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This paper presents the design and the stability analysis of a hierarchical controller for unmanned aerial

vehicles (UAV), using singular perturbation theory. Position and attitude control laws are successively

designed by considering a time-scale separation between the translational dynamics and the orienta-

tion dynamics of a six degrees of freedom vertical take-off and landing (VTOL) UAV model. For the

design of the position controller, we consider the case where the linear velocity of the vehicle is not

measured. A partial state feedback control law is proposed, based on the introduction of a virtual state

into the translational dynamics of the system. Results from simulation and from experiments on a

miniature quadrirotor UAV are provided to illustrate the performance of the proposed control scheme.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Miniature unmanned aerial vehicles (UAV) are prone to be
useful for numerous military and civil applications. Especially,
thanks to features such as vertical take-off and landing (VTOL)
and hover capability, rotorcraft-based miniature UAVs are parti-
cularly well suited for missions such as video inspection of
buildings for maintenance, road traffic supervision, victims loca-
lization after natural disasters, etc. Such vehicles have also
received a growing interest from academic research institutes,
since they can be used as low cost testbeds for robotic studies
(Kundak & Mettler, 2007; Valenti, Bethke, Fiore, How, & Feron,
2006; Waslander, Hoffman, Jang, & Tomlin, 2005).

To make autonomous flight of miniature UAVs possible,
control laws must be developed to replace the action of a human
pilot. Linear control techniques such as PID or LQR have been
applied to solve this problem (Bouabdallah, Noth, & Siegwart,
2004; Budiyono & Wibowo, 2007), but stability is only guaranteed
in a restricted domain of flight. Input–output linearization is one
of the nonlinear control schemes that have been proposed for
rotary wings UAVs. Since that method can only be applied to
minimum phase systems, and since, generally, helicopters have
unstable zero dynamics, an approximate input–output lineariza-
tion has been proposed in Koo and Sastry (1998). Another
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solution consists in the application of backstepping techniques,
by considering the model used for control design as a chain of
integrators. Backstepping has been widely applied to different
miniature vehicles such as conventional helicopters (Frazzoli,
Dahleh, & Feron, 2000; Mahony & Hamel, 2004), coaxial birotor
helicopters (Dzul, Hamel, & Lozano, 2003) or four-rotor vehicles
(Bouabdallah & Siegwart, 2005).

These two control strategies lead to a dynamical extension of
the controller and make it difficult to use them in practice.
Moreover, they cannot handle a time-scale separation due to
different rates of measurements on the translational dynamics
and on the orientation dynamics.

For practical use, a more suitable approach is the hierarchical
control. In that case, separate controllers can be designed to
successively stabilize the translational dynamics and the orienta-
tion dynamics of the vehicle. This method, classically known in
aeronautics as guidance and control, can handle time-scale
separation. Considering miniature UAVs, a hierarchical control
strategy has been applied, for example, to a ducted fan miniature
UAV (Pflimlin, Hamel, Sou�eres, & Mahony, 2006).

In hierarchical control, the time-scale separation between the
translational dynamics (slow time-scale) and the orientation
dynamics (fast-time scale) can be used to design position and
orientation controllers under simplifying assumptions. Although
reduced-order subsystems can hence be considered for control
design, the stability must be analyzed by considering the com-
plete closed-loop system.

A theoretical background for time-scale separation approaches
and stability analysis is provided by the singular perturbation
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theory (Khalil, 1992; Kokotovic, Khalil, & O’Reily, 1986). Aero-
space applications of that theory can be found in Naidu and Calise
(2001). In Heiges, Menon, and Schrage (1989) and Njaka and
Menon (1994), a time-scale separation is considered for helicop-
ter control design, but stability issues are not considered.
A theoretical stability analysis is provided in Esteban, Gordillo,
and Aracil (2007) using singular perturbation theory, for the
altitude dynamics of a miniature VTOL UAV. As a complementary
work of Esteban, Aracil, and Gordillo (2005), closed-loop stability
is analyzed by considering a three-time-scale model of a minia-
ture helicopter mounted on a stand, incorporating collective pitch
actuator dynamics. To our knowledge, this is the only work that
theoretically addresses stability issues for VTOL UAVs using
singular perturbation theory. However, it only focuses on the
vertical motion of the vehicle, and full state measurement is
assumed to be available.

In this paper, we present the design and stability analysis of a
VTOL UAV hierarchical controller using singular perturbation
theory. A six degrees of freedom model is considered, based on
a simplified rigid body representation of miniature VTOL UAV
dynamics. The kinematic representation that we use exploits the
SO(3) group and its manifold. For control design, we assume that
no measurement of the linear velocity of the vehicle is available.
This case corresponds to the practical use of an UAV equipped
with an inertial measurement unit (IMU) that provides an
estimate of the attitude angles and angular velocities, and with
a video camera that measures the relative position of the vehicle
with respect to its environment.

