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Introduction

In CFD simulations, it is often necessary to compute the radiative 
fluxes at the calculation domain boundaries and/or the radiative pow-
ers in the volume of the domain. Radiative power is equal to the op-
posite of the radiative flux divergence that appears in the total energy 
conservation equation of the Navier-Stokes system.

In most flames, radiative transfer significantly influences the tem-
perature field and hence the concentration of reactive species. On the 
other hand, the radiative power field depends to a great extent on the 
temperature and the composition of the medium. There is a strong 
coupling between combustion and radiative transfer, particularly in 
the presence of soot particles. Therefore it is important to take radia-
tion into account to predict, for instance, the pollutant emissions of 
an aero-engine combustor. In particular, NOx formation is very sensi-
tive to the temperature level. Moreover, convective heat fluxes on the 
combustor walls are considerably reduced with a film cooling tech-
nique. This makes radiative heat flux calculation indispensable for a 
satisfactory prediction of the thermal gradients inside the walls which 
govern combustor service life.

Radiative flux and power have to be calculated in many applications simulated using 
CFD, such as the prediction of pollutant emissions and the service life of aero-

engine combustors, the design of thermal protection systems and ignition of solid 
propellant rocket motors, the design of spacecraft heat shields for atmospheric (re-)
entries, and so on. In such configurations, the media are composed of gases (com-
bustion products or plasma) and particles (soot, alumina, water droplets). Since the 
use of a line-by-line approach is not possible in industrial configurations, radiative 
properties are computed with an approximate band model. For gas radiative proper-
ties, this model is formulated either in terms of the absorption coefficient or in terms of 
transmissivity. To deal with any kind of problems, the Monte Carlo method has been 
chosen to solve the integral form of the Radiative Transfer Equation (RTE) allowing the 
use of the two formulations of the gas radiative property model. For media that can be 
dealt with using a model formulated in terms of the absorption coefficient, the Discrete 
Ordinates Method (DOM), that solves only the differential form of the RTE, has also 
been developed since it is reputed to consume less computation time than the Monte 
Carlo method. In this paper the fundamental relations of thermal radiation are first 
summarized. Then, both of the numerical methods and all the gas and particle radiative 
property models used at Onera to solve the RTE are described. Finally, some examples 
of typical applications studied at Onera with ASTRE (Monte Carlo) and REA (DOM) 
solvers are presented briefly. 

A second kind of application in which radiation plays a significant 
role is aluminized solid propellant rocket engines. In order to protect 
the structural parts of the motor several types of thermal protecting 
materials are used. The prediction of convective and radiative fluxes 
on these materials is important since the flux levels directly affect per-
formance (ablation in the nozzle throat, impulse to weight ratio) and 
the safety of the motor. The flux levels may be of the order of several 
MWm-2 and radiative contributions, from combustion gases and alu-
mina particles, range from practically 100% (internal parts) to about 
10% (divergent part of the nozzle). Moreover, it has been shown that 
radiative fluxes have a strong effect on the ignition of a solid rocket 
motor, due to the radiative heat feedback on the propellant surface, 
which is a significant fraction of the total heat feedback.

A last example of possible applications is atmospheric (re-)entries. 
High velocities encountered in these kinds of flows (up to 12 km/s 
for Earth re-entry) lead to the formation of a shock in front of the 
heat shield of the spacecraft. Gases behind the shock can be ionized, 
dissociated and under chemical and thermal nonequilibrium condi-
tions. High rotational, vibrational and electronic temperatures give rise 
to a strong radiative emission in the shock layer, which increases 
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the heat flux on the surface of the spacecraft. Kinetics and radiative 
transfer are strongly coupled because both depend on energy state 
populations. Therefore, the radiative transfer needs to be computed 
to be able to predict the shock layer position and design the heat 
shield. Moreover, in the Mars Premier project, preliminary computa-
tions tended to prove that the effects of radiation heating could be 
crucial during the aerocapture phase in the Martian atmosphere. As a 
matter of fact, radiation emitted in the wake region of the orbiter could 
overheat the payload and put a question mark over the technology of 
the thermal protection system.

For a given configuration, the most suitable gas radiative property 
model depends on the thermophysical conditions. If a gas radiative 
property model formulated in terms of transmissivity is needed, it is 
the integral form of the RTE  (Radiative Transfert Equation) that has to 
be solved. If a model formulated in terms of the absorption coefficient 
can be used then the integral and the differential forms of the RTE can 
be solved since transmissivities can be obtained from the absorption 
coefficients. Therefore, two numerical methods have been developed 
at Onera: the Discrete Ordinates Method (DOM) and the Monte Carlo 
method. The first offers a good compromise between accuracy and 
CPU time, but it solves only the differential form of the RTE with a gas 
radiative property model formulated in terms of the absorption coef-
ficient. Moreover, its use requires some assumptions about physical 
phenomena modeling (impossible to take into account spectral cor-
relations and turbulence-radiation interaction for example). The Monte 
Carlo method is a powerful tool that can be used to solve any kind of 
problem since it solves the integral form of the RTE, but this statistical 
method has a reputation for its heavy consumption of CPU time.

The paper is divided into five parts. The first part goes over the fun-
damental relations of thermal radiation and the second describes two 
numerical methods used at Onera to solve the RTE. The third and 
fourth parts focus on gas and particle radiative property models. The 
last part then briefly presents the available models and typical appli-
cations studied at Onera with ASTRE (Monte Carlo) and REA (DOM) 
solvers.

Fundamental relations of thermal radiation

Consider a participating medium enclosed by opaque walls and char-
acterized by a refractive index equal to unity (this assumption is valid
in most of the gas flows studied at Onera). At any point M of this 
three-dimensional system (volume and boundaries), the radiative flux 
vector can be defined as:
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π

ν
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= Ω∫ ∫
                                      (1)

whereν is the wavenumber 1( )m− , u  a unit direction vector, dΩ an 
infinitesimal solid angle ( )Sr  around the direction u and ( , )I M uν

 the 
directional monochromatic radiative intensity 2 1 1 1(Wm Sr ( ) )m− − − − . 
This intensity represents the radiative energy flow per unit time, unit 
solid angle, unit wavenumber and unit area normal to the considered 
direction.

From the definition of the radiative flux vector, expressions of wall radiative 
flux ( )2WmRφ −  and of radiative power ( )3WmRP − can be derived:
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where B is a point on boundaries, Bn the unit surface normal at the 
point B (pointing away from the surface into the medium) and M a 
point in the medium. The radiative power is equal to the opposite of 
the radiative flux divergence that appears in the total energy conserva-
tion equation of the Navier-Stokes system. The wall radiative flux is 
needed to solve heat conduction problems inside the walls.
 
The integral over the solid angle in equation (2) can be split into two 
parts: directions pointing towards the surface (incident radiation im-
pinging onto the surface and absorbed by the wall) and directions 
pointing outwards from the surface into the medium (radiation emit-
ted by the wall). This gives:
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where ( , )inciI B uν


and ( , )emiI B uν


are, respectively, the incident direc-
tional monochromatic radiative intensity 2 1 1 1(Wm Sr ( ) )m− − − −  impinging 
onto the surface at the point B  and the directional monochromatic 
intensity emitted by the wall at the point B. Under the assumption 
of Local Thermodynamic Equilibrium (LTE means that relaxation 
processes occur rapidly in such a way that the energy states are 
populated according to Boltzmann’s distribution) ( , )emiI B uν


can be 

expressed as the product ( , ) ( )o
BB u I Tν νε 

and the directional mono-
chromatic absorptivity ( , )B uνα


is taken to be equal to the directional 

monochromatic emissivity ( , )B uνε


. ( )o
BI Tν is the monochromatic 

equilibrium (or blackbody) intensity 2 1 1 1(Wm Sr ( ) )m− − − −  and BT  is the 
wall temperature at point ( )KB . ( )oI Tν is also called the Planck func-
tion and is written:
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where 346.6261 10h −= × Js is Planck’s constant, 8
0 2.998 10c = ×

ms-1 is the speed of light in the vacuum and 231.3807 10k −= × JK-1 

is Boltzmann’s constant. Emission by solid walls is characterized by 
equilibrium intensity because, in all the CFD simulations performed at 
Onera, solids can be considered to be at LTE.

Equations (3) and (4) show that it is necessary to know the field of 
directional monochromatic intensity ( , )I s uν


 to be able to compute 

radiative power and flux. This field can be obtained by solving the 
Radiative Transfer Equation (RTE) which describes the change of the 
radiative intensity along a ray. The differential form of the RTE is ob-
tained by making an energy balance on the radiative energy traveling 
in the direction u   between the locations s and s ds+ . This leads to:
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where νη is the monochromatic emission coefficient ( )2 1Wm Sr− − ,   
νκ the monochromatic absorption coefficient -1(m )  and νσ  the mono-

chromatic scattering coefficient -1(m ). These three coefficients are 
considered to be isotropic. The quantity ( , )s u uν ′Φ →

 
is called the 

scattering phase function and describes the angular distribution of the 
scattered intensity. ( , ) / 4s u u dν π′ ′Φ → Ω

 
can be interpreted as the 

probability of a ray, propagating in direction u′ , to be scattered in the 
direction u  at location s. 

