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Development of the elsA software for complex external and internal flow 
aerodynamics and multidisciplinary applications star ted in 1997 at Onera. 

Due to the multi-purpose nature of elsA, many common basic CFD features 
can be shared by a wide range of aerospace applications: aircraft, helicopters, 
turbomachinery, missiles, launchers… The elsA software is based on an Object-
Oriented design method and on an Object-Oriented implementation based on 
three programming languages: C++, For tran and Python. The elsA strategy 
for interoperability is based on a component approach that relies on standard 
interfaces for the CFD simulation components. This paper presents an overview 
of the capabilities of the elsA software in terms of modeling, mesh topology, 
numerics and boundary conditions, whereas a more detailed description of these 
capabilities is given in companion papers of this issue of the electronic journal. 
The impor tance of High Performance Computing activities is outlined in the 
present paper. 

Introduction

Unlike other industries, such as the automobile industry, the simulation 
software used for aerodynamic analysis and design in the aeronautic 
industry is not usually provided by commercial software vendors, but is 
generally developed either by Research Establishments or sometimes 
by the aeronautic industry itself. The overview of software tools used 
for flow simulation in the European aeronautic industry, presented in 
[26], shows that in Europe they are mostly managed by Research 
Establishments. One major reason for this is that the high levels of 
accuracy and reliability required today for improving aeronautic design 
are obtained through long term expertise and innovative research in 
various areas: physical modeling, numerical methods, software 
efficiency on rapidly evolving hardware and validation by comparison 
with detailed experimental data. 

The elsA software (http://elsa.onera.fr) for complex external and 
internal flow aerodynamics and multidisciplinary applications has 
been developed at Onera since 1997 [4], [6]. The main objective is 
to offer the French and European aerospace community a tool that 
capitalizes on the innovative results of Computational Fluid Dynamics 
(CFD) research over time and is able to deal with miscellaneous 
industrial applications. The range of aerospace applications dealt 
with using elsA (aircraft, helicopters, tilt-rotors, turbomachinery, 
counter-rotating open rotors, missiles, launchers, etc.) is very wide, 
as shown in figure 1 presenting a few examples of elsA results. A 

large variety of the advanced aerodynamic applications handled 
by elsA is presented in [25]. Note that it is quite uncommon for a 
CFD tool to deal both with external flows around airframes and with 
internal flows in turbomachinery; since it allows common basic CFD 
features to be shared, we clearly consider that it is an advantage. The 
research, development and validation activities are carried out using a 
project approach in cooperation with the aircraft industry and external 
laboratories or universities (see Box 1). This project approach has 
been the result, at Onera as elsewhere, of the change in CFD software 
development from a one-code, one-developer paradigm at the 
beginning of the eighties to a team-based approach necessary to cope 
with the complexity of today’s CFD. The effort carried out in France 
and coordinated by Onera with elsA was also initiated approximately 
at the same time as projects in other countries, such as the WIND-
US flow solver of the NPARC Alliance [3] or the FAAST program at 
NASA Langley RC [19] in the United States or the TAU flow solver in 
Germany [14].

This paper gives a general presentation of the elsA solver, and 
mainly focuses on software topics such as Object-Oriented design 
and implementation, software interoperability or High Performance 
Computing. Only a general overview of the capabilities of the elsA 
software in terms of modeling, mesh topology, numerics, aeroelasticity 
and optimum design is presented here, whereas a more detailed 
description of these capabilities and results, showing evidence of 
their functionality and correctness, is given in companion papers of 
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this issue of the electronic journal ([1] for transition and turbulence 
modeling, [8] for space discretization methods on various mesh 
topologies, [21] for time integration methods, [10] for aeroelasticity, 

[22] for optimum design). Also, the reader should refer to another 
companion paper [25] for a detailed presentation of the application 
results of elsA, which only appear in this paper as illustrations.

a) Transport aircraft configuration: simulation of the flow around an aircraft with 
deployed spoilers

b) Turbomachinery configuration: simulation of the rotating stall in an axial 
compressor stage

Figure 1 – Examples of applications carried out with elsA

c) CROR configuration: simulation of the flow around a CROR for an aero-
acoustics study

d) Helicopter configuration: simulation of the interaction between the main rotor 
and the fuselage

Box 1 - Internal and external developers and users

Many partners, not only inside Onera but also in external laboratories and universities and in the aerospace industry, contribute to 
the development of new capabilities and to the validation of elsA. Inside Onera, the CFD and Aeroacoustics Department of Onera 
coordinates the elsA software project and contributes to the development in terms of software architecture, numerical methods or 
CPU efficiency. Several other Departments take part in development and validation activities related to elsA software: namely the 
Applied Aerodynamics Department for thorough validation and some specific applied aerodynamics developments, the Aerodynamics 
and Energetics Modeling Department for transition and turbulence modeling and fundamental validation, and the Aeroelasticity and 
Structural Dynamics Department for fluid/structure capability development and validation.

Since 2001, there has been a partnership with the Cerfacs research organization for elsA development, and Cerfacs has taken part in 
many developments, dealing, in particular, with mesh strategies, numerical methods and CPU efficiency, since that time. Other labs 
also take part in the development and validation of elsA, such as the Fluid Mechanics and Acoustics Lab of “École Centrale de Lyon” 
for development of complex turbomachinery boundary conditions, the applied research center Cenaero (Belgium) for turbomachinery 
flow simulation and the DynFluid lab of “Arts et Métiers ParisTech” for high accuracy numerical schemes. The use of elsA in French 
engineering schools or universities is also developing for academic teaching purposes.

elsA is today intensively used as a reliable design tool in the French and European aeronautic industry. In turbomachinery industry, elsA 
is used in the design teams of Safran group (Snecma and Turbomeca in France, Techspace Aero in Belgium). For transport aircraft 
configurations, elsA is one of the two CFD programs used at Airbus for performance prediction and for design (the other one is the TAU 
software from DLR, see [5]). Among other industry partners, we should mention Eurocopter for helicopter applications and MBDA for 
missile configurations.
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Why a multi-purpose tool for solving the Navier-Stokes 
equations?