The paper is organized as follows. In the next section, we
introduce notations and mathematical identities that will be used
in the rest of the paper. In Section 3, the UAV model and the
hierarchical control strategy are presented. In Section 4, a partial
state feedback position controller is designed, based on previous
results (Bertrand, Hamel, & Piet-Lahanier, 2007), by introducing a
virtual state in the translational dynamics, and without requiring
an observer. In Section 5, the design of the attitude controller is
presented, and stability of the complete closed-loop system is
analyzed in Section 6. In Sections 7 and 8, simulation results and
experimental results on a miniature X4-flyer VTOL UAV are,
respectively, provided to illustrate the good performance of the
controller. Concluding remarks are finally given at the end of
the paper.
2. Notations and mathematical identities

Let SO(3) denote the special orthogonal group of R3�3 and
soð3Þ is the group of antisymmetric matrices of R3�3.

We define by ð:Þ� the operator from R3-soð3Þ such that

8bAR3,b� ¼

0 �b3 b2

b3 0 �b1

�b2 b1 0

2
64

3
75 ð1Þ

where bi denotes the ith component of the vector b.
Let Vð:Þ be the inverse operator of ð:Þ�, defined from soð3Þ-R3,

such that

8bAR3, Vðb�Þ ¼ b 8BAsoð3Þ, VðBÞ� ¼ B ð2Þ

For a given vector bAR3 and a given matrix MAR3�3, let us
consider the following notations and identities:

PaðMÞ ¼
M�MT

2
, PsðMÞ ¼

MþMT

2
ð3Þ

trðPaðMÞPsðMÞÞ ¼ 0 ð4Þ

1
2trðb�MÞ ¼�bT VðPaðMÞÞ ð5Þ
The following identity will also be used:

8AaAsoð3Þ, 1
2trðAT

aAaÞ ¼ JVðAaÞJ
2

ð6Þ

Denote by ðgR,nRÞ the angular-axis coordinates of a given matrix
RASOð3Þ, and by Id the identity matrix of R3�3. One has

8RASOð3Þ, trðId�RÞ ¼ 2ð1�cosðgRÞÞ ð7Þ

8RASOð3Þ, JVðPaðRÞÞJ¼ cos
gr

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðId�RÞ

p
ð8Þ

Finally, for a given positive definite matrix PAR3�3, we denote by
lminðPÞ and lmaxðPÞ the minimum and maximum modules of the
eigenvalues of P.
3. UAV model and control strategy

3.1. Rigid body dynamics of a VTOL UAV

The VTOL UAV is represented by a rigid body of mass m and
tensor of inertia I. To describe the motion of the UAV, two
reference frames are introduced: an inertial reference frame ðI Þ
associated with the vector basis ðe1,e2,e3Þ and a body frame ðBÞ
attached to the UAV and associated with the vector basis
ðeb

1,eb
2,eb

3Þ. The position and the linear velocity of the UAV in ðI Þ
are, respectively, denoted w¼ ½x y z�T and v¼ ½vx vy vz�

T . The
orientation of the UAV is given by the orientation matrix
RASOð3Þ from ðI Þ to ðBÞ, usually parameterized by Euler’s pseu-
doangles c, y, f (yaw, pitch, roll). Finally, let O¼ ½O1 O2 O3�

T be
the angular velocity of the UAV defined in ðBÞ.

We assume that a translational force F and a control torque G
are applied to the UAV. The translational force F combines thrust,
lift, drag and gravity components. For a miniature VTOL UAV in
quasi-stationary flight we can reasonably assume that the aero-
dynamic forces are always in direction eb

3, since the lift force
predominates the other components (Hamel & Mahony, 2004). By
separating the gravity component mge3 from the other forces, the
dynamics of the VTOL UAV can be written as

_w ¼ v

m _v ¼�T Re3þmge3

_R ¼ RO�
I _O ¼�O�IOþG

8>>><
>>>:

ð9Þ

where the first two equations represent the translational dynamics
and the last two equations describe the orientation dynamics.

The control inputs that will be considered are the scalar T ARþ

representing the magnitude of the external forces applied in direc-
tion eb

3, and the control torque G¼ ½G1 G2 G3�
T defined in ðBÞ.

3.2. Hierarchical control strategy

In this section, we consider the problem of the vehicle
stabilization around a desired position wd ¼ ½xd yd zd�T assumed
to be constant (or slowly time-varying with respect to the UAV
dynamics), i.e. _wd

¼ 0.
For control design, let us define the position error x¼ w�wd.

