
Issue 2 - March 2011 - Space Discretization Methods
	 AL02-06	 1

CFD Platforms and Coupling

Space Discretization MethodsB. Courbet, C. Benoit, V. Couaillier, 
F. Haider, M.C. Le Pape, S. Péron  

(Onera)

E-mail: : bernard.courbet@onera.fr

Onera codes for CFD and Energetics are mostly based on a finite volume methodo-
logy. Within this common framework, a wide variety of space discretization tech-

niques are available depending on the required degree of precision, on the kind of mesh 
and on the application domain. This paper describes three particular topics which 
are central to the codes developed at Onera. The first section discusses cell-centered 
and cell-vertex techniques in the context of structured meshes and their extension to 
unstructured zones. The second part shows how efficient third order schemes can be 
implemented on Cartesian and curvilinear overlapping grids. Finally, the third section 
presents a Muscl-type discretization methodology currently used on general polyhedral 
meshes, with indications on its generalization to high-order precision.

Introduction 

This paper presents some of the space discretization methods used in 
the codes developed at Onera for Fluid Dynamics and Energetics ( see 
[6] [33] for overall descriptions of ElsA and CEDRE and [34] [37] for 
examples of applications). All the other numerical and modelization 
issues will be presented in separate papers; for instance time integra-
tion will be found in [28].

Many other projects on innovative methods are underway at Onera 
and may be a future source of progress for industrial and research 
codes [3] [25].

Both codes are based on a finite volume methodology [19], with 
concerns focused on common topics, such as:
	 • Precision is an essential quality of numerical results. Standard 
second order interpolation procedures may not be sufficient for ap-
plications such as acoustics or Large Eddy Simulations, and several 
higher order techniques under development or already in application 
will be described;
	 • Stability and robustness is an essential requirement for an inten-
sive use on a large number of physical configurations;
	 • Computational efficiency (memory requirements and execution 
time) is important as complex simulations are very demanding in 
terms of computer resources;
	 • Geometric complexity is increasing in everyday research and 
industrial applications. Depending on the type of application, struc-
tured or non-structured meshes can be used to deal with this issue. 
Even within the restrictive framework of space discretization, methods 
cannot be described in detail and only a few important themes have 
been selected for this presentation. 

The remainder of this paper consists in three sections:
	 • The first one, Finite volume cell centered discretization for MB-
structured and hybrid meshes (V. Couaillier, M.C. Le Pape) discusses 
basic choices for finite volume space discretization on hexahedral 
meshes including non-structured zones;
	 • The second section, Third-order scheme in an overset grids fra-
mework (C. Benoit, S.Péron) shows how geometric complexity can 
be taken into account through overlapping structured or Cartesian 
meshes while maintaining third order precision;
	 • The last section, Finite volume techniques on polyhedral meshes 
(B. Courbet, F.Haider) describes the Muscl-type space discretization 
on general non-structured meshes implemented in CEDRE. These 
methods can be applied to any kind of polyhedral cells and are thus 
very well suited to complex geometries. The paper also shows how 
third-or fourth order interpolation is possible in this framework. 

The methods described in the two first sections have been implemen-
ted in ElsA, whereas the third part is related to CEDRE.

Finite volume cell centered discretization for 
mb-stuctured and hybrid meshes 

Introduction

This part summarizes some aspects of finite volume space discretiza-
tion in multi-block structured and hybrid solvers developed at Onera, 
especially for curvilinear meshes adapted to industrial type applica-
tions, that is to say complex mesh topologies. As this presentation is 
far from exhaustive in terms of the possibilities of a finite volume dis-
cretization scheme, we refer the reader to Fletcher [14], Hirsch [20], 
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Peyret and Taylor [32], for instance, for more detailed presentations of 
the computational methods for Fluid Dynamics in curvilinear meshes.

Generally speaking, the extension to a multidimensional scheme of 1D 
numerical schemes is not straightforward. In fact, for a given method 
defined in 1D, several parameters can vary in 2D and 3D, for example: 
	 • The mesh topology, which is a main point for the numerical 
method implementation, can be based on different approaches: Mo-
no-domain or multi-domain structured, unstructured, structured/
unstructured hybrid. Moreover, adaption techniques may be consi-
dered: mesh deformation, mesh motion, local refinement, Automatic 
Mesh Refinement (AMR).
	 • The discretisation approach : Finite Differences, Finite Volumes, 
Finite Elements.

If we restrict the method to finite volume schemes considered in this 
paper, we still have to specify the unknown localization (numerical 
field): Cell vertex (control volume = mesh cell  + node redistribu-
tion), Node centered (control volume = dual mesh cell  centered 
on a mesh node), Cell centered (control volume = mesh cell). The 
following paragraph is devoted to highlighting some of the choices 
which were made in elsA. software [7].

Cell centered FV in Multi-block structured meshes

Lax-Wendroff Scheme

Several extensions of the Lax-Wendroff scheme have been proposed 
in multi-space-dimensions, for the Euler and the Navier-Stokes equa-
tions, differing by their non-linear properties and their molecular 
dependence. For more details concerning these properties, see the 
complete study done by Lerat [26].

One original formulation of the Lax-Wendroff scheme associated 
with an efficient multi-grid method has been proposed by Ni for Euler 
and Navier-Stokes turbomachinery simulation [31], and then used 
by several authors (see for instance [10] or [15]. This formulation, 
which is a cell-vertex approach, is very easy to implement but does 
not preserve the good numerical properties of the original Lax-Wen-
droff scheme extended on a curvilinear mesh by Lerat [26] (the Ni’s 
scheme is not dissipative in the sense of Kreiss).

Figure 1 - Lax-Wendroff-Ni scheme

Figure 1 presents the two types of control volumes used in the Lax-
Wenfroff-Ni scheme for the space-discretization, the mesh cell control 
volume and the dual cell control volume, as well as the two types of 
surface normals used for the treatment of the boundary conditions.
The time derivatives are replaced by space derivatives by using the 
following relation:
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The gradients appearing in the viscous terms are evaluated at the 
nodes by using an integral formula based on a dual control volume:
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Then the first order term is evaluated at the centers of the mesh cells:
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and then distributed at the nodes by using an arithmetic averaging
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  or  a volume averaging (Hall approach). 

