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miniature quadrirotor UAV are provided to illustrate the performance of the proposed control scheme.
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1. Introduction

Miniature unmanned aerial vehicles (UAV) are prone to be
useful for numerous military and civil applications. Especially,
thanks to features such as vertical take-off and landing (VTOL)
and hover capability, rotorcraft-based miniature UAVs are parti-
cularly well suited for missions such as video inspection of
buildings for maintenance, road traffic supervision, victims loca-
lization after natural disasters, etc. Such vehicles have also
received a growing interest from academic research institutes,
since they can be used as low cost testbeds for robotic studies
(Kundak & Mettler, 2007; Valenti, Bethke, Fiore, How, & Feron,
2006; Waslander, Hoffman, Jang, & Tomlin, 2005).

To make autonomous flight of miniature UAVs possible,
control laws must be developed to replace the action of a human
pilot. Linear control techniques such as PID or LQR have been
applied to solve this problem (Bouabdallah, Noth, & Siegwart,
2004; Budiyono & Wibowo, 2007), but stability is only guaranteed
in a restricted domain of flight. Input-output linearization is one
of the nonlinear control schemes that have been proposed for
rotary wings UAVs. Since that method can only be applied to
minimum phase systems, and since, generally, helicopters have
unstable zero dynamics, an approximate input-output lineariza-
tion has been proposed in Koo and Sastry (1998). Another
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solution consists in the application of backstepping techniques,
by considering the model used for control design as a chain of
integrators. Backstepping has been widely applied to different
miniature vehicles such as conventional helicopters (Frazzoli,
Dahleh, & Feron, 2000; Mahony & Hamel, 2004), coaxial birotor
helicopters (Dzul, Hamel, & Lozano, 2003) or four-rotor vehicles
(Bouabdallah & Siegwart, 2005).

These two control strategies lead to a dynamical extension of
the controller and make it difficult to use them in practice.
Moreover, they cannot handle a time-scale separation due to
different rates of measurements on the translational dynamics
and on the orientation dynamics.

For practical use, a more suitable approach is the hierarchical
control. In that case, separate controllers can be designed to
successively stabilize the translational dynamics and the orienta-
tion dynamics of the vehicle. This method, classically known in
aeronautics as guidance and control, can handle time-scale
separation. Considering miniature UAVs, a hierarchical control
strategy has been applied, for example, to a ducted fan miniature
UAV (Pflimlin, Hamel, Souéres, & Mahony, 2006).

In hierarchical control, the time-scale separation between the
translational dynamics (slow time-scale) and the orientation
dynamics (fast-time scale) can be used to design position and
orientation controllers under simplifying assumptions. Although
reduced-order subsystems can hence be considered for control
design, the stability must be analyzed by considering the com-
plete closed-loop system.

A theoretical background for time-scale separation approaches
and stability analysis is provided by the singular perturbation
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theory (Khalil, 1992; Kokotovic, Khalil, & O’Reily, 1986). Aero-
space applications of that theory can be found in Naidu and Calise
(2001). In Heiges, Menon, and Schrage (1989) and Njaka and
Menon (1994), a time-scale separation is considered for helicop-
ter control design, but stability issues are not considered.
A theoretical stability analysis is provided in Esteban, Gordillo,
and Aracil (2007) using singular perturbation theory, for the
altitude dynamics of a miniature VTOL UAV. As a complementary
work of Esteban, Aracil, and Gordillo (2005), closed-loop stability
is analyzed by considering a three-time-scale model of a minia-
ture helicopter mounted on a stand, incorporating collective pitch
actuator dynamics. To our knowledge, this is the only work that
theoretically addresses stability issues for VTOL UAVs using
singular perturbation theory. However, it only focuses on the
vertical motion of the vehicle, and full state measurement is
assumed to be available.

In this paper, we present the design and stability analysis of a
VTOL UAV hierarchical controller using singular perturbation
theory. A six degrees of freedom model is considered, based on
a simplified rigid body representation of miniature VTOL UAV
dynamics. The kinematic representation that we use exploits the
SO(3) group and its manifold. For control design, we assume that
no measurement of the linear velocity of the vehicle is available.
This case corresponds to the practical use of an UAV equipped
with an inertial measurement unit (IMU) that provides an
estimate of the attitude angles and angular velocities, and with
a video camera that measures the relative position of the vehicle
with respect to its environment.