The system (9) becomes

_x ¼ v

m _v ¼�T Re3þmge3

_R ¼ RO�
I _O ¼�O�IOþG

8>>>><
>>>>:

ð10Þ

For the stabilization of the model (10), we consider a hierarchical
control strategy. Position and attitude controllers will be succes-
sively designed, as presented below.



Fig. 1. Block diagram of the hierarchical controller.
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For the translational dynamics of (10), the full vectorial term T Re3

will be considered as the position control vector. We will assign its
desired value1

ðT Re3Þ
d
¼ f ðx,vÞ. Assuming that actuator dynamics are

negligible with respect to the rigid body dynamics of the UAV, the
value T d is considered to be instantaneously reached by T . Therefore,
we have ðT Re3Þ

d
¼ T Rde3, where Rd is the desired orientation of the

vehicle. Note that this vector can be split into its magnitude,
T ¼ Jf ðx,vÞJ, representing the first control input, and its direction

Rde3 ¼
1

T f ðx,vÞ ð11Þ

The desired orientation Rd can then be deduced from (13),
by using its pseudo-Euler angle parametrization and solving
for ðcd,yd,fd

Þ for a given specified constant yaw cd
ðtÞ ¼cd

ð0Þ
(Hamel, Mahony, Lozano, & Ostrowski, 2002).

For the orientation dynamics of (10), we will assign the control
torque G such that the orientation R of the UAV converges to the
desired orientation Rd, and such that the angular velocity O
converges to Od defined by

_R
d
¼ RdOd

� ð12Þ

The computation of the desired angular velocity Od is presented
in Appendix A.

A block diagram of the hierarchical controller is provided in Fig. 1.

3.3. Time-scale separation

The classical way to design guidance and control laws in
aeronautics consists in assuming that the controllers will be
tunned such that the closed-loop attitude dynamics would con-
verge faster than the closed-loop translational dynamics (by using
for example a ‘high gain’ attitude controller). Hence the complete
closed-loop system will be stable in practice. In this paper, we
would like to quantify how ‘high’ the gains of the attitude
controller should be to theoretically ensure the closed-loop
stability of the whole system.

A way to do that is to consider that the problem can also be
seen in the context of a time-scale separation between the
translational and the orientation dynamics, one closed-loop sub-
system converging faster than the other one. Therefore, the
control laws can be designed by using simplifying assumptions
linked to the time-scale separation approach:
�

me
for the design of the position control law, it can be assumed
that the orientation dynamics converge faster than the trans-
lational dynamics, and hence one can consider R¼ Rd,

�
 for the design of the attitude control law, it can be assumed that

the translational dynamics converge slower than the orientation
dynamics, and hence one can assume Od

¼ 0 ðRd ¼ csteÞ.
1 In this paper, the function f will not depend on v, since only position

asurements are available for the control of the translational dynamics.
Note that the stability analysis of the complete closed-loop
system has to be proved without considering these two simplify-
ing assumptions. A good framework to formalize this time-scale
separation and to get conditions on it for stability is provided by
the singular perturbation theory.

The scale parameter eA ð0,1� is introduced in that way to
formalize the time-scale separation. Multiplying by e the orienta-
tion dynamics equations of (10), we get

_x ¼ v

m _v ¼�T Re3þmge3

e _R ¼ eRO�
eI _O ¼�eO�IOþeG

8>>>><
>>>>:

ð13Þ

Introducing the notations

o¼ eO, od ¼ eOd, g¼ eG ð14Þ

the system (15) can be restated as

_x ¼ v

m _v ¼�T Re3þmge3

e _R ¼ Ro�
eI _O ¼�o�IOþg

8>>>><
>>>>:

ð15Þ

System (15) is the one that will be considered for control design.
Note that it is strictly equivalent to system (10). Hence, designing
control laws for the inputs T and G of (10) can be achieved by
designing control laws for the inputs T and g of (15).
4. Position controller

Consider the translational dynamics of (15). We assume for
control design that only measurements on the position x are
available. In that case, partial state feedback control strategies
(Burg, Dawson, Hu, & de Queiroz, 1996; Burg, Dawson, &
Vedagarbha, 1997; Dixon, Zergeroglu, Dawson, & Hannan, 2000)
can be used to deal with the lack of velocity measurements
without requiring the use of an observer. In this section, a partial
state feedback position controller is proposed, based on the
introduction of a virtual state in the translational dynamics of
the system.