CFD methods and software have improved tremendously over the 
last forty years. Whereas in the 1970s, CFD software for design 
was mostly based on formulations assuming the flow to be inviscid, 
today CFD codes solving the Navier-Stokes equations (see Box 2) 
have become standard tools in the aeronautic industry [27]. The 
improvements concern various areas: mesh topology capabilities, 
physical modeling, numerical algorithms. However, in each of these 
areas, there is no universal method answering all of the problems. 
The best choice of methods depends on the type of application and 
on the levels of accuracy, robustness and efficiency that are required. 
In the case of mesh topology capabilities, the relative advantages and 
disadvantages of Cartesian structured grids, curvilinear structured 
grids and unstructured grids are well-known today and in recent years 
it has become clearer that an association of various types of grids in a 
single simulation is very powerful. 

It is also well-known that transition and turbulence modeling which is 
required for the simulation of turbulent flows has to be adapted to the 
type of application and even to local flow phenomena. For example, 
a classical eddy viscosity model should give good results at low 
cost for the flow simulation around an airfoil at low angle of attack, 
whereas Large Eddy Simulation would be required for the simulation 
of the flow for near stall conditions. The selection of the best numerical 
algorithm strongly depends on the flow regime (subsonic, transonic or 
supersonic flow) and on the compromise which is required between 
accuracy, efficiency and robustness. 

One solution could be to build dedicated software focusing on a narrow 
application domain. But this solution leads to a proliferation of specific 
software tools, which is very difficult to maintain, document, optimize 
and port to different computers. In fact, real-world applications today 
require a large range of capabilities. And if the best choice of methods 
depends on the type of application, it is also true that one specific 
method may be useful for various types of applications (see below 
in the section “Mesh topology capabilities” one example of this with 
the Chimera method). Also, the scientific community is looking for 

larger and more complex simulations, and it has become increasingly 
necessary to involve and combine several models and/or several 
meshing strategies in the same flow simulation.

So, CFD software designers are faced with the challenge of meeting a 
very wide range of requirements, while keeping software complexity 
and development cost under control. Thus, a very broad range of 
CFD capabilities has to be grouped together in an interoperable and 
evolving software package. To cope with these broad requirements, 
the designers of the elsA software chose to rely on an Object-Oriented 
design method as will be described below and elsA was one of the first 
Object-Oriented major scientific packages written in C++ [13].

This choice was quite successful since there has been an intensive 
development of elsA throughout the years. Today, elsA is being 
developed towards a component architecture (see the section dealing 
with interoperability) to cope with ever increasing requirements: smart 
integration in the simulation environments of the aeronautic industry, 
runtime control of the simulation, coupling with external software for 
multi-disciplinary applications, etc. Coupling independent components 
through a common high-level infrastructure provides a natural way to 
reduce the complexity.

Object-Oriented design and implementation

The elsA software is based on an Object-Oriented (OO) design method. 
The central concept of OO design is the class: a class encapsulates 
data and methods. The class interface is a way of communicating with 
class users. The most important difference between procedural and OO 
programming is the switch from function to class as the fundamental 
abstraction. OO programming is interesting because it makes it easier 
to think about programs as collections of abstractions and to hide the 
details of how these abstractions work to users who do not care about 
these details. OO programming can be used to partition problems 
into well-separated parts, none of which needs to know more about 
the others than absolutely necessary. This ability to break a large, 
developing program down into parts that can be pursued independently, 
thus enhancing collaboration among multiple contributors, explains why 
integration of new developments is easier in an OO software. 

Box 2 - Mathematical model of elsA: the Navier-Stokes equations

Navier-Stokes equations are the main mathematical model of aerodynamics in the continuous regime, for which the characteristic 
length scales are large compared with the mean free path of the molecules. These equations result from the application of the principles 
of mechanics and thermodynamics, and, in integral form, express an equilibrium between a volume term expressing the time variation 
of mass, momentum (mass times velocity) and total energy (sum of internal energy and kinetic energy) contained in a volume Ω, and 
a surface flux term corresponding to the exchanges between the fluid inside Ω and the fluid outside Ω.

The Navier-Stokes equations are completed, on the one hand, by behavior laws representing the irreversibility effects associated with 
viscosity and thermal conductivity, and, on the other hand, by state laws describing the thermodynamic properties of the fluid.

As a result of the low viscosity of air, flows in aeronautics applications are turbulent. Turbulence is included in the Navier-Stokes 
equations which represent all the turbulence scales. However, Direct Numerical Simulation which relies on solving the instantaneous 
Navier-Stokes equations is still very far from being applicable to real world applications. Therefore, a statistical approach has to be 
added to the Navier-Stokes equation, which leads to Reynolds Averaged Navier-Stokes or to Large Eddy Simulation (see [1] for further 
details). 
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One important objective of elsA is to reap the benefits of the OO 
approach without impairing numerical efficiency. Since nearly all 
CPU time of CFD calculations is spent in computing loops acting over 
quantities such as cells, nodes or interfaces, the OO design of elsA 
does not deal with objects such as individual cells or fluxes, since 
loops operating on them would suffer a high penalty. Conversely, 
outside of loops, it has been shown with elsA design that OO concepts 
may be introduced without any significant CPU penalty.

The last version of elsA delivered includes about 600 classes grouped 
in 26 modules specialized for a given CFD task. The OO model based 
on CFD experience has been defined using the classical UML (“Unified 
Modeling Language”) method. Ideally, developers should be able to 
work inside a module, without having to know the implementation details 
of the other modules. Achieving a good breakdown is very important 
for achieving ease co-operative of development and maintenance. A 
UML modeling tool was used to define the initial design of elsA, but 
without relying on the automatic code generation capability. The use of 
such a tool appeared to be too difficult for managing the cooperative 
development of elsA and was given up.

Each module in elsA is identified by a key of 3 to 5 letters. Inside each 
module, each class name is then prefixed by the key of the module to 
which it belongs. As an example, the TurKL class associated with 
the (k, l) turbulence model belongs to the Tur module which deals 
with turbulence modeling and transition prediction.