The transient form of the RTE is not presented here. The transient term 
on the left-hand side of equation (6) has been neglected because, for 
the vast majority of flows studied at Onera, the characteristic time 
of radiation propagation is very small compared to the characteristic 
times of the other physical phenomena involved.

Equation (6) can be rewritten in order to be integrated over an optical 
thickness from a point

0Bs s′ = at the wall to a point s s′ = inside the 
medium, giving:
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where ( , )S s uν ′  is the source function (emission and incoming scat-
tering) defined as:
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and ( , )s sντ ′ is the monochromatic transmissivity given by:
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Equation (7) is known as the integral form of the RTE. This equation 
is interpreted physically as the monochromatic intensity, at location 
s  in direction u , being composed of two terms. The first is the con-
tribution of intensity leaving the wall (or entering the enclosure if it 
is an open boundary), which decays exponentially due to extinction 
(absorption and scattering) over the optical distance

0Bs s− . The 
second term results from emission and incoming scattering in the di-
rection u by all the elements ds' along the path from 

0Bs  to s, reduced 
by exponential attenuation between each location of emission and 
incoming scattering s′and the location s. 

The monochromatic intensity leaving the wall at point 0B in direction
u can be expressed as the sum of emitted and reflected intensities, 
given by:
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if the wall is a specularly reflecting surface; u∗−


is the symmetrical 
direction of u about

0Bn . If the wall is a diffusively reflecting surface, 
equation (10) becomes:
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Finally, the expressions for the radiative flux and power are obtained 
respectively by substituting equation (7) into equation (4) and equa-
tion (6) into equation (3). This leads to:
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When the medium is a mixture of gases and particles, the mono-
chromatic absorption coefficient of the medium is given by:  

( ) ( ) ( )gas partM M Mν ν νκ κ κ= + 			               (14)

The monochromatic scattering coefficient and the monochromatic 
scattering phase function are only due to particles in the medium. 
Scattering by gas molecules is never taken into account in CFD simu-
lations since its effect on heat radiative transfer is always negligible in 
the considered applications.

Combination of equations (9) and (14) leads to:
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When a gas radiative property model formulated in terms of transmis-
sivity is used, equation (13) cannot be used directly. Another expres-
sion for the radiative power can be obtained by substituting equation 
(7) into equation (13), giving:

0

0

0

0 4

0

( , ) ( , )

( ) ( )
( , ) ( , )

4 ( )

M

B

leav
B M

R s

M
s

absorption

emission

I B u s s

P M M d d
S s u s s ds

M d

ν ν

ν
ν νπ

ν

τ

κ ν
τ

π η ν

+∞

+∞

 +
 

= Ω 
′ ′ ′ 

  

−

∫ ∫ ∫

∫








        (16)

            (15)



Issue 2 - March 2011 - Radiative Transfer Modeling Developed at Onera for Numerical Simulations of Reactive Flows
	 AL02-05	 4

It is worth noticing that the multiplication of equation (14) by equation 
(15) results in:
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Using relation (17) in equation (16) we obtain:
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Equation (18) is useful when a gas radiative property model formu-
lated in terms of transmissivity is used because the gas absorption 
coefficient does not appear.

Assuming LTE (it is usually the case for combustion applications but 
not always for atmospheric entry flows), the monochromatic emis-
sion coefficient of the medium can be written:
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where partN   is the number of particle sizes considered in the simu-
lation. Theses particles can be in thermal nonequilibrium with the 
gases.

When the medium does not contain particles or particles are not tak-
en into account in radiative transfer calculation, relation (18) can be 
expressed more simply as:
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where the ratio /ν νη κ can be replaced by the Planck function, given 
by equation (5), at LTE conditions.

All the previous equations involve monochromatic quantities, but in 
practical cases such as industrial configurations, it is not possible to 
perform line by line calculations since this approach requires more 
than 106 spectral points. Therefore it is necessary to average these 
equations over a spectral interval and to use a radiative property 
model providing quantities averaged over a spectral band. However, 
it is not always easy to write the averaged equations in a form that 
is suitable for the quantities given by the radiative property model. 
Sometimes it is not possible to take into account spectral correlations 
between radiative quantities.

When radiative transfer occurs in turbulent flows then turbulence-
radiation interaction (TRI) has to be taken into account (see Box 1).

Numerical methods developed at Onera

Several numerical methods can be used to compute radiative transfer 
[23], [32]. Two of them have been developed at Onera: the Monte 
Carlo method in the ASTRE solver and the discrete ordinates method 
in the REA solver. These two solvers are included in the CEDRE code 
[6].

The following two sections describe the two numerical methods. 
The reader should bear in mind that, to facilitate comprehension, the 
expressions in this part involve monochromatic radiative properties. 
However, in the ASTRE and REA solvers, these methods have been 
used in association with spectral band models, which are explained 
in the following parts.

Monte Carlo method

Monte Carlo is a generic name for a large class of statistical numerical 
methods based on a sampling technique. Applied to thermal radiation 
problems, this kind of method consists in following a finite large num-
ber of “energy bundles” through their transport histories, from their 
points of emission to their points of absorption. An energy bundle is a 
discrete amount of power (W), which can be thought of as a group of 
photons bound together. Bundle characteristics (wavenumber, initial 
direction, point of emission) and physical events along bundle trajec-
tories (absorption, scattering, reflection off walls) are chosen accord-
ing to probability distributions by drawing random numbers. This is 
why Monte Carlo simulations are often referred as direct simulations 
of radiative transfer by statistical distributions of energy over space, 
direction and wavelength, and results obtained with Monte Carlo 
methods are often considered as reference solutions. As Monte Carlo 
methods are statistical, exact results can be approached if enough 
bundles are followed. Another advantage of Monte Carlo methods is 
that even the most complicated problem can be solved with relative 
ease.

As the Monte Carlo method applied to thermal radiation problems 
consists in emitting, following and absorbing energy bundles (in a 
similar way to what happens to a photon), the equations solved are 
not exactly those presented in the previous part. In particular, the 
source function along the bundle trajectories is taken to be equal to 
zero: only absorption and direction changes by scattering are con-
sidered.
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To emphasize the principle of the Monte Carlo method, assumptions 
that simplify the equations are considered in the paragraphs that fol-
low. First, a gas radiative property model formulated in terms of the 
absorption coefficient is used. To see an example of the implemen-
tation in a Monte Carlo method of a gas radiative property model 
formulated in terms of transmissivity, the reader may refer to the work 
of Rouzaud et al. [31] or the thesis of Lamet [17]. Secondly, turbu-
lence-radiation interaction (TRI) is not taken into account here, but 
the thesis of Tessé [35] [37] deals with this subject. Finally, only the 
conventional Forward Method (FM) is presented here. For informa-

tion about reverse, backward or reciprocal methods the reader should 
consult references [12], [23], [36] respectively.

Moreover, in order to reduce the variance, the pathlength method [12], 
also called “energy partitioning” [23], is used. The random number 
generation, to determine the pathlength traveled before total absorp-
tion of an energy bundle, is replaced by the calculation of exponential 
absorption along the path. Therefore, a bundle contributes to every 
cell it traverses. A bundle is traced until it either leaves the enclosure 
or until its energy is depleted below a given cutoff level.

Box 1 - Turbulence-Radiation Interaction (TRI)

In the first section of this article, the transient term of the Radiative Transfer Equation (RTE, see equation (6)) has been neglected 
because, for the vast majority of flows, the characteristic time of radiation propagation is very small compared to the characteristic 
times of the other physical phenomena involved. This means that radiation is instantaneous compared to the other physical phenomena, 
like turbulence, combustion, convection or conduction. Therefore it appears that a model of the Turbulence-Radiation Interaction (TRI) 
is needed when a radiative transfer calculation is coupled with a turbulent combustion computation, based on a Reynolds-Averaged 
Navier-Stokes (RANS) approach, which provides only time-averaged quantities. In Large Eddy Simulation (LES), taking into account TRI, 
is a less crucial problem because only the effects of the subgrid scale fluctuations on radiation have to be modeled.