Let us introduce a virtual state qAR3 and a virtual input dAR3

such that

_x ¼ v

_v ¼�
T
m

Rde3þge3�
T
m
ðR�RdÞe3

_q ¼ d

8>>><
>>>:

ð16Þ

Introducing the notation

a¼ x�q ð17Þ

we define the position control law

T Rde3 ¼mfkxxþk1agþmge3 ð18Þ

and the virtual input

d¼ a ð19Þ

where kx and k1 are strictly positive gains.

Remark 1. Note that the controller (18) and the virtual input (19)
do not require measurements on the linear velocity v of the
vehicle.

Remark 2. The control law (18) and the virtual input (19) have
been designed by considering the translational dynamics (16) under
the assumption R¼ Rd. As previously mentioned in Section 3.3, this
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assumption corresponds to a time-scale separation between the
translational dynamics and the orientation dynamics.

Introducing the notations

u¼�
T
m

Re3þge3, ud ¼�
T
m

Rde3þge3, ~u ¼ u�ud ð20Þ

the system (16) controlled by (18) along with (19) can be written as

_x ¼ v

_v ¼�kxx�k1aþ ~u
_a ¼ v�a

8><
>: ð21Þ

Defining the vectors X ¼ ½xT vT aT �T and ~U ¼ ½0T
3
~uT 0T

3�
T , with

03 ¼ ½0 0 0�T , the system (21) can be represented by

_X ¼ AXþ ~U ð22Þ

where the matrix AAR9�9 is Hurwitz.2 Therefore, the system (22) is
exponentially stable for ~U ¼ 0. In that case, there exist two positive
definite symmetric matrices PAR9�9 and Q AR9�9 verifying the
Lyapunov equation

1
2ðA

T PþPAÞ ¼�Q ð23Þ

and such that we can define a control Lyapunov function

S ¼ 1
2XT PX ð24Þ

which verifies

1
2 lminðPÞJXJ2rSr1

2lmaxðPÞJXJ2
ð25Þ

_S ¼�XT QXr�lminðQ ÞJXJ2
ð26Þ

Consider now the case ~U a0. The time derivative of S along
the trajectories of (22) becomes

_S ¼�XT QXþ ~U
T
PX ð27Þ

The above expression can be bounded by

_Sr�lminðQ ÞJXJ2
þlmaxðPÞJ ~uJfJxJþJvJþJaJg ð28Þ

To determine an upper bound on J ~uJ we compute

J ~uJ¼
T
m

JðR�RdÞe3J¼
T
m

JðRdRT�IdÞRe3J ð29Þ

J ~uJr
T
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððRdRT�IdÞ

T
ðRdRT�IdÞÞ

q
JRe3J ð30Þ

Introducing

~R ¼ ðRdÞ
T R ð31Þ

we get

J ~uJr
T
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðId�

~RÞ

q
ð32Þ

Let ðg ~R ,n ~R Þ denote the angular-axis coordinates of ~R. Using
identity (8), we obtain

J ~uJr
ffiffiffi
2
p

m

T

cos
g ~R
2

� � JVðPað
~RÞÞJ ð33Þ

From (28), we finally get

_Sr�lminðQ ÞfJxJ2
þJvJ2

þJaJ2
g

þ
ffiffiffi
2
p T

m

lmaxðPÞ

cos
g ~R
2

� �
0
B@

1
CAJVðPað

~RÞÞJfJxJþJvJþJaJg ð34Þ
2 Using the fact that the gains kx and k1 are strictly positive, it can be easily

checked that the matrix A is Hurwitz, by applying Routh’s criterion on its

characteristic polynomial.
5. Attitude controller

Let us now consider the orientation dynamics of (15) and
recall the notation introduced in (31):

~R ¼ ðRdÞ
T R ð35Þ

The orientation dynamics can be rewritten as

e _~R ¼�eOd
�
~Rþ ~Ro�

eI _O ¼�o�IOþg

8<
: ð36Þ

We introduce

~O ¼o�l1VðPað
~RÞT Þ ð37Þ

where l1 is a strictly positive scalar gain. With this notation, the
kinematic relation can be transformed into

_~R ¼�Od
�
~Rþ

1

e
~R ~O�þ

l1
e
~RPað

~RÞT ð38Þ

Taking the time derivative of ~O it yields

_~O ¼ I�1ð�o�IOþgÞ� l1
2

Vð ~R
T
Od
�þO

d
�
~RÞþ

l1
2eVðo� ~R

T
þ ~Ro�Þ ð39Þ

Let us define l40 and l240, and assign the following expression
to the input g:

g¼o�IOþ I �
l2
e
~O�

2l

e VðPað
~RÞÞ�

l1
2eVðo� ~R

T
þ ~Ro�Þ

� �
ð40Þ

The control torque G can then be directly deduced from (40):

G¼O�IOþ I �
l2
e2

~O�
2l

e2
VðPað

~RÞÞ�
l1
2eVðO� ~R

T
þ ~RO�Þ

� �
ð41Þ

Eq. (39) becomes

_~O ¼�
l2
e
~O�2

l

eVðPað
~RÞÞ�

l1
2

Vð ~R
T
Od
�þO

d
�
~RÞ ð42Þ

Remark 3. The input (40), and hence the control law (41), has
been designed by considering the orientation dynamics (36)
under the assumption Od

¼ 0. This corresponds to a time-scale
separation between the translational and the orientation
dynamics, as previously mentioned in Section 3.3.