From the first order terms approximated at the cell centers, the se-
cond order term can be evaluated directly at the nodes by using a 
relation analogous to (2), or by using the distribution formulae intro-
duced by Ni for his multi-grid scheme. The artificial dissipation terms 
are calculated following each mesh direction.

Jameson scheme

This scheme is in fact the most popular scheme used in the CFD 
community and many 3D research or industrial structured codes de-
veloped for complex configurations are based on this approach [21]. 
Nevertheless, among these codes, two main approaches exist: the 
node centered approach (for instance [8] [22]) and the cell centered 
approach (see for instance [5], [40]), with various implementations 
of the original numerical dissipation adapted to the type of the mesh. 
The cell vertex approach seems to be more accurate near bodies for 
the Euler simulations, but this advantage disappears for Navier-Stokes 
simulations due to the mesh refinement. The main advantage of the 
cell centered approach is that, in a multi-domain structured approach, 
there is no problem of multiple point matching (Figure 2-a) or mul-
tiple boundary conditions at a given point, and this leads to a robust 
method for solving complex geometrical configurations. However, in 
the cell vertex approach, a correct treatment for a point located at a 
several domain intersection is possible (Figure 2-b), but more difficult 
to implement in a general approach for structured codes because it 
depends on the number of domains, as presented in figure 3.

            a) Cell centered approach                 b) Cell vertex approach
Figure  2 - multi-domain interface treatment
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Figure 3 - Wing/Fuselage/Pylon/engine configuration – Multi-block structured 
mesh

The Jameson scheme is presented below in its cell centered version:

Figure 4 - Cell centered discretization for the Jameson scheme

Figure 4 presents an inner cell control volume used for the space-
discretization of the cell centered Jameson scheme, and a boundary 
cell control volume.

At each step of the Runge-Kutta time-stepping, the solution is updated 
as follows:
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The gradient of the velocity is discretized using a mean formula :
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Then the divergence term can be estimated by using the same type 
of mean formula:
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where a space centered discretization is performed:
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As for the Lax-Wendroff scheme, the artificial dissipation terms are 
calculated following each mesh direction.

In the space discretization presented before, the way used for dis-
cretizing the viscous term, which is very easy to implement because 
only one type of control volume is used, corresponds to a five-point 
scheme. This leads to decoupling odd and even points, this being a 
drawback from a numerical point of view, because additional artificial 
dissipation is required even in the viscous region as boundary layers. 
This can play a significant role when looking at very accurate solu-
tions for basic configurations. 

Figure 5 -  Viscous term discretization

Then, a three-point scheme (per mesh direction) can be obtained by 
using staggered cells in each space direction as presented in figure 5, 
for which the gradients are evaluated at the face centers. In that case, 
odd and even points are coupled and no artificial dissipation is re-
quired in the viscous region, but this approach is more expensive 
and more difficult to implement in a multi-domain code. Nevertheless, 
from a practical point of view and for complex configurations in which 
meshes are not regular, the five-point scheme is widely used.

FV Hybrid solvers on composite meshes

Numerical methods used for the simulation of three-dimensional 
compressible viscous flows have reached a high level of validity and 
efficiency and are used as a basic tool for designing turbomachinery 
and aircraft components. However, most of these methods are based 
on multi-domain structured grid solvers, which imply a time-consu-
ming mesh generation phase, especially when complex industrial 
geometries are concerned, and also restrains the application of auto-
matic grid adaptation technologies. On the other hand, the unstruc-
tured mesh approach enables the use of automatic mesh generators 
even on complex geometries, and increases the flexibility for mesh 
adaptation strategies. A new numerical procedure is developed for the 
resolution of the three-dimensional Euler and Reynolds-Averaged Na-
vier-Stokes equations. It allows for the implementation in a single glo-
bal solver of unstructured and hybrid structured-unstructured grids in 
order to combine as much as possible the efficiency and accuracy of 
structured solvers and the flexibility and adaptativeness capabilities of 
unstructured solvers.

At Onera, the first developments on hybrid solvers (as defined above) 
were carried-out in the years 1994-1998 [23] [24]. The method deve-
loped in this work for the solution of the Euler and Reynolds-Averaged 
Navier-Stokes equations in 3D by means of adaptive unstructured 
and hybrid grids has clearly demonstrated its value in industrial appli-
cations, in which the flexibility of unstructured mesh generation and 
adaptation is a critical necessity. Satisfactory agreement between ex-
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perimental data and computed results validated the numerical method 
implemented for the resolution of the Euler and Reynolds-Averaged 
Navier-Stokes equations. An original local mesh enrichment method 
has been developed and applied on two- and three-dimensional test 
cases. Convergence acceleration techniques based on agglomeration 
muti-grid methods was also built up.

Since 2007 this work has been implemented in elsA, and the pro-
ject elsA-hybrid is now includes new inline development with the end 
users’ requirements for external flow and internal flow simulations 
(industrial partners, in-house Onera users). In the present part we will 
briefly describe some aspects of the numerical method implemen-
ted for the unstructured meshes as well as the matching techniques 
between structured and unstructured blocks.

2nd order FV scheme in unstructured meshes

Unstructured solver

The space discretization used at the present time is based on a fi-
nite volume decomposition of the computational domain in polygonal 
control volumes corresponding to the cells of the mesh, leading then 
to the so-called cell-centered approach. Two different spatial sche-
mes have been implemented:
	 • A space-centered scheme combined with non linear 2nd order 
and linear 4th order artificial dissipation terms (Jameson type);
	 • An upwind method based on the Roe’s Flux Difference Splitting 
scheme and a MUSCL extrapolation of Van Leer, with various limiters. 
Both approaches are second order accurate in space on regular 
meshes, (except near flow discontinuities where a first order accura-
cy is recovered as for the structured schemes). The treatment of the 
boundary conditions is based on characteristic relations. 

The time integration process uses a multi-step method, either the 
classical 4-step Runge-Kutta method or the backward Euler method, 
and is performed in a single time loop including structured and 
unstructured blocks. Implicit methods are developed, first a LU-SSOR 
method [28] adapted to unstructured meshes. 