To simplify the equations, let us take a turbulent flow which can be considered as a non scattering medium at Local Thermodynamic 
Equilibrium (LTE), like a turbulent sooty flame. Under these assumptions and without taking into account TRI, the RTE is written:

 ( ) ( )( , )
( ) , ( ) , ( ) , ( ) ( ) ( , )o

V i
I s u

T s P s f s x s I T s I s u
s

ν
ν ν νκ

∂  = − ∂


                                                                                                           (I-1)

where ( )T s  , ( )P s , ( )Vf s  and ( )ix s are, respectively, the time-averaged temperature, pressure, soot volume fraction and molar 
fractions of species contributing to radiation. The calculations for the radiative properties and intensities are based on time-averaged 
quantities. When TRI is taken into account, the RTE that has to be considered becomes:

( , )
( ) ( ) ( ) ( , )oI s u
s I s s I s u

s
ν

ν ν ν νκ κ
∂

= −
∂


                                                                                                           		   (I-2)

This equation shows that two correlations are required: the correlations between absorption coefficient fluctuations and those of equili-
brium intensity (given by equation (5) and very sensitive to temperature fluctuations) and between absorption coefficient fluctuations and 
those of incident radiative intensity. If the fluctuations of , , VT P f  and ix  are known then it is not difficult to model the first correlation 
because it involves two terms which depend only on local quantity fluctuations (single-point statistics). Modeling the second correlation 
is more complex because the incident radiative intensity, given by equation (7), depends on quantity fluctuations in all the cells crossed 
by the optical path. That is why TRI is very often partially taken into account by assuming:

 ( ) ( , ) ( ) ( , )s I s u s I s uν ν ν νκ κ≈
  .								                                      (I-3)

This assumption, commonly called the Optically Thin Fluctuation Approximation (OTFA) in the literature, is valid when, for all wavenum-
bers ν :

( ) 1sνκ Λ << ,										                                        (I-4)

whereΛ is the characteristic dimension of large turbulent eddies (or turbulence length scale). Due to the significant dynamics of gas 
spectra (see for example Figure 1 or 4) it is difficult to evaluate the error generated by the use of the OTFA.
 
It is worth noticing that some authors [21][22][37] have developed methodologies to take into account full TRI; i.e., with the two fluc-
tuation correlation terms in equation (I-2). For more information about studies dealing with TRI, the reader should consult this review 
article [4].

TRI is still a current topic of research. Recent studies [8] [30] use Direct Numerical Simulations (DNS) in order to model the effects of 
the subgrid scale fluctuations on radiation in LES.
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Consider an enclosure filled by a nonisothermal, heterogeneous, ab-
sorbing, emitting and scattering media and discretized into VN  vol-
ume and SN surface elements. Each element is supposed to be iso-
thermal and homogeneous and radiative properties, except the phase 
function, are assumed to be isotropic.
The Monte Carlo statistical estimation of the radiative power in an 
arbitrary volume element q  is written:

1

1 V SN N
FM ea e

q iq q
iq

P P P
V

+

=

 
= − 

 
∑                                                        (21)

where qV is the volume of element q  and ea
iqP the statistical estimation 

of the power emitted by the element i and absorbed by the volume 
element q. e

qP is the power emitted by the volume q defined by:	

4 0 0

4
q

e
q q q q

V

P d d dV V dν ν
π

η ν π η ν
+∞ +∞

= Ω =∫ ∫ ∫ ∫                                  (22)

since an element is considered to be isothermal and homogeneous 
and the spectral emission coefficient νη is assumed to be isotropic.

The statistical estimation of the power emitted by the cell i  and ab-
sorbed by the volume element q is written:

( )
1 1

,
iq pqn

n n

N Ne
ea i

iq in qcn qc
n ci

P
P E F

N ν ντ α
= =

= ∑∑ 			                (23)

where e
iP is the power emitted by the element i , iN  the total number 

of bundles leaving the cell i  and e
i iP N the initial power of a bundle 

leaving the cell i . iqN represents the number of bundles leaving the 
cell i  and reaching the volume element q  and pqnN  the total number 
of crossings of the volume q  by the thn  bundle path issued from the 
element i. ( ),

n in qcnE Fντ is the spectral transmissivity between the 
emission point inE and qcnF the thc  inlet point in the volume q  of the 
nth bundle path. The spectral transmissivity is given by:

( )
1

1 1

, exp (1 )
qcn rc

n n n

M N

in qcn m m h
m h

E Fν ν ντ κ ε
−

= =

 
= − −  

 
∑ ∏                      (24)

where m is the distance traveled through the volume element m  
and  

nmνκ the spectral absorption coefficient in the volume element 
m. 1m = and qcnm M= correspond respectively to the first volume 
element crossed by the bundle path and the last one for the thc cross-
ing (the volume element q ). rcN is the number of wall reflections 
along the bundle path between the points inE and qcnF , h  the index of 
wall reflections along this bundle path and

nhνε the local wall spectral 
emissivity.

The spectral absorptivity
nqcνα  is given by:

( )1 exp
n nqc q qcν να κ= − −  			                              (25)

where qc represents the length of the thc  crossing of the volume ele-
ment q  by the bundle path.

If the cell q  is a surface element, the volume qV is replaced by the 
area qA in equation (22) and the spectral absorptivity 

nqcνα is replaced 
by the diffuse spectral emissivity

nqνε in equation (23). Moreover, the 
power emitted by the cell q  becomes:

0

( )e o
q q q qP A I T dν νπ ε ν

+∞

= ∫  			                              (26)

The number of bundles leaving the cell i  is determined according to 
either:

i
V S

NN
N N

=
+

         				                  (27)

or:

1

V S

e
i

i N N
e

k
k

P
N N

P
+

=

=

∑
   				                 (28)

where  N  is the total number of bundles involved in the simulation. 
Equation (27) ensures a spatial uniform distribution of the bundles, 
while the initial power of a bundle is almost the same for all the bun-
dles with equation (28).

Bundle characteristics (the emission point  E  inside cell, the polar 
and azimuthal anglesθ andϕ characterizing the initial direction and 
the wavenumberν ) and scattering events along bundle trajectories 
are considered to be random variables. Therefore, they are chosen 
according to probability distributions by drawing random numbers in 
the range 0 to 1 and by assuming these random numbers to be equal 
to a suitable cumulative distribution functions, i.e.:

min

( )
n

n

X

X
X

R f X dX= ∫   				               (29)

where nX represents the randomly chosen value of the random vari-
able X ,

nXR a random number uniformly drawn in the interval [0;1] 
and ( )f X the Probability Density Function (PDF) of the random vari-
able X .

For a volume element i, the joint PDF ( , , , )if E θ ϕ ν , based on emis-
sion, is obtained from the following relations:

4 0

2

0 0 0

( , , , )

1 sin 1

sin '

i

i

i i
i i

i
V

i
i

iV

dV d d
f E dV d d d

d d dV

dV d d d
dV d d d

ν

ν
π

ν
π π

ν

η ν
θ ϕ ν θ ϕ ν

η ν

ηθ θ ϕ ν
θ θ ϕ η ν

+∞

+∞

′

Ω
=

Ω

=
′ ′ ′

∫ ∫ ∫

∫ ∫ ∫ ∫

 

						                  (30)

0

( , , , )
1 sin 1

2 2

i i

i
i

i
i

f E dV d d d

dV d d d
V

d

ν

ν

θ ϕ ν θ ϕ ν
ηθ θ ϕ ν

π
η ν

+∞

′

=

′∫

			          	
						                  (31)

where sind d dθ θ ϕΩ = is an infinitesimal solid angle. Equation (31) 
shows that the joint PDF ( , , , )if E θ ϕ ν can be factored into a product 
of the four marginal PDF, i.e.:

1 2 3 4

( , , , )
( ) ( ) ( ) ( )

i i

i i i i i

f E dV d d d
f E dV f d f d f d

θ ϕ ν θ ϕ ν
θ θ ϕ ϕ ν ν

=
× × ×                  (32)

since the emission point  E , the two angles θ  and ϕ  and the wave-
number ν  are statistically independent due to some assumptions 
(an element is considered as isothermal and homogeneous and the 
spectral emission coefficient νη is assumed to be isotropic).
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For a diffuse surface element i, equation (31) becomes:

0

( , , , )

( )1 12cos sin
2

( )

i i
o

i i
i

oi
i i

f E dA d d d
I T

dA d d d
A

I T d

ν ν

ν ν

θ ϕ ν θ ϕ ν

ε
θ θ θ ϕ ν

π
ε ν

+∞

′ ′

=

′∫
         (33)

where cosθ stands for Bu n⋅ 
 in the emission term of equation (4). 

Moreover, the polar angle θ  varies from 0 to 2π .

Identifications of equations (31) and (33) with equation (32) provide 
all the PDF that can be substituted in equation (29) in order to deter-
mine all the random variables (emission point, angles and wavenum-
ber). For example, the wavenumber nν of the thn  bundle leaving the 
volume element i  is chosen according to:

0 0

n

ni id R d
ν

ν ν νη ν η ν
+∞

′ ′=∫ ∫                                                               (34)

where
n

Rν is a random number uniformly drawn in the interval [0;1]. For 
simple PDF, such as those of the angles, analytical integration can be per-
formed leading to inverse relations ( )

nn XX g R= . For a volume element, 
the two angles of the thn  bundle leaving the volume element are given by:

cos 1 2
nn Rθθ = − 					                 (35)

2
nn Rϕϕ π= 		                		                           (36)

For a diffuse surface element, equation (36) remains suitable while 
equation (35) becomes:

cos
nn Rθθ = 					                (37)

It is worth noticing that, for a surface element, the angles are defined 
in the local coordinate system of the surface element, with the unit 
surface normal pointing in its z-direction (i.e., the polar angle is mea-
sured from the unit surface normal).