The paper is organized as follows. In the next section, we
introduce notations and mathematical identities that will be used
in the rest of the paper. In Section 3, the UAV model and the
hierarchical control strategy are presented. In Section 4, a partial
state feedback position controller is designed, based on previous
results (Bertrand, Hamel, & Piet-Lahanier, 2007), by introducing a
virtual state in the translational dynamics, and without requiring
an observer. In Section 5, the design of the attitude controller is
presented, and stability of the complete closed-loop system is
analyzed in Section 6. In Sections 7 and 8, simulation results and
experimental results on a miniature X4-flyer VTOL UAV are,
respectively, provided to illustrate the good performance of the
controller. Concluding remarks are finally given at the end of
the paper.

2. Notations and mathematical identities

Let SO(3) denote the special orthogonal group of R**® and
s0(3) is the group of antisymmetric matrices of R>*3.
We define by (.), the operator from R®—so(3) such that

0 —bs by
vbeR3b, = | bs 0 -b ¢
—b, by 0

where b; denotes the ith component of the vector b.

Let V(.) be the inverse operator of (), , defined from so(3)— R>,
such that
vbeR3, V(b,)=b VBesn(3), V(B), =B 2)

For a given vector be R® and a given matrix M e R>*3, let us
consider the following notations and identities:

_MT T
paty="M by = MEM &)
tr(Po(M)Ps(M)) =0 “4)
tr(b. M) = —b"V(Po(M)) 5)

The following identity will also be used:
VAq € 50(3), Mr(AlAq) = IV(Ad)I? (6)

Denote by (yg,ng) the angular-axis coordinates of a given matrix
Re SO(3), and by I, the identity matrix of R**3. One has

VReSO@3), tr(lz—R)=2(1—cos(yg)) 7)

VReSO3), IV(Pa(R))l = cos (%) V(=R ®)

Finally, for a given positive definite matrix P e R>**3, we denote by
Amin(P) and Amax(P) the minimum and maximum modules of the
eigenvalues of P.

3. UAV model and control strategy
3.1. Rigid body dynamics of a VTOL UAV

The VTOL UAV is represented by a rigid body of mass m and
tensor of inertia I. To describe the motion of the UAV, two
reference frames are introduced: an inertial reference frame (7)
associated with the vector basis (e1,e2,e3) and a body frame (B)
attached to the UAV and associated with the vector basis
(eh,e5,e%). The position and the linear velocity of the UAV in ()
are, respectively, denoted y=[xyz]' and v=[vx v, v;]. The
orientation of the UAV is given by the orientation matrix
R e SO(3) from (Z) to (B), usually parameterized by Euler’s pseu-
doangles , 0, ¢ (yaw, pitch, roll). Finally, let Q =[Q; Q, Q3]" be
the angular velocity of the UAV defined in (B).

We assume that a translational force F and a control torque I
are applied to the UAV. The translational force F combines thrust,
lift, drag and gravity components. For a miniature VTOL UAV in
quasi-stationary flight we can reasonably assume that the aero-
dynamic forces are always in direction e, since the lift force
predominates the other components (Hamel & Mahony, 2004). By
separating the gravity component mges from the other forces, the
dynamics of the VTOL UAV can be written as

L=V
mv = —T Res +mge;
R=RQ, )]

1Q=-Q.IQ+T

where the first two equations represent the translational dynamics
and the last two equations describe the orientation dynamics.

The control inputs that will be considered are the scalar 7 e R™
representing the magnitude of the external forces applied in direc-
tion €5, and the control torque I' =[I'; I'; I'5]" defined in (B).

3.2. Hierarchical control strategy

In this section, we consider the problem of the vehicle
stabilization around a desired position y9 =[x y? z4]" assumed
to be constant (or slowly time-varying with respect to the UAV
dynamics), i.e. 7¢=0.

For control design, let us define the position error &= y—y°.
The system (9) becomes

é:\/

mv = —7 Res +mges
R=RQ,
1Q=-0,1Q+T

(10

For the stabilization of the model (10), we consider a hierarchical
control strategy. Position and attitude controllers will be succes-
sively designed, as presented below.
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Fig. 1. Block diagram of the hierarchical controller.

