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This paper presents some fundamental aspects of the mathematical and numerical 
modeling of dispersed two phase flows. The special case of gas-particle flows 

which is of major importance in the aerospace context is examined. The “kinetic” 
equation corresponding to the mesoscopic level of description is recalled and the 
derivation of the different models is explained. Microscale physical phenomena occur-
ring in gas-particle flows are also described. Then an overview of the different nume-
rical methods is given. The SPARTE and SPIREE solvers of the CEDRE code illustrate 
Lagrangian and Eulerian techniques respectively, implemented in a 3D complex CFD 
platform.  Some numerical simulations are presented, showing the capacity of the sol-
vers to deal with turbojet engines, liquid rocket engines, solid propellant rockets, icing 
problems, etc. The advantages and drawbacks of Lagrangian and Eulerian techniques 
are briefly discussed, from the theoretical and practical points of view. We also present 
the future developments expected in the code, taking into account the crucial chal-
lenges in numerical simulation such as Large Eddy Simulation, primary atomization, 
coupling “separated” and “dispersed” two-phase flow solvers, spray-film interactions.

Introduction 

The topic of two-phase flows has, in a wide variety of engineering 
systems, become increasingly important for optimal design and 
safe operations. A non-exhaustive list of examples including power 
systems, heat transfer systems, chemical engineering and transport 
systems shows that a classification is needed in order to derive the 
various models.

Classification of two-phase flows

For modeling purposes we need to introduce a classification for the 
large variety of two-phase flows. This classification depends mainly 
on both the physical state of the two phases and on the flow struc-
ture. First, as regards the physical state, four combinations can be 
considered: gas-solid, gas-liquid, liquid-solid and liquid-liquid mix-
tures. Then, for the structure, and especially the interface topology, it 
is more difficult to establish a set of combinations because changes 
in the flow may be occurring continually. Nevertheless, following the 
work of Ishii [18], two-phase flows are generally classified into three 
categories according to the shape of the interface: separated flows, 
mixed flows and dispersed flows, as explained in Box 1. 

In this paper, we shall focus on the class of dispersed two-phase 
flows (and more precisely on the special case of gas – par ticle 
flows) which is of major impor tance for many applications in the 
aerospace context. A set of examples is given in the next section. 

Dispersed two-phase flows in aerospace systems

Dispersed two-phase flows are involved in most aerospace pro-
pulsion systems. In turbojet engines, for example, kerosene is 
stored in a condensed form and injected as a spray of small 
droplets in the combustion chamber. Flame ignition and stability 
depend to a large extent on the droplet dynamics and evaporation 
(Figure 1 page 3). For modeling purposes, two different zones 
may be considered: the primary break-up zone located in the vi-
cinity of the nozzle exit where the liquid jet is atomized into small 
droplets, and the spray zone where droplets are already formed 
and are carried by the gas flow. In the first zone, the liquid phase 
is continuous and a separated two-phase flow model needs to 
be used while in the spray zone a dispersed flow description is 
more appropriate.
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Box 1 - Classification of Two-phase flows

Figure B1 - 01 - Separated two-phase flows: film flow, annular flow and jet flow

Figure B1 - 02 - Mixed two-phase flows: slog or plug flow, bubbly annular flow and droplet annular flow

Figure B1 - 03 - Dispersed two-phase flows: bubbly flow, droplet flow and particulate flow 

In separated two-phase flows, each phase plays a symmetrical role and the topology of the interface is not assumed. No hypothesis can 
be proposed for the shape of each phase and we cannot neglect the volume of one of the phases. There are two approaches for the ma-
thematical description of such flows: either by tracking the interface between both fluids and solving Navier-Stokes equations in each one 
(Volume Of Fluid [16], Level-Set Methods [37]), or by using an averaging procedure to derive a set of conservation equations describing 
the two-phase flow as a whole and assuming that each phase may be simultaneously present at any point; in this second approach the 
smallest scales of the interface are not resolved but modelled, using the averaging procedure. The most well-known of these models is 
the Baer-Nunziato system of 7 equations [2], [34], but reduced models can also be used, as in [19], [24]. 

In the case of dispersed flows, one phase is assumed to be dilute (typical values of the volume fraction lie between 10-5 and 10-2) and 
composed of spherical inclusions (droplets, particles or bubbles) dispersed inside the other phase (called the “carrier phase”). All inclu-
sions are assumed to be very small compared to the macroscopic scale of the system and therefore can be considered as pointwise. 
Given this assumption the flow around and inside the particles does not have to be computed. The influence of the inclusions on the 
carrier phase is taken into account with the introduction of source terms in the right hand side of the Navier-Stokes equations. 



Issue 2 - March 2011 - Numerical Modeling of Dispersed Two-Phase Flows
	 AL02-04	 3

Figure 1 - Main physical phenomena occurring in the combustion chamber 
of a turbojet engine

In liquid fuel rocket engines, the simulation of the LOX/H2 cryogenic 
flame process needs both separated two-phase flow and dispersed 
two-phase flow descriptions (Figure 2). 

Figure 2 - Schematic representation of the turbulent reactive two-phase flow 
occurring in liquid fuel rocket engines. Atomization of the liquid oxygen jet, 
secondary breakup, evaporation and combustion

In solid propellant rockets, aluminum par ticles are used in order 
to increase the temperature of the burnt gases in the combus-
tion chamber. When these par ticles burn, small alumina droplets 
are produced (from 1 μm to 100 μm) and convected out of the 
nozzle in the exhaust gases. Figure 3 represents the 2D-simu-
lation of a small-scale rocket booster (LP6) fired at the Onera-
Fauga center.