In a scattering medium, we also have to randomly determine the dis-
tance traveled by a bundle before a change of direction due to scatter-
ing occurs. As exponential attenuation due to absorption is computed 
all along a bundle path, the probability for a bundle to be scattered 
between the distances s and s ds+  is:

0

( ) exp ( ) ( )
s

scatf s ds s ds s dsν νσ σ
 

′ ′= − 
 
∫                                    (38)

where ( )scatf s  represents the scattering PDF at location s ( 0s =  at 
the emission point and at each scattering location). Substitution of 
the expression for the scattering PDF into equation (29) gives:

0

( ) ln( )
nk
scat

n

nk
scats ds Rνσ = −∫

 						    
				                                            (39)

where nk
scat is the distance traveled by the thn bundle between 

the( 1k − )th and kth scattering events and nk
scatR  a random number uni-

formly drawn in the interval [0;1].

In the case of isotropic scattering, equations (35) and (36) can be 
applied to determine the angles of scattering direction, while in an 
anisotropic scattering medium, these angles are obtained from the 
following relations:

0 0
2

0 0

( , , , ') sin '

( , , , ') sin ' 4

nk
s

n

nk nkns s

j

j

d d

R d d R

φ π

ν

π π

νϕ ϕ

θ ϕ θ ϕ θ θ ϕ

θ ϕ θ ϕ θ θ ϕ π

′ ′ ′Φ =

′ ′ ′Φ =

∫ ∫

∫ ∫                    (40)

0 0

( , , , ') sin ' 4
nk nk
s s

nkn s
j d d R

φ θ

ν θ
θ ϕ θ ϕ θ θ ϕ π′ ′ ′Φ =∫ ∫                              (41)

( , , , ')
njν θ ϕ θ ϕ′Φ is the spectral scattering phase function in the vol-

ume element j  containing the thk  scattering point of the thn  bundle.   
θ  and ϕ  are the angles characterizing the propagation direction be-
fore scattering occurs. It is worth noticing that the angles of scattering 
direction nk

sθ and nk
sϕ given by equations (40) and (41) are defined 

in a local coordinate system having its origin at the scattering point 
and its z-direction unit vector equal to the unit direction vector of the 
bundle before scattering occurs (i.e., nk

sθ is measured from the unit 
direction vector of the bundle before scattering occurs).

In order to control computation convergence, it is possible to subdi-
vide a calculation into Q  sub-calculations. For example, if 108 bun-
dles are followed, a mean radiative power RP is calculated with all 
these bundles, and 100Q = sub-means P1, P2,…,PQ are calculated 
with 106 bundles each. Then, the variance 2γ of the mean radiative 
power RP  is:

( )
2

22 2

1 1 1

1 1 1
1 1

Q Q Q
R

k k k
k k k

P P P P
Q Q Q

γ
= = =

    
= − = −   − −      

∑ ∑ ∑       (42)

Using the central limit theorem it can be shown that to reduce the 
standard deviation by half the total number of bundles has to be qua-
drupled, leading to quadrupled computation time.

This technique of subdivision into sub-calculations is very convenient 
for parallelization. Indeed, as the sub-calculations are all independent, 
they can be easily distributed on computer cores. Moreover, this 
leads to a parallelization efficiency close to 100% because there is no 
communication needed between parallel cores during bundle history 
generation. However, memory storage problems may be encountered 
when the mesh is composed of a very large number of cells because 
each computer core has to deal with the whole computation domain.

Discrete ordinates method

The Discrete Ordinates Method (DOM) is based on a discrete repre-
sentation of the directional variation of the radiative intensity. Thus, 
the differential form of the Radiative Transfer Equation (RTE, see 
equation (6)) is replaced by a system of partial differential equations 
(one equation for each ordinate direction) and integrals over a range 
of solid angles are approximated by weighted sums over the ordinate 
directions within that range. Gaussian quadratures called level sym-
metric or NS quadratures are often used. That is why DOM is also 
called the NS  method. N  is an even number that indicates the order 
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away from the face f  into the volume iV ), fA  the area of the face 
f , ( , )I f mν  the monochromatic intensity on the face f  in direc-

tion m , iC  the center of the volume iV  and ( , )iI C mν  the mono-
chromatic intensity at point iC  in direction m . To obtain equation 
(46) the assumption has to be made that the intensities ( , )I f mν  
and ( , )iI C mν are constant over the area fA  and the volume iV re-
spectively.

In order to reduce the number of unknowns in equation (46) a spa-
tial differencing scheme is used to express the face intensities as a 
function of the volume intensities. The step scheme is chosen for its 
simplicity and robustness. With this spatial differencing scheme, the 
face intensities are given by the following relations:
	 • if 0m fu n <⋅

 
, ( , ) ( , )iI f m I C mν ν=

	 • if   0m fu n >⋅
 

, either ( , ) ( , )ifI f m I C mν ν= or ( , )I f mν  is given 
by relation (44) if the face f  is a boundary.

ifC is the center of the volume element that has the face f  in com-
mon with the volume element iV . Use of the step scheme in equation 
(46) leads to:

( )

1
0

0

( , )

( , ) ( , ) ( , )
4

d

m f

m f
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m f f if i j i i i
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ν ν ν ν
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σ
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π
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=
⋅ >
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=
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⋅ + + Φ 

 

+ + ⋅

∑ ∑

∑
 

 

 

 

	
An iterative procedure, based on a Gauss-Seidel algorithm, is used to 
compute, for each wavenumber, all the directional intensities defined 
at all the element centers (volumes and surfaces). Once these intensi-
ties have been determined, it is possible to calculate the radiative flux 
and power with the following relations:
						    

0

0

0

0 0 0
( /2 )0

0

0
0

( ) ( ) ( , )

( ) ( )

d
j B

R
j j B

j N values
u n

o
B

B B w I B j u n d
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π ε ν

+∞
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+∞
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∑∫

∫

 
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                                                                                                    (48)

10 0

( ) ( , ) 4
dN

R
i i j i i

j
P C w I C j d dν ν νκ ν π η ν

+∞ +∞

=

= −∑∫ ∫                               (49)

Gas radiative property models

Absorption/emission spectra of gases have significant spectral dy-
namics, changing to a considerable degree with thermophysical con-
ditions. For example, figure 1 shows absorption spectra at high reso-
lutions of  2CO  species (on the left,

2
0.02COx = and 

2
0.98Nx =  ) 

and air plasma (on the right) for different temperatures at atmospheric 
pressure.

of the solution. In a three-dimensional problem, ( 2)dN N N= + dis-
crete ordinates directions are considered.

So the RTE is replaced by a set of dN equations. The equation cor-
responding to the m-direction is written as:

( )

1

( ) ( ) ( ) ( , )

( )
( , ) ( , , )

4

d

mí

N

j
j

u I (s,m ) s s s I s m

s
w I s j s j m

ν ν ν ν

ν
ν ν

η κ σ

σ
π =

⋅∇ = − +

+ Φ∑



                    (43)

where the jw are the quadrature weights associated with the direc-
tions ju or j . Equations (43) need boundary conditions, giving the 
intensities leaving the wall in each direction m , to be solved. For a 
diffuse surface, the monochromatic intensity 0( , )I B mν  leaving the 
wall at point 0B  in direction m  (such as 

0
0m Bu n⋅ >

 
, where 

0Bn is 
the unit surface normal at the point 0B , pointing away from surface 
into the medium) can be expressed as:

0

0

0

0 0

0
0

( /2 )
0

( , ) ( ) ( )

1 ( )
( , )

d
j B

o
B

j j B
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u n

I B m B I T

B
w I B j u n

ν ν ν

ν
ν

ε

ε
π

⋅ <

=

−
+ ⋅∑

 

                                (44)

Equations (43) and their corresponding boundary conditions (44) 
show that the intensity in direction m depends on the intensities in all 
the directions j  when wall reflection or scattering is present. There-
fore, in these cases, an iterative procedure is needed to compute all 
the intensities.

Since the unit direction vector mu  is independent of the space coor-
dinates, the left-hand side term of equation (43) can be written as:

( ) ( )( ). , ,m mu I s m div I s m uν ν∇ =
 

		                             (45)

Consider an enclosure filled by a non-isothermal, heterogeneous, ab-
sorbing, emitting and scattering medium and discretized into volume 
and surface elements. Each element is assumed to be isothermal and 
homogeneous and the radiative properties, except the phase function, 
are assumed to be isotropic.