Some of turbulence models implemented in elsA are built on the 
Boussinesq hypothesis. Their common feature is the use of the eddy 
viscosity which can be calculated either by an algebraic turbulence 
model, a subgrid-scale model or using transport equations. Each 
turbulence model is implemented through a specific class, which is 
derived from the abstract base class TurBase. All the classes deriving 
from the abstract class TurBase share its interface which declares 
the method compMut(). When manipulated in terms of the interface 
defined by TurBase, the concrete classes do not have to be known by 
the client classes. Client classes are only aware of the abstract class. In 
elsA, the client classes of the Tur class hierarchy are the diffusive fluxes 
(see module Fxd below) that manipulate a pointer to an instance of a 
class derived from TurBase by means of:
tur -> compMut()

TurBase

compMut()

TurLes TurAlgTurTransp

TurSA TurKO TurKEps TurKL TurWale TurFSF TurSmago TurBlx

TurKOMenter TurKEpsV2F

Figure 2 – UML model of the Tur module

The computation of the eddy viscosity depends on each particular 
turbulence model and cannot be performed in the TurBase abstract 
class. Polymorphism allows the correct version of compMut() to be 
called dynamically, without any explicit coding by the programmer. As a 
consequence, adding a new turbulence model will not modify the code 
of the client class. Figure 2 presents a simplified and reduced view of the 
UML class diagram of Tur.

elsA design also follows the objective of organizing the modules into 
layers in such a way that each layer should mainly affect the layers above 
(see Figure 3). That means that classes in a layer are only allowed to use 
services of classes of lower layers (or of same layer); the goal of this 
organization is to achieve mono-directional relationships. The advantage 
is then that maintenance becomes easier since one layer’s interface only 
affects the next layers. We will now present the main modules of elsA.

The lowest layer contains all of the low level modules, such as the Fld 
module (corresponding to the data storage classes which encapsulate 
the dynamic memory needed to store any computational data), the 
Pcm module (dealing with the implementation on parallel computer 
architectures, it encapsulates the message passing interface) or the 
Sio module dealing with IO (Input/Output).

Base

Def Agt Fld Tbx Pcm Sio

Geometry

Geo Blk Dtw Mask Chim Join Glob

Space Discretization

Oper Fxc Fxd Sou Bnd

Factory

Descp Fact Obf

Solver

Tmo Lhs Rhs

Physical model

Eos Tur

Figure 3 – elsA design organization

Then, the geometry layer contains all of the modules which describe 
geometrical and topological elements:

•	 Blk: defines the “block” notion. A block corresponds to a 
region of the discretized physical space defined by a mesh. Blocks 
are specialized to take into account grid motion, Arbitrary Lagrangian-
Eulerian (ALE) technique and Hierarchical Mesh Refinement (HMR) 
features;
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•	 Geo: defines the abstraction of the computational grid and provides 
with all geometrical ingredients used by the finite volume formulation 
(metrics: volume of cells, surface of cell interfaces; topological relations 
between geometrical entities: cells, interfaces, nodes);

•	 Dtw: contains all of the distance and boundary-layer integral 
thickness computations;

•	 Mask: defines concepts, such as masks for blanking, defined in 
the Chimera technique; 

•	 Chim: contains the grid assembly used within the Chimera 
technique;

•	 Join: deals with multi-block computations with various types 
of multi-block interface connectivity: 1-to-1 abutting, 1-to-n abutting or 
mismatched abutting.

The physical model layer includes the Eos module which computes 
quantities such as pressure, temperature (according to the equation of 
state of the gas) or laminar viscosity coefficient, and the Tur module 
already quoted above.

The space discretization layer gathers several important modules for the 
computation of the terms of the equations to solve and of the boundary 
conditions:

•	 Oper: defines the operator notion. Each operator class is 
responsible for the computation of a single term in CFD equations: 
convective flux (Fxc), diffusive flux (Fxd), source term (Sou);

•	 Bnd: contains the numerous classes devoted to the large variety 
of boundary conditions.

The solver layer contains:
•	 Rhs: builds the (explicit) right hand side of the equation system;
•	 Lhs: deals with all the implicit methods;
•	 Tmo: manages the main iterative time loop.

Finally, the top layer is the factory layer which is responsible of the 
dynamic creation of all objects (in OO methods, “objects” mean 
“instances of the class”) and in particular includes the Fact module 
which implements several object “factories” to build objects from user 
input data coming from the interface.

In elsA, the choice of programming languages was done in order 
to allow both respect of the OO patterns of the design and of CPU 
constraints. The first objective led to the mandatory choice of a true 
OO programming language, and the C++ language was chosen, 
because it is the most widely used OO language, available on all usual 
platforms. Besides C++ as main language for implementing the OO 
design, it was decided to use Fortran for the two following reasons. 
First, the CPU tests we carried out at the beginning of the elsA project 
showed better CPU performance of Fortran in comparison with C. 
Second, some Fortran lines of legacy code were re-implemented in 
the elsA loops. However, due to a completely new design, it was in 
general not possible to keep the complete subroutines of the legacy 
code. These Fortran routines are very similar to private class methods: 
since they do not appear in the public class interface, they do not affect 
the OO design. A third programming language is used in elsA: the 
Python language which is a freely available interpreted OO language 
and is used for programming the  elsA interface. Today, elsA includes 
more than one million lines (600,000 in C++ , 420,000 in Fortran and  
55,000 in Python).

elsA interoperability

The interoperability of a program or of a piece of software is its 
ability to interact with another program or piece of software. The elsA 
software has evolved towards a software suite containing the elsA 
kernel (mainly the CFD solver) and some additional tools (dealing in 
particular with pre-processing and post-processing). All the elements 
of the suite should be seen as boxes in a larger simulation process. 
Our target is the integration of these boxes into all the platforms of our 
customers. Each aerospace industrial company already has a large 
set of programs and most of the time they have in-house software 
systems to manage them in their own process. Then our goal is 
rather to be able to be integrated than to integrate. The strategy for 
the interoperability and the so-called “component approach” software 
architecture we have designed for it are tightly bound to this goal of 
all-platforms integration.