Figure 3 - LP6 solid propellant booster. Alumina droplet volume fraction field. 
Computation has been performed with CEDRE, using the SPIREE Eulerian 
solver

Gas-par ticle flows also play an important role in icing (Figure 4) 
and water ingestion phenomena (ingestion of hail, ice-crystals 
and rain drops in turbojet engines). For example ice accretion on 
aircraft is due to the presence of supercooled water droplets in 
the air, which may deposit or not on the aircraft surfaces depen-
ding on their size and relative velocity. SLD ice is ice formed in 
Supercooled Large Droplet (SLD) conditions. It is similar to clear 
ice, but because the droplet size is large it often extends to unpro-
tected par ts of the aircraft and forms larger ice shapes, and faster 
than normal icing.

Figure 4 - Super-cooled water droplet trajectories around a NACA23012 air-
foil. (a): Droplet diameter = 10.9 µm – (b): Droplet diameter = 70.7 µm. 
Both computations have been performed with CEDRE, using the SPARTE 
Lagrangian solver

These examples show the large variety of possible applications even 
if the paper is limited to dispersed two-phase flows in the aerospace 
context. In order to perform all these applications, ranging from Icing to 
Propulsion, detailed physical models as well as efficient and robust nu-
merical methods are required. In the recent past a lot of work has been 
done, including the development of the CEDRE Multi-Physics Code. So 
this paper reviews, for dispersed two-phase flows, the physical and 
numerical methods to be found in the literature, and also those which 
are implemented in the Onera code. The paper also highlights the new 
objectives and future challenges we are expecting to tackle.

As regards the description of dispersed two-phase flows, two solvers 
have been implemented; the first, SPARTE, is based on a Lagrangian 
formulation while the second, SPIREE, is based on an Eulerian formu-
lation. The drawbacks and advantages of each are discussed briefly 
in § Numerical methods (Box 2) but the best formulation often de-
pends on the characteristics of the simulation. Our strategy is to use 
two solvers for the description of the dispersed phase. Our constant 
objective is to improve all the models and the numerical methods of 
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both the solvers in order to be able to run more and more complex 
industrial applications including Large Eddy Simulations (LES), Multi-
Velocity Eulerian formulation, moving meshes, etc.

In the future, the major new challenge will be to develop the Multi-
phase solver and to realize a coupling with the “dispersed” two-phase 
flow solvers. The development of a Multiphase solver has been star-
ted recently, to describe “separated” and “mixed” two-phase flow, as 
shown in Box 1. With the strategy of coupling solvers we intend to 
realize complete simulation of, for example, liquid fuel rocket engines 
(Figure 2). The Multiphase solver will be used to describe the atomi-
zation of the liquid oxygen jet while the secondary break-up, evapo-
ration and combustion will be simulated with SPIREE or SPARTE. The 
coupling strategy will have to be done very carefully as regards the 
physical modeling for transition as well as the numerical methods. 
Note that the main difficulty for spray computation is precisely the 
numerical simulation of the primary atomization process. 

Other challenges are expected to be the coupling of the SPIREE and 
SPARTE solvers to take the major advantages of each formulation, 
coupling the same solver used with different physical or numerical 
methods (as in the RANS-LES computation), coupling SPIREE or 
SPARTE with the recently developed FILM solver [30] for film-particle 
interactions etc.

Gas-particle flow modeling

Williams “kinetic” equation

The modeling of dispersed two-phase flows is based on a mesoscopic 
description of the dispersed phase. Particles are assumed to be sphe-
rical and fully characterized by a small set of variables: position  x , 
radius r (or more generally a size variable denoted by ϕ ), velocity v  
and temperature θ . In most applications, the particle number density 
function contains all the necessary information on the dispersed phase. 
By definition,  ( , , , , )f t r d drd dθ θx v x v  denotes the averaged number 
of droplets with a size in [ ],r r dr+ , a velocity in [ ], d+v v v , a tempe-
rature in [ ], dθ θ θ+  and located in the volume [ ], d+x x x  at time t . 

The following Boltzmann-like equation (introduced by Williams in [40] 
and [41]) expresses the conservation of the number density function 
(n.d.f) f  in the phase space:

( ) ( ) ( ) ( ). .f f f Rf Hf Q
t r θ

∂ ∂ ∂
+ ∇ + ∇ + + = Γ +

∂ ∂ ∂x vv F 	 (1)

In this balance equation (1), the left-hand-side stands for the “trans-
port” of the particles in the phase space ( F , R  and H  correspond 
respectively to the force acting on a particle, the evaporation rate and 
the heat exchange rate) while QΓ and  on the right-hand-side stand 
for the effect of fragmentation and collision phenomena respectively. 
Note that F , R  and H  depend on the local gas composition, velo-
city and temperature. 

Modeling of microscale physical phenomena in gas-particle flows

Force acting on a particle

In the most general case the total force includes contributions from 
drag, gravity, lift, added mass effect, pressure gradient and viscous 
stresses (Basset). In the following equation, 3(4 / 3) pm rπ ρ=  de-

notes the particle mass, ρ  stands for the fluid density while pρ  
stands for the particle density. Vector u  represents the fluid velocity 
and /D Dtu  its material derivative along the trajectory.

3 3

6 6D L m B
d d D d dm m C p
dt Dt dt

π πρ ρ = + + + − − ∇ + 
 

v u vF g F F 	(2)

The first term on the right hand side of the equation (2) is the drag 
force DF . The second term on the right hand side is the gravitatio-
nal force. The remaining terms in equation (2) correspond to the lift 
force, added mass effect, pressure gradient term and Basset force. 
The added mass coefficient mC  is in general constant, equal to the 
inviscid approximation: 0.5mC =  (see for instance [6]). The lift me-
chanism LF  considers the velocity gradient around a particle moving 
in a non-uniform rotational flow [33]. The pressure gradient term is 
responsible for the buoyancy force and the Basset term, also called 
the history term, is due to the combination of viscous forces and 
particle acceleration with respect to the carrier flow. 