Structured / Unstructured block matching technique

The mesh generation flexibility associated with unstructured methods 
makes it possible in principle to easily ensure point coincidence at the 
structured block / unstructured block boundaries. In this case the use 
of a cell-centred scheme in both types of meshes allows for conser-
vative treatment on these block boundaries thanks to the exchange 
of numerical fluxes through the same interfaces (see Figure 6a). In 
this case, we use 2nd order FV schemes and the numerical fluxes 
are computed by means of the values evaluated respectively on the 
left side and on the right side of the interface and then corresponding 
either to a structured or to an unstructured reconstruction scheme. 
This means that the common flux defined at the interface corresponds 
to a hybrid methodology, the local consistency and the stability of the 
time-loop process deriving, from a heuristical point of view, from the 
properties of the separate structured and unstructured schemes.
 
For various reasons, the use of a node-centered unstructured sol-
ver could be of value: number of unknowns, accuracy, etc.; leading 
to non-conformal matching boundaries (Figure 6b). In that case we 
must use either interpolation techniques to compute the fluxes on 
both sides separately [23], or local mesh reconstruction to get com-

mon space discretization on the common boundaries [4]. The first 
solution is not conservative in the principle, but if the cell sizes are 
close together, the corresponding error is small, whereas the second 
treatment provides the conservativity property but is more difficult to 
implement for general curvilinear boundaries in 3D meshes.

Figure 6 - Structured / unstructured block matching – Cell vertex versus cell 
centered 

Mesh adaptation

Automatic mesh adaptation tends to correct the numerical error inherent 
to an initial improper grid node distribution. Isotropic as well as aniso-
tropic mesh refinements have been studied and implemented at Onera.
 
A method for the automatic adaptation of unstructured grids has been 
proposed in [24]. The basis of this method comes from a local ani-
sotropic mesh enrichment idea. Most of the refinement procedures 
applied on unstructured grids are based on an isotropic division of 
cells. On the contrary, the present method relies on an anisotropic 
division of cells over the edges. An original error estimator, which is 
obtained from an evaluation of the interpolation error on the edges of 
the mesh, takes into account the mixed discretization of the solution 
in a first order accurate part near discontinuities, and a second order 
accurate part elsewhere. This error estimator is applied to determine 
which cells of the mesh have to be divided. After each step of enrich-
ment, the distorted mesh is optimized by Laplacian-like smoothing 
and edge swapping. Applications of the adaptation procedure cou-
pled with the numerical method have been used on several test cases 
(airfoil, wing, isolated rotor). There are plans to couple with the elsA 
software in the near future.

The first computations with unstructured isotropic mesh refinements 
were recently performed with elsA. Mach number gradient compu-
tation across interfaces determines which cells must be divided. 
Applications of the adaptation procedure coupled with the numerical 
method are fulfilled on the NACA0012 airfoil and on the ONERA M6 

Common boundary interface

a)

Common boundary interface
Unstructured boundary interface

b)
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wing. The value of this adaptation procedure is clearly seen in the pre-
sented result (Figure 7) with the excellent capture of the flow features 
after four cycles of adaptations/CFD computations.

Figure 7 - NACA0012 airfoil – Euler transonic computation – unstructured 
mesh refinement

Third-order scheme  in an overset grids framework 

Introduction 

In this part, the computational domain is discretized by a set of cur-
vilinear structured grids around bodies completed by a set of regular 
Cartesian grids. 

There are various reasons to justifying the choice of this grid topo-
logy. First, on structured grids (that is i,j,k-ordered grids), the nu-
merical scheme is generally more computationally efficient than on 
unstructured grids (that is grids made of tetrahedrons, hexahedrons, 
etc. with no particular order). Besides, various studies have proven 
that a numerical scheme on Cartesian grids is even more efficient and 
accurate. As a matter of fact, on regular Cartesian grids, numerical 
scheme formulae are simplified and no metrics storage is required. 
Another advantage of Cartesian grids is the simplicity of the formula-
tion of high-order schemes. 

Figure 8 - Example of curvilinear-Cartesian topology around a 2D airfoil 

An example of the kind of mesh topology studied here is given in figure 
8. The shortly extended meshes around the airfoil are structured and the 
remaining part of the domain is meshed with regular structured Cartesian 
grids. All of the grids are overset, which means that an overlap between 
all grids exists. Fluid variables are transferred between all grids using in-
terpolations in those overlap regions. The transfer technique used here 
is called Chimera and was first introduced by Steger et al. [38]. The set 
of Cartesian grids is automatically generated, given the set of curvilinear 
grids around the bodies and it can be also adapted to the solution during 

the computation. The method can be also applied with unstructured grids 
around the bodies (see [41]). 

This kind of mesh topology has been first introduced by Meakin [29] 
and also developped by Benoit and Jeanfaivre [2] with applications to 
helicopter rotor flows in hover. 

This part of the paper presents the adaptation of a third-order numeri-
cal scheme to this kind of mesh topology. More details can be found 
in [19]. We first present the third-order scheme on curvilinear grids, 
then its formulation on Cartesian grids. Finally, we present the adap-
tation of this scheme to overlap boundaries together with third-order 
interpolations. 

