
	 AL02-10	 1
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

CFD Platforms and Coupling

An Overview of the Multi-Purpose
elsA Flow Solver

L. Cambier, M. Gazaix, S. Heib,
S. Plot, M. Poinot, J.-P. Veuillot
(Onera)
J.-F. Boussuge, M. Montagnac
(Cerfacs)

E-mail: laurent.cambier@onera.fr

Development of the elsA software for complex external and internal flow
aerodynamics and multidisciplinary applications star ted in 1997 at Onera.

Due to the multi-purpose nature of elsA, many common basic CFD features
can be shared by a wide range of aerospace applications: aircraft, helicopters,
turbomachinery, missiles, launchers… The elsA software is based on an Object-
Oriented design method and on an Object-Oriented implementation based on
three programming languages: C++, For tran and Python. The elsA strategy
for interoperability is based on a component approach that relies on standard
interfaces for the CFD simulation components. This paper presents an overview
of the capabilities of the elsA software in terms of modeling, mesh topology,
numerics and boundary conditions, whereas a more detailed description of these
capabilities is given in companion papers of this issue of the electronic journal.
The impor tance of High Performance Computing activities is outlined in the
present paper.

Introduction

Unlike other industries, such as the automobile industry, the simulation
software used for aerodynamic analysis and design in the aeronautic
industry is not usually provided by commercial software vendors, but is
generally developed either by Research Establishments or sometimes
by the aeronautic industry itself. The overview of software tools used
for flow simulation in the European aeronautic industry, presented in
[26], shows that in Europe they are mostly managed by Research
Establishments. One major reason for this is that the high levels of
accuracy and reliability required today for improving aeronautic design
are obtained through long term expertise and innovative research in
various areas: physical modeling, numerical methods, software
efficiency on rapidly evolving hardware and validation by comparison
with detailed experimental data.

The elsA software (http://elsa.onera.fr) for complex external and
internal flow aerodynamics and multidisciplinary applications has
been developed at Onera since 1997 [4], [6]. The main objective is
to offer the French and European aerospace community a tool that
capitalizes on the innovative results of Computational Fluid Dynamics
(CFD) research over time and is able to deal with miscellaneous
industrial applications. The range of aerospace applications dealt
with using elsA (aircraft, helicopters, tilt-rotors, turbomachinery,
counter-rotating open rotors, missiles, launchers, etc.) is very wide,
as shown in figure 1 presenting a few examples of elsA results. A

large variety of the advanced aerodynamic applications handled
by elsA is presented in [25]. Note that it is quite uncommon for a
CFD tool to deal both with external flows around airframes and with
internal flows in turbomachinery; since it allows common basic CFD
features to be shared, we clearly consider that it is an advantage. The
research, development and validation activities are carried out using a
project approach in cooperation with the aircraft industry and external
laboratories or universities (see Box 1). This project approach has
been the result, at Onera as elsewhere, of the change in CFD software
development from a one-code, one-developer paradigm at the
beginning of the eighties to a team-based approach necessary to cope
with the complexity of today’s CFD. The effort carried out in France
and coordinated by Onera with elsA was also initiated approximately
at the same time as projects in other countries, such as the WIND-
US flow solver of the NPARC Alliance [3] or the FAAST program at
NASA Langley RC [19] in the United States or the TAU flow solver in
Germany [14].

This paper gives a general presentation of the elsA solver, and
mainly focuses on software topics such as Object-Oriented design
and implementation, software interoperability or High Performance
Computing. Only a general overview of the capabilities of the elsA
software in terms of modeling, mesh topology, numerics, aeroelasticity
and optimum design is presented here, whereas a more detailed
description of these capabilities and results, showing evidence of
their functionality and correctness, is given in companion papers of

	 AL02-10	 2
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

this issue of the electronic journal ([1] for transition and turbulence
modeling, [8] for space discretization methods on various mesh
topologies, [21] for time integration methods, [10] for aeroelasticity,

[22] for optimum design). Also, the reader should refer to another
companion paper [25] for a detailed presentation of the application
results of elsA, which only appear in this paper as illustrations.

a) Transport aircraft configuration: simulation of the flow around an aircraft with
deployed spoilers

b) Turbomachinery configuration: simulation of the rotating stall in an axial
compressor stage

Figure 1 – Examples of applications carried out with elsA

c) CROR configuration: simulation of the flow around a CROR for an aero-
acoustics study

d) Helicopter configuration: simulation of the interaction between the main rotor
and the fuselage

Box 1 - Internal and external developers and users

Many partners, not only inside Onera but also in external laboratories and universities and in the aerospace industry, contribute to
the development of new capabilities and to the validation of elsA. Inside Onera, the CFD and Aeroacoustics Department of Onera
coordinates the elsA software project and contributes to the development in terms of software architecture, numerical methods or
CPU efficiency. Several other Departments take part in development and validation activities related to elsA software: namely the
Applied Aerodynamics Department for thorough validation and some specific applied aerodynamics developments, the Aerodynamics
and Energetics Modeling Department for transition and turbulence modeling and fundamental validation, and the Aeroelasticity and
Structural Dynamics Department for fluid/structure capability development and validation.

Since 2001, there has been a partnership with the Cerfacs research organization for elsA development, and Cerfacs has taken part in
many developments, dealing, in particular, with mesh strategies, numerical methods and CPU efficiency, since that time. Other labs
also take part in the development and validation of elsA, such as the Fluid Mechanics and Acoustics Lab of “École Centrale de Lyon”
for development of complex turbomachinery boundary conditions, the applied research center Cenaero (Belgium) for turbomachinery
flow simulation and the DynFluid lab of “Arts et Métiers ParisTech” for high accuracy numerical schemes. The use of elsA in French
engineering schools or universities is also developing for academic teaching purposes.

elsA is today intensively used as a reliable design tool in the French and European aeronautic industry. In turbomachinery industry, elsA
is used in the design teams of Safran group (Snecma and Turbomeca in France, Techspace Aero in Belgium). For transport aircraft
configurations, elsA is one of the two CFD programs used at Airbus for performance prediction and for design (the other one is the TAU
software from DLR, see [5]). Among other industry partners, we should mention Eurocopter for helicopter applications and MBDA for
missile configurations.

p perturbation

P/(γPint)

0.68 0.69 0.7 0.71 0.72

4E-05
2E-05
0
-2E-05
-4E-05

	 AL02-10	 3
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

Why a multi-purpose tool for solving the Navier-Stokes
equations?

CFD methods and software have improved tremendously over the
last forty years. Whereas in the 1970s, CFD software for design
was mostly based on formulations assuming the flow to be inviscid,
today CFD codes solving the Navier-Stokes equations (see Box 2)
have become standard tools in the aeronautic industry [27]. The
improvements concern various areas: mesh topology capabilities,
physical modeling, numerical algorithms. However, in each of these
areas, there is no universal method answering all of the problems.
The best choice of methods depends on the type of application and
on the levels of accuracy, robustness and efficiency that are required.
In the case of mesh topology capabilities, the relative advantages and
disadvantages of Cartesian structured grids, curvilinear structured
grids and unstructured grids are well-known today and in recent years
it has become clearer that an association of various types of grids in a
single simulation is very powerful.

It is also well-known that transition and turbulence modeling which is
required for the simulation of turbulent flows has to be adapted to the
type of application and even to local flow phenomena. For example,
a classical eddy viscosity model should give good results at low
cost for the flow simulation around an airfoil at low angle of attack,
whereas Large Eddy Simulation would be required for the simulation
of the flow for near stall conditions. The selection of the best numerical
algorithm strongly depends on the flow regime (subsonic, transonic or
supersonic flow) and on the compromise which is required between
accuracy, efficiency and robustness.

