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This paper presents two use cases where deep learning is able to help scientists 
by removing the burden of manual review of large volumes of physical data. 

Such examples highlight why deep learning could become a transverse tool across 
many scientific fields.
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Introduction

Designing an experimental protocol to validate a scientific hypoth-
esis, and analyzing the resulting data is an intellectual process that 
cannot be solved by current artificial intelligence. However, in this 
process at the edge of the human mind, there are often sub-tasks 
that are repetitive, time-consuming and that do not involve expert skill 
or knowledge. This paper is aimed at showing that existing artificial 
intelligence, like deep learning, can solve such tasks.

For example, there are common scientific issues where understand-
ing a physical phenomenon is slowed down by the need to extract 
information from large volumes of physical data, and in this context 
the application of deep learning can be very relevant. This article 
presents such scientific use cases, and the deep learning algorithms 
that have been able to scale information extraction where humans 
alone have not.

Specifically, this article focuses on two successful ONERA scenarios 
linked to the DELTA project1: solid-propellant combustion and material 
resistance.

Solid-propellant combustion analysis by 
shadowgraphy

Solid propellants are widely used for spatial and military applications. 
For example, they are used for the first stage of the Ariane V launcher. 
Classically, aluminum particles are included in the composite to 
increase the efficiency of the solid-propellant combustion, improving 
the thrust by 10% [4]. However, aluminum particles can trigger vari-
ous negative effects, such as diphasic losses, film formation on the 
nozzle or pressure instability (e.g., thermoacoustic instabilities [6]).

1	 https://delta-onera.github.io/

Understanding the physical phenomena associated with burning 
aluminum droplets is a critical issue to design new generations of 
engines and/or new solid propellant compositions. Typically, numeri-
cal simulation results are highly dependent on two critical input 
parameters: the initial size distribution of the droplets, and their initial 
velocity distribution when they leave the burning surface [7]. Defining 
precise representative droplet size distributions is not as easy as it 
may seem since agglomeration phenomena [5] strongly modify the 
droplet diameters due to the aluminum powders introduced in the 
composite material. Similarly, accurate velocity data are not avail-
able today under representative burning propellant conditions (for 
instance, recent data were published [3] but only for 0.1MPa burning 
conditions). Hence, obtaining access to these two data would be a 
breakthrough to update physical models and the numerical simula-
tions for solid-propellant combustion.

For the past couple of years, the ONERA solid propellant research 
team has been using an experimental setup to characterize 
aluminum droplet combustion under relevant solid propellant 
conditions [15]. High-speed visualization of droplets is achieved via 
a focused shadowgraphy diagnostic (see Figure 1). The diagnostic 
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Figure 1 – Shadowgraphy setup enabling aluminum droplets to be visualized 
during solid-propellant combustion
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is sensitive to refractive index gradients, leading to a good contrast 
between the liquid aluminum droplets and the surrounding hot 
gases (see Figure 2).

The experimental images in Figure 2 show that ejected burning alumi-
num droplets are clearly visible to human eyes as bright grey balloons 
over the dark background. Thus, from a theoretical point of view, there 
is no obstacle for obtaining the size and speed of particles: it only 
requires somebody to scan the existing experimental images and to 
extract the data.

However, each combustion test generates between 1,000 and 10,000 
images, each showing several dozen aluminum droplets. Considering 
the volume of data, extracting the desired parameters is impossible 
using human hands/eyes. In other words, today, combustion scien-
tists know how to generate data containing the information but not 
how to extract the information from this large volume of data. Making 
progress on an algorithm enabling this information extraction could 
allow this scientific obstacle to be overcome.

Modeling some material properties with microscopy

The ability to predict the fracture behavior of a material under strain is 
essential to design a car, building or plane. However, in aeronautics, 
the use of a large variety of materials (especially composite materi-
als) makes it difficult to derive the fracture behavior solely from solid 
mechanic physical equations. Thus, fracture mechanics sometimes 
relies on experimental data to characterize a special kind of material [9].

Such an experiment consists in measuring a material state at different 
levels of strain, and producing a stress versus strain curve. Measure-
ments can include acoustic measurements, image correlation (when 
it is possible to obtain an image before deformation), thermal imag-
ing, or microscopy imaging.

A typical example of such a microscopy experiment is provided in 
Figure  3. Carbon epoxy laminates enhance damages within their 
plies. These damages are observed at all 3 scales of the material, 
i.e., the microscale (fiber and matrix), the mesoscale (ply), and the 
macroscale (laminate). The main damages that can appear during a 
tension test of a [0/90]s laminate are illustrated in Figure 3. First of 
all, when damage at the microscale appears, it is in the form of fiber/
matrix debonding or micro cracks within the resin (3.1 in the figure). 
Loading the sample causes the damages at the fiber scale to grow 
upward and leads to a transverse matrix crack at the ply scale (3.2) 
parallel to the fiber direction. These cracks cross the entire thickness 

of the ply. In some composites, micro delamination can be observed 
at the crack tips. Finally, when the strength limit of the sample is 
reached, the crack density increases (3.3) and leads to fiber failure 
due to redistribution of the load (3.4).