Third-order finite volume scheme on curvilinear meshes 

On curvilinear grids, a third-order space accurate scheme is used. This 
scheme is based on the work of Cinnella, Lerat and Rezgui [35, 9] in 
a finite-volume formulation. For the sake of simplicity, this scheme is 
presented in 2D and for the Euler equations. Let , , , ,p u v E Hη and  
denote the pressure, density, Cartesian velocity components, total 
energy and total enthalpy. For a perfect gas: 

2 2

( 1)
2

( )u vp Eγ ρ +
= − −

where γ   is the ratio of specific heats. The Euler equations for two 
dimensional inviscid flow can be written in integral form: 
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dt Ω ∂Ω

Ω + Γ =∫ ∫ 	 (7)

where:

2

2, ( ) , ( )

u v
uvu u p

w f w g w
v uv v p
E uH uH

ρ ρρ
ρρ ρ

ρ ρ ρ
ρ ρ ρ

    
     +    = = =     +
             

and Ω  is a bounded domain with boundary ,n∂Ω , is the unit ou-
tward normal to ∂Ω , and [ ]( ) ( ), ( )F w f w g w=  is the flux density. 
We define a structured mesh composed of quadrangular cells ,j kΩ  
(Figure 9) and denote the cell centers by ,j kC  and the cell edges by 
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Applied to the cell ,j kΩ  the conservation laws (7) become: 
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The numerical flux density 1,
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cell ,j kΩ , is an approximation to: 
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21 ,
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+

Γ
+

Γ
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To define a local reference frame on the edge 1,
2

j k+
Γ , let ξ  be an axis

passing through the adjoining cell center, oriented from ,j kC  to 1,j kC +  
and let η  be an axis on 1,

2
j k+

Γ . Let E be the intersection point of the 
η  and ξ  axis. 

Densiy
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1.01
0.94
0.80
0.70
0.72
0.55
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Figure 9 - Definition of the local frame of reference 

Performing a Taylor expansion in the η -direction, a third-order ap-
proximation of the exact flux is: 
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where Eη  is the coordinate of E on the η -axis ( Eη  = 0) and

, 1,j k j kb C C +=

To complete the discretization of (8), we must provide third, 
second and first-order approximations for ,

E E Eη ηηφ φ φand  res-
pectively. This is done in a centered way by using weighted 
average and difference operators taking into account the loca-
tions of E and of the surrounding cell centers. A Third-order 
approximation of 

E
φ  is obtained by cancelling  the error term 

introduced by the weighted average which discretizes 
E

φ  to 
second-order accuracy. Numerical flux is third-order accurate 
[35] on moderately deformed meshes and at least second-or-
der accurate on highly-distorded meshes. If the grid deforma-
tions were neglected, the above weighted numerical flux would 
be reduced to: 
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where 1 2 1 2, ,δ δ µ µand  denote the following discrete operators: 
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Formulation of the scheme on a regular Cartesian mesh 

Let us express the complete scheme on a regular Cartesian grid, 
since this type of grid is our main concern in our mesh topology. With 
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= Γ = Γon and on  , the scheme reads:  
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The finite volume scheme can be rewritten in the very simple form: 
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This Cartesian scheme is purely directional, i.e it involves points only 
in the x and y directions passing through the cell center ,j kC . This 
formulation of the third-order of the numerical scheme on regular 
Cartesian grids, which can be seen as a finite difference formulation, 
is strictly equivalent to the finite volume approach. The expression (9) 
is much simpler than the general finite volume formula and will be 
implemented this way on the Cartesian grids of the mesh adaptation 
method for efficiency reasons. 

Numerical dissipation 

Centered schemes are non dissipative and are therefore subject to 
numerical instabilities due to the growth of high-frequency modes. 
Consequently, the Jameson artificial dissipation [21] is incorporated 
in previous formulations.
 
For instance for the Cartesian scheme, this leads to modification of 
the numerical fluxes in the j direction (with similar modification in the 
k direction) as follows: 
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denotes the spectral  radius of matrix A  and:  
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where p is the static pressure and 2 4,k k  are constant parameters. In 
a region where w is smooth, 2

2 4( ) (1)k O h k O= =and , so that the 
dissipative terms are 3( )O h  and the whole scheme remains third-
order accurate. 

High-order mesh adaptation method 

As previously said, the mesh adaptation method of Meakin is based 
on the Chimera technique. For high-order numerical schemes, it has 
been demonstrated that linear interpolation is not sufficient to maintain 
the overall global accuracy of an overset-grid technique at the same 
order as the interior numerical scheme. The third-order interpolation 
procedure used here is based on directional Lagrange polynomials. 
The numerical solution on Grid A at point x is interpolated from points 

0 1 2,x x xand   located on Grid B (Figure 9), the formulae used are: 

,j kC 1,j kC +

1,
2

j k+
Γ

1,
2

j k−
Γ

E
ξ

η
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nn
k k j k
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j k k j j k

x x
w x w l x l x

x x
= ≠

= = ≠

Π −
= =

Π −∑
In order to be more accurate, the third point on Grid B 0x  is chosen 
such as: 

0 1 1

0 2

| |
2
xx x x if x x

x x x otherwise

δδ

δ

 = − − <

 = +

Figure 10 – Interpolated points for high-order Chimera transfers

Modification of schemes near overlap boundaries 

In the overlap region, the number of grid points has to be suf-
ficient to ensure a proper communication between the grids. In 
par ticular, an interpolated point must be computed from interior 
points. If a valid interpolation cell cannot be found, the interpo-
lated point is called an orphan point. In our technique, in order 
to diminish the occurrence of orphan points, only one layer of 
interpolated cells is used. Never theless, the third-order scheme 
is a five-point stencil scheme and it must therefore be reformula-
ted near interpolated points in order to preserve the global order 
of accuracy. 

Figure 11 – Minimum overlap with one layer of interpolated cells 

In figure 11, the values on the last cell face ( 3, )j k+ of Grid A are 
always interpolable 2 by Lagrange interpolation, otherwise Grid B 
would be too small and thus useless. A specific treatment based on 
upwind formulae is performed for the calculation of physical  flux 
and the artificial viscosity flux at the face ( 1/ 2, )j k+ . It uses the 
interpolated value 2 3,

2
j k

f
+

:  

1 2, 1, , 1, 3, ,
2 2

1 1 2 1, , 4 2, 1, ,, ,
2 2

1, 3,
2

1 1 5 11 32
84 60 12 12 105

1 9( ) ( ) ( 5
7 5

1287 )
35

(

)

j k j k j k j kj k j k

j k j k j k j k j kj k j k

j k j k

F f f f f f

D A w w w w w

w w

ρ ε ε

− − +
+ +

+ − −
+ +

+
+

= − − + + −

= − − − +

− +

with:

, 3 1, 1,,
2

1,

, 3 1, 1,,
2

16 12 5
5 5

16 12 5
5 5

j k j k j kj k

j k

j k j k j kj k

p p p p
v

p p p p

− +
+

+

− +
+

+ − −
=

+ + +

These formulae allow to preserve the global third-order of accuracy of 
the overset grids method. 