Fortunately, including all these forces in the particle motion equation 
is not really necessary for aerospace applications. Because of the 
very high density of the particulate phase compared to the fluid phase 
( 3/ 10pρ ρ −≈ ), the only external forces to be accounted for are the 
drag force and the force of gravity. The general expression of the drag 
force reads:

( )21
2D DC rρ π= − −F u v u v 	 (3)

where DC  is the drag coefficient depending on the particle radius as 
well as on the characteristic of the fluid flow around the particle. The 
dynamic relaxation time is written (8 ) / (3 )v p Dr Cτ ρ ρ= −u v . This 
velocity response time represents the time required for a particle to 
respond to a change in the fluid velocity.

Evaporation phenomena and heat transfer 

A large variety of models are available for the description of mass 
and heat transfer between the particles and the gas. The simplest one 
is based on the 2d  law [36]. In this model the droplet temperature 
is assumed to be constant and droplet heating is neglected. A linear 
regression in time for the droplet surface is then obtained. At the other 
extreme, much more complex models, taking into account the change 
in temperature profile inside the droplet, give a very accurate descrip-
tion of the evolution of the droplet surface temperature.

A classic intermediate model, resolving droplet heating but still not 
resolving internal conduction, is the infinite conductivity model. The 
droplet temperature is assumed to be uniform but varies with time. 
Such a model can be found in [1]. This evaporation model is used in 
the SPIREE and SPARTE solvers. The variation of the droplet surface  

Sϕ = obeys:

[ ]
*

4 ln 1
1
s

M M
p s

Sh D Y YdSS B B
dt Y

ρ
π

ρ
∞−

= = − + =
−

 	 (4)

This expression of dS/dt is derived from the mass conservation equa-
tions for the vapor and the gas mixture under the assumption that the 
gas-flow around the droplet is stationary. The parameter MB  stands 
for the Spalding dimensionless mass transfer number. To take into ac-
count the effect of the convective transport on vaporization due to the 
droplet motion relative to the gas it is the so-called “film theory” that 
is used and the convective Sherwood number Sh  is introduced. This 
number has to be modified ( * 2 ( 2) / ( )M MSh Sh F B= + − ) to take 



Issue 2 - March 2011 - Numerical Modeling of Dispersed Two-Phase Flows
	 AL02-04	 5

the presence of the Stefan flow into account. Note that the subscripts  
,s ∞ refer to the conditions at the droplet surface and at infinity from 

the droplet surface, e.g. in the external gas flow, and .  represents an 
averaged value between conditions ,s ∞ . ,D Y  stand, respectively, for 
the binary diffusion coefficient and the vapor mass fraction in the gas.

Then, if we examine the energy conservation equation, we can de-
duce the evolution for H  which corresponds to the heat flux entering 
the droplet. The equation is written:

*2 ( ) ( )p p v s
dmc H mc rNu T L T m
dt
θ λπ θ= = − +  	 (5)

In this last equation (5), a part of the flux ( )v sL T m  serves for vaporiza-
tion. Note that ( )v sL T  represents the latent heat of vaporization at tem-
perature sT  and ( ) ( )/ 4pm S Sρ π= −   is the instantaneous vapo-
rization rate. The other part *2 ( )rNu Tλπ θ−  in equation (5) serves 
for heating-up the droplet. Note that only the convective heat transfer 
(or thermal conduction) is considered around the particle. As a conse-
quence, the expression for heat exchange between particle and fluid 
is given by a conductive flux possibly modified by convective effects 
where we have introduced *Nu  for the convective Nusselt number.

Droplet secondary break-up

Secondary break-up is the name given to the fragmentation of a dro-
plet under the action of the pressure and shear forces exerted by the 
gas on the droplet surface. This phenomenon can only occur if the re-
lative velocity between the gas and the droplet is greater than a critical 
value. In dimensionless form, this threshold condition can be written: 

cWe > We , where We  denotes the Weber number (defined below) 
and cWe  its critical value ( cWe 12≈ ). As shown in Figure 5, se-
condary break-up is a very complex multi-scale phenomenon which 
cannot be modeled in detail but rather from a statistical point of view 
and using experimental results. 

Figure 5 - Secondary break-up regimes depending on the value of the Weber 
number

The general form of the fragmentation (or secondary break-up) term 
of (1) reads as follows:

3

* * * * * * * *

( )( , ) ( , ) ( , )

( , ) ( , , , ) ( , )
bup

bup bup

f r r f r

r h r r f r d dr

ν

ν
+

Γ = −

+ ∫ ∫
R R

v v v

v v v v v 	 (6)

where ( , )bup rν v  denotes the breakup frequency. In SPARTE (see § 
Numerical Methods and Applications of the present paper) it is given 
by the following model, with σ  denoting the surface tension coeffi-
cient and bupτ  corresponding to the average break-up time:

0

v U(v, ) 1 1
( , ) 5 2

2 v U
:

c
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c

bup p

g g

if We We

v r
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v r r

r
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τ ρ
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σ

≤


−= 
≈ >



−
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	 (7)

We refer to [17] for the expression of the function buph  which repre-
sents the p.d.f. (probability density function) of the droplets produced 
by the fragmentation of a given droplet of radius *r  and velocity *v . 

Collision 

Collisions occur if the dispersed phase is dense enough and if the 
relative velocity between particles is not too small. In the case of solid 
particles, collisions can only modify particle velocities but in the case 
of droplets both size and velocity may change and the outcome of a 
collision is much more complex: several regimes can be observed as 
depicted in Figure 6. 