One solution could be to build dedicated software focusing on a narrow
application domain. But this solution leads to a proliferation of specific
software tools, which is very difficult to maintain, document, optimize
and port to different computers. In fact, real-world applications today
require a large range of capabilities. And if the best choice of methods
depends on the type of application, it is also true that one specific
method may be useful for various types of applications (see below
in the section “Mesh topology capabilities” one example of this with
the Chimera method). Also, the scientific community is looking for

larger and more complex simulations, and it has become increasingly
necessary to involve and combine several models and/or several
meshing strategies in the same flow simulation.

So, CFD software designers are faced with the challenge of meeting a
very wide range of requirements, while keeping software complexity
and development cost under control. Thus, a very broad range of
CFD capabilities has to be grouped together in an interoperable and
evolving software package. To cope with these broad requirements,
the designers of the elsA software chose to rely on an Object-Oriented
design method as will be described below and elsA was one of the first
Object-Oriented major scientific packages written in C++ [13].

This choice was quite successful since there has been an intensive
development of elsA throughout the years. Today, elsA is being
developed towards a component architecture (see the section dealing
with interoperability) to cope with ever increasing requirements: smart
integration in the simulation environments of the aeronautic industry,
runtime control of the simulation, coupling with external software for
multi-disciplinary applications, etc. Coupling independent components
through a common high-level infrastructure provides a natural way to
reduce the complexity.

Object-Oriented design and implementation

The elsA software is based on an Object-Oriented (OO) design method.
The central concept of OO design is the class: a class encapsulates
data and methods. The class interface is a way of communicating with
class users. The most important difference between procedural and OO
programming is the switch from function to class as the fundamental
abstraction. OO programming is interesting because it makes it easier
to think about programs as collections of abstractions and to hide the
details of how these abstractions work to users who do not care about
these details. OO programming can be used to partition problems
into well-separated parts, none of which needs to know more about
the others than absolutely necessary. This ability to break a large,
developing program down into parts that can be pursued independently,
thus enhancing collaboration among multiple contributors, explains why
integration of new developments is easier in an OO software.

Box 2 - Mathematical model of elsA: the Navier-Stokes equations

Navier-Stokes equations are the main mathematical model of aerodynamics in the continuous regime, for which the characteristic
length scales are large compared with the mean free path of the molecules. These equations result from the application of the principles
of mechanics and thermodynamics, and, in integral form, express an equilibrium between a volume term expressing the time variation
of mass, momentum (mass times velocity) and total energy (sum of internal energy and kinetic energy) contained in a volume Ω, and
a surface flux term corresponding to the exchanges between the fluid inside Ω and the fluid outside Ω.

The Navier-Stokes equations are completed, on the one hand, by behavior laws representing the irreversibility effects associated with
viscosity and thermal conductivity, and, on the other hand, by state laws describing the thermodynamic properties of the fluid.

As a result of the low viscosity of air, flows in aeronautics applications are turbulent. Turbulence is included in the Navier-Stokes
equations which represent all the turbulence scales. However, Direct Numerical Simulation which relies on solving the instantaneous
Navier-Stokes equations is still very far from being applicable to real world applications. Therefore, a statistical approach has to be
added to the Navier-Stokes equation, which leads to Reynolds Averaged Navier-Stokes or to Large Eddy Simulation (see [1] for further
details).

	 AL02-10	 4
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

One important objective of elsA is to reap the benefits of the OO
approach without impairing numerical efficiency. Since nearly all
CPU time of CFD calculations is spent in computing loops acting over
quantities such as cells, nodes or interfaces, the OO design of elsA
does not deal with objects such as individual cells or fluxes, since
loops operating on them would suffer a high penalty. Conversely,
outside of loops, it has been shown with elsA design that OO concepts
may be introduced without any significant CPU penalty.

The last version of elsA delivered includes about 600 classes grouped
in 26 modules specialized for a given CFD task. The OO model based
on CFD experience has been defined using the classical UML (“Unified
Modeling Language”) method. Ideally, developers should be able to
work inside a module, without having to know the implementation details
of the other modules. Achieving a good breakdown is very important
for achieving ease co-operative of development and maintenance. A
UML modeling tool was used to define the initial design of elsA, but
without relying on the automatic code generation capability. The use of
such a tool appeared to be too difficult for managing the cooperative
development of elsA and was given up.

Each module in elsA is identified by a key of 3 to 5 letters. Inside each
module, each class name is then prefixed by the key of the module to
which it belongs. As an example, the TurKL class associated with
the (k, l) turbulence model belongs to the Tur module which deals
with turbulence modeling and transition prediction.

Some of turbulence models implemented in elsA are built on the
Boussinesq hypothesis. Their common feature is the use of the eddy
viscosity which can be calculated either by an algebraic turbulence
model, a subgrid-scale model or using transport equations. Each
turbulence model is implemented through a specific class, which is
derived from the abstract base class TurBase. All the classes deriving
from the abstract class TurBase share its interface which declares
the method compMut(). When manipulated in terms of the interface
defined by TurBase, the concrete classes do not have to be known by
the client classes. Client classes are only aware of the abstract class. In
elsA, the client classes of the Tur class hierarchy are the diffusive fluxes
(see module Fxd below) that manipulate a pointer to an instance of a
class derived from TurBase by means of:
tur -> compMut()

TurBase

compMut()

TurLes TurAlgTurTransp

TurSA TurKO TurKEps TurKL TurWale TurFSF TurSmago TurBlx

TurKOMenter TurKEpsV2F

Figure 2 – UML model of the Tur module

The computation of the eddy viscosity depends on each particular
turbulence model and cannot be performed in the TurBase abstract
class. Polymorphism allows the correct version of compMut() to be
called dynamically, without any explicit coding by the programmer. As a
consequence, adding a new turbulence model will not modify the code
of the client class. Figure 2 presents a simplified and reduced view of the
UML class diagram of Tur.

elsA design also follows the objective of organizing the modules into
layers in such a way that each layer should mainly affect the layers above
(see Figure 3). That means that classes in a layer are only allowed to use
services of classes of lower layers (or of same layer); the goal of this
organization is to achieve mono-directional relationships. The advantage
is then that maintenance becomes easier since one layer’s interface only
affects the next layers. We will now present the main modules of elsA.

The lowest layer contains all of the low level modules, such as the Fld
module (corresponding to the data storage classes which encapsulate
the dynamic memory needed to store any computational data), the
Pcm module (dealing with the implementation on parallel computer
architectures, it encapsulates the message passing interface) or the
Sio module dealing with IO (Input/Output).

Base

Def Agt Fld Tbx Pcm Sio

Geometry

Geo Blk Dtw Mask Chim Join Glob

Space Discretization

Oper Fxc Fxd Sou Bnd

Factory

Descp Fact Obf

Solver

Tmo Lhs Rhs

Physical model

Eos Tur

Figure 3 – elsA design organization

Then, the geometry layer contains all of the modules which describe
geometrical and topological elements:

•	 Blk: defines the “block” notion. A block corresponds to a
region of the discretized physical space defined by a mesh. Blocks
are specialized to take into account grid motion, Arbitrary Lagrangian-
Eulerian (ALE) technique and Hierarchical Mesh Refinement (HMR)
features;

	 AL02-10	 5
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

•	 Geo: defines the abstraction of the computational grid and provides
with all geometrical ingredients used by the finite volume formulation
(metrics: volume of cells, surface of cell interfaces; topological relations
between geometrical entities: cells, interfaces, nodes);

•	 Dtw: contains all of the distance and boundary-layer integral
thickness computations;

•	 Mask: defines concepts, such as masks for blanking, defined in
the Chimera technique;

•	 Chim: contains the grid assembly used within the Chimera
technique;

•	 Join: deals with multi-block computations with various types
of multi-block interface connectivity: 1-to-1 abutting, 1-to-n abutting or
mismatched abutting.