Remark 4. Note that the parameter eAð0,1�, which has been
introduced to formalize the time-scale separation for control
design, can also be seen as a high gain tunning parameter in the
control law (41).

Let L be a candidate control Lyapunov function for the orientation
dynamics (36):

L¼ ltrðId�
~RÞþ1

2J
~OJ2

ð43Þ

Using relations (38) and (42), and identities (4) and (5) to
compute the time derivative of L along the trajectories of (36)
controlled by (41), we get

_L ¼�2lðOd
Þ
T VðPað

~RÞÞ�
ll1
e

trðPað
~RÞPað

~RÞT Þ

�
l2
e J

~OJ2
�

l1
2
~O

T
Vð ~R

T
Od
�þO

d
�
~RÞ ð44Þ
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By triangular inequality and applying identity (6), we obtain

_Lr2lJOd
JJVðPað

~RÞÞJ�
2ll1
e

JVðPað
~RÞÞJ2
�

l2
e
J ~OJ2

þ
l1
2
J ~OJJVð ~R

T
Od
�þO

d
�
~RÞJ ð45Þ

To get an upper bound on m¼ JVð ~R
T
Od
�þO

d
�
~RÞJ, we compute

m2r1
2trfð ~R

T
Od
�þO

d
�
~RÞT ð ~R

T
Od
�þO

d
�
~RÞg ð46Þ

m2r1
2 trðð ~R

T
Od
�Þ

T ~R
T
Od
�Þþ

1
2trððOd

�
~RÞTOd

�
~RÞ ð47Þ

m2rtrððOd
�Þ

TOd
�Þr2JOd

J2
ð48Þ

It remains to find an upper bound on JOd
J. In the case of

stabilization, we choose Od
3 ¼ 0. We get JOd

J¼ JOd
�e3J and can

use (A.8) along with the time derivative of (18) to obtain

JOd
Jr

m

T fðkxþk1ÞJvJþk1JaJg ð49Þ

Using (48) and (49) along with (45) leads finally to the following
upper bound on the time derivative of L:

_Lr�2ll1
e JVðPað

~RÞÞJ2
�

l2
e J

~OJ2
þ

2m

T lJVðPað
~RÞÞJfðkxþk1ÞJvJþk1JaJg

þ

ffiffiffi
2
p

2

m

T l1J ~OJfðkxþk1ÞJvJþk1JaJg ð50Þ

6. Stability analysis

Consider now the complete system composed of the transla-
tional dynamics (16) and of the orientation dynamics (36), and
define the candidate control Lyapunov function

V ¼ SþL ð51Þ

We have the following proposition:

Proposition 1. Consider the system (16)–(36) along with the

control laws (18) and (41) and the virtual input (19).

There exist K1,K240 and en40 such that, for all initial conditions

xð0Þ, vð0Þ, qð0Þ ¼ xð0Þ, Rð0Þ and Oð0Þ such that

Vð0Þo
K2 g�

eg

m

� �2

2ð2K1Þ
2

ð0oeg 5mgÞ ð52Þ

then, for all l verifying

lZ
K2 g�

eg

m

� �2

2ð2K1Þ
2
ð4�ZÞ

ð0oZo4Þ ð53Þ

and for all e40 such that eoen, the closed-loop system is exponen-

tially stable.

Proof. First, let us consider the following assumptions that will
be verified at the end of the proof:

Assumption 1. There exist two reals T min and T max such that

0oT minomgoT maxo1 ð54Þ

8tZ0, T minrT ðtÞrT max ð55Þ
Assumption 2. There exists a real c40 such that

8tZ0, cos
g ~R ðtÞ

2

� �
Zc ð56Þ
Let us define the coefficients

s1 ¼
1

2
lmaxðPÞ

T max

m

ffiffiffi
2
p

c
, s2 ¼ l

m

T min
ð57Þ

s3 ¼

ffiffiffi
2
p

4
l1

m

T min
ð58Þ

With these notations and under Assumptions (1) and (2), we can
use relations (34) and (50), to provide the following upper bound
on the time derivative of V, computed along the trajectories of
(16) along with (36) controlled by (18), (41) and (19):