Collision modeling is very complex for both solid and liquid particles. 
A large number of studies have been devoted to this topic during the 
three last decades and it is not possible to summarize them all in this 
introductory paper. We refer for example to the work of Rabe [29] for 
droplet collision and Février [12] for the case of solid particles.

Figure 6 - Droplet collision regimes. From left to right: bouncing, coalescence, 
stretching separation, reflexive separation

Here, for the sake of completeness, we only give the general form of the 
collision term which can be used to take droplet coalescence into account:
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In the simplest (and widely used) class of models, this last term is simply 
neglected which may lead to some anomalous behavior. More complex 
fluid models can also be used in which P is not eliminated but deduced 
from the resolution of additional transport equations for higher order mo-
ments of f . The description of these models is beyond the scope of this 
paper and we refer the reader to [35], [13], [8], [21] amongst others.

The last step to get a fluid model for the par ticulate phase consists 
in eliminating the size variable r and several options are possible. 
The first option leads to a two-fluid model which can be derived 
from the kinetic equation (1) if we proceed to an integration over 
the whole phase space. The information on size dispersion is lost 
in this derivation. The two-fluid model consists in solving an ave-
raged description of the spray. As a consequence, the polydisper-
sed characteristic of the spray cannot be taken into account and 
this limitation is a real drawback.
   
A second option is the sampling method in which the presumed n.d.f 
(number density function) is written under a sum of Dirac mass with 
respect to the size variable as depicted on the left hand side of Figure 
7. The system for each sample is derived from the kinetic equation 
with the same assumptions as for the two-fluid model. The sampling 
method thus leads to N systems similar to system (10). As a conse-
quence there is no interaction terms between particles of different 
sizes and complex phenomena such as coalescence or secondary 
break-up are difficult to handle in this framework. On the other hand, 
sampling models are very easy to implement. 

Finally, the last option, often called the “multi-fluid” model or sectional 
model (see for instance [20], [10]), is illustrated on the right hand side of 
Figure 7. It has been introduced in [15]. Information on the droplet size 
distribution is kept at the macroscopic level thanks to a finite volume dis-
cretization with respect to the size variable. A set of equations is derived 
for each section and, in this type of model, sections are coupled thanks to 
mass, momentum and heat fluxes due to the finite volume approximation. 
More complex phenomena such as coalescence and fragmentation can 
also be easily included. The choice between first or second order is a 
compromise between precision of the phenomena description and the 
cost of the algorithms. The work presented in [9] provides some conclu-
sions for the optimization in solid propellant combustion.

Figure 7 - Discretization of the droplet size distribution function in the sam-
pling method (left), in the first order sectional approach (middle) and the 
second order sectional approach (right)

Numerical Methods

Introduction

The most direct numerical approach would consist in trac-
king all the par ticles present in the flow and to compute their 
changes individually. In such a method, each numerical par-
ticle would represent a given physical par ticle (or droplet). In 
the following, we shall refer to this method as the Discrete 
Par ticle Simulation method (DPS). For industrial applications, 

(r)f (r)f

rrr

(r)f

with collE  being the collision efficiency and coalE  the coalescence 
efficiency [39] and

3 % 3 * 3

3 % 3 % * 3 *

( ) ( )
( ) ( )

r r r
r r r

 = +


= + v v v
	 (9)

This last equation simply corresponds to the conservation of mass 
and momentum during the coalescence process.

Particle – wall interactions 

Particle-wall interactions are of major importance for many physical 
or industrial processes involving gas-particle flows (spray cooling, 
rain and hail ingestion in turbojet engines, icing, erosion, etc.). The 
outcome of a particle impact on a solid wall depends on a number of 
parameters: particle-wall relative velocity, particle diameter, particle 
temperature, wall temperature, wall roughness, etc., and several inte-
raction regimes can be experimentally observed: bouncing, splashing 
(or fragmentation) with partial depositing and secondary particle 
emission, full depositing. The description and the modeling of these 
complex phenomena is beyond the scope of this article and we refer 
to [14], amongst others, for more details.

Fluid models 

All fluid models for gas-particle flows are based on conservation 
equations for some particular moments of the number density func-
tion. These models can be formally derived from the kinetic equation 
(1) by assuming particular closure assumptions. 

Let us first introduce the following notations:

( )

( )

( ) ( )

_
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_ _

,

_ _ _
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_ _ _

,

( , , ) ( , , , , )
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θ
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∫∫
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x x v v

x v x x v v v

x x x v v

where h  stands for the particle enthalpy. Integrating the “kinetic” 
equation (1) with respect to θ vand , and using conventional nota-
tions, we formally get a system of balance equations of the following form:
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1 1
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2 2

_ _ _ _ _ _ _ _ _ _ _ _ _ _
3 3

_ _ _ _ _ _ _ _ _ _

.

.

.

.

n n n R Q
t r
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	 (10)

The term P stands for the second order kinetic stress tensor (equiva-
lent to a generalized pressure tensor). It is due to the dispersion of the 
droplet velocity distribution function. It reads:

( )
_ _

,
( , , ) ( , , , , )P t r f t r d d

θ
ρ θ θ θ   = − ⊗ −   

   ∫∫v
x v v v v x v v      (11)
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this method cannot be applied because of the excessively large 
number of par ticles per unit volume and other approaches have 
to be used, which are based either on the discretization of the 
kinetic equation (1) or on the discretization of conservation 
equations derived from the kinetic equation. Three classes of 
methods may be used. 

The first is the class of the so called “full spray equation methods”. 
These methods solve equation (1) directly by applying a finite volume 
or a finite difference method. But for realistic configurations, these 
methods are prohibited because of the high dimension number of the 
phase space (at least 8 in 3D). 