Box 3 - Joint development project

The elsA project is a joint development project including organizations and individuals located at several geographic places. This 
cooperative development involving developers at different sites is greatly facilitated by the use of a simple and robust version control 
system: the Concurrent Version System (CVS), and soon the Subversion system (SVN). The version control system maintains a central 
“repository” which stores files and gathers them into coherent and named sets of revisions. The developers work in private workspaces 
and use the repository as a common basis for source exchange. Only one person, called the “integrator”, is allowed to “commit” the 
set of changes done by a developer back into the repository. Each new production of the software approximately includes 5 to 10 
developments.

A delivered release of the software is a particular production, corresponding to a higher level in documentation and validation quality 
than a current production. Average time between two successive delivered releases of elsA is 12 to 18 months, and generally about 5 
intermediate productions are made.

Communication is obviously one of the key elements in a joint development project. A Web site (http://elsa.onera.fr) facilitates 
information transmission. This site, including restricted areas for external users and developers, gives, in particular, access to the 
documentation (User Reference Manual, User Starting Guide, Developer’s Guide, Validation report…), the validation scripts (around 
170 test cases at the present time in the validation database) and the problem tracking database. A specific email address is available 
for software support. 
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The component approach

The elsA component approach is based on the interface description. 
We use standard interfaces for the CFD simulation components. The 
CGNS standard (see box 4) is preferred for the data model and the 
Python programming language (see the box describing this language 
in [10]) defines the protocol, in other words the order you should 
respect to use the component functions. Each box in the simulation 
workflow, including the elsA kernel, has to provide a Python interface 
supporting the CGNS data model: the CGNS/Python interface. When 
you integrate such a CGNS/Python component into a platform, the 
interface you use is not proprietary; it is based on Open System 
standards. A proprietary interface is a set of services which have a 
single implementation - the customer has no choice about the service 
provider - whilst an Open System interface should have more than 
one implementation. You can write Python scripts and just pass the 
CGNS data trees from one software tool to another in the memory of 
the process, or by means of a network if you have to, as long as they 
use the same public interface, no matter which implementation they 
use. This is the component interoperability which is the basis of Onera 
component approach.

CGNS/Python and elsAxdt

The CGNS/Python mapping of the CGNS/SIDS is used by an increasing 
number of Onera software components. Each tool has its own interface 
to CGNS/Python: the interface of the elsA kernel is elsAxdt. It parses 
CGNS/Python data trees and reads/writes elsA data in the tree for the 
next step of the workflow. We call this tree a “shuttle tree”, just like a 
shuttle bus going from code to code and picking up or dropping data. 
During this process, we avoid the use of files, because a file access 
often leads to problems on large computation clusters, and because 
most intermediate trees are sometimes not archived and trashed as 
soon as they are used. These transient trees can be created, used and 
killed within the memory.

A CGNS/Python computation with elsA uses quite simple commands, 
the read of the CGNS tree and the write of the resulting CGNS/Python 
tree:

import elsAxdt
parser=elsAxdt.XdtCGNS("001Disk.cgns")
parser.compute()
parser.save("Result.cgns")

In this simple example, all the required data is obviously embedded 
into the 001Disk.cgns file: CGNS has been designed to be able 
to handle all the CFD data and even the specific solver parameters. 
Once the computation is performed, the output is obtained in  
Result.cgns, another CGNS tree. 

Whereas in this first example we use files, the next example shows 
how a full memory transfer of CGNS/Python trees can be achieved:

import elsAxdt
from CGNS.MAP import *
(input_tree,links)=load("001Disk.cgns")
parser=elsAxdt.XdtPython(input_tree)
output_tree=parser.compute()
save("Result.cgns",output_tree,links)

The code lines are almost the same, but the architecture is quite 
different, because the elsA interface only uses the CGNS/Python tree. 
The actual load and save on the disk is not performed by elsA, it is 
performed by an Open Source module (CGNS.MAP) handling the 
CGNS/Python tree and HDF5 files.

We dissociate the elsA computation from the means used for the 
actual data exchange. You can use the CGNS/Python tree in memory 
for exchanges with a network layer or a dedicated proprietary 
database. For example, if you run a large parallel computation with 
local generation of grids, the elsA suite includes Python modules 
(Post, Converter, Generator) for this grid generation as CGNS/Python 
trees in memory. The solver runs on these grids, and produces one 
result per process. The merging of these trees is again performed in 
memory and the result is sent by means of a network to a remote post-
processing workstation. Such a workflow limits the disk accesses on 
the high-performance computer and reduces the exchanges on the 
network to the data required for this particular application. This can be 
extended to the code coupling workflows [10].

Concluding remarks on interoperability

The elsAxdt interface is now used by some of our largest customers. 
These users are developing their own “integrated environment” with 
dedicated methods and tools. The common exchange backbone is 
based on CGNS. They can use the standard for file archiving as well 
as for component interoperability. The grid is generated as a CGNS tree 
by a commercial tool, then the proprietary process takes the tree and 
enriches it with elsA specific parameters, the tree is submitted to the 
solver and the result is directly passed to a commercial visualization tool.

The next step is now to use the CGNS/Python interface in the solver 
itself. Such a re-design is not necessary or useful for every part of the 
solver. We have selected a limited set of interfaces where we can explode 
the solver into separate and re-usable components. Each component 
would provide the CGNS/Python interface and thus would increase the 
interoperability with a finer granularity. The next solver generation would 
extend its flexibility up to its inner software components and thus would 
be a future platform for better research and better integration into the 
customers' proprietary platforms.

Box 4 - CGNS

The CGNS (CFD General Notation System) [24] provides a data model and a portable and extensible standard for exchanging and 
archiving of CFD analysis data. The main target is data associated with computed solutions of Navier-Stokes equations and their 
derivatives, but this can be applied to the field of computational physics in general.



	 AL02-10	 7
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

CGNS started in the 1990s as a joint NASA, Boeing and McDonnell Douglas project. They developed the so-called SIDS (Standard 
Interface Data Structure) document that specifies the data model as a reference document. The first implementation was performed by 
ANSYS/ICEM teams on the top of the ADF (Advanced Data Format) proprietary low level storage system.

Figure B4-01 – Graphical view of a part of a CGNS tree using the Open Source CGNS.NAV tool

In 1999, the CGNS Steering Committee (CGNS/SC) was formed with academic organizations, aerospace industrial companies and software 
editors. Onera joined the CGNS/SC in 2001 and is an active member.