Application 

This methodology was validated in [36] and the practical third-
order demonstrated. We present here a simulation of a heli-
copter isolated blade in forward flight. The tip Mach number is 
Mtip = 0.646, the blade advance ratio is µ  = 0.4. In figure 12, 
the blade mesh together with the set of adapted Car tesian grids 
is presented for an azimuth of 440 degrees. The total number of 
points in the mesh is 19 million points. The Q-criterion exhibiting 
the vor tical wake of the blade shows that this wake is well-captu-
red by the adapted mesh. 

Figure 12 - Mesh and Q-criterion for an isolated blade in forward flight

Finite volumes on polyhedral meshes 

Context and motivation

The methods described in this section were originally developed 
within the CEDRE software [33] for application domains focused 
on energetics and propulsion, which are often characterized by 
very complex geometries [37]. With the need to take more and 
more technological details into account, it quickly became ob-
vious that the setting up of structured hexahedral mesh calcula-
tions was often too much time consuming.

On the other hand, many types of automatic mesh generation 
software were gradually becoming available. Tetrahedral meshers 
were the first to appear, but current software often mixes several 
types of elements, for instance tetrahedra, prisms, pyramids and 
hexahedra. Other kinds of elements are also becoming available in 
some meshers : hexahedra trimmed by boundaries, hexahedra with 
refinement, polyhedral mesh obtained as the dual of a tetrahedral 
original mesh etc.

Fur thermore, the mesh can be subjected to a topological alteration 
in the course of calculation. Adaptive mesh refinement is a well-
known example, but another interesting situation is shown on fi-
gure 13. In this example, the moving mesh fitted to a rotating solid 
(green) par tly overlaps the Car tesian grid of a the fluid container 
(blue). The effective mesh used for this ALE calculation is made 
of the overlapping mesh and the visible par t of the Car tesian grid, 
which is trimmed in a very general way into various polygonal 
(polyhedral in 3D) shapes. The methods used in this calculation 
were originally developed in the FLUSEPA software of ASTRIUM 
and have been subsequently applied to CEDRE.

j-3/2

j-4 j-3 j-2 j-1 j j+1

Line k of Grid A

Line k of Grid B

j-1/2 j+1/2 j+3/2

y1

y

y2 y3

x2x1x0

x
Grid A

Grid B
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Figure  13 - Conservative overlapping : example of mesh, pressure field and 
streamlines

 These examples show that a general polyhedral mesh of the physical 
domain is very desirable in dealing with complex flow situations.

The geometric and kinematic model

Figure  14 - Polyhedral finite volume cells and faces

 The following conditions define a general polyhedral mesh (figure 
13):
	 • Every cell face Aαβ  is a triangulation lying on a generally non-
planar polygonal contour with any number of vertices. The common 
point Kαβ  of the triangulation can be defined in several ways; one 
natural choice is to identify Kαβ  with the gravity center of the trian-
gulated face. 
	 • Every cell Tα  is bounded by any number of faces Aαβ . Conver-
sely, an internal face Aαβ  always connects two cells Tα  and Tβ  
exactly. 
 
If the positions ( )sx t  of vertices are known, every cell Tα  is comple-
tely defined. One can then calculate for instance the surface vector 

αβN , area Sαβ  and gravity center xαβ  of Aαβ , 

1, , ,
| |A A A

dA S dA x dA
S

αβ
αβ αβ αβ αβ

αβ αβ αβαβ αβ
∫ ∫ ∫� � � �

N
N n n x

N
(10)

and the volume Vα  and gravity center xα  of Tα : 

1,
T T

V dV x dV
Vα α

α αα
∫ ∫� � x 	  (11)

The gravity centers of faces and cells are convenient Gauss points 
allowing exact quadrature for linear functions: 

( ) , ( ) = ( )

( ) = ( )

T

A

w x w x dV V w x

w x dA S w x

α α
α

αβ αβ
αβ

∫

∫

If is linear

and 	  (12)

 Figure 15 defines additional notations for the interface Aαβ  between 
two cells Tα  and Tβ : 

, , ( )
| | | |

x x a x x a αβ αβ
αβ β α αβ αβ α αβ αβ

αβ αβ

− − ⋅� � �
h h

h b
h h

	  (13)

The first neighborhood 1
αν  of Tα  is defined as the set of all cells 

Tβ  sharing a face Aαβ  with Tα , plus Tα  itself (figure 15). More 
generally, the second neigborhood 2

αν  is made of 1
αν  plus all the 

first neighbors of cells inside 1
αν  etc. The first neighborhood 1

αν  is 
convenient for algorithm description, but the reciprocal neighborhood 

1Wαβ  of face  Aαβ , which is made of Tα  and Tβ  is equivalent and 
often more adapted to implementation. Other kinds of neighborhoods 
(for instance through vertices or edges) could be used, but it was de-

node

3 nodes

4 nodes 5 nodes

edge

face

(8 faces)

- every face has any number of nodes

- a general polyhedral cell has any number of faces, but one face connects 2 cells

(9 faces)

cell

Tα

Tα

Aαβ

Aαβ

Aαβ

Tβ

Figure 15 - Geometry of cells and faces and neighborhoods (two-dimensional sketch)

Nαβ

( )sx t

hαβ

xα xβ
TβTα

2vα
1vα

Tβ

Tα
bβα

aβα

bαβxα

xαβ
aαβ

nαβ
xβ



Issue 2 - March 2011 - Space Discretization Methods
	 AL02-06	 9

cided for simplicity to base all algorithms only on 1
αν  and its iterates 

2 ... ...l
α αν ν .

This definition of geometry is generally time-dependant. If the move-
ment of every vertex is known, all the above properties of cells and 
faces are known functions of time.