The physical model layer includes the Eos module which computes
quantities such as pressure, temperature (according to the equation of
state of the gas) or laminar viscosity coefficient, and the Tur module
already quoted above.

The space discretization layer gathers several important modules for the
computation of the terms of the equations to solve and of the boundary
conditions:

•	 Oper: defines the operator notion. Each operator class is
responsible for the computation of a single term in CFD equations:
convective flux (Fxc), diffusive flux (Fxd), source term (Sou);

•	 Bnd: contains the numerous classes devoted to the large variety
of boundary conditions.

The solver layer contains:
•	 Rhs: builds the (explicit) right hand side of the equation system;
•	 Lhs: deals with all the implicit methods;
•	 Tmo: manages the main iterative time loop.

Finally, the top layer is the factory layer which is responsible of the
dynamic creation of all objects (in OO methods, “objects” mean
“instances of the class”) and in particular includes the Fact module
which implements several object “factories” to build objects from user
input data coming from the interface.

In elsA, the choice of programming languages was done in order
to allow both respect of the OO patterns of the design and of CPU
constraints. The first objective led to the mandatory choice of a true
OO programming language, and the C++ language was chosen,
because it is the most widely used OO language, available on all usual
platforms. Besides C++ as main language for implementing the OO
design, it was decided to use Fortran for the two following reasons.
First, the CPU tests we carried out at the beginning of the elsA project
showed better CPU performance of Fortran in comparison with C.
Second, some Fortran lines of legacy code were re-implemented in
the elsA loops. However, due to a completely new design, it was in
general not possible to keep the complete subroutines of the legacy
code. These Fortran routines are very similar to private class methods:
since they do not appear in the public class interface, they do not affect
the OO design. A third programming language is used in elsA: the
Python language which is a freely available interpreted OO language
and is used for programming the elsA interface. Today, elsA includes
more than one million lines (600,000 in C++ , 420,000 in Fortran and
55,000 in Python).

elsA interoperability

The interoperability of a program or of a piece of software is its
ability to interact with another program or piece of software. The elsA
software has evolved towards a software suite containing the elsA
kernel (mainly the CFD solver) and some additional tools (dealing in
particular with pre-processing and post-processing). All the elements
of the suite should be seen as boxes in a larger simulation process.
Our target is the integration of these boxes into all the platforms of our
customers. Each aerospace industrial company already has a large
set of programs and most of the time they have in-house software
systems to manage them in their own process. Then our goal is
rather to be able to be integrated than to integrate. The strategy for
the interoperability and the so-called “component approach” software
architecture we have designed for it are tightly bound to this goal of
all-platforms integration.

Box 3 - Joint development project

The elsA project is a joint development project including organizations and individuals located at several geographic places. This
cooperative development involving developers at different sites is greatly facilitated by the use of a simple and robust version control
system: the Concurrent Version System (CVS), and soon the Subversion system (SVN). The version control system maintains a central
“repository” which stores files and gathers them into coherent and named sets of revisions. The developers work in private workspaces
and use the repository as a common basis for source exchange. Only one person, called the “integrator”, is allowed to “commit” the
set of changes done by a developer back into the repository. Each new production of the software approximately includes 5 to 10
developments.

A delivered release of the software is a particular production, corresponding to a higher level in documentation and validation quality
than a current production. Average time between two successive delivered releases of elsA is 12 to 18 months, and generally about 5
intermediate productions are made.

Communication is obviously one of the key elements in a joint development project. A Web site (http://elsa.onera.fr) facilitates
information transmission. This site, including restricted areas for external users and developers, gives, in particular, access to the
documentation (User Reference Manual, User Starting Guide, Developer’s Guide, Validation report…), the validation scripts (around
170 test cases at the present time in the validation database) and the problem tracking database. A specific email address is available
for software support.

	 AL02-10	 6
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

The component approach

The elsA component approach is based on the interface description.
We use standard interfaces for the CFD simulation components. The
CGNS standard (see box 4) is preferred for the data model and the
Python programming language (see the box describing this language
in [10]) defines the protocol, in other words the order you should
respect to use the component functions. Each box in the simulation
workflow, including the elsA kernel, has to provide a Python interface
supporting the CGNS data model: the CGNS/Python interface. When
you integrate such a CGNS/Python component into a platform, the
interface you use is not proprietary; it is based on Open System
standards. A proprietary interface is a set of services which have a
single implementation - the customer has no choice about the service
provider - whilst an Open System interface should have more than
one implementation. You can write Python scripts and just pass the
CGNS data trees from one software tool to another in the memory of
the process, or by means of a network if you have to, as long as they
use the same public interface, no matter which implementation they
use. This is the component interoperability which is the basis of Onera
component approach.

CGNS/Python and elsAxdt

The CGNS/Python mapping of the CGNS/SIDS is used by an increasing
number of Onera software components. Each tool has its own interface
to CGNS/Python: the interface of the elsA kernel is elsAxdt. It parses
CGNS/Python data trees and reads/writes elsA data in the tree for the
next step of the workflow. We call this tree a “shuttle tree”, just like a
shuttle bus going from code to code and picking up or dropping data.
During this process, we avoid the use of files, because a file access
often leads to problems on large computation clusters, and because
most intermediate trees are sometimes not archived and trashed as
soon as they are used. These transient trees can be created, used and
killed within the memory.

A CGNS/Python computation with elsA uses quite simple commands,
the read of the CGNS tree and the write of the resulting CGNS/Python
tree:

import elsAxdt
parser=elsAxdt.XdtCGNS("001Disk.cgns")
parser.compute()
parser.save("Result.cgns")

In this simple example, all the required data is obviously embedded
into the 001Disk.cgns file: CGNS has been designed to be able
to handle all the CFD data and even the specific solver parameters.
Once the computation is performed, the output is obtained in
Result.cgns, another CGNS tree.

Whereas in this first example we use files, the next example shows
how a full memory transfer of CGNS/Python trees can be achieved:

import elsAxdt
from CGNS.MAP import *
(input_tree,links)=load("001Disk.cgns")
parser=elsAxdt.XdtPython(input_tree)
output_tree=parser.compute()
save("Result.cgns",output_tree,links)

The code lines are almost the same, but the architecture is quite
different, because the elsA interface only uses the CGNS/Python tree.
The actual load and save on the disk is not performed by elsA, it is
performed by an Open Source module (CGNS.MAP) handling the
CGNS/Python tree and HDF5 files.

We dissociate the elsA computation from the means used for the
actual data exchange. You can use the CGNS/Python tree in memory
for exchanges with a network layer or a dedicated proprietary
database. For example, if you run a large parallel computation with
local generation of grids, the elsA suite includes Python modules
(Post, Converter, Generator) for this grid generation as CGNS/Python
trees in memory. The solver runs on these grids, and produces one
result per process. The merging of these trees is again performed in
memory and the result is sent by means of a network to a remote post-
processing workstation. Such a workflow limits the disk accesses on
the high-performance computer and reduces the exchanges on the
network to the data required for this particular application. This can be
extended to the code coupling workflows [10].