To set up the numerical solution, a control volume technique, such 
as the one used in fluid mechanics problems, is applied to equations 
(43). By substituting equation (45) into equation (43), integrating it 
over a volume element iV  and using the divergence theorem, equa-
tion (43) becomes: 
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1
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( , ) ( , ) ( , )
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d
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 
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 

∑

∑

 

(46)

where faces
iN  is the number of faces constituting the envelope of the 

volume iV , fn  the inward surface normal of the face f  (pointing 

            
(47)
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If radiative properties can be calculated beforehand at high resolution 
and for each set of thermochemical conditions encountered, radiative 
transfer can be accurately computed by using the line-by-line (LBL) ap-
proach. With this approach, radiative transfer problems could be solved 
directly considering the relations given in the two previous parts. How-
ever, the LBL approach, which consists in solving the RTE for each 
wavenumber (several millions of spectral points in general), requires 
too much CPU time and memory storage for industrial applications. To 
simplify the RTE resolution and radiative property calculation approxi-
mate models at low resolution are generally used. Nevertheless, these 
models have to take spectral correlation effects into account due to the 
gas spectra line structure (see Box 2).

In the literature two kinds of approximate models are usually used: glob-
al models and band models. Global models, such as the Weighted Sum 
of Gray Gases (WSGG) [14], the Spectral Line-based Weighted sum 
of gray gases (SLW) [7] or the Absorption Distribution Function (ADF) 
[26], allow the direct solution of the RTE with radiative properties relative 
to the whole spectrum. These models are accurate and convenient for 
uniform media but it becomes difficult to define the parameters of these 
models for non-uniform gaseous mixtures. In addition, global models 
are incompatible with the treatment of particles or non-gray walls. Band 
models are generally more accurate but more costly in terms of com-
putational resources. In this modeling the spectrum is subdivided into 
bands and radiative properties are averaged over each spectral band. 
Under LTE conditions, to minimize spectral correlation problems, the 
bands have to be sufficiently narrow to consider the Planck function 
constant over each band for all considered temperatures (this can be 
explained by the fact that, when equation (6) or (7) is averaged over a 
spectral band, the average of the product of a radiative quantity with 
the Planck function can be considered equal to the product of the aver-
ages if the Planck function is almost constant over each spectral band). 
Several band models for gas radiative properties exist in the literature, 
but only band models, used in the radiation solvers developed at Onera 
(REA and ASTRE), are presented in the following sections.

The first two sections are dedicated to two well-known band models 
which are used to take into account spectral dynamics in radiative 
transfer problems: the Correlated-K (CK) model and one type of Sta-
tistical Narrow Band (SNB) model. The former, which is formulated in 
terms of the absorption coefficient, is appropriate for solving the two 
RTE formulations described in the first part, while the latter, formulated 
in terms of mean transmissivity, is only suitable for RTE formulation 
in terms of transmissivity. In the last section, the basic box model is 
presented. This simplified model can be used when spectral correlation 
effects can be neglected. For each model, cases of uniform and non-
uniform media are discussed, as well as the case of media composed 
of several radiating species.

Correlated-k (CK) model

Uniform media

To compute average radiative properties, as, for example, transmis-
sivities, knowledge of spectral band line positions is not necessary. 
Knowledge of the distribution function of the absorption coefficient is 
sufficient. This is the idea on which the CK model, initially used for 
atmospheric applications [13], is based. The cumulative distribution 
function used is defined by:

 
/

1( )
k k

g k d
νν ν

ν
ν ∈∆ ≤

=
∆ ∫ 	  			                (50)

for min max[ ; ]k k k∈ , where mink and maxk are the extreme values, 
reached in the spectral band ν∆ , of the reduced monochromatic 
absorption coefficient kν , defined as the ratio / xpνκ . Mean trans-
missivity of a uniform column of length l can be expressed with the 
function g :

max

min

1( ) exp( ) exp( )
k

k

gl xplk d xpkl dk
k

ν
νν

τ ν
ν

∆

∆

∂
= − = −
∆ ∂∫ ∫             (51)
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Figure 1 - Absorption spectra of  2CO species (on the left – extracted from Ref. [34]) and air plasma (on the right – extracted from Ref. [3]) at atmospheric 
pressure for different temperatures.

600

400

200

0

100

50

0

4

2

0
1950   2000    2050    2100   2150    2200    2250   2300    2350   2400  2450

Wavenumber(cm-1)

T=300K

T=1000K

T=3000K

T=15000K

T=6000K

T=3000K

104

102

100

10-2

10-4

101

10-1

10-3

10-5

103

101

10-1

10-3

10-5

10-7

Absorption coefficient (cm-1)

Wavenumber (cm-1)

Absorption coefficient (m-1)



Issue 2 - March 2011 - Radiative Transfer Modeling Developed at Onera for Numerical Simulations of Reactive Flows
	 AL02-05	 10

where x  is the molar fraction of the absorbing species and p  the 
pressure in the column. The function /g k∂ ∂ represents the inverse 
Laplace transform of ( )lντ ∆ . By introducing the inverse function of 
g , ( )G k G→ , relation (51) can be written:

( )
1

0
( ) exp ( )l xplk G dGντ ∆ = −∫

					   
			           	                                            (52)

In fact, ( )k G  is the absorption coefficient reordered vs the wave-
number scaled by / ,dG dν ν= ∆ as shown in figure 2. It is conve-
nient to use this function because ( )k G  is monotonous and increas-
ing, inversely as the function kνν →  which has significant spectral 
dynamics. Therefore, integration in relation (52) can be achieved us-
ing quadrature with a small number of points (about ten usually):
 

( )
1

( ) exp ( )
n

i i
i

l w xplk Gντ ∆

=

= −∑        			              (53)

where n , iG  and iw  are the quadrature order, points and weights 
respectively.

Figure 2 - Example of a reordered spectrum on a spectral band [29].
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Box 2 - Spectral correlation phenomenon

The phenomenon of spectral correlation is due to the spectral dynamics of emission and absorption spectra and the fact that emission is 
spectrally located at the same position as absorption. The following simple example demonstrates the importance of this phenomenon 
in radiative transfer problems where integrated values are usually wanted.

Consider two columns 1 and 2, characterized respectively by an emissivity  νε  and a transmissivity ντ (see figure B2-01) of two spectral 
lines (crudely represented by two crenels) located in a spectral interval ν∆ . The monochromatic intensity emitted by column 1 and 
transmitted by column 2 can be expressed as 1( )I I Tν ν ν νε τ=   where 1T   is the temperature of column 1. To simplify, 1( )I Tν

 is assumed 
to be constant over the spectral band ν∆ and equal to 1( )

c
I Tν
  where cν  is the center of the band ν∆ . The intensity averaged over the 

band ν∆  is then written:
/ 2

1 /2

1( ) 0c

c
c

I I T d
ν νν

ν ν νν ν
ε τ ν

ν
+∆∆

−∆
= =

∆ ∫

 .												                          	          (II-1)

This intensity is equal to zero because the product ν νε τ  is equal to zero for any wavenumber included in the spectral band ν∆ . Indeed, 
emission by column 1 is located exactly at the same spectral positions where absorption in column 2 occurs. This result takes spectral 
correlations entirely into account. As real spectra do not have a structure as simple as those described in figure B2-01 another approach 
to calculate this mean intensity would be to not consider spectral correlations but to use the mean values of emissivity and transmissivity 
of the two columns. The result is:

/ 2 /2

1 1 1/2 /2

1 1 2( ) ( ) ( )
9

c c

c c c
c c

I I T I T d d I T
ν ν ν νν ν ν

ν ν ν ν νν ν ν ν
ε τ ε ν τ ν

ν ν
+∆ +∆∆ ∆ ∆

−∆ −∆
= = × =

∆ ∆∫ ∫   	                                                       	            (II-2)

which gives a result totally different from relation (II-1), both quantitatively and qualitatively.

This is a simple example but it is a good illustration of how not accounting for spectral correlations between emission and absorption 
terms can lead to absurd results. As explained in the section “Gas radiative property models”, spectral correlation effects can be more 
or less significant depending on the type of application.