The second is the class of Particle Methods or more generally Sto-
chastic Particle Methods, which are also often called Lagrangian 
methods or Stochastic parcel methods [32]. From a physical point 
of view, they can be seen as a coarser version of the Discrete Par-
ticle Simulation method in which each “numerical particle” represents 
more than one physical particle. From a mathematical point of view, 
this class of methods can be interpreted as numerical methods for the 
direct resolution of the kinetic equation. These methods are described 
in section "Lagrangian methods".

The last class of method represents all numerical methods based on 
“fluid models” (set of conservation equations) derived from the ki-
netic equation. These methods generally based on a finite volume 
framework are often called Eulerian methods and are described in 
section "Eulerian methods".

Lagrangian methods 

Particle methods (or stochastic particle methods) are commonly 
used for the calculation of polydisperse sprays in various application 
fields (see for example [28], [11], [32] and the references therein). A 
complete exposition of the derivation and the implementation of such 
a method is beyond of the scope of this paper. We refer, for example, 
to [17] or for details. Here, for the sake of completeness, we present 
the only main features of such a numerical method. 

A particle method can be interpreted as a discretization method for 
the kinetic equation (1). The distribution function f  at time t  is 
approximated by a weighted sum of Dirac masses, ( )Nf t , which 
reads:

( ) ( ) ( ) ( )
1....

( ) ( )
i iN i t t r r t t

i N
f t w t θ θδ δ δ δ⊗ ⊗ ⊗− − −

=

= ∑ i ix x v-v 	 (12)

Each weighted Dirac mass is generally called a ‘‘parcel’’ or “nu-
merical par ticle” and can be physically interpreted as an aggrega-
ted number of real par ticles (or droplets, according to the context) 
located around the same point xi , with the same velocity vi , the 
same radius ir  and the same temperature iθ . The weight w i  can 
be interpreted as the number of real par ticles associated with par-
cel i  and N  denotes the total number of parcels used in the 
computation.
 
Each time step of the numerical procedure is divided into 3 stages. 
The first one is devoted to the discretization of the l.h.s. of the kinetic 
Equation (1), modeling motion, heating and evaporation of the par-
ticles. The last two stages of a time step are devoted to the discretiza-
tion of the collision and fragmentation operators.

Transport step

Several numerical schemes can be used according to the desired 
accuracy and numerical stability constraint. In SPARTE, the new po-
sition, velocity, temperature and radius of each numerical particle are 
calculated according to the following scheme:

( ) ( )1 * *

1/3
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	 (13)

where pτ denotes the particle dynamical response time, cτ   the heat 
exchange response time (derived from equation (5)), *T   stands for 
the equilibrium temperature (depending on the gas temperature and 
the saturation temperature according to equation (5)) and U ( , )n n

g it x  
stands for the gas velocity at the particle location and:

exp( )                exp( )n n
i in n

p c

t tα β
τ τ
∆ ∆

= − = − 	 (14)

This is an unconditionally stable first order scheme. Higher order 
explicit schemes (like Runge-Kutta schemes) can also be used but 
they are only conditionally stable and their stability condition is very 
constraining for small particles (because 0p cτ τ →and ). 

It is worth mentioning that particle-wall interactions are also taken 
into account during the transport step. Monte-Carlo algorithms 
are generally used to treat complex phenomena like splashing or 
bouncing on a rough wall to avoid the creation of a lot of new nu-
merical particles. 

Collision step 

Several Monte-Carlo algorithms have been proposed in the lite-
rature for the treatment of droplet (or solid par ticle) collisions. 
They are inspired by methods used in molecular gas dynamics. 
They suppose that the computational domain is divided into cells, 
or control volumes, which are small enough to assume that the 
droplet distribution function is almost uniform over them. The al-
gorithm used in SPARTE [17],[20] is close to the one proposed by 
O’Rourke [28]. In the case of droplets, it consists of the following 
three steps: 

i) For each computational cell jC , containing jN  parcels randomly 
choose / 2jN  pairs of parcels ( 1) / 2j jN N−( if is odd) ; 

ii) For each pair p , let 1p  and 2p  denote the two corresponding 
parcels with the convention 1 2w w≥ , where 1w  and 2w  denote the 
parcel weights; then for each pair p , randomly choose an integer pv  
according to the Poisson distribution law:
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12
12( ) exp( )

!
P

νλν λ
ν

= − with: 

21
12 1 2 1 2

( 1) ( )
( )

J
coll coal

j

w N tE E r r
vol C

λ π − ∆
= + −v v

with vol( jC ) being the volume of cell jC  , collE  the collision effi-
ciency,  coalE  the probability of coalescence given that the collision 
has occurred and 1r , 2r  being the radii of parcels 1p , 2p . 12λ  re-
presents the average number of coalescences during ( 1jN − ) time 
steps between a given droplet of parcel 2p  and any droplet of parcel 

1p ; this is in accordance with the fact that a given pair of parcels is 
chosen on average every ( 1 1N − ) time steps.

iii) If 0pν = , no coalescence occurs during this time step between 
the parcels p1 and p2. Otherwise, if 0pν >  , parcel p1 undergoes 

pν  coalescences with parcel p2 and the outcome of the collision is 
treated as follows:  first the weight 1w  of parcel p1 is replaced by 

1 1 2’ – pw w wν=  and its other characteristics are left unchanged. If 
1’ 0w <   then parcel p1 is removed from the calculation; secondly, 

the velocity 2ν  and radius r
2
 of parcel p2 are updated according to: 

( )
3 3

1/3 2 2 1 1' 3 3 '
2 2 1 2 3 3

2 1

                    p
p

p

r r
r r r

r r
ν

ν
ν

+
= + =

+

v v
v

and its weight w2, is left unchanged.