The standard is made up of a data model specification (CGNS/SIDS) which gives the name to the standard itself: Notation System. The main 
goal of the CGNS standard is to specify CFD data. The data can be used for exchange in a CFD workflow or as a storage conceptual model. Four 
CGNS implementations are available, the ADF, the HDF5 (Hierarchical Data File), the XML (eXtensible Markup Language) and finally the Python 
mapping. Now the main implementations are CGNS/HDF5 and CGNS/Python, the first is archiving oriented while the second is more workflow 
oriented. CGNS/Python is the basis of the interoperability system developed at Onera around elsA.

The standard is not used for internal data representation but only for the public view of the data, in a workflow exchange, for example from the 
CAD to the mesh tool, or from the solver to the visualizer. More complex workflows can be defined, with unsteady computation involving both 
CFD and CSM or optimization algorithms.

The data model has a tree structure, starting from the root node, the base, up to the smallest nodes that can be modeled, such as a single real 
value or a boundary condition application range (see figure B4-01).

The standard is extensible and the CGNS/SC has a process to add new structures when some user needs are raised and agreed by members. 
We often define new data structures in the framework of our projects. CGNS is the good candidate for data specification when several partners 
have to exchange data during run-time or to exchange computing files. CGNS can hold a complete simulation context and this has an important 
effect: when the user defines his data model, he has to find all the required and exact data needed for the simulation, this avoids hidden behavior 
of codes or unwanted side-effects.
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Modeling capabilities

The elsA multi-application CFD simulation platform deals with 
internal and external aerodynamics from the low subsonic to the high 
supersonic flow regime and relies on the solving of the compressible 
3-D Navier-Stokes equations (see Box 2). The thermodynamic 
properties of the fluid may correspond either to the perfect gas 
assumption or to the equilibrium real gas assumption described by a 
Mollier diagram. elsA allows the simulation of the flow around moving 
bodies in several formulations according to the use of absolute or 
relative velocities and the definition of the projection frame. This is 
useful when dealing with applications to turbomachinery flows, where 
the use of relative velocities is advantageous, and applications to flows 
around propellers, where the use of absolute velocities is necessary, 
with the same software. The bodies may be deformable, as well as 
the associated meshes. The gravity source term is optionally taken 
into account.

A large variety of turbulence models from eddy viscosity to full 
Differential Reynolds Stress models are implemented in elsA for the 
Reynolds averaged Navier-Stokes (RANS) equations (see [1] for 
further details). The range of turbulence models includes classical 
one-transport and two-transport equation models, more advanced 
two-equation models, multi-scale four-equation models, one-layer or 
two-layer Algebraic Reynolds Stress models. When thermal effects are 
important, specific versions of models are available. Low Reynolds 
versions of the models are mostly used for an accurate description of 
the boundary layer profiles, in association with the use of a very fine 
mesh near the wall. However, wall laws approximating the behavior of 
the boundary layer near the wall are also available, which allow for the 
use of coarser mesh near the walls and may be used to reduce the 
cost of the calculations, in particular for unsteady calculations. 

Special attention has been paid to laminar-turbulent transition modeling 
[1], which may be a key point for obtaining accurate flow predictions. 
A reliable design of wings or turbines often requires an accurate 
modeling of the transition process. Transition prediction capability in 
the elsA RANS solver is based on application of criteria that either were 
previously developed at Onera for use in boundary layer codes, or 
result from classical criteria from literature. These criteria are used to 
describe Tollmen-Schlichting instabilities (including laminar separation 
bubble predictions), cross-flow instabilities, bypass for high external 
turbulence rate, attachment line contamination, wall roughness. This 
transition capability is available for complex geometry configurations. 
Nevertheless, to improve the applicability for very complex geometries, 
a transition model based on transport equations is now also available.

In order to deal with flows exhibiting strong unsteadiness and large 
separated regions, and/or to provide input data for aeroacoustic 
simulations, the user can perform Detached Eddy Simulations (DES) 
and Large Eddy Simulations (LES) [1]. The variants of DES methods 
available in elsA (basic DES, Zonal-DES, Delayed DES) are associated 
with the Spalart-Allmaras model or with the Menter (k, ω) model. 
The LES approach can be used to compute the larger structures of 
the turbulent flows while the smaller structures are dissipated by the 
numerical model, either by the MILES approach, which relies on the 
properties of advanced upwind schemes and dissipates the unresolved 
turbulent structures, or by subgrid models such as the Smagorinsky, 
Wale and filtered structure function models available in elsA.

Mesh topology capabilities

CFD solvers may rely on several meshing paradigms such as structured 
body-fitted grids, unstructured grids or structured Cartesian grids. 
Even when considering the same configuration, there is no universally 
accepted definitive choice, as can be seen by looking at the contributions 
to the Drag Prediction Workshop (http://aaac.larc.nasa.gov/tsab/cfdlarc/
aiaa-dpw/Workshop4/presentations/DPW4_Presentations.htm). In that 
workshop, the contributions were roughly evenly divided, half of them 
on structured body-fitted grids and the other half on unstructured grids. 
Each of the mesh types has inherent advantages and disadvantages 
which may depend on the type of configuration and even more on 
the flow region of a given configuration. For example, Cartesian grids 
are easy to generate, to adapt, and to extend to higher-order spatial 
accuracy, but they are not suitable for resolving boundary layers 
around complex geometries. Body-fitted structured grids work well for 
resolving boundary layers, but the grid generation process for complex 
geometries remains tedious and requires considerable user expertise. 
General unstructured grids are well-suited to complex geometries 
and are relatively easy to generate, but their spatial accuracy is often 
limited to second order, and the associated data structures tend to be 
less computationally efficient than their structured-grid counterparts. 
Thus, today, the tendency is to couple meshing paradigms in the same 
software [29] or in the same coupling infrastructure [28], and this is 
also the way chosen for elsA.