For the translational dynamics of (10), the full vectorial term 7 Res
will be considered as the position control vector. We will assign its
desired value! (7Res)? = f(&,v). Assuming that actuator dynamics are
negligible with respect to the rigid body dynamics of the UAV, the
value 71 is considered to be instantaneously reached by 7. Therefore,
we have (7Re3)? = TRe5, where R is the desired orientation of the
vehicle. Note that this vector can be split into its magnitude,
T = IIf(&,v)ll, representing the first control input, and its direction

1
d, z
Re; = *Tf(é.v) amn

The desired orientation RY can then be deduced from (13),
by using its pseudo-Euler angle parametrization and solving
for (l,bdﬁd,q&d) for a given specified constant yaw n//d(t):ljld(O)
(Hamel, Mahony, Lozano, & Ostrowski, 2002).

For the orientation dynamics of (10), we will assign the control
torque I' such that the orientation R of the UAV converges to the
desired orientation RY and such that the angular velocity Q
converges to Q% defined by

R =RiQ1 (12)

The computation of the desired angular velocity Q¢ is presented
in Appendix A.
A block diagram of the hierarchical controller is provided in Fig. 1.

3.3. Time-scale separation

The classical way to design guidance and control laws in
aeronautics consists in assuming that the controllers will be
tunned such that the closed-loop attitude dynamics would con-
verge faster than the closed-loop translational dynamics (by using
for example a ‘high gain’ attitude controller). Hence the complete
closed-loop system will be stable in practice. In this paper, we
would like to quantify how ‘high’ the gains of the attitude
controller should be to theoretically ensure the closed-loop
stability of the whole system.

A way to do that is to consider that the problem can also be
seen in the context of a time-scale separation between the
translational and the orientation dynamics, one closed-loop sub-
system converging faster than the other one. Therefore, the
control laws can be designed by using simplifying assumptions
linked to the time-scale separation approach:

e for the design of the position control law, it can be assumed
that the orientation dynamics converge faster than the trans-
lational dynamics, and hence one can consider R =R¢,

o for the design of the attitude control law, it can be assumed that
the translational dynamics converge slower than the orientation
dynamics, and hence one can assume Q¢ =0 (R = cste).

! In this paper, the function f will not depend on v, since only position
measurements are available for the control of the translational dynamics.

Note that the stability analysis of the complete closed-loop
system has to be proved without considering these two simplify-
ing assumptions. A good framework to formalize this time-scale
separation and to get conditions on it for stability is provided by
the singular perturbation theory.

The scale parameter ¢e (0,1] is introduced in that way to
formalize the time-scale separation. Multiplying by ¢ the orienta-
tion dynamics equations of (10), we get

Ev
Z;;’/::S;;’f@ +mge; (13)
elQ = —£Q,I1Q+el

Introducing the notations

w=6Q, wi=eQ! y=er (14)

the system (15) can be restated as
E=v
a9

elQ = - 1Q+7y

System (15) is the one that will be considered for control design.
Note that it is strictly equivalent to system (10). Hence, designing
control laws for the inputs 7 and I" of (10) can be achieved by
designing control laws for the inputs 7 and 7y of (15).

4. Position controller

Consider the translational dynamics of (15). We assume for
control design that only measurements on the position ¢ are
available. In that case, partial state feedback control strategies
(Burg, Dawson, Hu, & de Queiroz, 1996; Burg, Dawson, &
Vedagarbha, 1997, Dixon, Zergeroglu, Dawson, & Hannan, 2000)
can be used to deal with the lack of velocity measurements
without requiring the use of an observer. In this section, a partial
state feedback position controller is proposed, based on the
introduction of a virtual state in the translational dynamics of
the system.

Let us introduce a virtual state g e R* and a virtual input 6 e R?
such that

E=v

T, T o

__T TR 16
V=T Rles +ge;— (R-R¥es (16)
G=0

Introducing the notation

a=<¢—q a7
we define the position control law

TRYe3 = m{ky& +ky o} +mges (18)
and the virtual input

d=ua (19)
where k, and k; are strictly positive gains.

Remark 1. Note that the controller (18) and the virtual input (19)
do not require measurements on the linear velocity v of the
vehicle.

Remark 2. The control law (18) and the virtual input (19) have
been designed by considering the translational dynamics (16) under
the assumption R = RY. As previously mentioned in Section 3.3, this
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assumption corresponds to a time-scale separation between the
translational dynamics and the orientation dynamics.