Remarks

•	 This algorithm allows us to take into account several collisions 
between two given parcels during the same time step; this is an im-
portant feature to avoid a very restrictive condition on the time step. 
Nevertheless, to maintain good accuracy the time step ∆t  must be 
chosen small enough to ensure that the average number of collisions 
between two given parcels, p1 and p2, is such that : 2 1p w wν  < . 
•	 Other collision regimes (stretching or reflexive separation, 
bouncing, etc.) can also be taken into account by slightly modifying 
this algorithm. 

Fragmentation step (only for droplets) 

Monte-Carlo algorithms must also be used during this stage to avoid 
the creation of too many new numerical particles. The algorithm used 
in SPARTE reads as follows: 

i)	 For each numerical particle in the computational domain, compute 
the Weber number defined as:

2
2 ( , ) ( , )n n n n n

g i g i in
i

t t r
We

ρ

σ

−
=

n
ix v U x

 

ii)	 If *n
iWe We > (critical Weber number), then compute the particle 

fragmentation probability during the current time step :

1 exp( )i bup
i

tπ
τ
∆

= − −

where bup
iτ  denotes the average break-up time of the particle.

 
iii)	 Choose a random number α  between 0 and 1 ; if i< α π  then 
fragmentation of the ith particle is considered to occur during the 
current time step and new numerical particles are created. The radius 

of each new particle is randomly chosen according to the model used 
for the p.d.f. buph  of the resulting droplets. The number of “child” nu-
merical particles is usually chosen between 1 and 5 to ensure a good 
compromise between accuracy and computational cost.  

Additional remarks 

•	 For dilute stationary two-phase flows, a variant of the particle 
method described above can be used. It is based on the following 
approximation of the stationary droplet density function:

( ) ( ) ( ) ( )0
1....

( , , , ) ( )
i i

T

N i t t r r t t
i N

f r w t dtθ θθ δ δ δ δ⊗ ⊗ ⊗− − −
=

 =  ∑ ∫ i ix x v-vx v  (15)

where T stands for the maximum residence time of a particle in the system 
and where iw stands for the number of particles carried along the ith nu-
merical trajectory per unit time (particle number flow rate). From a practical 
point of view, calculating a macroscopic property of the dispersed phase in 
a given cell C of the mesh consists in computing an average over all the nu-
merical particles pondered by their residence time in the cell C. Particle col-
lisions cannot be taken into account but transport and fragmentation steps 
are treated in exactly the same way as for the unsteady particle method. 

•	 For dense two-phase flows or combustion phenomena, influence of 
the dispersed phase on the gas flow has to be accounted for. Within the 
framework of the Lagrangian approach, source terms are easily calcula-
ted by summing the contribution of each numerical particle. An under-
relaxation procedure can be applied (as in SPARTE for example) to avoid 
numerical instabilities when the coupling between both phases is strong 
and the time step between two successive exchanges is too large. 

Eulerian methods

Given the conservation form of the equations, the finite volume method 
is the most natural candidate for discretization of fluid models but finite 
difference or finite element methods could also be used. In this article we 
focus on the finite volume scheme implemented into the SPIREE solver, 
included in CEDRE. Let q  be the set of conservative variables. It can be a 
set of only 4 variables in the case of the 1D two-fluid model or a set of 6N 
variables in the case of the 3D polydisperse spray model with a sampling 
method or a sectional method (with N being the number of classes or 
sections). In terms of conservative variables ( ), , ,n eρ ρ ρ=q v  
for each class (sampling method) or section (sectional approach), and 
the system of equations can be formally written: 

( )

( )

( )

( )

1

2

3

4

n div n S
t

div S
t

div S
t
e div e S
t

ρ ρ

ρ ρ

ρ ρ

∂ + = ∂
∂ + = ∂

∂ + ⊗ =
 ∂
∂ + =

∂

v

v

v v v

v

	 (16)

A class or a section of droplets is defined by its density 0ρ  which 
depends on the temperature, by its diameter 2d r= , by a unique 
velocity v  and by the specific total energy 

2 / 2e ε= + u  where the 
internal energy is given by ( )ref p refc T T Tε ε  = + −  . An important 
parameter of the flow is the volume fraction α  which can be linked to 
the other variables by 3 / 6n dα π=  or 0ρ αρ= . Denoting by ,n n

i jq q  
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the vector of the conservative variables in cells i,j of the mesh and 
using conventional notations, the general form of a linearized implicit 
finite volume scheme reads:

( )
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1
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( , ) ( , )( )
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q q q q
q

qS q q q q
q

	 (17)

In this formula, ( , )n n
i jψ q q  stands for the numerical flux at the 

interface between left and right states ,n n
i jq q  while ( )n

iS q stands 
for the source terms due to the effect of drag force, mass and heat 
exchanges as well as particle interaction terms in the control volume 

iV . 

An inherent difficulty of Eulerian methods is the construction of the 
numerical flux ( , )n n

i jψ q q . In the context of the generalized unstruc-
tured meshes used in CEDRE we have selected upwind schemes for 
numerical stability reasons. However, the convective part of the sys-
tem is only weakly hyperbolic and we need special schemes rather 
than the conventional schemes used for Navier-Stokes equations. The 
numerical flux used in SPIREE reads: 

( ) ( )1 1( , )
2 2i j i j i jij

ψ = + + ⋅ −q q F F u n q q	 (18)

The corresponding expressions for the Jacobian matrices used in the 
above implicit scheme read:

( )
( )

( , ) 1
2

( , ) 1
2

i j
i ij

i

i j
j ij

j

ψ

ψ

∂
= ⋅ + ⋅ ∂

∂ = ⋅ − ⋅ ∂

q q
u n u n I

q
q q

u n u n I
q

	 (19)

where I  stands for the identity matrix, ,
i j

⋅ ⋅u n u n  are respectively 
the left and right normal velocities and denotes ij

⋅u n the arithmetic 
averaged normal velocity at the interface. Another scheme implemen-
ted into the SPIREE solver is a Godunov type scheme which is written:

Box 2 - Comparison of Eulerian and Lagrangian methods

This work has looked at a large variety of models as well as numerical methods. The choice for a model associated with a numerical 
method is a very difficult task which depends on the application. 