Concluding remarks on interoperability

The elsAxdt interface is now used by some of our largest customers.
These users are developing their own “integrated environment” with
dedicated methods and tools. The common exchange backbone is
based on CGNS. They can use the standard for file archiving as well
as for component interoperability. The grid is generated as a CGNS tree
by a commercial tool, then the proprietary process takes the tree and
enriches it with elsA specific parameters, the tree is submitted to the
solver and the result is directly passed to a commercial visualization tool.

The next step is now to use the CGNS/Python interface in the solver
itself. Such a re-design is not necessary or useful for every part of the
solver. We have selected a limited set of interfaces where we can explode
the solver into separate and re-usable components. Each component
would provide the CGNS/Python interface and thus would increase the
interoperability with a finer granularity. The next solver generation would
extend its flexibility up to its inner software components and thus would
be a future platform for better research and better integration into the
customers' proprietary platforms.

Box 4 - CGNS

The CGNS (CFD General Notation System) [24] provides a data model and a portable and extensible standard for exchanging and
archiving of CFD analysis data. The main target is data associated with computed solutions of Navier-Stokes equations and their
derivatives, but this can be applied to the field of computational physics in general.

	 AL02-10	 7
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

CGNS started in the 1990s as a joint NASA, Boeing and McDonnell Douglas project. They developed the so-called SIDS (Standard
Interface Data Structure) document that specifies the data model as a reference document. The first implementation was performed by
ANSYS/ICEM teams on the top of the ADF (Advanced Data Format) proprietary low level storage system.

Figure B4-01 – Graphical view of a part of a CGNS tree using the Open Source CGNS.NAV tool

In 1999, the CGNS Steering Committee (CGNS/SC) was formed with academic organizations, aerospace industrial companies and software
editors. Onera joined the CGNS/SC in 2001 and is an active member.

The standard is made up of a data model specification (CGNS/SIDS) which gives the name to the standard itself: Notation System. The main
goal of the CGNS standard is to specify CFD data. The data can be used for exchange in a CFD workflow or as a storage conceptual model. Four
CGNS implementations are available, the ADF, the HDF5 (Hierarchical Data File), the XML (eXtensible Markup Language) and finally the Python
mapping. Now the main implementations are CGNS/HDF5 and CGNS/Python, the first is archiving oriented while the second is more workflow
oriented. CGNS/Python is the basis of the interoperability system developed at Onera around elsA.

The standard is not used for internal data representation but only for the public view of the data, in a workflow exchange, for example from the
CAD to the mesh tool, or from the solver to the visualizer. More complex workflows can be defined, with unsteady computation involving both
CFD and CSM or optimization algorithms.

The data model has a tree structure, starting from the root node, the base, up to the smallest nodes that can be modeled, such as a single real
value or a boundary condition application range (see figure B4-01).

The standard is extensible and the CGNS/SC has a process to add new structures when some user needs are raised and agreed by members.
We often define new data structures in the framework of our projects. CGNS is the good candidate for data specification when several partners
have to exchange data during run-time or to exchange computing files. CGNS can hold a complete simulation context and this has an important
effect: when the user defines his data model, he has to find all the required and exact data needed for the simulation, this avoids hidden behavior
of codes or unwanted side-effects.

	 AL02-10	 8
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

Modeling capabilities

The elsA multi-application CFD simulation platform deals with
internal and external aerodynamics from the low subsonic to the high
supersonic flow regime and relies on the solving of the compressible
3-D Navier-Stokes equations (see Box 2). The thermodynamic
properties of the fluid may correspond either to the perfect gas
assumption or to the equilibrium real gas assumption described by a
Mollier diagram. elsA allows the simulation of the flow around moving
bodies in several formulations according to the use of absolute or
relative velocities and the definition of the projection frame. This is
useful when dealing with applications to turbomachinery flows, where
the use of relative velocities is advantageous, and applications to flows
around propellers, where the use of absolute velocities is necessary,
with the same software. The bodies may be deformable, as well as
the associated meshes. The gravity source term is optionally taken
into account.

A large variety of turbulence models from eddy viscosity to full
Differential Reynolds Stress models are implemented in elsA for the
Reynolds averaged Navier-Stokes (RANS) equations (see [1] for
further details). The range of turbulence models includes classical
one-transport and two-transport equation models, more advanced
two-equation models, multi-scale four-equation models, one-layer or
two-layer Algebraic Reynolds Stress models. When thermal effects are
important, specific versions of models are available. Low Reynolds
versions of the models are mostly used for an accurate description of
the boundary layer profiles, in association with the use of a very fine
mesh near the wall. However, wall laws approximating the behavior of
the boundary layer near the wall are also available, which allow for the
use of coarser mesh near the walls and may be used to reduce the
cost of the calculations, in particular for unsteady calculations.

Special attention has been paid to laminar-turbulent transition modeling
[1], which may be a key point for obtaining accurate flow predictions.
A reliable design of wings or turbines often requires an accurate
modeling of the transition process. Transition prediction capability in
the elsA RANS solver is based on application of criteria that either were
previously developed at Onera for use in boundary layer codes, or
result from classical criteria from literature. These criteria are used to
describe Tollmen-Schlichting instabilities (including laminar separation
bubble predictions), cross-flow instabilities, bypass for high external
turbulence rate, attachment line contamination, wall roughness. This
transition capability is available for complex geometry configurations.
Nevertheless, to improve the applicability for very complex geometries,
a transition model based on transport equations is now also available.

In order to deal with flows exhibiting strong unsteadiness and large
separated regions, and/or to provide input data for aeroacoustic
simulations, the user can perform Detached Eddy Simulations (DES)
and Large Eddy Simulations (LES) [1]. The variants of DES methods
available in elsA (basic DES, Zonal-DES, Delayed DES) are associated
with the Spalart-Allmaras model or with the Menter (k, ω) model.
The LES approach can be used to compute the larger structures of
the turbulent flows while the smaller structures are dissipated by the
numerical model, either by the MILES approach, which relies on the
properties of advanced upwind schemes and dissipates the unresolved
turbulent structures, or by subgrid models such as the Smagorinsky,
Wale and filtered structure function models available in elsA.

Mesh topology capabilities

CFD solvers may rely on several meshing paradigms such as structured
body-fitted grids, unstructured grids or structured Cartesian grids.
Even when considering the same configuration, there is no universally
accepted definitive choice, as can be seen by looking at the contributions
to the Drag Prediction Workshop (http://aaac.larc.nasa.gov/tsab/cfdlarc/
aiaa-dpw/Workshop4/presentations/DPW4_Presentations.htm). In that
workshop, the contributions were roughly evenly divided, half of them
on structured body-fitted grids and the other half on unstructured grids.
Each of the mesh types has inherent advantages and disadvantages
which may depend on the type of configuration and even more on
the flow region of a given configuration. For example, Cartesian grids
are easy to generate, to adapt, and to extend to higher-order spatial
accuracy, but they are not suitable for resolving boundary layers
around complex geometries. Body-fitted structured grids work well for
resolving boundary layers, but the grid generation process for complex
geometries remains tedious and requires considerable user expertise.
General unstructured grids are well-suited to complex geometries
and are relatively easy to generate, but their spatial accuracy is often
limited to second order, and the associated data structures tend to be
less computationally efficient than their structured-grid counterparts.
Thus, today, the tendency is to couple meshing paradigms in the same
software [29] or in the same coupling infrastructure [28], and this is
also the way chosen for elsA.