Here again, scientists have designed an experimental protocol allow-
ing the behavior of these materials to be modelled under stress. 
However, this involves the analysis of all resulting data to count and/
or characterize all fractures. Unfortunately, the volume of resulting 
data is also too large to be processed by human hands/eyes in these 
experiments. Again, making progress on the development of an algo-
rithm enabling this information to be extracted could allow this scien-
tific obstacle to be overcome.

A few words about deep learning

Deep learning (which is becoming the state-of-the-art in image clas-
sification with [10]) consists simply of neural networks (which existed 
at least since [12]) with a large number of layers. This simple enlarge-
ment of neural networks, allowed by the increase in available GPU, 
eventually leads to very impressive performance gap with previous 
neural networks attempts. However, deep learning has been success-
fully applied to many tasks: image classification [10], object detection 
in images [8], natural image segmentation [1], semantic segmenta-
tion in remote sensing images [11], natural language processing like 
automatic translation [22], sound classification [17], cyber intrusion 
detection [21], malware classification [25], games (with a reinforce-
ment learning framework) [19], medical diagnosis [2], etc.

Supervised classification: More generally, deep learning is a sub-field 
of supervised machine learning, which is a sub-field of machine learning, 
which in turn is a sub-field of artificial intelligence. The simplest form of 
supervised machine learning is binary supervised classification: it con-
sists in estimating an unknown function f of DR  to { }1,1−  from training 
data; i.e., a set of samples ( )( ) ( )( )1 1 1, , , ,N N Nx y f x x y f x= = . A 
learning step in this training data leads to a function f̂  (classically 
( ) ( )ˆ ˆ,f x g x w=  and learning consists in selecting weights w to set 

up a function family ( ),g x w ). This function f̂  is an approximation 

Figure 2 – Images obtained by shadowgraphy
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Figure 3 – Typical experiment to characterize a material
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f accepting that f̂  may be different from f . Usually, the quality of 
the approximation is evaluated by comparing f̂  and f for a disjoint 
set of samples known as the test data. Of course, given that multiple 
functions f will lead to the same training data, there is no mathemati-
cal possibility of finding the correct function in the discrete case (this 
statement is confirmed in [23]). However, in practice, given that the 
function f to be approximated generally has a good regularity prop-
erty, in practice very interesting results can be achieved.

For example, the function f could use an image as input and provide 
cat or dog as the output depending on whether the image is an image 
of a cat or an image of a dog. Using a human being, f can be trivially 
evaluated on a particular image just by asking the human whether this 
is an image of a cat or an image of a dog. However, nobody is able to 
compute this function exactly, even with an arbitrarily powerful com-
puter, since the steps leading to the decision are unknown. However, 
it is possible to collect training data and to approximate this function 
quite efficiently, especially with deep learning.

Supervised segmentation: A very natural extension to supervised 
classification on images is supervised segmentation, where the goal 
is to classify each pixel of an input image (see Figure 4).

Contrarily to most other classifiers, deep learning based classifiers 
are much more flexible. Simply changing a few layers (or even just 
changing the layer structure) allows a classifier to be converted 
into a segmentation algorithm. In addition, specific networks for 

segmentation have been designed, like UNET [18], whose architec-
ture is presented in Figure 5. The first half of the network is considered 
to be an encoder, i.e., it extracts more and more relevant information 
from the image, but loses more and more precise spatial informa-
tion. Then, the second half would decode the decoder; i.e., it restores 
precise spatial location by combining different levels of encoded 
information. At the end of the process, the network produces a map 
with the same spatial size as the input image, in which each pixel is 
associated with a likelihood per class.

This framework is especially relevant for the two scientific use cases 
presented in this paper. Indeed, in these two use cases, relevant 
physical information can be obtained from a segmentation map.

Furthermore, when processing scientific data, deep learning can 
safely assume that hacked data will not be encountered (indeed, 
sensibility to adversarial attacks [13, 24, 16, 20, 14] is an important 
issue for deep learning).

Particle segmentation by deep learning

As presented in Figures 1 and 2, the shadowgraphy diagnostic pro-
vides experimental images of the solid-propellant combustion show-
ing aluminum droplets. Thus, a straightforward idea is to apply UNET 
(see Figure 4) to shadowgraphy images (Figure 2).

First, given that we are considering supervised segmentation, it is 
unfortunately unavoidable to consider the issue of designing a 
semantic segmentation dataset. Thus, this step consists in manually 
annotating some images for semantic segmentation; i.e., providing a 
class for each pixel.