In elsA, the main focus has been put firstly on structured body-fitted 
grids which allow for the use of very efficient numerical algorithms 
due to the natural (I, J, K) ordering of the hexahedral cells. Since it 
is generally impossible to define a unique structured body-fitted grid 
around complex geometries, the computational domain is divided in 
several adjacent or overlapping domains or blocks, in which simpler 
component grids can be generated more readily. Communication 
between component grids is achieved either by direct transfer or by 
interpolation across interfacing boundaries (patched grids), or by 
interpolation within overlapping grid regions (overset grids). In order 
to cope with more and more geometrically complex configurations, high 
flexibility advanced techniques of multi-block structured meshes are 
available in elsA, in addition to matching techniques for 1-to-1 abutting 
or 1-to-n abutting patched grids. These advanced matching techniques 
include quasi-conservative mismatched abutting patched grids (also 
called totally non-coincident matchings) and Chimera technique for 
overlapping meshes [8].

Mismatched abutting patched grids are intensively used in industry 
computations with elsA. The reason is that they simplify mesh 
generation for complex configurations, and reduce global number of 
mesh points for a given configuration, by preventing the propagation 
of mesh refinements throughout the computational domain. They are 
also well adapted to deal with sliding meshes. 

The Chimera technique which enables a discretization of the flow 
equations in meshes composed of overset grids, may be applied to 
a wide range of configurations. The two main application domains 
of this method were originally dealing with the treatment of separate 
bodies (such as different positions of a missile below a wing) or 
with configurations including bodies in relative motion (for instance, 
helicopter rotor and fuselage or booster separation). During recent 
years, the Chimera method has also been increasingly used to simplify 
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and improve the meshing of complex configurations composed of the 
meshing of a basic geometry and of additional meshes adapted to joint 
bodies (for instance, a spoiler associated with a wing) or to geometrical 
details (for instance, technological effects in a turbomachinery row such 
as clearances, leakage slots, grooves, etc.). Finally, Chimera may also 
be used to achieve mesh adaptation for the simulation of phenomena 
involving a large range of length scales. 

The development in elsA of hybrid multi-block capabilities allowing 
for the use of unstructured meshes in some blocks of a multi-block 
configuration [8] presently relies on a strong cooperative effort between 
Onera and Cerfacs. The objective is to benefit from the high flexibility of 
unstructured meshes in the flow regions where it becomes too difficult 
to build a structured grid. Tetrahedral, hexahedral, prismatic cells are 
considered in this elsA development, in order to be able to consider 
hexahedral cells near the walls, which is very important in aerodynamics 
for an accurate description of the boundary layers. A first set of hybrid 
capabilities will be available very soon in the main version of the elsA 
software. The mismatched abutting technique is extended in elsA to 
patch structured and unstructured grids. In the future, the plan is to 
also apply the Chimera technique to the matching between structured 
and unstructured grids.

Lastly, structured Cartesian grid capabilities are also currently being 
developed so that they can be part of the elsA suite in the future. The 
Cartesian formulation enables high order spatial discretization and mesh 
adaptation, which in turn allows for better capturing of off-body flow 
phenomena such as shear layers and wakes [8]. Since some specific 
high order schemes have been developed in this Cartesian solver, the 
way forward is to couple this solver with the block-structured solver of 
elsA. Matchings between blocks are again done using Chimera method.
So, elsA will soon offer a quite complete multiple-gridding paradigm 
providing the potential for optimizing the gridding strategy on a local 

basis for the particular problem at hand, in order to cope with the 
increasing complexity of CFD applications (see [8] for further details 
on structured/unstructured and Cartesian/ curvilinear block matchings). 

Numerics and boundary conditions capabilities

The flow equations are solved by a cell centered finite-volume method 
[8]. Space discretization schemes include a range of second order 
centered or upwind schemes. Centered schemes are stabilized by 
scalar or matrix artificial dissipation, including damping capabilities 
inside viscous layers, in order to preserve accuracy. Upwind schemes 
are based on numerical fluxes such as van Leer, Roe, Coquel-Liou 
HUS, or AUSM fluxes and are associated with classical slope limiters. 
Second and third order Residual Based Compact schemes are also 
available in elsA. The semi-discrete equations are integrated, either 
by multistage Runge-Kutta schemes with implicit residual smoothing, 
or by backward Euler integration with implicit schemes solved by 
robust LU relaxation methods [21], which in general leads to a higher 
efficiency with elsA. An efficient multigrid technique can be selected 
in order to accelerate convergence. For time accurate computations, 
the implicit dual time stepping method or the Gear integration scheme 
are employed. Preconditioning is used for low speed flow simulations.

An extensive range of boundary conditions is available in elsA, from 
standard inlet, outlet or wall conditions, to more specific conditions 
for helicopter configurations (such as the so-called “Froude” far field 
boundary conditions in hover) or turbomachinery configurations (such 
as the radial equilibrium condition, or – see Box 5 – the Reduced Blade 
Count method and the phase-lagged technique for the simulation 
of rotor/stator interactions). Actuator-disc models are available to 
economically model the effects of helicopter rotors or propellers, 
when complete detailed calculations are not worthwhile.

Box 5 - Reduced Blade Count method and Phase-Lagged technique, two different approaches for simulating 
the time-periodic flow in a turbomachinery stage configuration

To improve turbomachinery performances, 3D Navier-Stokes flow computations in blade rows are commonly used for turbine and compressor 
design. Approximate steady flow calculations through multi-stage machines have become usual in design process for many years. In 
elsA, they are performed using a specific steady condition, the mixing plane condition, to connect two consecutive rows. This condition is 
based on azimuthal averages which are computed at the interfaces and transferred from a row to the consecutive one. It gives a quite good 
prediction of the overall efficiency of a machine but of course does not give any information on the unsteady flow fluctuations. Unsteady 
computations are increasingly used for industrial purposes: in a complete staged machine, they are necessary when performing unsteady 
non periodic phenomena. They are still very expensive, as discussed in the High Performance Computing section of this paper. But under 
some conditions, techniques for reducing the computational domain can be used. They can be applied for time-periodic flows (in the 
frame of reference of each row), that is for flows where the unsteadiness is only due to the relative motion of the rows. The first technique, 
called “Reduced Blade Count” method [11], was introduced in elsA software [23]. The computation is performed on the actual geometry 
with reduced blade counts. The interface between the blade rows accounts for the non equal pitches on each side of the interface by an 
appropriate scaling. The second technique, known as “Phase-Lagged” technique [9], or “Chorochronic” method was implemented in 2003 
in elsA software [2]. A single blade passage is computed for each row. The flow solution is stored on the interface boundaries and on the 
azimuthal periodic boundaries to deal with the phase lag which exists between rows and adjacent blade passages in a row. 