In elsA, the main focus has been put firstly on structured body-fitted
grids which allow for the use of very efficient numerical algorithms
due to the natural (I, J, K) ordering of the hexahedral cells. Since it
is generally impossible to define a unique structured body-fitted grid
around complex geometries, the computational domain is divided in
several adjacent or overlapping domains or blocks, in which simpler
component grids can be generated more readily. Communication
between component grids is achieved either by direct transfer or by
interpolation across interfacing boundaries (patched grids), or by
interpolation within overlapping grid regions (overset grids). In order
to cope with more and more geometrically complex configurations, high
flexibility advanced techniques of multi-block structured meshes are
available in elsA, in addition to matching techniques for 1-to-1 abutting
or 1-to-n abutting patched grids. These advanced matching techniques
include quasi-conservative mismatched abutting patched grids (also
called totally non-coincident matchings) and Chimera technique for
overlapping meshes [8].

Mismatched abutting patched grids are intensively used in industry
computations with elsA. The reason is that they simplify mesh
generation for complex configurations, and reduce global number of
mesh points for a given configuration, by preventing the propagation
of mesh refinements throughout the computational domain. They are
also well adapted to deal with sliding meshes.

The Chimera technique which enables a discretization of the flow
equations in meshes composed of overset grids, may be applied to
a wide range of configurations. The two main application domains
of this method were originally dealing with the treatment of separate
bodies (such as different positions of a missile below a wing) or
with configurations including bodies in relative motion (for instance,
helicopter rotor and fuselage or booster separation). During recent
years, the Chimera method has also been increasingly used to simplify

	 AL02-10	 9
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

and improve the meshing of complex configurations composed of the
meshing of a basic geometry and of additional meshes adapted to joint
bodies (for instance, a spoiler associated with a wing) or to geometrical
details (for instance, technological effects in a turbomachinery row such
as clearances, leakage slots, grooves, etc.). Finally, Chimera may also
be used to achieve mesh adaptation for the simulation of phenomena
involving a large range of length scales.

The development in elsA of hybrid multi-block capabilities allowing
for the use of unstructured meshes in some blocks of a multi-block
configuration [8] presently relies on a strong cooperative effort between
Onera and Cerfacs. The objective is to benefit from the high flexibility of
unstructured meshes in the flow regions where it becomes too difficult
to build a structured grid. Tetrahedral, hexahedral, prismatic cells are
considered in this elsA development, in order to be able to consider
hexahedral cells near the walls, which is very important in aerodynamics
for an accurate description of the boundary layers. A first set of hybrid
capabilities will be available very soon in the main version of the elsA
software. The mismatched abutting technique is extended in elsA to
patch structured and unstructured grids. In the future, the plan is to
also apply the Chimera technique to the matching between structured
and unstructured grids.

Lastly, structured Cartesian grid capabilities are also currently being
developed so that they can be part of the elsA suite in the future. The
Cartesian formulation enables high order spatial discretization and mesh
adaptation, which in turn allows for better capturing of off-body flow
phenomena such as shear layers and wakes [8]. Since some specific
high order schemes have been developed in this Cartesian solver, the
way forward is to couple this solver with the block-structured solver of
elsA. Matchings between blocks are again done using Chimera method.
So, elsA will soon offer a quite complete multiple-gridding paradigm
providing the potential for optimizing the gridding strategy on a local

basis for the particular problem at hand, in order to cope with the
increasing complexity of CFD applications (see [8] for further details
on structured/unstructured and Cartesian/ curvilinear block matchings).

Numerics and boundary conditions capabilities

The flow equations are solved by a cell centered finite-volume method
[8]. Space discretization schemes include a range of second order
centered or upwind schemes. Centered schemes are stabilized by
scalar or matrix artificial dissipation, including damping capabilities
inside viscous layers, in order to preserve accuracy. Upwind schemes
are based on numerical fluxes such as van Leer, Roe, Coquel-Liou
HUS, or AUSM fluxes and are associated with classical slope limiters.
Second and third order Residual Based Compact schemes are also
available in elsA. The semi-discrete equations are integrated, either
by multistage Runge-Kutta schemes with implicit residual smoothing,
or by backward Euler integration with implicit schemes solved by
robust LU relaxation methods [21], which in general leads to a higher
efficiency with elsA. An efficient multigrid technique can be selected
in order to accelerate convergence. For time accurate computations,
the implicit dual time stepping method or the Gear integration scheme
are employed. Preconditioning is used for low speed flow simulations.

An extensive range of boundary conditions is available in elsA, from
standard inlet, outlet or wall conditions, to more specific conditions
for helicopter configurations (such as the so-called “Froude” far field
boundary conditions in hover) or turbomachinery configurations (such
as the radial equilibrium condition, or – see Box 5 – the Reduced Blade
Count method and the phase-lagged technique for the simulation
of rotor/stator interactions). Actuator-disc models are available to
economically model the effects of helicopter rotors or propellers,
when complete detailed calculations are not worthwhile.

Box 5 - Reduced Blade Count method and Phase-Lagged technique, two different approaches for simulating
the time-periodic flow in a turbomachinery stage configuration

To improve turbomachinery performances, 3D Navier-Stokes flow computations in blade rows are commonly used for turbine and compressor
design. Approximate steady flow calculations through multi-stage machines have become usual in design process for many years. In
elsA, they are performed using a specific steady condition, the mixing plane condition, to connect two consecutive rows. This condition is
based on azimuthal averages which are computed at the interfaces and transferred from a row to the consecutive one. It gives a quite good
prediction of the overall efficiency of a machine but of course does not give any information on the unsteady flow fluctuations. Unsteady
computations are increasingly used for industrial purposes: in a complete staged machine, they are necessary when performing unsteady
non periodic phenomena. They are still very expensive, as discussed in the High Performance Computing section of this paper. But under
some conditions, techniques for reducing the computational domain can be used. They can be applied for time-periodic flows (in the
frame of reference of each row), that is for flows where the unsteadiness is only due to the relative motion of the rows. The first technique,
called “Reduced Blade Count” method [11], was introduced in elsA software [23]. The computation is performed on the actual geometry
with reduced blade counts. The interface between the blade rows accounts for the non equal pitches on each side of the interface by an
appropriate scaling. The second technique, known as “Phase-Lagged” technique [9], or “Chorochronic” method was implemented in 2003
in elsA software [2]. A single blade passage is computed for each row. The flow solution is stored on the interface boundaries and on the
azimuthal periodic boundaries to deal with the phase lag which exists between rows and adjacent blade passages in a row.

Let us note N1 and N2 the actual blade numbers of two consecutive rows, ω1 and ω2 their rotation speeds. The flow periods are equal to
T1=Trot / N2 and T2=Trot / N1, respectively in the rotating frame of the first row and in the rotating frame of the second one, Trot=2π / |ω2-ω1|
being the time for a blade passage to make a whole revolution.

	 AL02-10	 10
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

The “Reduced Blade Count” technique consists in reducing the computational domain to K1 and K2 blade passages without changing the
geometry. K1 and K2 are chosen such that K1 / N1 and K2 / N2 are about the same. We assume that the flow is identical on two consecutive
Ki blade passages at each instant, which is exact when the ratios Ki / Ni are equal. Between the lower and the upper boundaries, the flow
continuity is enforced, which is an approximation with respect to the actual flow, since the real phase lag between these boundaries is cancelled.

We can define DM as a mean value of the Ki / Ni ratios. This quantity represents the geometric reduction which is applied to each row
to obtain the computational domain. On the interface, the two blade groups are linked by an instantaneous continuity condition through
a common azimuthal extension em = 2π / DM with a scaling given by λi = (Ni /Ki) (1/DM) for each row. The “Reduced Blade Count”
technique induces a slight approximation since the computational periods are T’1 = Trot / (K2DM) and T’2 = Trot / (K1DM), that is T’i=λiTi.
This technique can be applied to several consecutive rows if the actual blade numbers are cooperative enough to apply a geometric
reduction.