This is a very repetitive and time-consuming task. The good news 
is that, contrarily to common thinking, UNET does not require too 
many images to reach a relevant state depending on the type of data. 
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Figure 5 – UNET is a representative example of a segmentation network
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Given that each pixel leads to a decision in semantic segmentation, 
an image corresponds to 1 million data points. This is a number quite 
close to the size of the well-known IMAGENET dataset. Off course, 
pixels are much more correlated than the IMAGENET examples, but, 
on the other hand, the variability of shadowgraphy images may be 
lower than the variability of a natural image. Here, the difficulty is 

mainly due to the low contrast, irregular shape and very complex 
features of shadowgraphy images. With these ideas in mind, we 
only annotate 30  images from 3 experimental videos (10 images 
per video).

Then, we perform a cross-validation: we learn from 2 videos 
(20 images) and test the model on the last video (10 images). This 
way, we can evaluate the generalization to new videos. Eventually, 
the algorithm is able to generalize (quite fairly) to new videos: see 
Figure 7.

Now, our goal is to estimate the droplet size distribution during com-
bustion. A perfect segmentation of the images enables the size dis-
tribution to be evaluated accurately. However, predicted segmentation 
will always be more or less noisy, and it is not trivial to derive the 
resulting noise in the droplet size distribution. Also, estimating the 
distribution on a small subset of the images (e.g., the annotated data) 
may not be sufficiently accurate. Thus, we cannot use as a metric the 
distance between the distribution estimated by annotation and that 
obtained by the algorithm. Hence, we propose here to only quan-
tify the segmentation (and not the resulting size distribution). In our 
cross-validation evaluation, the multi-class accuracy of UNET (i.e., 
the number of pixels correctly predicted divided by the number of 
pixels) is above 90% (training is not convex, so multiple runs do not 
lead exactly to the same accuracy even if variance is not an issue).

After post-processing, the resulting size distributions with different 
post processing (estimated on all frames of the video) are presented 
in Figure 8 alongside the size before burst (which is known to change 
during burst). Even though none of these curves can be considered 
as reference distributions, we can see that they seem consistent. Esti-
mated distributions have a greater number of large particles, which is 
expected due to the aggregation phenomenon during burst.

As a partial conclusion, although the developed process is not com-
plete (particularly with regard to guaranteeing the estimated distribu-
tion), it leads to very promising results and already allows input data 
to be refined for numerical simulations of solid-propellant combustion.
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Figure 6 – Illustration of the manual annotation required to apply UNET
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Figure 7 – Illustration of a UNET prediction on a testing image
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Figure 8 – Illustration of the extracted size distribution
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Crack segmentation by deep learning

Like in the previous use case, UNET is a straightforward idea for 
crack segmentation. Here, other algorithms from the computer vision 
community could be relevant. Indeed, the semantic object of inter-
est is not defined by itself but by opposition to a normal situation. 
Thus, abnormality detection, or even, edge detection could have been 
investigated at first glance. However, abnormality detection is cur-
rently less mature than supervised detection, and edge detection may 
be deceiving considering that a non-uniform material leads to strong 
contrast. Thus, using supervised deep learning to capture the struc-
ture of cracks, which are the only edges of interest, is a good shot.

The processing of these images is considered as a binary semantic 
segmentation problem where the goal is to give to each pixel either a 
crack tag or a background tag.

These data are in a way harder to obtain than shadowscopy ones 
(from a deep-learning point of view) because of the unbalance of 
crack pixels vs. background pixels, and the required spatial accuracy 
(as cracks are linear area not delimited surfacique object).

Indeed, the number of background pixels is much greater than the 
number of crack pixels. Thus predicting all pixel as background leads 
to a very small error i.e. a good local minimum.

However, applying UNET with an ad hoc weighting of error proved to 
be sufficient to learn a relevant model for crack segmentation. The 
weighting consists in penalizing an error on a crack pixel much more 
than an error on a background pixel. This way, the network is forced to 
go outside the local minimum where all pixels are background ones.

The resulting performances of the network are quite interesting as 
shown by Figures 9 and 10.

Conclusion

In this paper, we focus on two real-life use cases where the size of 
the experimental data is an obstacle in the understanding of a physical 
phenomenon. We show how, in these two contexts, deep learning 
was successfully applied to help scientists to achieve the processing 
of the experimental data.

However, this success is not that surprising, since the selected exper-
imental data are images, which is one of the primary areas of deep 
learning development. However, this article still shows that state-of-
the-art deep learning is becoming more and more mature for use in 
processing scientific experimental data 

(a)

(b) (c)
(d)

Prevision 
on sample 2

Expertise on sample 1

Figure 9 – Application of UNET to detect cracks on a glass/epoxy 2D woven 
composite. (a) Microscopic observation of the entire sample under tension, 
(b)  Zoom on cracks, (c)  Manual assessment of the crack (in yellow), 
(d) Cracks predicted by our UNET model (in pink).
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(b) (c)
(d)

PrevisionExpertise

Figure 10 – Application of UNET to detect cracks on a carbon/epoxy [0/90] 
laminated composite. (a) Microscopic observation of the entire sample under 
tension, (b) Zoom on cracks, (c) Manual assessment of a crack (in yellow), 
(d) Cracks predicted by our UNET model (in green).
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