Let us note N1 and N2 the actual blade numbers of two consecutive rows, ω1 and ω2 their rotation speeds. The flow periods are equal to 
T1=Trot / N2 and T2=Trot / N1, respectively in the rotating frame of the first row and in the rotating frame of the second one, Trot=2π / |ω2-ω1| 
being the time for a blade passage to make a whole revolution.
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The “Reduced Blade Count” technique consists in reducing the computational domain to K1 and K2 blade passages without changing the 
geometry. K1 and K2 are chosen such that K1 / N1 and K2 / N2 are about the same. We assume that the flow is identical on two consecutive 
Ki blade passages at each instant, which is exact when the ratios Ki / Ni are equal. Between the lower and the upper boundaries, the flow 
continuity is enforced, which is an approximation with respect to the actual flow, since the real phase lag between these boundaries is cancelled. 

We can define DM as a mean value of the Ki / Ni ratios. This quantity represents the geometric reduction which is applied to each row 
to obtain the computational domain. On the interface, the two blade groups are linked by an instantaneous continuity condition through 
a common azimuthal extension em = 2π / DM with a scaling given by λi = (Ni /Ki ) (1/DM ) for each row. The “Reduced Blade Count” 
technique induces a slight approximation since the computational periods are T’1 = Trot  / (K2DM) and T’2 = Trot / (K1DM), that is T’i=λiTi. 
This technique can be applied to several consecutive rows if the actual blade numbers are cooperative enough to apply a geometric 
reduction. 

In the “Phase-Lagged” approach, the computational domain is limited to a single blade passage for each row. As the flow is time-periodic 
in each blade row, a phase lag exists between two adjacent blade passages. This phase lag is the time taken by a blade of the next row 
to cover the pitch of the row, modulo the time period of the row. The “Phase-Lagged” technique consists of storing the flow values on the 
azimuthal periodic boundaries and on the interface in order to use them later to build the flow. 

Let us consider two space periodic points A and B of the upper and lower boundaries of the first row. B is ahead of A and what happens at 
time t in B will happen in A at t + T2 and more generally at t + T2 + nT1 or has happened at t + T2 - mT1 (m is an integer such that T2 - mT1 
is negative). The flow condition stored in A at time t + T2 - mT1 can be used for the boundary treatment of B at time t. 

The treatment of the interface relies on the same principle. At each time step, the flow continuity is enforced at the interface between one 
cell facet of the first row and the suitable storage of the second row, taking into account for the relative position of the rows and using the 
necessary spatial interpolation on the stored data.

The direct storage of flow solution may lead to very large requirements in terms of memory. The data storage is lowered to an acceptable 
amount by Fourier analysis.

In the framework of the TATEF2 European project [7], unsteady flow simulations of the stator-rotor interaction in a transonic turbine stage 
have been performed using the “Phase-lagged” approach. Figure B5-01 shows clearly shock structures obtained for high pressure ratio. 

t/Tr=0.25

t/Tr=0.0 t/Tr=0.5

t/Tr=0.75

Figure B5-01 – Shock progression through the turbomachinery stage: schematic (left) and density gradient (right). y/H ~ 25%.

The “Phase-Lagged” approach does not make any approximation on the number of actual blades and it accounts for the real time period in 
each reference frame. So it is more accurate than the “Reduced Blade Count” technique. Moreover, as the computational domain is limited to 
a single blade passage for each row, it is less expensive in terms of CPU time and computer memory. But this approach can only be applied 
to a single stage, whereas the “Reduced Blade Count” technique can be applied to multi-stage configurations, even when several rotors have 
different rotational speeds. 

A generalization of the “Phase-Lagged” approach, called “multiple frequency Phase-Lagged method”, is under development in elsA [18]. This 
method allows for unsteady computations through several rows, whilst still limiting the computational domain to one single blade-to-blade 
passage in each row.
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Multidisciplinary and optimization capabilities

elsA also includes the Ael module offering a general framework for 
aeroelastic applications [10]. This module provides for the following 
simulations:

•	 harmonic forced motion simulations for a given structural mode;
•	 linearized Euler or Navier-Stokes simulations;
•	 static and dynamic fluid/structure coupling simulations in time 

domain with different levels of structural modeling (“reduced flexibility 
matrix” approach for static coupling, modal approach, full finite 
element structural model).

The Opt module dealing with calculation of sensitivities by linearized 
equation or by adjoint solver techniques is useful for optimization and 
control [22]. The calculation of sensitivities consists in calculating the 
derivatives with respect to control parameters of objective functions 
such as drag or lift. 

High Performance Computing: towards massively parallel 
computations

As said above, typical aeronautic configurations nowadays take into 
account fine geometrical details, resulting in huge problem sizes, as the 
example of the simulation of the complete multistage compressor in 
Figure 4 (a simulation which does not use the approximate techniques 
described in Box 5 for reducing the computational domain). Moreover, 
although the type of physical modeling still remains mostly RANS, the 
major trend is to move towards URANS and even DES or LES in order 
to get more accurate results, leading to an estimated additional CPU 
cost of about two orders of magnitude. 

Figure 4 – Unsteady flow simulation of a multistage compressor (134 million cells) 
using 512 to 4096 computing cores (SNECMA configuration) [17]

To handle such demands, High Performance Computing is now 
unavoidable in order first to tackle simulations with very large number 
of points (and thus requiring a huge amount of memory), and second 
to reduce the CPU wall clock time as much as possible. Onera, 
Cerfacs and CS have made very large efforts [15, 16] to improve 

the code's performance on state-of-the-art vector and x86-64 based 
computing platforms. In the CFD context, vector machines are now 
being rapidly supplanted by clusters of x86-64 based nodes due to 
their high operating cost and relatively poor energy efficiency (see 
in Figure 5 comparison between many-core and vector platforms on 
the simulation presented in Figure 4). elsA performance improvement 
efforts are now entirely dedicated to massively parallel computers.
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Figure 5 – Comparison between many-core and vector platforms for a single 
unsteady physical iteration on the multistage compressor configuration

Parallel strategy for structured multi-block calculations with elsA

The Message Passing Interface (MPI) standard library is used 
to implement communications between processors. elsA uses a 
standard coarse-grained SPMD approach: each block is allocated to 
a processor. Several blocks can be allocated to the same processor. 
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As said previously, meshing a configuration with structured grids 
often leads to a complex multi-block topology, thus requiring specific 
treatments to exchange data between adjacent blocks. In the elsA 
solver, each block is surrounded by two layers of ghost cells storing 
values coming from the adjacent block. If the two blocks are allocated 
to two different computing cores, then point-to-point message passing 
communication occurs. Otherwise, ghost cells are directly filled by a 
memory-to-memory copy. 

