due to its complexity and to the large number of 
parameters that require selection, optimization and tuning. Therefore, 
one way to ensure that a given system is likely to be certified is to 
demonstrate that it has followed good design principles. There is no 
success-guaranteed methodology for the machine learning practice. 
Textbooks provide general principles, theorems and procedures that 
could help to reach low generalization error, for instance, but with no 
guarantee. General guidelines have been proposed by several authors 
[24, 89], but addressing more heuristic objectives rather than perfor-
mance assessment.

Many modern algorithm proposals are evaluated using standard aca-
demic benchmarks that have their own biases and peculiarities: it is 
often very hard to state whether a given algorithm is really good, or 
simply better than another when performance figures are only a few 
percent higher with regard to a specific benchmark. It also appears 
rather difficult to reproduce the same results as described in a paper 
due to the experimental dimension of machine learning techniques, 
although the current trend in computer vision research, for instance, 
is to make the code available to the community for fair and transpar-
ent comparison: code publication should be considered as a manda-
tory good practice for certification.
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Conclusion and challenges

 The purpose of this article is to understand the challenges posed by 
the certification of computer vision-based systems for civil aeronau-
tics. The first difficulty arises from the notion of failure. In standard 
avionic systems, failures usually refer to hardware failures and sys-
tematic failures usually refer to software bugs. However, vision algo-
rithm may fail even in the absence of a hardware failure or systematic 
failures, for instance in the case of adversarial images or unexpected 
external conditions (e.g., overexposed images). The first difficulty 
encountered by certification is to identify all of the possible algorithm 
associated hazards and to show that they are covered by appropriate 
mitigation means. Faced with this difficulty, we have shown that the 
current certification standard for civil avionic software cannot apply 
to vision-based systems. We believe a solution could come from the 
framework of the Overarching properties. We have proposed in Sec-
tion "Developing specific certification objectives for computer-vision 
algorithms" a first attempt to refine the three overarching properties to 
specific certification objectives for vision-based systems.

To continue in that direction, we identify five major challenges:
•	 Hazard definition. As stated above, hazard definition is the first 

main challenge: What is an algorithm associated hazard? Is 
there any typology of such hazards and is it possible to formally 
characterize them? Then, for a given vision algorithm, the next 
issue is how to identify the internal weakness of the algorithm; 
i.e., the hazards that the algorithm is sensitive to.

•	 Data driven Defined Intended Behavior. As discussed in Section 
"Computer vision based system development process: a data 

driven design logic", building appropriate datasets is a key issue 
for certification: For a given vision algorithm, how can we build 
a dataset that covers the usage domain of the algorithm, and 
more specifically that covers the hazards that the algorithm is 
sensitive to and that can occur in the usage domain?

•	 Hazard detection and mitigation. The next question is how to 
detect and to mitigate, algorithm failures at run-time. For in-
stance, in the case of adversarial images, how to detect that the 
algorithm misinterprets the situation.

•	 Explainability. As stated in Section "Vision-based scene interpre-
tation", explainability could be a promising way to improve the 
trustworthiness of vision algorithms. The fact that a system is 
able to produce explanations that are understandable for human 
users and certification authorities could help to interact with the 
system and in some cases detect inappropriate behaviors.

•	 Consistency. Finally, failures can also be caused by internal in-
consistency; that is, a situation where the effective error is high-
er than the predicted error computed by the algorithm accord-
ing to the estimated covariance. However, consistency is very 
difficult to assess for vision algorithms, due to the non-linearity 
of the relationship between image data and state parameters. 
Correctly estimating the quality of the output of an algorithm is 
a key issue in the field of safety critical systems.

We believe that work on these five challenges could contribute to 
making vision algorithms usable in safety critical avionic systems. 
This objective will only be fulfilled if the safety and computer vision 
communities are able to build a shared research program. We wrote 
this document with the ambition of taking a step in that direction 
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