Introducing the notations

T T )
u=-—_-Res+ges, u'=—_Rles+ges, d=u-u’ (20)

the system (16) controlled by (18) along with (19) can be written as

E—v
V=—kl—kio+1i 21
o =v—o

Defining the vectors X=[¢" v of]" and U =[0] ii" 0I]", with
03 =[0 0 077, the system (21) can be represented by

X =AX+U (22)

where the matrix A e R%*® is Hurwitz.? Therefore, the system (22) is
exponentially stable for U = 0. In that case, there exist two positive
definite symmetric matrices Pe R%® and Q e R%*® verifying the
Lyapunov equation

LATP+PA) = —Q 23)
and such that we can define a control Lyapunov function
S=IXTPX (24)
which verifies

L min(PIIXI? < S < Limax(P)IXI12 (25)
8§ =-X"QX < —Zmin(Q)IIX 112 (26)

Consider now the case U % 0. The time derivative of S along
the trajectories of (22) becomes

§=-XTQX+0"PX 27)
The above expression can be bounded by
8 < — Zmin(@IXI2 + Amax (PN {IEN+ 11+ lloxll} (28)
To determine an upper bound on Iliill we compute

il = ZiR_R%esl = L I(RIRT—
il = - I(R-Rhesll = — IR ~Ig)Res | (29)

T

il < = dRT _] )\T(RART —
il < m\/tr((R RT—1)" (RIRT—I4))lIRes|l (30)
Introducing
R=RH"R (31
we get

- T ~
il < -/ 2trg—R) (32)

Let (yz.ni) denote the angular-axis coordinates of R. Using
identity (8), we obtain

il < v2_ T —_IV(Pa(R))l (33)

m TR
COS( 2)

From (28), we finally get

8 < —Amin(QUIENR + VI + llorll?y

+ IZZM;{)) IVPR)I{IEN+ VI +Tlocl} (34
mcos(f)

2 Using the fact that the gains k, and k; are strictly positive, it can be easily
checked that the matrix A is Hurwitz, by applying Routh’s criterion on its
characteristic polynomial.

5. Attitude controller

Let us now consider the orientation dynamics of (15) and
recall the notation introduced in (31):

R=®RYH"R 35)

The orientation dynamics can be rewritten as

R = —eQ'R+ R,
s. eQ R+Rw 36)
el = —w, IQ+y

We introduce

Q=w-hV(PR)") 37)

where [; is a strictly positive scalar gain. With this notation, the
kinematic relation can be transformed into

R=—0iR+ 1RO, + LRPRY (38)

Taking the time derivative of Q it yields
o— r‘(_wngw)_%vdzbi + QR+ %V(wxfzukwx) 39)

Let us define | >0 and I, > 0, and assign the following expression
to the input y:

y=a)XIQ-H(—%Q—%V(PG(R))—%V(wXRT+RwX)> (40)

The control torque I" can then be directly deduced from (40):

_ lz ~ 21 ~ I] ~T ~
F_QXIQ—H(—S—ZQ—S—ZV(PQ(R))—%V(QXR +RQX)) (41)
Eq. (39) becomes
o= _%Q_zéwpa(k))—%wﬁgi +QR) (42)

Remark 3. The input (40), and hence the control law (41), has
been designed by considering the orientation dynamics (36)
under the assumption Q¢ =0. This corresponds to a time-scale
separation between the translational and the orientation
dynamics, as previously mentioned in Section 3.3.

Remark 4. Note that the parameter ¢e(0,1], which has been
introduced to formalize the time-scale separation for control
design, can also be seen as a high gain tunning parameter in the
control law (41).

Let £ be a candidate control Lyapunov function for the orientation
dynamics (36):

£ = ltr(Ig—R)+ 1121 (43)
Using relations (38) and (42), and identities (4) and (5) to

compute the time derivative of £ along the trajectories of (36)
controlled by (41), we get

£==2UQ)V(Pa(R) - ”gtr(Pa(Rwa(R)T)

7% \\Q\Iz—%QTV(RTQ‘i +QR) (44)
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By triangular inequality and applying identity (6), we obtain

£ <20Q4NVPLRY)I— ﬂ IV(Pa(R))I%— HQHZ

b HQHHV(R "ol 1 Q1R (45)

To get an upper bound on p = HV(RTQd +Q9R)l, we compute

<Itr(R' Q! + QIR R Q% + QLR (46)
w2 < 3R QTR @) +3r( QIR QLR) @7
12 <tr(( @44y < 210412 (48)