Figure B2-01- Emissivity of column 1 (on the left) and transmissivity of column 2 (on the right).
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Non-uniform media

This model is extended to non-uniform media by assuming that the 
rearrangement function Gν → is spatially independent. This as-
sumption on spectral correlations allows association of the reor-
dered absorption coefficients for different thermophysical conditions. 
Therefore, the mean transmissivity of an inhomogeneous column is 
approximated by:

0
1

( ) exp ( ) ( ) ( , )
n l

i i
i

l w x s p s k G s dsντ ∆

=

 = −  ∑ ∫                               (54)

The weights iw and the values ( ),ik G s  for each narrow band are 
the CK model parameters. In practical cases, the values ( ),ik G s  
depend on temperature, pressure and the gas mixture composition. 
This method, based on the reordering of the absorption coefficient to 
express the mean transmissivity, can be also used for any radiative 
quantities that depend on νκ , such as the mean radiative intensity at 
any point M of abscissa s:

 
1

( ) ( )
i

n

i G
i

I s w I sν∆

=

= ∑ 				                  (55)

where ( )
iGI s is the pseudo-monochromatic intensity at the point 

M at the pseudo wavenumber iG . This intensity satisfies, for each 
quadrature point, the following RTE formulation (given here at LTE 
conditions without scattering):

( )
( ) ( ) ( , ) ( ) ( )i

i

G
i G

I s
x s p s k G s I s I s

s
ν∆∂  = − ∂  

                            (56)

When two species A and B may absorb in the same spectral band, 
the following approximation:

( ) ( ) ( )A Bl l lν ν ντ τ τ∆ ∆ ∆= ×                                                                 (57)                  

can be used with a good degree of accuracy since there is no physical 
reason to have significant correlations between the spectra of dif-
ferent species. Thereby, the mean transmissivities A

ντ ∆  and B
ντ ∆  are 

calculated with relation (54), leading to:

0
1

0
1

0
1 1

( ) exp ( ) ( ) ( , )

exp ( ) ( ) ( , )

( ) ( ) ( , )
exp

( ) ( ) ( , )

n l

i A A i
i
n l

i B B i
i

n n l A A i
i j

i j B B j

l w x s p s k G s ds

w x s p s k G s ds

x s p s k G s
w w ds

x s p s k G s

ντ ∆

=

=

= =

 = −  

 × −  

  
= −  +   

∑ ∫

∑ ∫

∑∑ ∫            (58)

The latter expression can be interpreted as the use of an 2N -point 
quadrature with the weights i jw w . The average intensity is given by 
the following relation:

1 1
( ) ( )

i j

n n

i j G G
i j

I s w w I sν∆

= =

= ∑ ∑
					   

				                                             (59)

where each intensity ( )
i jG GI s  satisfies the following RTE formulation 

(given here at LTE conditions without scattering):

( )
( )

( ) ( ) ( , ) ( ) ( ) ( , )

( ) ( )

i j

i j

G G
A A i B B j

G G

I s
x s p s k G s x s p s k G s

s

I s I s
ν∆

∂
= +

∂
 × −  



            (60)

These relations can easily be extended to m absorbing species con-
sidering an mN -point quadrature.

Statistical Narrow Band (SNB) model

Uniform media

Another band model group is the family of Statistical Narrow Band 
(SNB) models. The random SNB model of Mayer and Goody [13] 
has been chosen for the applications studied at Onera. This model 
is based on statistical assumptions for line positions and intensities 
within a narrow band of width ν∆ , allowing the transmissivity of a 
uniform column of length l, averaged over ν∆ , to be expressed as:

( )1( ) exp exp Wl xplk dν
νν

τ ν
ν δ

∆

∆

 
= − = − ∆  

∫                              (61)

where / Nδ ν= ∆  is the mean spacing between the N line positions 
within ν∆ , and W is the mean black equivalent line width of these 
lines, defined as:

1

1 1 exp( )
N

r
v

r
W l d

N
κ ν

+∞

−∞
=

 = − − ∑∫ 			                  (62)

where r
νκ is the contribution of the thr  line to the absorption coef-

ficient. Many analytical expressions for /W δ  have been proposed in 
the literature by assuming: (i) a suitable probability distribution func-
tion (PDF) P(S) of line intensities (of the PDF usually used, the uni-
form distribution, the Goody exponential distribution and the Malkmus 
tailed inverse-exponential distribution can be mentioned), (ii) a unique 
spectral line shape for all lines, Gaussian (to characterize the Doppler 
broadening effect) or Lorentzian (to characterize the collisional broad-
ening effect), with a constant half-width at half-maximum (HWHM) 

0
Dγ  or 0

Lγ . All analytical expressions of  /W δ , summarized in Ref. 
[34], actually depend on only two parameters, k  and β . The first of 
these, k , can be identified with a reduced mean absorption coeffi-
cient and is always related to the mean line intensity ( )S SP S dS= ∫  
by the relation  /k S δ= . The second, β , characterizes the degree 
of line overlapping and is always proportional to the ratio /

0 /L Dγ δ  
(L/D stands for ’Lorentz’ or ‘Doppler’). The parameter β can be gen-
erated from a spectroscopic database or from curve fitting. In the 
latter method the analytical expression / /L DW δ  is fitted to the curve 
of growth (defined as the opposite of the logarithm of the mean trans-
missivity versus the column length l), obtained with line by line cal-
culation.

Under some thermophysical conditions the lines have a Voigt profile, 
for which there is no analytical expression of the mean black equiva-
lent line width VW . Several approximations of VW , based on expres-
sions of LW  and DW , for Lorentz and Doppler regimes respectively, 
can be used. The expression of Ludwig [20] is generally an accurate 
approximation:

1/21VW
xplk

δ
−= −Ω                                                                           (63)

with:
2 22 2

1 11 1 1D LW W
xplk xplkδ δ

− −
      
   Ω = − + − −               

                      (64)
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Figure 3 - Typical curve of growth depending on the broadening regime [17].

Figure 3 shows an example of the typical curve of growth for a spectral 
band of 1000 cm-1 (112000–113000 cm-1) for the N2 Birge-Hopfield 
system at atmospheric pressure and 8000 K. The different broad-
ening regimes, like Doppler and Lorentzian regimes, are indicated in 
figure 3. The parameters Dβ and Lβ  are adjusted to fit expression (63) 
to the curve of growth.

Non-uniform media

Different approximations exist in the literature allowing the extension 
of SNB models to the case of non-uniform gaseous columns. An ex-
tensive review of these approximations is given by Young [39]. The 
classic Curtis-Godson (CG) approximation used in practical cases is 
briefly presented here.

The main assumption of CG approximations is that the curves of growth 
of a non-uniform column versus the optical path 

0
( ) ( )

l
u x s p s ds= ∫   

have the same behavior as those obtained for uniform columns. There-
fore, mean transmissivity is written:

*

( ) exp VW
lντ

δ
∆

 
 = −
 
 

						    
					                                    (65)

where * /VW δ  is given by equations (63) and (64), in which the 
product xpkl  is replaced by:

*

0
( ) ( ) ( )

l
k u x s p s k s ds= ∫

						    
				                                                   (66)

Moreover, the terms /LW δ  and  /DW δ  in equation (64) are replaced, 
respectively, by  * /LW δ  and * /DW δ , which are calculated with the 
same analytical formulations as those used for a uniform column, 
but with *k  and  *

/L Dβ  instead of k  and /L Dβ . With the classic CG ap-
proximation,  *

/L Dβ   is expressed as:

*
/ /* 0

1 ( ) ( ) ( ) ( )
l

L D L Dx s p s k s s ds
k u

β β= ∫                                               (67)

The “*” parameters are consequently obtained from parameters cal-
culated for uniform media.

If two species A and B absorb in the same spectral band, the approxi-
mation given by equation (57) can be used.

Box model

In some applications, the spectral correlation effect on radiative trans-
fer can be weak. This is the case, for example, when the medium is 
optically thin or when the absorption spectrum has weak spectral 
dynamics. The latter case is illustrated in figure 4 which shows spec-
tral emissivities of two 2 2H O N− mixture columns at two different 
pressures but with the same optical path (xpl product). The collision 
broadening effect leads to smooth radiative properties at high pres-
sure in such a way that the spectral dynamics become weaker.

In these situations, information on the spectral distribution (distribu-
tion function for the CK model, overlapping parameter  β  for the SNB 
model) can be ignored and the model parameter is only the reduced 
absorption coefficient k  (box model parameter).

Figure 4 - Emissivity spectra of two 2 2H O N−  mixture (
2

0.5H Ox = ) col-
umns at 800 K as a function of pressure condition at a constant product 
xpl [34].

If the integral form of the RTE (see equation (7)) is used then the 
transmissivity, averaged over ν∆ , of a uniform column of length l can 
be expressed to a good approximation as:

( ) exp( )l xpklντ ∆ = −
						    

				                                                  (68)

For non-uniform media the following relation is simply used:

0
( ) exp ( ) ( ) ( )( )l
l x s p s k s dsντ ∆ = −∫

					  
				                                                  (69)

and for mixture media, a relation quite similar to equation (57) can 
be used.
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Radiative property expressions

From a general point of view, the absorption (or scattering) phenom-
enon is quantified by an efficiency factor Qabs  (or  Qsca ) which is 
defined as the ratio between the absorption (or scattering) cross sec-
tion and the actual surface particle 2rπ . The Mie theory gives ana-
lytical expressions [1] to calculate these efficiencies for an isolated 
particle, assumed to be spherical, homogeneous and isothermal. The 
expressions depend on the local complex index of refraction of the 
particle and the Mie parameter. Figure 5 shows typical changes in the 
efficiency coefficients as a function of the Mie parameter for alumina 
particles.