In the “Phase-Lagged” approach, the computational domain is limited to a single blade passage for each row. As the flow is time-periodic
in each blade row, a phase lag exists between two adjacent blade passages. This phase lag is the time taken by a blade of the next row
to cover the pitch of the row, modulo the time period of the row. The “Phase-Lagged” technique consists of storing the flow values on the
azimuthal periodic boundaries and on the interface in order to use them later to build the flow.

Let us consider two space periodic points A and B of the upper and lower boundaries of the first row. B is ahead of A and what happens at
time t in B will happen in A at t + T2 and more generally at t + T2 + nT1 or has happened at t + T2 - mT1 (m is an integer such that T2 - mT1
is negative). The flow condition stored in A at time t + T2 - mT1 can be used for the boundary treatment of B at time t.

The treatment of the interface relies on the same principle. At each time step, the flow continuity is enforced at the interface between one
cell facet of the first row and the suitable storage of the second row, taking into account for the relative position of the rows and using the
necessary spatial interpolation on the stored data.

The direct storage of flow solution may lead to very large requirements in terms of memory. The data storage is lowered to an acceptable
amount by Fourier analysis.

In the framework of the TATEF2 European project [7], unsteady flow simulations of the stator-rotor interaction in a transonic turbine stage
have been performed using the “Phase-lagged” approach. Figure B5-01 shows clearly shock structures obtained for high pressure ratio.

t/Tr=0.25

t/Tr=0.0 t/Tr=0.5

t/Tr=0.75

Figure B5-01 – Shock progression through the turbomachinery stage: schematic (left) and density gradient (right). y/H ~ 25%.

The “Phase-Lagged” approach does not make any approximation on the number of actual blades and it accounts for the real time period in
each reference frame. So it is more accurate than the “Reduced Blade Count” technique. Moreover, as the computational domain is limited to
a single blade passage for each row, it is less expensive in terms of CPU time and computer memory. But this approach can only be applied
to a single stage, whereas the “Reduced Blade Count” technique can be applied to multi-stage configurations, even when several rotors have
different rotational speeds.

A generalization of the “Phase-Lagged” approach, called “multiple frequency Phase-Lagged method”, is under development in elsA [18]. This
method allows for unsteady computations through several rows, whilst still limiting the computational domain to one single blade-to-blade
passage in each row.

	 AL02-10	 11
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

Multidisciplinary and optimization capabilities

elsA also includes the Ael module offering a general framework for
aeroelastic applications [10]. This module provides for the following
simulations:

•	 harmonic forced motion simulations for a given structural mode;
•	 linearized Euler or Navier-Stokes simulations;
•	 static and dynamic fluid/structure coupling simulations in time

domain with different levels of structural modeling (“reduced flexibility
matrix” approach for static coupling, modal approach, full finite
element structural model).

The Opt module dealing with calculation of sensitivities by linearized
equation or by adjoint solver techniques is useful for optimization and
control [22]. The calculation of sensitivities consists in calculating the
derivatives with respect to control parameters of objective functions
such as drag or lift.

High Performance Computing: towards massively parallel
computations

As said above, typical aeronautic configurations nowadays take into
account fine geometrical details, resulting in huge problem sizes, as the
example of the simulation of the complete multistage compressor in
Figure 4 (a simulation which does not use the approximate techniques
described in Box 5 for reducing the computational domain). Moreover,
although the type of physical modeling still remains mostly RANS, the
major trend is to move towards URANS and even DES or LES in order
to get more accurate results, leading to an estimated additional CPU
cost of about two orders of magnitude.

Figure 4 – Unsteady flow simulation of a multistage compressor (134 million cells)
using 512 to 4096 computing cores (SNECMA configuration) [17]

To handle such demands, High Performance Computing is now
unavoidable in order first to tackle simulations with very large number
of points (and thus requiring a huge amount of memory), and second
to reduce the CPU wall clock time as much as possible. Onera,
Cerfacs and CS have made very large efforts [15, 16] to improve

the code's performance on state-of-the-art vector and x86-64 based
computing platforms. In the CFD context, vector machines are now
being rapidly supplanted by clusters of x86-64 based nodes due to
their high operating cost and relatively poor energy efficiency (see
in Figure 5 comparison between many-core and vector platforms on
the simulation presented in Figure 4). elsA performance improvement
efforts are now entirely dedicated to massively parallel computers.

Scalar (IBM Blue Gene/P)
Vector (NEC SX8++)

 1024 2048 3072 4096
Number of computing cores (IBM)

Number of computing cores (NEC)
8 16 24 32

1.0

0.8

0.6

0.4

0.2

0.0
 No

rm
al

ize
d

co
m

pu
ta

tio
na

l t
im

e

a) CPU time (from [17])

Scalar (IBM Blue Gene/P)
Vector (NEC SX8++)

 1024 2048 3072 4096
Number of computing cores (IBM)

Number of computing cores (NEC)
8 16 24 32

12.0

10.0

8.0

6.0

4.0

2.0

Co
ns

um
ed

 e
ne

rg
y

(M
J)

b) Consumed energy (from [17])

Figure 5 – Comparison between many-core and vector platforms for a single
unsteady physical iteration on the multistage compressor configuration

Parallel strategy for structured multi-block calculations with elsA

The Message Passing Interface (MPI) standard library is used
to implement communications between processors. elsA uses a
standard coarse-grained SPMD approach: each block is allocated to
a processor. Several blocks can be allocated to the same processor.

	 AL02-10	 12
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

As said previously, meshing a configuration with structured grids
often leads to a complex multi-block topology, thus requiring specific
treatments to exchange data between adjacent blocks. In the elsA
solver, each block is surrounded by two layers of ghost cells storing
values coming from the adjacent block. If the two blocks are allocated
to two different computing cores, then point-to-point message passing
communication occurs. Otherwise, ghost cells are directly filled by a
memory-to-memory copy.

Point-to-point communications are implemented either with blocking
(MPI_Sendrecv_replace) or non-blocking (MPI_Irecv/
MPI_send) point-to-point messages. Only blocking point-to-point
communications require the scheduling of messages as shown by Fig.
6. The scheduling of communications comes from a heuristic coloring
algorithm adapted from graph theory.

1: blocking

2: non-blocking

 1 2
MPI Implementation

Scheduler

No scheduler

1

0.8

0.6

0.4

0.2

No
rm

al
ize

d
ef

fic
ie

nc
y

Figure 6 – Effect of the MPI blocking and non-blocking communications on
elsA efficiency with and without message scheduling

The non-coincident inter-block connectivity is implemented with
blocking collective communications (MPI_Allgatherv). If only
one computing core handles the whole inter-block connection, data
exchanges come down to memory-to-memory copies without MPI
messages.