Point-to-point communications are implemented either with blocking 
(MPI_Sendrecv_replace) or non-blocking (MPI_Irecv/
MPI_send) point-to-point messages. Only blocking point-to-point 
communications require the scheduling of messages as shown by Fig. 
6. The scheduling of communications comes from a heuristic coloring 
algorithm adapted from graph theory. 
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Figure 6 – Effect of the MPI blocking and non-blocking communications on 
elsA efficiency with and without message scheduling

The non-coincident inter-block connectivity is implemented with 
blocking collective communications (MPI_Allgatherv). If only 
one computing core handles the whole inter-block connection, data 
exchanges come down to memory-to-memory copies without MPI 
messages. 

Performance discussion

The well known Amdahl's law states that load balancing is crucial to 
obtain a good efficiency on parallel computers when the number of 
processors increases. Due to topological constraints, the number of 
cells in blocks can be very different, ranging from 103 to 1003. Most of 
the time, some blocks must be split to achieve a good load balancing. 
It is not clear if an optimal response can be obtained in a reasonable 
amount of time. Therefore, elsA integrates a heuristic block splitting 
algorithm in the load balancing process. Based on the relative error 
between the number of cells allocated to the computing core and the 
ideal number of cells, it checks if the largest block to be allocated 
needs to be split. The partitioning algorithm handles many constraints 
such as the multigrid constraint. The so-called “greedy” load balancing 

algorithm loops over all of the blocks searching for the largest one in 
terms of cells and allocates it to the computing core with the fewest 
cells until all of the blocks are allocated. Note that the number of ghost 
cells increases with the number of blocks split, leading to an increasing 
problem size. Topology modification also implies carefully handling 
block-based implicit algorithms since convergence may rapidly be 
degraded. Therefore, communications occur at each relaxation step 
inside the implicit LU stage.

elsA has been ported to most high-performance computing platforms, 
achieving good CPU efficiency on both scalar multi-core computers 
and vector computers. As an example, Figure 7a shows typical 
speedup results on a civil aircraft configuration including 27,8 106 
mesh points and 1037 blocks. The numerical options include multigrid 
algorithm (3 levels) and the Spalart-Allmaras one-equation turbulence 
model. For large number of processors, the configuration has been 
split, ending up with 1774 blocks. The computer is the Cerfacs' 
BlueGene/L computer. Another concrete example (Figure 7b) is the 
High Lift Prediction Workshop configuration, where a good scalability 
is obtained up to 256 computing cores, on a SGI cluster built with Intel 
Nehalem processors (Onera's Stelvio computer), on a grid of 160 106 
mesh points, in 1235 blocks. 
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Figure 7 – Normalized speedup obtained with elsA on two configurations
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Future challenges in HPC

Since the performance improvement through increases in clock 
frequency has reached a limit, mainly due to the power dissipation 
problem, new parallel paradigms have emerged, namely the increase of 
the number of cores on a chip and the use of specialized accelerators 
(FPGA, GPU, Cell processor). To handle such paradigms, we have 
gained experience in two approaches: OpenMP thread programming and 
GPU using CUDA. In our previous studies on thread parallelism [20], 
OpenMP appeared to be less efficient compared with MPI on nodes 
with small numbers of cores (<16). We plan to update these studies in 
the context of upcoming many-core chips. In addition, we are currently 
building a prototype version dedicated to GPU; here the main challenge 
is the limited data transfer bandwidth between CPU host and GPU.

As memory bandwidth will probably remain the limiting factor on 
performance in the near future, major efforts are planned for both 

the fine-grain parallelism (data-parallelism) and the optimized use of 
cache memory. This will be mandatory as the trend in increasing the 
number of cores implies that many cores will compete for hardware 
resources.

To summarize on parallel performance, elsA is a por table code 
reasonably well adapted to current generations of HPC platforms 
and continuous work is undertaken to strike a balance between good 
efficiency and maintainability. elsA is routinely used on hundreds of 
processors in industry; the biggest computation was run with 8192 
cores on a 1.7 109 point grid [12]. 

Note also that not only the solver, but also the pre- and post-processing 
steps should be fully and efficiently addressed for massively parallel 
configurations. Moreover, the efficiency of the whole simulation in 
the framework of a multiple-gridding paradigm will be a big challenge 
for the next few years n
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Acronyms
ADF (Advanced Data Format)
AUSM (Advection Upstream Splitting Method)
CAD (Computer-Aided Design)
CFD (Computational Fluid Dynamics)
CGNS (CFD General Notation System)
CROR (Counter Rotating Open Rotor)
CSM (Computational Structural Mechanics)
CUDA (Compute Unified Device Architecture)
DES (Detached Eddy Simulation)
elsA (ensemble logiciel pour la simulation en Aérodynamique)
FPGA (Field-Programmable Gate Array)
GPU (Graphics Processing Unit)
HDF (Hierarchical Data File)

HPC (High Performance Computing)
HUS (Hybrid Upwind Splitting)
LES (Large Eddy Simulation)
LU (Lower Upper)
MPI (Message Passing Interface)
OO (Object-Oriented)
RANS (Reynolds Averaged Navier-Stokes)
SIDS (Standard Interface Data Structure)
SPMD (Single Process, Multiple Data)
TATEF2 (Turbine Aero-Thermal External Flows 2)
UML (Unified Modeling Language)
URANS (Unsteady Reynolds Averaged Navier-Stokes)
XML (eXtensible Markup Language)
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