As far as models are concerned, the sampling method is very closely associated with the complex description of heat and mass transfer 
but does not allow the computation of interaction terms. The sectional approach is more complex than the sampling method but gives 
a better description of the size dispersion of the spray. Moreover, the sectional approach allows the computation of thick spray with the 
possibility of dealing with interactions (coalescence - fragmentation). A common difficulty for both sampling and sectional methods is 
the “mono-kinetic” hypothesis which makes the treatment of cross trajectories impossible. Some solutions exist and need to be imple-
mented in the code.

As regards numerical methods, Lagrangian methods seem very efficient and suitable for a good level of modelling. But Lagrangian 
methods can induce a very high cost of computation, e.g. unsteady cases. Eulerian methods seem more suitable for parallel computa-
tions and implicit algorithms but raise the problem of numerical diffusion, while the Lagrangian method means we have the difficulty of 
the coupling with a Eulerian resolution of the gas dynamics. 

( ) ( )1 1( , )
2 2i j i j i ji j

ψ = + + ⋅ − ⋅q q F F u n q u n q	 (20)

This last scheme is based on the resolution of the Riemann problem 
(see [7] for example) for the convective part of the particles system. 
To bypass the difficulty of delta-shocks, which can occur in such a 
system, other very efficient schemes can be used such as kinetic 
schemes [3] derived from the pressureless system of gas dynamics. 
Note that if we consider the special case of the delta-shocks in the 
Riemann problem (see for example [22]), the Godunov and kinetic 
type schemes are very similar. 

To increase the order of accuracy of the scheme, we can change, 
in the definition of the numerical flux, the interface values ,i jq q  
by linearly reconstructed states according to a MUSCL (Monotonic 
Upwind Scheme for Conservation Laws) [38] procedure. Note that in 
SPIREE we choose to directly reconstruct the conservative variables

( )1 .
2ij i ijq= + ∇q q ij  and ( )1 .

2ji j jiq= − ∇q q ij

The approximate gradients ( ) ( ),ij jiq q∇ ∇  are obtained using a com-
bination of centered and fully upwind gradients. The scheme descri-
bed above is not monotone. It can create extrema and unphysical 
solutions. To reduce oscillations in the solution, a slope limiting pro-
cedure is used. Time integration is based on both implicit and explicit 
Runge-Kutta type schemes. 

Applications

In this part, we present a few numerical examples involving dispersed 
two-phase flows in the aerospace context. All simulations have been 
performed with CEDRE code using either its Lagrangian or Eulerian 
solver (SPARTE or SPIREE respectively). SPARTE and SPIREE are 
based on the models and numerical methods described above in sec-
tions 2 and 3. The detailed content of each solver in terms of available 
models and boundary conditions can be found in the specific paper 
devoted to CEDRE [30].  
 
For icing applications, a Eulerian computation is presented in this sec-
tion but it should be noted that a Lagrangian has also been suggested 
in the introduction for icing applications. In fact, if the droplets are 
large or if we need to compute very complex physical phenomena 
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as wall-particles interactions, then the Lagrangian approach is very 
useful. But, if we want to try a 3D computation on an aircraft, the 
Eulerian approach is better. Note that a coupling of the two methods 
could be of great interest.

Concerning liquid propulsion and the MASCOTTE facility, the Lagran-
gian method has been used because we don’t compute the primary 
atomization and the particles are directly injected into the volume ac-
cording to experimental data. The life time of the particles is very 
short because of evaporation and the 3D computation is less costly. 
The Eulerian method could also have been used by changing the do-
main and having a new limit for fluxes particles injection. On the other 
hand, with the introduction of the multiphase solver in the code, we 
expect to be able to realize a fully 3D Eulerian of the MASCOTTE faci-
lity by coupling SPIREE with the new solver in order to obtain the size 
distribution of the spray by computing primary atomization.

Concerning solid propulsion, mentioned in the introduction, the sur-
face injection of propergol is very large and the number of particles 
due to the combustion is very high. A Lagrangian computation would 
have been much more expensive than the Eulerian one so SPIREE 
has been chosen. Nevertheless, due to the high number of particles, 
interaction phenomena have to be taken into account, so the sophis-
ticated sectional approach has to be used in this case if we want a 
precise simulation. 

Icing applications

The experimental facility used is the PAG (Petit Anneau Givrant) loca-
ted at CEPr (Centre d’Essais des Propulseurs). The model represents 
a three-dimensional helicopter air inlet and for this the entire wind 
tunnel section was modified as illustrated in Figure 8. The arrow sym-
bolizes the air flow path, the up-stream section is a 20 cm square 
and the height of the removable wall is 10 cm in order to reach the 
maximum air velocity of 75 m.s-1 in this configuration. Two main im-
pact zones have been characterized: the front quarter of the cylinder, 
instrumented with heater mats and temperature sensors, and the re-
movable wall on the left hand side (Figure 8).

Figure 8 - Schematic representation view of the 3D duct

The Eulerian solver SPIREE is used as transport droplet module in 
the ONICE3D [23] Icing code developed at Onera. The problematic of 
degradation of performance in icing prediction is important and here 
we present one of the applications used to validate the Eulerian sol-
ver in the droplet capture process. Figure 9 (a) shows the numerical 
distribution of the water collection coefficient in the duct while in Fi-
gure 9 (b) we see the ice accreted on the cylinder in low temperature 
conditions (i.e. 243 K).Indeed, in low temperature cases, the droplets 
impinge and freeze immediately. So, the ice deposit is directly related 
to the water collection coefficient. The comparison shows a good 
agreement between experimental results and numerical simulations. 