_Vr�lminðQ ÞfJxJ2
þJvJ2

þJaJ2
g�

2ll1
e

JVðPað
~RÞÞJ2
�

l2
e
J ~OJ2

þ2s1JxJJVðPað
~RÞÞJþ2ðs1þs2ðkxþk1ÞÞJvJJVðPað

~RÞÞJ

þ2ðs1þs2k1ÞJaJJVðPað
~RÞÞJþ2s3ðkxþk1ÞJvJJ ~OJ

þ2s3k1JaJJ ~OJ ð59Þ

Let us define

a¼ lminðQ Þ, b1 ¼ s1, b2 ¼ s1þs2ðkxþk1Þ ð60Þ

b3 ¼ s1þs2k1, b4 ¼ s3ðkxþk1Þ, b5 ¼ s3k1 ð61Þ

and introduce the state vector

X ¼ ½JxJ JvJ JaJ JVðPað
~RÞÞJ J ~OJ�T ð62Þ

With these notations, Eq. (59) can be restated as

_Vr�XTSX ð63Þ

with

S¼

a 0 0 �b1 0

0 a 0 �b2 �b4

0 0 a �b3 �b5

�b1 �b2 �b3
2ll1
e

0

0 �b4 �b5 0
l2
e

2
66666666664

3
77777777775

ð64Þ

Since the matrix Q is positive definite, the coefficient a¼ lminðQ Þ is
strictly positive and the three first minors of the matrix S are
strictly positive. The positivity of the minor of size four is
obtained for all eoen1 with

en1 ¼
2lminðQ Þll1

3s2
1þs2

2ð2k2
1þk2

xþ2kxk1Þþ2s1s2ðkxþ2k1Þ
ð65Þ

The strict positivity of detðsÞ is obtained for

Ae2þBeþC40 ð66Þ

where

A¼ ðb2b5�b3b4Þ
2
þb2

1ðb
2
5þb2

4Þ40 ð67Þ

B¼�a½l2ðb
2
1þb2

2þb2
3Þþ2ll1ðb

2
4þb2

5Þ�o0 ð68Þ

C ¼ 2a2ll1l240 ð69Þ

With these coefficients, it can be checked that the discriminant
ðB2�4ACÞ of (66) is strictly positive. Let us define

en2 ¼�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC
p

2A
ð70Þ

Since A40, Bo0, C40 and ðB2�4ACÞ40, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4AC
p

offiffiffiffiffi
B2
p
¼�B, and we can check the strict positivity of en2.

Therefore, detðSÞ is strictly positive for all eoen2.
Let us define

en ¼minðen1,en2Þ ð71Þ



0 10 20 30
−2

0

2

4

6

ξ 1
 (m

)
ξ 2

 (m
)

ξ 3
 (m

)

0 10 20 30
−6

−4

−2

0

2

0 10 20 30
−2

0

2

4

6

t (s)

0 10 20 30
−2

0

2

4

6

φ 
(d

eg
)

0 10 20 30
−10

−5

0

5

θ 
(d

eg
)

0 10 20 30
−5

0

5

10

t (s)

ψ 
(d

eg
)

Fig. 2. Position error components and attitude angles.
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For all e40 such that eoen, the matrix S is positive definite and
hence the time derivative (63) of V is negative definite. Consequently,
one can ensure the exponential stability of the system (16) along with
(36) when (18) and (41) are used as control inputs and (19) as virtual
control.3

Remark 5. The exponential stability is obtained by considering

identity (8) from which one can deduce JVðPað
~RÞÞJ2rtrðId�

~RÞ.

Defining the vector X 0 ¼ ½JxJ JvJ JaJ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðId�

~RÞ
q

J ~OJ�T and using

(63) along with the fact that S is positive definite, one can show

that there exists a positive definite matrix S0 ¼S0T such that
_Vr�X 0TS0X 0. Hence there exists a scalar s0ARþ such that
_Vr�s0V which proves the exponential stability.

We have shown that closed-loop stability is guaranteed for all
eoen under Assumptions 1 and 2. Now we have to check that
both assumptions are satisfied.