Figure 5 - Absorption and scattering efficiency coefficients for alumina 
particles ( 31.7 2.10m i−= − ).

Radiative property models of particles

When a photon interacts with a medium containing small particles, 
the radiative intensity may be changed by absorption and/or scat-
tering. This situation is mostly encountered in a combustion engine 
where soot or alumina particles are present. 

This part of the paper only deals with radiative properties of spherical 
particles, since particles are assumed to be spherical in the applica-
tions studied at Onera. Moreover, scattering is considered as indepen-
dent. In this situation, the radiative properties of a cloud of spherical 
particles of radius r, interacting with an incident radiation of wave-
number ν , are governed by only two independent non-dimensional 
parameters [23]:
	 •complex index of refraction of the particles:
	
	 •size parameter (also called the Mie parameter): 2x rvπ= .
Note that the complex index m is a function of wavenumber and lo-
cal thermophysical conditions at the point of abscissa s.

When the size parameter is not very small or very large compared 
to unity, the radiative properties are usually determined from the Mie 
theory, a general theory describing interaction between an electro-
magnetic wave and a spherical particle. In other cases, this theory 
can be simplified: the Rayleigh theory (for 1x << ) and geometric 
optics (for 1x >> ) are recovered. The case 1x <<  is, in particular, 
discussed in the third section.
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Figure 6 - Polar plots of the scattering phase function for a single alumina particle ( 31.7 2.10m i−= − ) with ν=10000 cm-1 and r=1 µm (on the left), 
r=4 µm (on the right).
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From the efficiencies Qabs  and  Qsca  the absorption and scattering 
coefficients at the point of abscissa s can be obtained for a cloud of 
particles of non-uniform size:

0

( ( ), , )3( ) ( , )
4

abs
V

Q m s r
s f r s dr

rν
ν

κ
∞

= ∫                                          (70)

0

( ( ), , )3( ) ( , )
4

sca
V

Q m s r
s f r s dr

rν
ν

σ
∞

= ∫
				  

		                                                                                (71)

where ( ),Vf r s dr  is the volume fraction, at the abscissa s, of the 
particles having a radius between r and r dr+ .

To characterize anisotropic scattering due to particles, the scattering 
phase function is required. Its expression is:

0

( , ' )
( ( ), , )1 3 ( , ' , ) ( , )

( ) 4
sca

V

s u u
Q m s r

s u u r f r s dr
s r

ν

ν
ν

ν
σ

∞

Φ → =

Φ →∫

 

  (72)

where ( , ' , )s u u rνΦ →
 

 is the scattering phase function given by 
analytical expressions from Mie theory for one size of particle. Figure 
6 gives, for example, polar plots of the scattering phase function for 
two radii of alumina particle at 10000 cm-1.

Radiative property modeling

Since particles are often present simultaneously with gases it is more 
convenient to consider the same spectral discretization for both. 
Therefore, particle radiative properties have to be averaged over 
spectral bands ν∆ . However, contrary to the case of gas radiation, 
the spectral dynamics of particle absorption spectra is, in general, 
sufficiently weak to make the spectral correlations insignificant. In 
this situation the box model can be used and the model parameters 
are only the absorption and scattering coefficients and the phase 
function averaged over each spectral band.

Considering a radius discretization ir∆ , expression (70), for example, 
becomes:

( ( ), , )1 3( ) ( , )
4i

abs
Vr

i

Q m s r
s f r s drd

r
ν

ν

ν
κ ν

ν
∆

∆ ∆
=

∆∑ ∫ ∫              (73)

If the spectral bands are sufficiently narrow to consider the complex 
index m to be constant over each spectral band then the double in-
tegration can be reduced to only one, over the Mie parameter x [15]:

,
( ( ), )3( ) ( ) ( )

4 i

abs
V i ix

i

Q m s x
s f s g x x dx

x
νκ ∆

∆
= −∑ ∫                                (74)

In this expression, ( ),V i if s r∆  is the volume fraction of particles hav-
ing a radius contained in the interval ir∆  and the Mie parameter ix
is equal to  2 i crπ ν  where cν  is the centre of the band ν∆ and ir  the 
centre of the interval ( ) .i ir g x x∆ −  is a distribution function describ-
ing the variation of x due to a particle size distribution in  ir∆  and varia-
tion of ν  in  ν∆ . Several forms of the g  function have been used by 
various researchers. A modified gamma distribution is generally used. 
The choice of the parameters characterizing this distribution depends 
on the type of application.

Similarly, expressions (71) and (72) can be expressed as:

,
( ( ), )3( ) ( ) ( )

4 i

sca
V i ix

i

Q m s x
s f s g x x dx

x
νσ ∆

∆
= −∑ ∫                                (75)
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Φ → =

× Φ → −

∑

∫

 

 
   (76)

If the medium contains several types of particles (each type of par-
ticle being characterized by a different complex index of refraction) 
then the mixture radiative property calculation presents no difficulty 
because the radiative properties of the particles (absorption and scat-
tering coefficients and phase function) are additive.

Rayleigh scattering regime

If the particles are sufficiently small to assume the Mie parameter x 
to be very small compared to unity (for instance, primary soot par-
ticles or gas molecules satisfy the condition 1x << ), the radiative 
properties can be easily obtained by considering the appropriate limit 
of the general Mie equation solution: the Rayleigh scattering regime. 
In this case the Mie parameter dependences of the efficiencies are: 

absQ x∝  and 4
scaQ x∝ . As 1x << , scattering can be neglected in 

comparison to absorption.

In the Rayleigh regime the absorption efficiency is given by a simple 
analytical formula giving a simple expression for the absorption coef-
ficient [23]:

( ) ( )2 22 2

36 ( , ) ( , )( ) ( )
( , ) ( , ) 2 2 ( , ) ( , )

( , ) ( )

V

V

n s k ss f s
n s k s n s k s

A s f s

ν
π ν νκ ν

ν ν ν ν

ν ν

=
− + +

=

                 	
						                   (77)

where ( )Vf s  is the local volume fraction of particles and ( , )A s ν
a function depending on the real and imaginary parts of the local 
complex index of the particles. Thus, for sufficiently narrow spectral 
bands, as previously discussed, the average absorption coefficient is 
expressed as:

( ) ( , ) ( )c c Vs A s f sνκ ν ν∆ =  				                (78)

Available models and typical applications

The development of radiative property models, presented in the two 
previous parts, requires data such as spectroscopic databases for 
gases or complex indices of refraction for particles. The following 
sections give a description of the gas and particle radiative property 
models, implemented in the radiation solvers (ASTRE and REA) de-
veloped at Onera. In particular, the available models for two main ap-
plications, radiation in flames (combustion) and radiation in plasmas 
(atmospheric entry problems), are presented. The majority of gas ra-
diative property models have been developed by the EM2C laboratory 
or in collaboration with them. In this case, the model development is 
based on HTGR spectroscopic databases [24].



Issue 2 - March 2011 - Radiative Transfer Modeling Developed at Onera for Numerical Simulations of Reactive Flows
	 AL02-05	 15

Figure 7 - Radiative power without (on the left) and with (on the right) turbu-
lence-radiation interaction in a sooty turbulent ethylene jet flame [37], [38].

Air breathing combustion at high pressure

At high pressure, due to the collision broadening effect, the absorp-
tion spectra display smoother spectral dynamics than those at atmo-
spheric pressure. In this case, the spectral correlation effect is weak 
and the box model can be used to model the gas radiative proper-
ties. Such an approach has been used by Pierrot [25] to deal with 

,2 2CO  H O and CO  radiation at high pressure in an aeronautical 
combustion chamber. This model is called the High Pressure Box 
Model (HPBM). The model parameters are the reduced absorption 
coefficients  k  which are extracted from the SNB model parameters 
developed by Soufiani and Taine [33]. The temperature and spectral 
ranges considered are 700-2500 K and 150-9300 cm-1. The tem-
perature grid is composed of 10 values with a constant step equal to 
200 K. The spectral range is divided into 367 bands of constant width 
equal to 25 cm-1. This model version is called HPBM 367. 

To reduce CPU times, Pierrot has enlarged the band width, grouping 
bands with similar radiative properties. The new model is then con-
stituted of 26 bands (HPBM 26) and gives similar results in terms of 
accuracy at high pressure.

If the configuration studied produces a significant quantity of soot 
particles, their radiation can be taken into account in the same way as 
for combustion at atmospheric pressure (see previous subsection).

Figure 8 shows a typical application result. Radiative transfer has 
been calculated in a combustion chamber using the HPBM 26 model 
for , ,2 2CO  H O  CO  radiation and equation (80) for soot particle ra-
diation. Negative values indicate that local emission is greater than 
local absorption and vice versa.