Governing equations and state variables

In this paper, we consider a continuum characterized by a set of  qn
conserved quantities per unit volume depending on space and time 

= ( , )q q x t . Alternatively, the local state can also be represented by a 
system of intensive variables = ( , )u u x t  which is more convenient in 
some contexts. Both descriptions are equivalent, i.e. we can define a 
one-to-one mapping between u  and q , 

= ( ) or = ( )q Q u u U q 	  (14)

In the special case of a compressible fluid flow with fixed compo-
sition, q  includes mass, momentum and total energy per unit vo-
lume ( = 5qn  scalar variables). In the absence of phase transition, a 
convenient set of intensive variables is made up of pressure, tempe-
rature and macroscopic velocity:
 

= ,

t

p
q u T

e v

ρ
ρ
ρ

   
   =   
      

v	  (15)

This particular set of q  and u  variables is only given as an ele-
mentary example, since fluid dynamics and energetics include many 
other models [13]. For instance, the above definition of u  does not 
hold for flows with phase transition. In Reynolds Averaged turbulent 
flows, additional quantities describe turbulence [1], whereas the mix-
ture composition introduces further degrees of freedom in aerother-
mochemistry [13] [12] etc. Completely different systems are also 
needed, for instance for conduction in solids, particles in the Eulerian 
approach or fully multiphase flow [33] [30]. Wherever possible, this 
paper avoids modelization details and concentrates on generic equa-
tions and methods for Eulerian solvers, with Lagrangian methods for 
particles being described in [30].

The keystone of the Eulerian physical models considered in the sequel 
is a set of balance equations for ( , )q x t . The most general form of 
these equations expresses conservation on any moving and possibly 
deformable control volume ( )V t  bounded by a surface ( )A t  with 
velocity ( , )Av x t  (figure 16 a): 

( ) , = ( ( ) )Av A

v

dV t qdV q dA
dt

sdV

ϕ∀ − − + + ⋅

+

∫ ∫
∫

v v f n
 	 (16)

	  

Equation (16) states that the quantity of q  inside ( )V t , which is a 
function of time only, varies under the influence of non dissipative 
fluxes (flux density ( )Aq v v− + f , where the first term represents 
advection), dissipative fluxes (flux density ϕ ) and sources per unit 
volume. This system of conservation laws must be completed by 
a thermodynamic model for the continuum [13], phenomenologi-
cal relationships to express the dissipative fluxes ϕ  and models for 
sources s , which will be supposed to be of the form 

= ( ), = ( , ) ( ,0) = 0, = ( , , )u u u u s s u uϕ ϕ ϕ∇ ∇with f f 	  (17)

Figure 16 - Notations for space discretization
 
Where the field of state variables is sufficiently regular, the integral 
form (16) is equivalent to a system of partial differential equations 

= ( )tq qv sϕ∂ −∇ ⋅ + + +f 	  (18)

Conservation equations (16) or (18), (17) must be completed by a 
proper set of boundary conditions along the limits ( )Bx t  of the region   

( )D t of interest and by an initial condition.

If = 0s , ( , ) =q x t constant  is a solution of (18). It is of course also 
a solution of the integral form (16) because 

( ) , = Av A

dV t dV dA
dt

∀ ⋅∫ ∫ v n 	  (19)

is a kinematic identity which states that the rate of variation of the 
volume of ( )V t  is exactly equal to the volume swept by the surface   

( )A t per unit time.

A family of Finite Volume methods on general polyhedra

To derive space discretization, one common approach in CFD and 
connected domains is the finite volume method. In fact, this term 
does not really describe a method but rather a point of view on space 
discretization which can lead to a large number of distinct algorithms. 
The starting point is the balance equation (16) written on a control 
volume (or cell) defined by Tα . Let us define the volume ( )V tα  of Tα
 

( )
T

V t dVα
α
∫� 	  (20)

and the mean values ( )q tα  of conserved quantities on Tα  

1( ) ( , )
T

q t q t dV
Vα

αα
∫� x 	  (21)

With these notations, the balance equation (16) reads 

1
( ) = ( ( ) )AA T

v

d V q q dA sdV
dt α α

αβ αβ α

ϕ
∈

− − + + ⋅ +∑ ∫ ∫v v f n 	  (22)

a) Physical domain and boundary control volume V(t)

b) Discrete approximation of domain and boundary cells and locations for
    discrete variables 

( )tB

( )tD

( )tA
( )tV

n
A

v (surface)

v(medium)

B
D

α
T αβ

A
β

T
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where normal flux densities are integrated on all the faces Aαβ  
of the cell. The mean value ( )q tα  is an obvious candidate as 
the space-discrete degree of freedom associated with Tα , but 
it is of course equivalent to the use of the set of natural variables 

( ) ( ( ))u t U q tα α�   for this purpose.

An important property of the finite volume approach is that it automa-
tically leads to exactly conservative space discretizations: if we sum 
equations (22) for any cluster { }Tα  of neighboring cells, the fluxes 
along internal interfaces cancel and the variation rate of conserved 
quantities inside the cluster is only due to the integral of fluxes along 
the limits of { }Tα  and the volume integral of sources inside { }Tα . 
Conservativity is a very desirable property in engineering analysis as 
it allows a non-ambiguous evaluation of mass, momentum and en-
ergy transfers independently of the mesh size.

Up to this point, no approximation has been made and (22) can be 
considered as exact. The next step will be to derive approximations for 
fluxes and sources at the right-hand side of (22) as functions of the 
space-discrete degrees of freedom in a certain neighborhood of face 
Aαβ . The family of finite volume methods implemented in CEDRE can 

be viewed as an extension of MUSCL schemes to general polyhedral 
meshes, which were initially defined for structured grids [40]:  
	 • For each cell Tα  and fixed t , we define a polynomial recons-
truction , ( )qw xα  (or , ( )uw xα ) which approximates the field of the 
state variables on  Tα ( for simplicity, t  will be omitted in the state-
ment of qw  and uw ). The reconstruction is designed to be k − exact, 
i.e. exact if each component of the original function is locally a poly-
nomial of degree k . The l th−  order derivatives = 1l k  defining 
the polynomial are evaluated algebraically from the state variables on 
a neighborhood of Tα , for example with the help of a least-squares 
technique. 
	 • This reconstruction allows the evaluation of state variables at 
any point of Aαβ  with precision 1( )kO h + (where h  is the order of 
magnitude of | |hαβ ) and the reconstruction from cell Tβ  gives rise 
to a second evaluation with the same precision. A non-linear limitation 
formula eliminates possible local extrema in these evaluations. First 
order derivatives along Aαβ  can also be evaluated with the help of 
both reconstructions. 
	 • The surface and volume integrals at the right-hand side of (22) 
can be evaluated through Gauss quadrature, with enough quadrature 
points to meet the precision of the reconstruction. 
	 • Finally, numerical flux formulas adapted to physics must be ap-
plied at every Gauss point. This stage is purely local and involves no 
interpolation. 