Let us start with Assumption 1. Define K1 ¼maxðkx,k1Þ.
Using triangular inequality with (18) yields

mg�mK1ðJxJþJaJÞrT rmgþmK1ðJxJþJaJÞ ð72Þ

That expression can be linked to the value of the Lyapunov
function V using (24), (25) and (51) to get for all tZ0:

mg�2mK1

ffiffiffiffiffiffiffiffiffiffiffiffi
2VðtÞ

K2

s
rT ðtÞr mgþ2mK1

ffiffiffiffiffiffiffiffiffiffiffiffi
2VðtÞ

K2

s
ð73Þ

with K2 ¼ lminðPÞ.
The time derivative of V being negative for eoen, one has

8tZ0, VðtÞrVð0Þ ð74Þ
3 The convergence of ~R to the identity matrix Id is guaranteed by conditions

(52) and (53) from which we can show that ð1�cosðg ~R ÞÞo2 and hence g ~R-0. This

relation will be shown in the next step of the proof.
and from (73), we obtain for all tZ0:

mg�2mK1

ffiffiffiffiffiffiffiffiffiffiffiffi
2Vð0Þ

K2

s
rT ðtÞrmgþ2mK1

ffiffiffiffiffiffiffiffiffiffiffiffi
2Vð0Þ

K2

s
ð75Þ

Taking eg 40 such that eg{mg, we can use condition (52) to
finally get

8tZ0, 0oeg oT ðtÞo2mg�eg ð76Þ

Assumption 1 is hence verified by choosing T min ¼ eg and
T max ¼ 2mg�eg .

To complete the proof, let us finally check that Assumption 2 is
verified. As previously, we use the fact that V is decreasing, with
(43) and (51), to obtain

8tZ0, ltrðId�
~RðtÞÞrVðtÞrVð0Þ ð77Þ

Defining Z40 such that Zo4, conditions (52) and (53) can be
used successively to get

Vð0Þo ð4�ZÞl ð78Þ

and then

8tZ0, trðId�
~RðtÞÞo4�Z ð79Þ

Using (7) we obtain

8tZ0, ð1�cosðg ~R ðtÞÞÞo2 ð80Þ

Therefore, for all tZ0, we have �pog ~R ðtÞop and there exists a
c40 such that

cos
g ~R ðtÞ

2

� �
Zc40 ð81Þ

Assumption 2 is hence verified, which completes the proof. &

Remark 6. Since (54) and (55) are verified, the strict positivity of
the input T is guaranteed. Therefore, the direction Rde3 computed
by (11) is well defined.

Remark 7. Condition (52) is not restrictive. Indeed, in practice,
the gains kx, k1 and the matrix P can be chosen to obtain,
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respectively, sufficient small and high values for K1 and K2, so that
all initial conditions in the usual domain of flight of the vehicle
will satisfy (52).

Remark 8. The design of the partial state feedback control law for
the translational dynamics can also be achieved by introducing
two virtual states (Bertrand et al., 2007). In that case, the
corresponding complete proof can be found in Bertrand, Hamel,
and Piet-Lahanier (2008).

7. Simulation results

Simulation results are provided in this section to illustrate the
stability property of the proposed controller. The following
values have been chosen for the parameters of the controller and
UAV model: kx ¼ 0:1, k1 ¼ 0:41, l¼0.77, l1 ¼ 0:75, l2 ¼ 0:26, e¼ 0:3,
m¼2.5 kg, I¼ diagðI1,I2,I3Þ with I1 ¼ I2 ¼ 0:13 kg m2 and I3 ¼

0:16 kg m2. The gravitational acceleration is g ¼ 9:81 m s�2.
The proposed results have been obtained for stabilization at

hover around the desired position wd ¼ ½0 0 1�T m, starting from
the initial condition wð0Þ ¼ ½4 �5 2:5�T m, ½fð0Þ yð0Þ cð0Þ� ¼
½5 �8 10�1, vð0Þ ¼ ½0:7 �0:5 2�T m/s, Oð0Þ ¼ 0. The initial value
chosen for the virtual state is qð0Þ ¼ xð0Þ. The desired yaw cd

has been chosen to be equal to zero.
Fig. 2 presents the evolution of the components of the position

error x¼ ½x1 x2 x3�
T and of the attitude angles. As can be seen,

closed-loop stability is achieved by the controller with a good
performance. Control inputs are shown in Fig. 3. The evolutions of
the angular deviation terms ~f ¼f�fd, ~y ¼ y�yd, ~c ¼c�cd are
presented in Fig. 4. These terms converge faster than the closed-loop
of the translational dynamics, hence validating the time-scale separa-
tion that has been used in the control strategy.
0 5 10 15 20 25 30
−15

−10

t (s)

Fig. 4. Angular deviation terms.
8. Experimental results

The proposed control strategy has been tested at CEA on an
‘X4-flyer’ miniature UAV presented in Fig. 5. This four-rotor VTOL
vehicle is particularly suited for stationary or quasi-stationary
flight conditions.
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In a previous work, control laws have been designed for attitude
stabilization from inertial measurement unit (IMU) data (Guenard,
Hamel, & Eck, 2006). In order to embed the attitude stabilization
algorithm, the prototype is equipped with a set of four electronic
boards. The first two ones, respectively, integrate the motors con-
troller and the IMU. On the third board, a digital signal processing
(DSP) cadenced at 150 MIPS performs the attitude control algorithm
computations at about 166 Hz. The last board supplies a numerical
wireless communication of 2 and 4 GHz between the vehicle and a
ground station (Pentium IV PC). The operator’s joystick, used for the
teleoperation of the UAV, is linked to this PC. An embedded camera
with a view angle of 1201 pointing directly down, transmits video
images to the ground station via a wireless analogical link of 5.8 GHz.
A lithium-polymer battery provides nearly 20 min of flight time.
The payload of the prototype is about 200 g. The structure of the
experimental setup is summarized in Fig. 6.