These types of Icing problem simulations using SPIREE use the same 
strategy as in [5], [4], [42].
 

Figure 9 - Comparison between the Eulerian simulation of accretion 
and experiment

Liquid propulsion

The problem of high frequency combustion instabilities is a recurrent 
issue for liquid rocket engine propulsion. The origin of these instabili-
ties is the coupling between acoustic and combustion processes such 
as atomization, vaporization and mixing. At Onera we are concentra-
ting our efforts on the coupling between acoustics and vaporization. 
In order to study this difficult problem we have proceeded step by 
step, performing more and more complex simulations. For each step, 
the numerical results were compared to theoretical data or analytical 
solution. The first step was to study acoustic damping in a closed 1D 
cavity or equipped with a nozzle. We used the Eulerian solver for the 
second step simulation. This second step deals with the interaction 
between an acoustic wave and a suspension of inert particles in a 
closed 1D cavity. An exact solution of the problem can be computed 
in such a configuration and we have successfully compared simula-
tion results and the theory on both the shift of the frequency and the 
damping of the oscillations. Figure 10 gives the change in frequency 
shift (or the damping) against 1 uω τ  where 1ω  is the wave number 
without particles ( )1 / cavityLω π=  and uτ  is the Stokes time which is 
proportional to the square of the particle diameter ( )2 /18u ldτ ρ µ= .

Figure 10 - Frequency shift

Figure 11 - Damping
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Figures 12 and 13 below show another application of CEDRE 
related to the simulation of cryogenic propulsion. It corresponds 
to the simulation of an H2-O2 flame in the MASCOTTE facility 
at Onera Palaiseau. In this case the SPARTE Lagrangian solver 
has been used for the simulation of the liquid phase. In both 
calculations, the atomization process has not been simulated 
and oxygen droplets have been directly injected from a fictitious 
surface corresponding to the limit of the primary atomization 
zone. We refer to [25], [26] and [27] for all the details of these 
computations. 

Figure 12 - 2D-RANS simulation of a GH2-LOx flame in the MASCOTTE Fa-
cility at P = 10 Bar – View of the temperature field inside the combustion 
chamber

Figure 13 - 3D LES simulation of a GH2-LOx flame in the MASCOTTE Facility 
at P = 10 Bar – View of the temperature field and droplet position colored 
by their diameter

Conclusion

In this paper, we have given an overview of the models and numerical 
methods used for the simulation of dispersed two-phase flows. We 
have emphasized that both Eulerian and Lagrangian approaches can 
be related to a common underlying kinetic equation corresponding to 
a mesoscopic level of description. 

The Lagrangian procedure treats the kinetic spray equation by solving 
the motion of a large number of numerical particles (parcels) in space, 
associated with variables of time, position and droplet velocity, size and 
temperature or other relevant quantities. The mean spray properties 
are obtained by averaging over a representative sample of parcels that 
cross a defined volume in a certain time interval. The main advantage 
of the Lagrangian procedure lies in its ability to reproduce spray physi-
cal behavior with a high degree of precision: a Lagrange computation 
with small sample volumes, short time intervals and a large number of 
parcels theoretically allows a detailed prediction of almost all physical 
phenomena occurring in an unsteady polydisperse spray flow. 

However, the computational costs increase with the number of parcels 
and the problematic issue in the simulation of unsteady spray flows 
with Euler–Lagrange methods is the optimal choice for the injection 
frequency of new numerical particles (or the total number of simulated 
trajectories in the simulation of steady flows). We have to make sure 
that the numerical results do not depend on this parameter. It was also 
observed by Riber et al. [31] that the speedup of the Euler–Lagrange 
method by increasing the number of processors is not ideal because 
of the parallel load imbalance generated by the partitioning algorithm.

The Eulerian method consists in solving balance equations for various 
density fields of physical droplet quantities at each position and time. 
A finite volume discretization is generally applied. This formulation 
has the advantage of simplicity (the same kind of discrete equations 
for both phases) and the fact that, irrespective of the amount of dro-
plets in a region, the same number of equations have always to be 
solved. Hence in Euler–Euler computations a cost is added for the 
dispersed phase which is independent of the mass loading. In consi-
deration of these issues, we believe that the Eulerian procedure could 
be a good alternative for spray LES computations, in particular for 
computations of dense and unsteady particle flows using massively 
parallelized computers.

For the two last decades, thanks to the improvement of numerical mo-
dels and the increase in computational power, the numerical simulation 
of dispersed two-phase flows has reached an advanced level of maturi-
ty. Using its two particulate phase solvers, CEDRE offers the possibility 
of performing such simulations for complex 3D industrial applications. 
However, several challenges are still to be met. For combustion ap-
plications, the main difficulty for spray computation is the numerical 
simulation of the primary atomization process and its coupling with 
dispersed flow solvers. Until now, droplets are directly injected at some 
given points in the computational domain and the droplet size and velo-
city distributions are chosen according to some experimental data. This 
procedure requires empirical data which is not always available and it is 
not appropriate for unsteady simulations (LES or URANS). Another very 
important problem for industrial applications concerns the modeling of 
spray – wall or spray – film interactions (icing problems, spray cooling, 
etc.). Some models are already implemented in SPARTE and SPIREE 
but they have still to be improved and coupled with the film solver of 
CEDRE. This work is currently in progress 
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Acronyms 
n.d.f (number density function)
p.d.f (probability density function)
DPS (Discrete Particle Simulation method)
SLD (Supercooled Large Droplet)
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