The precision of the space discretization depends only on interpola-
tion (first and second item above) and quadrature (third item) which 
are independent of physics, whereas stability also depends on the 
physics involved in fluxes and sources and their numerical approxi-
mations (fourth item).

In (22), all geometric quantities are generally time-dependent due to 
mesh movement and deformation : this formulation is usually known 
as ALE (for Arbitrary Lagrangian Eulerian). Volume conservation (19) 
for Tα  reads 

1
= AA

v

dV v dA
dt

α

αββ α∈

⋅∑ ∫ n 	  (23)

If the motion law of every vertex is known, Av  can be calculated at 
every point along Aαβ , as well as the integrals on the right-hand side 
of (23). If we set 

,
1

| |An AA
v v dAαβ

αβαβ

⋅∫ n
N

� 	  (24)

 volume conservation simply reads 

,
1

= | |An
v

dV v
dt

α
αβ αβ

β α∈

∑ N 	  (25)

We stress that (25) need not be added as a supplementary ALE 
equation since it is an automatic consequence of a correct evaluation 
of time-dependent volume and face velocity. It can be checked that 
under the preceding general hypotheses for interpolation, constant 
states 0( ) = =q t q constantα  are automatically solutions of the se-
mi-discrete conservation equations (22) for any mesh movement and 
deformation.

Methods with piecewise linear reconstruction ( 1k = )

Reconstruction on Tα

The local reconstruction , ( )qw xα  for ( , )q x t  is chosen to be linear 
on Tα : 

, ,( ) = ( )q qw x q x xα α α α+ ⋅ −σ 	  (26)

where ,q ασ  is a consistent approximation of the gradient at the center 
of gravity of Tα  

, = ( ) ( ).q q O hα α∇ +σ 	  (27)

As stated before (12), the mean value of the linear reconstruction is 
equal to its value at the gravity center xα : 

, ,
1 ( ) = ( ) =q qT

w x dV w x q
V α α α α

αα
∫ 	  (28)

If the change of variable (second equation (14)) is applied to (26), 
we get 

, ,

2
,

| =

( ( )) = ( ( ))

= ( ) ( ) 0( )

q q

q
q q

U w x U q x x
UU q x x x x
q

α α α α

α α α α

α

+ ⋅ −

∂
+ ⋅ − + −
∂

σ

σ 	  (29)

The second order term in (29) is of the same order as the approxima-
tion error in (26). We then get a linear reconstruction for  u

, ,( ) = ( )u uw x u x xα α α α+ ⋅ −σ 	  (30)

 where 

, ,
| =

= = ( ) ( )u q
q q

U u O h
qα α α

α

∂
∇ +

∂
σ σ 	  (31)

 is a consistent approximation for the gradient of u  at cell center. The 
reconstructions (26) and (30) are distinct but both are second order 
accurate. The latter is sometimes preferred as it gives better results 
in many practical cases and we will only use this form in the sequel.
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One of the simplest ways to evaluate ,u ασ  is through a least-squares 
criterion, for instance a best fit between ,uw α  and the neighboring 
state variables : 

2
, ,

1
= ( ( ) )

.

j j j
u u

v

M w x u

j

α α α β β
β α∈

−∑Find such as

is minimum for every state variable

σ

	  (32)

Solving (32) leads to a linear dependency between ,u ασ  and the state 
variables in 1Vα

, ,
1

= ( )j j j
u u

V

u uα αβ β α
β α∈

−∑gσ 	  (33)

Nonlinear limitation can be applied to (33), but direct limitation of 
interface state variables is generally sufficient (see next section).

Interpolation along interfaces

The preceding reconstruction gives rise to two distinct second order 
evaluations of u  at face center xαβ : 

, ,

, ,

= ( ) =
= ( ) =

u u

u u

u w x u a
u w x u a
αβ α αβ α α αβ

βα β αβ β β βα

+ ⋅

+ ⋅

σ

σ 	  (34)

In the case of steep variations, some of these state variables can lie 
far outside the bounds defined by uα  and uβ , and several nonli-
near limitation procedures have been implemented to replace uαβ  
and uβα  by 

= ( , , ) , = ( , , )lim limu L u u u u L u u uαβ αβ α β βα βα β α 	  (35)

which lie inside the interval defined by uα  and uβ . The limiting func-
tion L  is designed to degenerate into classical limiters like Van Leer, 
Minmod, etc., on Cartesian grids.

The asymmetry between uαβ  and uβα (or limuαβ  and limuβα ) will be used 
for upwinding in characteristic fluxes, but other evaluations can be 
built, for instance arithmetic or Roe mean value 

1= ( ) , = ( , )
2

sym lim lim roe roe lim limu u u u U u uαβ αβ βα αβ αβ βα+ 	  (36)

An obvious first order approximation of the interface gradient of u  is

, , ,

| | | |
' =

| | | |u u u
βα αβ

αβ α β
αβ αβ

+
b b
h h

σ σ σ 	  (37)

but a compact evaluation of the normal gradient is also available from  
uα , uβ , 

," = .u

u uβ α
αβ

αβ αβ

−
⋅n h

σ 	  (38)

It is possible to combine these two evaluations for a consistent one-
parameter family of interface gradients 

, , , ,= ' ( " ' )u u u uαβ αβ αβ αβ αβ αβθ+ − ⋅n nσ σ σ σ 	  (39)

If = 1θ , (37) is used only for the non-normal contribution of the 
gradient, whereas the normal part stems from the compact evaluation 
(38). This evaluation of gradient has been studied in [27] and proved 
very effective for dissipative fluxes.