Radiation in combustion applications

Flames emit, scatter and absorb radiation mainly in the infrared spec-
tral range. The participating medium is in general constituted of com-
bustion gases and particles such as: (i) , ,2 2CO  H O  CO  molecules, 
and soot particles, for air breathing combustion (laboratory flames 
or combustion chamber), (ii) , , ,2 2CO  H O  CO  HCl  molecules, and 
alumina particles, for aluminized solid propellant combustion.

Air breathing combustion at atmospheric pressure

For atmospheric pressure applications, the spectral dynamics of the 
gas absorption coefficient is so significant that accurate radiative 
transfer prediction needs a spectrally correlated model.

For the treatment of 2CO  and 2H O  radiation in the infrared spectral 
range, a CK model is used. Model parameters have been generated 
by Soufiani and Taine [33] for applications in the 300-2500 K tem-
perature range. A seven-point quadrature has been used (the same 
for the two species and for all the spectral bands). The pseudo-mono-
chromatic absorption coefficient ( ),A ik G s  is given by the following 
expression (subscript A represents 2CO  or 2H O  species):

( ) 1 *( , ) ( ) ( ) ( ) ( , )A i A atm A A ik G s x s p T s Q T s k G s
−

=                         (79)

where ( )( )AQ T s  is the partition function of the absorbing molecule 
at the temperature ( )T s  at the abscissa s. The parameters * ( , )A ik G s  
are tabulated as a function of T (a set of 16 temperature values). In the 
case of 2H O they are also tabulated versus 

2H Ox  (a set of 5 values) 
to take into account the strong dependence of line broadening on the 
molar fraction 

2H Ox . The useful wavenumber range (150-9300 cm-1) 
has been divided into 44 spectral bands with a variable width for 

2H O . 2CO  absorbs radiation in only 17 of these bands. For an 
RTE formulation in terms of transmissivity, the model is constituted of 
308 spectral points (44×7) whereas 1022 (17×7×7+(44-17)×7) 
spectral points are necessary for an RTE formulation in terms of the 
absorption coefficient due to the double quadrature required in the 
overlapping bands.

In addition, it may be necessary to take soot particle radiation into 
account but soot particle aggregation is not considered. As primary 
soot particles are very small spherical particles, expressions valid for 
the Rayleigh regime can be used and scattering can be neglected. To 
compute the average absorption coefficient expression (78) has been 
simplified to the following [35], [37]:

 ( ) 5.5 ( )c Vs f sνκ ν∆ = 		                              	            (80)

due to lack of information on values, of real and imaginary parts of 
the soot refraction index, over the whole spectrum and as a function 
of soot composition and temperature.

For example, the sooty turbulent ethylene jet flame experimentally 
studied by Coppalle and Joyeux [5] has been simulated [37], [38]. 
The CK model, for the gas mixture, associated with equation (80), 
for soot particles, has been used to compute radiative transfer in the 
flame. Figure 7 shows the TRI effect (see Box 1) on the radiative 
power field.
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where ( )E y  is defined as:
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−
=

+ −∫                                              (82)

Parameters have been generated from LBL calculations using a Voigt 
profile: the k   parameters have been obtained from spectra averaged 
over spectral bands and the Dβ  parameters have been adjusted on 
the theoretical curve of growth with a least-squares fit. CO  and 2CO
parameters have been generated for a temperature grid between 1000 
and 4000 K with a 200 K step. For the spectral grid, spectral bands of 
25 cm-1 were considered.

Figure 9 shows an example of the application of the SNB model for a 
/2CO CO  mixture. Radiative flux has been calculated on the surface 

of a Martian entry vehicle (AEROFAST demonstrator [19]) for a trajec-
tory point.

Figure 9 - Radiative flux on the surface of a Martian entry vehicle with 
a biconic shape.

Earth’s atmosphere re-entry

Lamet et al. [18] have developed a hybrid model (SNB-box-LBL) of 
the radiative properties in non-LTE 2 2N O−  plasmas such as those 
encountered on Earth re-entry. For this kind of non-LTE application, 
a multi-temperature approach is generally used. Transrotational ( )T  
and electrovibrational/free electron ( )/ve eT T  temperatures can reach 
50000 K and 25000 K respectively, and pressure conditions are about 
a few bar in the shock layer. Given these temperatures, the spectral 
interval considered is 1000 cm-1 to 200000 cm-1.

An SNB model was formulated for optically thick (in re-entry applica-
tions) electronic systems of diatomic molecules involved in air plas-
mas ( 2N  VUV systems, NO UV systems, and 2O  Schumann-Runge 
system). Considering the thermophysical conditions, the lines have a 
Voigt profile. The model parameters are k , Dβ  and Lβ . Of the differ-
ent line intensity distributions which have been tested, the exponential 
distribution and the tailed-inverse exponential distribution have been 
selected for the Doppler and Lorentz contributions respectively, giv-
ing:

Figure 8 - Radiative power field in a combustion chamber at 10 bar, fitted with 
a multipoint injector.

Combustion in an aluminized solid propellant rocket engine 

In a solid propellant motor, temperatures up to 3600 K, and pressure 
between 50 to 150 bar, are reached in the combustion chamber. In 
this situation, radiative transfer in the chamber can be calculated with-
out taking into account spectral correlation, for the same reasons as 
those given in the previous subsection.

For the gas radiative property model, the box model, developed by 
Duval [11], with consideration of the , ,2 2CO  H O  CO  and HCl spe-
cies, is used. The k   parameters are tabulated for a 300-3500 K tem-
perature range, and for 43 spectral bands of variable width between 
150 and 9300 cm-1.

The radiative properties of alumina particles are calculated using Mie 
theory. Absorption and scattering coefficients and phase function are 
computed on the assumption that the distribution function g in equa-
tions (74), (75) and (76) is a Gaussian function. In general, several 
classes of particle sizes are used (typically between one and five 
samples) to describe particle size distribution. The complex refraction 
index of alumina is modeled as a function of wavenumber and tem-
perature in accordance with the expressions given by Dombrovsky 
[9] or Joumani [15].

Radiation in atmospheric (re-)entry applications

Two SNB models for atmospheric (re-)entry applications have been 
implemented: one for the Martian atmosphere at Local Thermody-
namic Equilibrium (LTE) [28], [31] and the other for the Earth’s atmo-
sphere at non-LTE conditions [17].

Martian atmosphere entry

Rivière et al. [28] have modeled, with an SNB approach, the infrared 
radiative properties of 2CO/CO  mixtures between 500 and 5000 cm-1

for temperature and pressure ranges limited to 4000 K and 100 Pa 
respectively. For these thermophysical conditions, line broadening is 
mainly due to the Doppler effect. Consequently the model parameters 
are k  and Dβ  . Of the different line intensity distributions which have 
been tested, the exponential distribution was used, giving:
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where E(y) is given by relation (82).

The parameters have been generated from line by line calculations in 
the Voigt regime: the parameters k  have been obtained by averaging 
absorption spectra over each spectral band and the parameters Dβ  
and Lβ  have been adjusted to fit expression (63) to the theoretical 
curves of growth. Moreover, the parameters /η κ , present in rela-
tion (20), have been calculated to take into account non-equilibrium 
conditions. In fact, in non-LTE conditions, this ratio, which can have 
significant spectral dynamics, is not equal to the Planck function. 
Moreover, it has been checked that there is no spectral correlation 

problem between /η κ  and τ . Parameters have been tabulated for a 
band width equal to 1000 cm-1 and a two temperature grid ( ), veT T .

For continua and optically thin molecular systems, a box model has 
been used. For the latter’s contribution, mean emission and absorp-
tion coefficients have been tabulated on the same two-temperature 
grid. For continua, mean emission and absorption coefficients have 
been tabulated as functions of eT  in the range 500-25000 K [16]. 
Finally, for atomic lines, the line by line approach has been retained 
due to the unsatisfactory results obtained with an SNB model. For this 
contribution, Stark broadening is also taken into account since this 
kind of broadening is generally significant in Earth re-entry conditions 
(ionized plasma above 10000 K). Half-widths at half-maximum are 
calculated as explained in Ref. [27].

This hybrid modeling has been used to calculate, for a trajectory 
point, the radiative flux at the surface of an Earth re-entry probe (FIRE 
II [2], see Figure 10) due to radiative transfer in the shock layer. The 
Monte Carlo methodology has been used with 20 and 200 millions 
rays [17] 
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Figure 10 - Radiative flux on the front shield of an Apollo type vehicle (FIRE II [2]). Results obtained for a trajectory point with a Monte Carlo method with 20 
millions rays (on the left) and 200 millions rays (on the right) [17].	
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CFD (Computational Fluid Dynamics)
CG (Curtis-Godson)
CK (Correlated-K)
CPU (Central Processing Unit)

DNS (Direct Numerical Simulation)
DOM (Discrete Ordinates Method)
HWHM (Half-Width at Half-Maximum)
HPBM (High Pressure Box Model)
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