Performance discussion

The well known Amdahl's law states that load balancing is crucial to
obtain a good efficiency on parallel computers when the number of
processors increases. Due to topological constraints, the number of
cells in blocks can be very different, ranging from 103 to 1003. Most of
the time, some blocks must be split to achieve a good load balancing.
It is not clear if an optimal response can be obtained in a reasonable
amount of time. Therefore, elsA integrates a heuristic block splitting
algorithm in the load balancing process. Based on the relative error
between the number of cells allocated to the computing core and the
ideal number of cells, it checks if the largest block to be allocated
needs to be split. The partitioning algorithm handles many constraints
such as the multigrid constraint. The so-called “greedy” load balancing

algorithm loops over all of the blocks searching for the largest one in
terms of cells and allocates it to the computing core with the fewest
cells until all of the blocks are allocated. Note that the number of ghost
cells increases with the number of blocks split, leading to an increasing
problem size. Topology modification also implies carefully handling
block-based implicit algorithms since convergence may rapidly be
degraded. Therefore, communications occur at each relaxation step
inside the implicit LU stage.

elsA has been ported to most high-performance computing platforms,
achieving good CPU efficiency on both scalar multi-core computers
and vector computers. As an example, Figure 7a shows typical
speedup results on a civil aircraft configuration including 27,8 106
mesh points and 1037 blocks. The numerical options include multigrid
algorithm (3 levels) and the Spalart-Allmaras one-equation turbulence
model. For large number of processors, the configuration has been
split, ending up with 1774 blocks. The computer is the Cerfacs'
BlueGene/L computer. Another concrete example (Figure 7b) is the
High Lift Prediction Workshop configuration, where a good scalability
is obtained up to 256 computing cores, on a SGI cluster built with Intel
Nehalem processors (Onera's Stelvio computer), on a grid of 160 106
mesh points, in 1235 blocks.

0 128 256 384 512 640 768 896 1024
Number of processors

16

12

8

4

0

Sp
ee

du
p

Ideal Speedup

Measured Speedup

a) Generic civil aircraft configuration

0 32 64 96 128 160 192 224 256
Number of processors

6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

Sp
ee

du
p

Ideal Speedup

Measured Speedup

b) Configuration of the High Lift Prediction Workshop 2010

Figure 7 – Normalized speedup obtained with elsA on two configurations

	 AL02-10	 13
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

Future challenges in HPC

Since the performance improvement through increases in clock
frequency has reached a limit, mainly due to the power dissipation
problem, new parallel paradigms have emerged, namely the increase of
the number of cores on a chip and the use of specialized accelerators
(FPGA, GPU, Cell processor). To handle such paradigms, we have
gained experience in two approaches: OpenMP thread programming and
GPU using CUDA. In our previous studies on thread parallelism [20],
OpenMP appeared to be less efficient compared with MPI on nodes
with small numbers of cores (<16). We plan to update these studies in
the context of upcoming many-core chips. In addition, we are currently
building a prototype version dedicated to GPU; here the main challenge
is the limited data transfer bandwidth between CPU host and GPU.

As memory bandwidth will probably remain the limiting factor on
performance in the near future, major efforts are planned for both

the fine-grain parallelism (data-parallelism) and the optimized use of
cache memory. This will be mandatory as the trend in increasing the
number of cores implies that many cores will compete for hardware
resources.

To summarize on parallel performance, elsA is a por table code
reasonably well adapted to current generations of HPC platforms
and continuous work is undertaken to strike a balance between good
efficiency and maintainability. elsA is routinely used on hundreds of
processors in industry; the biggest computation was run with 8192
cores on a 1.7 109 point grid [12].

Note also that not only the solver, but also the pre- and post-processing
steps should be fully and efficiently addressed for massively parallel
configurations. Moreover, the efficiency of the whole simulation in
the framework of a multiple-gridding paradigm will be a big challenge
for the next few years n

References
[1] B. AUPOIX, D. ARNAL, H. BÉZARD, B. CHAOUAT, F. CHEDEVERGNE, S. DECK, V. GLEIZE, P. GRENARD and E. LAROCHE - Transition and Turbulence
Modeling. Aerospace Lab, Issue 2, 2011.
[2] G. BILLONNET, S. PLOT and G. LEROY - Implementation of the elsA Software for the Industrial Needs of Flow Computations in Centrifugal Compressors.
41e colloque d’Aérodynamique Appliquée, Lyon, 2006.
[3] R.H. BUSH, G.D. POWER and C.E. TOWNE - WIND: The Production Flow Solver of the NPARC Alliance. AIAA Paper 98-0935, 36th AIAA Aerospace Science
Meeting and Exhibit, Reno, 1998.
[4] L. CAMBIER, M. GAZAIX - elsA: an Efficient Object-Oriented Solution to CFD Complexity. AIAA Paper 2002-0108, 40th AIAA Aerospace Science Meeting
and Exhibit, Reno, 2002.
[5] L. CAMBIER and N. KROLL - MIRACLE - A joint DLR/Onera Effort on Harmonization and Development of Industrial and Research Aerodynamic Computational
Environment. Aerospace Science and Technology, vol.12, 2008.
[6] L. CAMBIER and J.-P. VEUILLOT - Status of the elsA CFD Software for Flow Simulation and Multidisciplinary Applications. AIAA Paper 2008-664, 46th AIAA
Aerospace Science Meeting, Reno, 2008.
[7] L. CASTILLON, G. PANIAGUA, T. YASA, A. De La LOMA and T. COTON - Unsteady Strong Shock Interactions in a Transonic Turbine: Experimental and
Numerical Analysis. ISABE Paper 2007-1218, Beijing, China, 2007.
[8] B. COURBET, C. BENOIT, V. COUAILLIER, F. HAIDER, M.-C. LE PAPE and S. PéRON - Space Discretization Methods. Aerospace Lab, Issue 2, 2011.
[9] J.I. ERDOS and E. ALZNER - Computation of Unsteady Transonic Flows Through Rotating and Stationary Cascades. NASA CR-2900, 1977.
[10] M. ERRERA, A. DUGEAI, P. GIRODROUX-LAVIGNE, J.-D. GARAUD, M. POINOT, S. CERQUEIRA and G. CHAINERAY - Multi-Physics Coupling Approaches
for Aerospace Numerical Simulations. Aerospace Lab, Issue 2, 2011.
[11] A. FOURMAUX - Assessment of a low storage technique for multi-stage turbomachinery Navier-Stokes computations. ASME Winter Annual Meeting,
Chicago, 1994.
[12] M. GAZAIX and S. CHAMPAGNEUX - Recent Results with elsA on Multi-Cores. Symposium on CFD on Future Architectures, DLR Braunschweig, 2009.
[13] M. GAZAIX, A. JOLLÈS and M. LAZAREFF - The elsA Object-Oriented Tool for Industrial Applications. 23rd ICAS meeting, Toronto, 2002.
[14] T. GERHOLD, V. HANNEMANN and D. SCHWAMBORN - On the Validation of the DLR-TAU Code. in W. Nitsche, H.J. Heinemann and R. Hilbig (Eds),
New Results in Numerical and Experimental Fluid Mechanics, NNFM 72, Vieweg, 1999.
[15] N. GOURDAIN, L.Y.M. GICQUEL, M. MONTAGNAC, O. VERMOREL, M. GAZAIX, G. STAFFELBACH, M. GARCIA, J.-F. BOUSSUGE and T. POINSOT - High
Performance Parallel Computing of Flows in Complex Geometries - Part 1: Methods. Computational Science and Discovery, vol. 2, 2009.

Acknowledgements
The authors would like to thank all colleagues of several Onera Departments (CFD and Aeroacoustics, Applied Aerodynamics, Aerodynamics and Energetics
Modeling, Aeroelasticity and Structural Dynamics), of Cerfacs and of development partners for their sustained effort to make the elsA software a powerful and
reliable tool for research and for industry.

We would like in particular to acknowledge contributions of the following former and present members of the elsA software team in the Onera CFD and
Aeroacoustics Department: A. Gazaix-Jollès, M. Lazareff, J. Mayeur, B. Michel, P. Raud, A.-M. Vuillot.