Discrete conservation laws

As indicated before, each surface or volume integral at the right-hand 
side of (22) needs only one quadrature point: 

[ ] [ ]
1

( ) = ( )A
V

d V q q v v V s
dt α α αβ ααβ α

β α

ϕ
∈

− − + + ⋅ +∑ f N 	  (40)

where the subscripts αβ  and α  stand respectively for the center of 
face xαβ  and cell xα . 
Setting 

( ( ) ) ,n A nF q v v ϕ ϕ− + ⋅ ⋅f n nand� � 	  (41)

 (40) reads more simply 

[ ] [ ]
1

( ) = | |n n
v

d V q F V s
dt α α αβ ααβ α

β α

ϕ
∈

− + +∑ N 	  (42)

Numerical fluxes

The last step will be to pinpoint the numerical fluxes used on the right-
hand side of (42):  
	 • The non-dissipative flux density [ ]nF

αβ  from Tα  to Tβ  is 
evaluated through an approximate Riemann solver using limuαβ  and 

limuβα  as arguments. Among many other possibilities, we can cite the 
Roe numerical flux: 

[ ] 1= ( ( ) ( ))
2

1 | | ( ( ) ( ))
2

lim lim
n n n

roe lim limn

F F u F u

F Q u Q u
q

αβ βααβ

αβ αβ βα

+

∂
+ −

∂
	  (43)

where the Jacobian matrix nF
q

∂
∂

 is evaluated for the Roe mean value 
of roeuαβ . 
	 • The dissipative flux is evaluated directly from the constitutive 
law for φ

[ ] ,| |= ( , )sym
n uuαβ αβ αβ αβαβ

ϕ ϕ ⋅N Nσ 	  (44)

Properties

These methods have been used for several years in the Eulerian sol-
vers of CEDRE (multispecies fluid flow, Eulerian model for dispersed 
particles, heat conduction in solids, see examples of calculation re-
sults in [37]). Feedback from numerous calculations as well as theo-
retical studies [17] shows that:  
	 • The above procedure usually gives stable calculations pro-
vided that mesh resolution is adequate and the numerical fluxes 
are adapted to the physics. However, instability can occur when 
the information from neighborhood 1V  is not sufficient for gradient 
calculation in some directions: this occurs almost inexorably on te-
trahedral meshes in three dimensions. This problem has been tho-
roughly studied in [16] [17], which shows that using the second 
neighborhood 2V  is mandatory in that case ; this work provides 
simple ways to define second neighborhood stable interpolations 
based on post-processing of (31). Among many other important 
results, this thesis also shows that the mean-square method tends 
to be optimal for stability. 
	 • For unsteady simulations, the predominant error in the sense of 
the modified (equivalent) equation is second order dispersive, which 
may be insufficient for Large Eddy Simulation or acoustics. 
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Methods for higher order reconstruction ( 1k > )

In theory, k -exact polynomial reconstructions lead to finite volume 
discretizations of order 1k + . The case = 3k  is of particular impor-
tance because 4-th order discretizations dramatically reduce the nu-
merical dissipation, which makes them very valuable for applications 
in Large Eddy Simulation (LES) and acoustics. In the practice of com-
putations on unstructured grids, however, there are several obstacles 
to this approach.
 
	 • First, the stencil size for k -exact reconstruction of polynomials

 in d  dimensions must be at least equal to 
d k

k
+ 

 
 

. Recent work

 [16] [18] has shown that the stability of the MUSCL scheme requires 
stencil sizes that are several times larger than this minimal size. On 
unstructured grids, the connectivity data, i.e. which cells contribute to 
the reconstruction in a specific cell, must be computed, sorted and 
accessed during runtime.
	 • Second, a modern unstructured CFD code like CEDRE runs 
on parallel architectures with a large number of processors, each of 
which handles a small domain of the partitioned grid. Cells near a 
domain border may have a reconstruction stencil that overlaps the 
other domain. For those cells, the connectivity data must be handled 
and transferred from domain to domain. Furthermore, the size of the 
overlapping parts of the stencils may vary from cell to cell, creating 
the need to send data packets of varying length from processor to 
processor. This can seriously impair the scalability of the code, i.e. 
the capability to run n times faster on a system with n times the num-
ber of processors.

These problems suggest the need for k -exact reconstruction algo-
rithms that require only data exchange between adjacent cells. This 
can be done in the following way: A polynomial p  of degree k  is 

completely determined by its cell average over Tα  and its k  deriva-
tives at the barycenter of the cell. A k -exact reconstruction is there-
fore equivalent to the exact reconstruction of the m -th derivatives for 
1 m k≤ ≤ . In practice, such a reconstruction of the m -th derivative 
will be a sum of the form 

( ) ( )=m mw w uα αβ β
β α∈
∑

W
	  (45)

where αW  is a reconstruction stencil that may be very large. For  
k -exactness one must have 

( ) ( ) ( )= =m m mw w u D uα αβ β
αβ α∈

∑ xW
	  (46)

whenever u  is a polynomial of degree k . The main idea is to replace 
the sum over the large neighborhood αW  in (45) by a successive 
sum over the first neighborhood 1V

( ) ( ) ( )

1 1

=m m m

V V
w w w uα αβ βγ γ

β γ∈ ∈

⋅∑ ∑ 	  (47)

This approximation method can be seen as analogous to exact diffe-
rentiation where the m -th derivative is obtained by successive dif-
ferentiation, i.e. ( ) ( ) ( )1 1=m mD u D D u−⋅  The principal challenge is of 
course to preserve the k -exactness of the reconstruction in (37). 
Such methods have recently been developed at the DSNA department 
of Onera for = 2k  and = 3k . They have been successfully tested 
for the linear advection equation. Figure 17 shows the result of the 
linear advection of a Gaussian hat in 2D.

Last but not least, the use of k -exact polynomial reconstruction re-
quires the use of higher order quadratures to compute the numerical 
fluxes at the cell interfaces with the necessary precision, otherwise 
the order of the numerical scheme will be reduced. Quadratures that 
are exact on polynomials of degree = 3k  are already implemented 
in CEDRE 

Figure  17 - Advection of a Gaussian hat  with = 1k  and = 3k  
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