It remains to find an upper bound on Q%I In the case of
stabilization, we choose Qg =0. We get 11Q%l = HQ‘ie3H and can
use (A.8) along with the time derivative of (18) to obtain

1971 < g{(kx—l—k])\lv\\-i-k] llolly (49)

Using (48) and (49) along with (45) leads finally to the following
upper bound on the time derivative of £:

L< 2”1 IV(P.(R))IZ— b HQHZ lHV(PH(R))H{(kx+k1)HvH+k1HocH}

+§gl1HQH{(I<X+k1)HvH+I<1 lloelly (50)

6. Stability analysis

Consider now the complete system composed of the transla-
tional dynamics (16) and of the orientation dynamics (36), and
define the candidate control Lyapunov function

V=8S+L (51

We have the following proposition:

Proposition 1. Consider the system (16)-(36) along with the
control laws (18) and (41) and the virtual input (19).

There exist K1,K; > 0 and €* > 0 such that, for all initial conditions
£(0), v(0), q(0) = £(0), R(0) and Q(0) such that

fafey)’

V0= 22K,

(0 <eg <mg) (52)

then, for all I verifying

()

= 2akpa-p 0710 >

and for all ¢ > 0 such that ¢ < &, the closed-loop system is exponen-
tially stable.

Proof. First, let us consider the following assumptions that will
be verified at the end of the proof:

Assumption 1. There exist two reals 7 ;; and 7y such that
0 < T pin <ME < T mpax < 00 (54)

VE>0, Tomin <T(t) <Tmax (55)

Assumption 2. There exists a real ¢ > 0 such that

vVt >0, cos</R()> c (56)

Let us define the coefficients

7 2
Ly T2y I (57)
min
e
ss=4 hz— Tmm (58)

With these notations and under Assumptions (1) and (2), we can
use relations (34) and (50), to provide the following upper bound
on the time derivative of V, computed along the trajectories of
(16) along with (36) controlled by (18) (41) and (1 ):

V < —Amin(QUIENRP + VI 4+ el }— HV(Pa(R))Hz HQH2

+ 251 IENMV PRI+ 2(51 +sz(kx+k1))HvIIHV(Pa(R))H
+2(51 +S2k D)ol IV(Pa(R) I -+ 255 (ky + k) IVITIQ]

+ 283k oI Q1 (59)
Let us define
a=2min(Q), b1=51, by =51+52(kx+k1) (60)
b3 =s1+5S3ky, bg=s3(kx+ki), bs=s3k; 61)
and introduce the state vector
A =[IEN VI lloell IV(PoRY)I 12177 (62)
With these notations, Eq. (59) can be restated as
V<-XTxx (63)
with

a 0 0 —b O
0 a 0 —b2 —b4

0 0 a —b3 —b5
2= 64

!
0 -—bs, —bs O ?2

Since the matrix Q is positive definite, the coefficient a = 1,,,;;(Q) is
strictly positive and the three first minors of the matrix X are
strictly positive. The positivity of the minor of size four is
obtained for all ¢ < &% with

% 2;“min(Q)”1

&= 65
17 3524 52(2K3 + K2 + 2keky) + 25152 (kx + 2k1) 3

The strict positivity of det(g) is obtained for

Ag? +Be+C>0 (66)

where

A= (bybs—b3by)* +b(b2+b3) >0 (67)

B=—a[l,(b?+b%+b2)+21l; (b2 +b2)] <0 (68)

C= 2(12”1 12 >0 (69)

With these coefficients, it can be checked that the discriminant
(B2—4AC) of (66) is strictly positive. Let us define

BZ2—4AC
& =—B— A (70)
Since A>0, B<0, C>0 and (B2—4AC) > 0, we have 2_4AC <
+/B? = —B, and we can check the strict positivity of 5.
Therefore, det(2) is strictly positive for all & < &5.
Let us define
&* = min(e},e3) 71)
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Fig. 2. Position error components and attitude angles.

For all ¢ > 0 such that ¢ < &¢*, the matrix X is positive definite and
hence the time derivative (63) of V is negative definite. Consequently,
one can ensure the exponential stability of the system (16) along with
(36) when (18) and (41) are used as control inputs and (19) as virtual
control.?

Remark 5. The exponential stability is obtained by considering
identity (8) from which one can deduce IV(Py(R))I? < tr(Il3—R).