We also thank our colleagues who have provided us with the elsA results presented in the paper: F. Blanc (Cerfacs/Airbus) for the transport aircraft configuration,
N. Gourdain (Onera Applied Aerodynamics Department, then Cerfacs) for the rotating stall turbomachinery simulation, then for the HPC turbomachinery
calculation, G. Delattre (Onera Applied Aerodynamics Department) for the CROR configuration, C. Benoit, G. Jeanfaivre and X. Juvigny (Onera CFD and
Aeroacoustics Department) for the helicopter configuration.

	 AL02-10	 14
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

[16] N. GOURDAIN, L.Y.M. GICQUEL, G. STAFFELBACH, O. VERMOREL, F. DUCHAINE, J.-F. BOUSSUGE and T. POINSOT - High Performance Parallel Computing
of Flows in Complex Geometries - Part 2: Applications. Computational Science and Discovery, vol. 2, 2009.
[17] N. GOURDAIN, M. MONTAGNAC, F. WLASSOW and M. GAZAIX - High-performance Computing to Simulate Large-scale Industrial Flows in Multistage
Compressors. International Journal of High Performance Computing Applications, vol. 24, 2010.
[18] L. HE and H.D. LI - Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion. Journal of Turbomachinery, 2002.
[19] W.L. KLEB, E.J. NIELSEN, P.A. GNOFFO, M.A. PARK and W.A. WOOD - Collaborative Software Development in Support of Fast Adaptive AeroSpace Tools
(FAAST). AIAA Paper 2003-3978, 33rd AIAA Fluid Dynamics Conference, Orlando, 2003.
[20] F. LOERCHER - Optimisation d'un code numérique pour des machines scalaires et parallélisation avec OpenMP et MPI. Technical report TR/CFD/03/104,
CERFACS, 2003.
[21] C. MARMIGNON, V. COUAILLIER and B. COURBET - Solution Strategies for Integration of Semi-Discretized Flow Equations in elsA and CEDRE. Aerospace
Lab, Issue 2, 2011.
[22] J. PETER, G. CARRIER, D. BAILLY, P. KLOTZ, M. MARCELET and F. RENAC - Local and Global Search Methods for Design in Aeronautics. Aerospace Lab,
Issue 2, 2011.
[23] S. PLOT, G. BILLONNET and L. CASTILLON - Turbomachinery Flow Simulations Using elsA Software: Steady Validations and First Abilities for Unsteady
Computations. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, 2002.
[24] D. POIRIER, S.R. ALLMARAS, D.R. McCARTHY, M.F. SMITH and F.Y. ENOMOTO - The CGNS system. AIAA Paper 1998-3007, 29th AIAA Fluid Dynamics
Conference, Albuquerque, 1998.
[25] J. RENEAUX, P. BEAUMIER and P. GIRODROUX-LAVIGNE - Advanced Aerodynamic Applications with the elsA Software. Aerospace Lab, Issue 2, 2011.
[26] C.C. ROSSOW and L. CAMBIER - European Numerical Aerodynamics Simulation Systems. in E.H. Hirschel and E. Krause (Eds.), 100 Volumes of
‘Notes on Numerical Fluid Mechanics’, NNFM 100, Springer-Verlag, 2009.
[27] J.B. VOS, A. RIZZI, D. DARRACQ and E.H. HIRSCHEL - Navier-Stokes Solvers in European Aircraft Design. Progress in Aerospace Sciences 38, 2002.
[28] A.M. WISSINK, J. SITARAMAN, V. SANKARAN, D.J. MAVRIPLIS and T.H. PULLIAM - A Multi-code Python-Based Infrastructure for Overset CFD with
Adaptive Cartesian Grids. AIAA Paper 2008-927, 46th AIAA Aerospace Science Meeting, Reno, 2008.
[29] H. YANG, D. NUERNBERGER and H.-P. KERSKEN - Towards Excellence in Turbomachinery CFD: a Hybrid Structured-Unstructured RANS Solver. Journal
of Turbomachinery, vol. 128, 2006.

Acronyms
ADF (Advanced Data Format)
AUSM (Advection Upstream Splitting Method)
CAD (Computer-Aided Design)
CFD (Computational Fluid Dynamics)
CGNS (CFD General Notation System)
CROR (Counter Rotating Open Rotor)
CSM (Computational Structural Mechanics)
CUDA (Compute Unified Device Architecture)
DES (Detached Eddy Simulation)
elsA (ensemble logiciel pour la simulation en Aérodynamique)
FPGA (Field-Programmable Gate Array)
GPU (Graphics Processing Unit)
HDF (Hierarchical Data File)

HPC (High Performance Computing)
HUS (Hybrid Upwind Splitting)
LES (Large Eddy Simulation)
LU (Lower Upper)
MPI (Message Passing Interface)
OO (Object-Oriented)
RANS (Reynolds Averaged Navier-Stokes)
SIDS (Standard Interface Data Structure)
SPMD (Single Process, Multiple Data)
TATEF2 (Turbine Aero-Thermal External Flows 2)
UML (Unified Modeling Language)
URANS (Unsteady Reynolds Averaged Navier-Stokes)
XML (eXtensible Markup Language)

	 AL02-10	 15
Issue 2 - March 2011 - An Overview of the Multi-Purpose elsA Flow Solver

Laurent Cambier graduated in 1980 from “École Centrale de
Paris”, is presently Assistant Director of the CFD and
Aeroacoustics department of Onera and Head of the elsA
program coordinating research, software and validation
activities.

Michel Gazaix graduated in 1979 from “École Normale
Supérieure de Saint-Cloud” and has been a Research
Scientist at Onera since 1986. In the CFD and Aeroacoustics
department, his research topics include: High Performance
Computing, Real Gas modeling in compressible flows, and
software engineering applied to large scientific codes.

Sébastien Heib PhD in Numerical Analysis from Paris 6
University, joined Onera in 2001. He is presently the head of the
elsA software project in the CFD and Aeroacoustics department.

Sylvie Plot graduated from “École Nationale Supérieure de
l’Aéronautique et de l’Espace” in 1990. Since that time, she
has been working at Onera, mainly on the development of
helicopter and turbomachinery CFD capabilities. She is
currently head of the “Software and Advanced Simulations
for Aerodynamics” research unit of the CFD and Aeroacoustics
Department.

Marc Poinot who received an MSc in Computer Science from
Paris XI Orsay University, is a software engineer in the CFD
and Aeroacoustics department of Onera. He is in charge of
interoperability topics for code coupling and numerical
simulation platforms. He is member of the CGNS steering
committee and he initiated and actively participated to the
migration of CGNS to HDF5.

Jean-Pierre Veuillot graduated in 1969 from “École
Supérieure de l’Aéronautique”, received a PhD from Paris 6
University in 1975. He was Assistant Director of the CFD and
Aeroacoustics department when he retired from Onera in
2010 after a whole career at Onera devoted to numerical
methods and software development in CFD.

Jean-François Boussuge graduated from the Von Karman
Institute, was working as numerical simulation engineer in the
automotive field until 2001 before becoming research
engineer at CERFACS where he was in charge of code
development on various CFD methods and algorithms until
2005. Today, he is the leader of the external aerodynamics
group at CERFACS.

Marc Montagnac is a research engineer in external
aerodynamics group at CERFACS. He graduated from the
“Institut National des Sciences Appliquées” with an
engineering diploma in 1994 and received a PhD in Computer
Science from Paris 6 University in 1999. His primary research
and professional interests are in the areas of software
engineering, High Performance Computing and numerical
methods.

AUTHORS