For the considered experiment, the position of the UAV is
obtained by a particle filter implemented on the ground station.
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Fig. 6. Experimental setup architecture.

0 25 50 75 100 125 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t (s)

x 
(−

), 
xd  

(−
−)

 (m
)

0 25 50 75 100 125 150
−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

t (s)

z 
(−

), 
zd  

(−
−)

 (m
)

Fig. 7. Position coordinate

Fig. 5. The X4-flyer.
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This filter uses images sent during the flight by the embedded
camera and data from the IMU measurements. Images received by
the ground station are also used to build a topological map of the
ground, by successively defining key images from the gradient
image. The position of the UAV in this map is hence defined
relatively to the current tracked key image. IMU measurements
are also used to compute the attitude of the vehicle and its
angular velocities. Note that no linear velocity estimate is used for
the control algorithm during the experiment.

The proposed position control law has been implemented on
the ground station with a sample time of about 70 ms. From the
vehicle position, it computes attitude orders to be sent to the
UAV. Control gains have been chosen to obtain a good trade-off
between the stability of the system and a fast transient response,
and to ensure that the orientation dynamics converge faster than
the translational dynamics, according to the chosen time-scale
separation approach.

The proposed results correspond to the stabilization of the
UAV around set points given by the operator and for a constant
desired yaw cd. Fig. 7 presents the position coordinates (solid
curves) and the corresponding references (dashed curves).
The position error x is also represented. The evolution of the
attitude angles during the flight is provided in Fig. 8. As can be
seen, good performance is achieved by the proposed controller
for the stabilization of the UAV. Note that the precision in the
z-coordinate is limited by the use of vision.
9. Conclusion

In this paper, we have presented both design and stability
analyzes of a hierarchical controller for a miniature VTOL UAV.
Position and attitude controllers have been designed considering
successively, and with a time-scale separation, the translational
dynamics and the orientation dynamics of a six degrees of
freedom VTOL UAV model. A partial state feedback controller
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has been proposed for position stabilization, assuming that no
measurement of the linear velocity of the vehicle is available.
Time-scale separation of the proposed control scheme and
stability analysis has been addressed by singular perturbation
theory. Simulation results and experimental results achieved on a
X4-flyer miniature UAV have been finally proposed to illustrate
the good performance obtained by the controller.
Appendix A. Computation of the desired angular velocity

A method to compute Od from the control vector T Rde3 is
presented here. From (12) we get

d

dt
ðRde3Þ ¼

_R
d
e3 ¼ RdOd

�e3 ðA:1Þ

and then

Od
�e3 ¼ ðR

dÞ
T d

dt
ðRde3Þ ðA:2Þ

To compute the time derivative of Rde3, let us define

N¼ T Rde3 ðA:3Þ

so that we get

Rde3 ¼
Nffiffiffiffiffiffiffiffiffiffi
NT N
p ðA:4Þ

The time derivative of Rde3 is given by

d

dt
ðRde3Þ ¼

_N
ffiffiffiffiffiffiffiffiffiffi
NT N
p

�NNT _Nffiffiffiffiffiffiffi
NT N
p

NT N
¼

1ffiffiffiffiffiffiffiffiffiffi
NT N
p Id�

NNT

NT N

 !
_N ðA:5Þ

Therefore, we have

d

dt
ðRde3Þ ¼

1

T fId�Rde3eT
3ðR

dÞ
T
g

d

dt
ðT Rde3Þ ðA:6Þ

Defining the projector

Pe3
¼ Id�e3eT

3 ðA:7Þ
Eq. (A.2) can be restated as

Od
�e3 ¼

Od
2

�Od
1

0

2
664

3
775¼ 1

T Pe3
ðRdÞ

T d

dt
ðT Rde3Þ ðA:8Þ

Considering the stabilization of the UAV around a fixed point, the
third component Od

3 of the vector Od is chosen to be identically
zero, and we have cd

ðtÞ ¼cd
ð0Þ, for a given initial yaw cd

ð0Þ.
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