Defining the vector X’ =[£Il Ivll leel 1/tr(I;—R) 1Q1]7 and using
(63) along with the fact that X is positive definite, one can show
that there exists a positive definite matrix X' =2'T such that
Y <-XT3'X'. Hence there exists a scalar s e R such that
Y < —s'V which proves the exponential stability.

We have shown that closed-loop stability is guaranteed for all
¢ <¢&* under Assumptions 1 and 2. Now we have to check that
both assumptions are satisfied.
Let us start with Assumption 1. Define K; = max(ky,k1).
Using triangular inequality with (18) yields
mg—mK; (111 +lloll) < T < mg +mK; (1€ + llally (72)

That expression can be linked to the value of the Lyapunov
function V using (24), (25) and (51) to get for all t>0:

20(0) )

with K, = /lm,‘n(P).
The time derivative of V being negative for ¢ < ¢*, one has

mg—2mli; (73)

vt>0, V(t)<V(0) (74)

3 The convergence of R to the identity matrix I, is guaranteed by conditions
(52) and (53) from which we can show that (1—cos(y;)) < 2 and hence y; —0. This
relation will be shown in the next step of the proof.

and from (73), we obtain for all t > 0:

mg—2mkK, 2O <7(t)<mg+2mk, 20
K K

Taking &; >0 such that g «mg, we can use condition (52) to
finally get

(75)

Vt>0, O<ég<T(t)<2mg—eg (76)

Assumption 1 is hence verified by choosing 7, =¢; and
T max = 2Mg—é&g.

To complete the proof, let us finally check that Assumption 2 is
verified. As previously, we use the fact that V is decreasing, with
(43) and (51), to obtain

vt>0, ltr(lq—R() < V() <V(0) (77)

Defining # > 0 such that # <4, conditions (52) and (53) can be
used successively to get

V(0) < (4—n)l (78)
and then

vt>0, tr(ly—R(t)<4—n (79)
Using (7) we obtain

VE>0, (1-cos(yz(t)) <2 (80)

Therefore, for all t >0, we have —7 < y;(t) <7 and there exists a
¢ > 0 such that

cos(@) >c>0

Assumption 2 is hence verified, which completes the proof. O

(81)

Remark 6. Since (54) and (55) are verified, the strict positivity of
the input 7 is guaranteed. Therefore, the direction R%e; computed
by (11) is well defined.

Remark 7. Condition (52) is not restrictive. Indeed, in practice,
the gains k., k; and the matrix P can be chosen to obtain,
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respectively, sufficient small and high values for K; and K>, so that
all initial conditions in the usual domain of flight of the vehicle
will satisfy (52).

Remark 8. The design of the partial state feedback control law for
the translational dynamics can also be achieved by introducing
two virtual states (Bertrand et al, 2007). In that case, the
corresponding complete proof can be found in Bertrand, Hamel,
and Piet-Lahanier (2008).

7. Simulation results

Simulation results are provided in this section to illustrate the
stability property of the proposed controller. The following
values have been chosen for the parameters of the controller and
UAV model: kx =0.1, k; =0.41,1=0.77,1; =0.75, 1, = 0.26, ¢ = 0.3,
m=2.5kg, I=diag,l»,J3) with I; =1, =0.13kgm? and ;=
0.16 kg m2. The gravitational acceleration is g =9.81 m s~2.

The proposed results have been obtained for stabilization at
hover around the desired position y¢=1[0 0 1]" m, starting from
the initial condition x(0)=[4 —5 2.5" m, [$(0) 0(0) Y(0)] =
[5 =8 10]°, v(0)=[0.7 —0.5 2]" m/s, Q(0)=0. The initial value
chosen for the virtual state is q(0)=&(0). The desired yaw 1//d
has been chosen to be equal to zero.

Fig. 2 presents the evolution of the components of the position
error &£ =[& & &3] and of the attitude angles. As can be seen,
closed-loop stability is achieved by the controller with a good
performance. Control inputs are shown in Fig. 3. The evolutions of
the angular deviation terms ¢ = 4)—(/>d. 0=0-6, W :lﬁ—l//d are
presented in Fig. 4. These terms converge faster than the closed-loop
of the translational dynamics, hence validating the time-scale separa-
tion that has been used in the control strategy.

8. Experimental results

The proposed control strategy has been tested at CEA on an
‘X4-flyer’ miniature UAV presented in Fig. 5. This four-rotor VTOL
vehicle is particularly suited for stationary or quasi-stationary
flight conditions.
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In a previous work, control laws have been designed for attitude
stabilization from inertial measurement unit (IMU) data (Guenard,
Hamel, & Eck, 2006). In order to embed the attitude stabilization
algorithm, the prototype is equipped with a set of four electronic
boards. The first two ones, respectively, integrate the motors con-
troller and the IMU. On the third board, a digital signal processing
(DSP) cadenced at 150 MIPS performs the attitude control algorithm
computations at about 166 Hz. The last board supplies a numerical
wireless communication of 2 and 4 GHz between the vehicle and a
ground station (Pentium IV PC). The operator’s joystick, used for the
teleoperation of the UAV, is linked to this PC. An embedded camera
with a view angle of 120° pointing directly down, transmits video
images to the ground station via a wireless analogical link of 5.8 GHz.
A lithium-polymer battery provides nearly 20 min of flight time.
The payload of the prototype is about 200 g. The structure of the
experimental setup is summarized in Fig. 6.

For the considered experiment, the position of the UAV is
obtained by a particle filter implemented on the ground station.
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Fig. 4. Angular deviation terms.
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Fig. 5. The X4-flyer.

Numerical link 2.4 GHz for
attitude orders data feedback
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Position stabilization
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Fig. 6. Experimental setup architecture.
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Fig. 7. Position coordinates and position error.

This filter uses images sent during the flight by the embedded
camera and data from the IMU measurements. Images received by
the ground station are also used to build a topological map of the
ground, by successively defining key images from the gradient
image. The position of the UAV in this map is hence defined
relatively to the current tracked key image. IMU measurements
are also used to compute the attitude of the vehicle and its
angular velocities. Note that no linear velocity estimate is used for
the control algorithm during the experiment.

The proposed position control law has been implemented on
the ground station with a sample time of about 70 ms. From the
vehicle position, it computes attitude orders to be sent to the
UAV. Control gains have been chosen to obtain a good trade-off
between the stability of the system and a fast transient response,
and to ensure that the orientation dynamics converge faster than
the translational dynamics, according to the chosen time-scale
separation approach.

The proposed results correspond to the stabilization of the
UAV around set points given by the operator and for a constant
desired yaw lpd. Fig. 7 presents the position coordinates (solid
curves) and the corresponding references (dashed curves).
The position error ¢ is also represented. The evolution of the
attitude angles during the flight is provided in Fig. 8. As can be
seen, good performance is achieved by the proposed controller
for the stabilization of the UAV. Note that the precision in the
z-coordinate is limited by the use of vision.

9. Conclusion

In this paper, we have presented both design and stability
analyzes of a hierarchical controller for a miniature VTOL UAV.
Position and attitude controllers have been designed considering
successively, and with a time-scale separation, the translational
dynamics and the orientation dynamics of a six degrees of
freedom VTOL UAV model. A partial state feedback controller

0.5

y (), ¥y (=) (m)

25 50 75 100 125 150
t(s)

0 25 50 75 100 125 150
t(s)
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Fig. 8. Attitude angles.

has been proposed for position stabilization, assuming that no
measurement of the linear velocity of the vehicle is available.
Time-scale separation of the proposed control scheme and
stability analysis has been addressed by singular perturbation
theory. Simulation results and experimental results achieved on a
X4-flyer miniature UAV have been finally proposed to illustrate
the good performance obtained by the controller.

Appendix A. Computation of the desired angular velocity

A method to compute Q¢ from the control vector TRle; is
presented here. From (12) we get

%(R%) —R%; =RIQ s (A1)
and then

ey = (R & Rees) A2)
To compute the time derivative of Rles, let us define

N=TR%; (A3)
so that we get

Rle; = «/II—\;JTN (A4)

The time derivative of Ries is given by

v NIV NNTN
4 (Rie )—N NIN-"hw 1 (NN (A5)
e T NTN = J/NIN \ ¢T NN .
Therefore, we have
d o 1 Ao o Tipd Ty 4 pd
i Res) = 7 Ua—Rese3 (R} 5o (TRes) (A.6)
Defining the projector
I, =I;—esel (A7)

Eq. (A.2) can be restated as

Qg 1 d
Qes=| —f | = 2 1Te, R 3 (TR%s) (A8)
0

Considering the stabilization of the UAV around a fixed point, the
third component Qg’ of the vector Q¢ is chosen to be identically
zero, and we have wd(t) = wd(O), for a given initial yaw wd(O).
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