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Abstract: This paper describes the guidance of a group of autonomous cooperating vehicles
using model predictive control. The developed control strategy allows to find a feasible near
optimal control sequence with a short and constant computation delay in all situations. It
makes use of the nonlinear model of the vehicle and takes other vehicle intentions into account.
Numerical simulations are provided where a group of vehicles must reach several way-points
while avoiding obstacles and collisions inside the group. These simulations allow to compare
computation delay and efficiency of the proposed approach with traditional optimisation.
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1. INTRODUCTION

Cooperative control stems from the idea that a group
of several (possibly heterogeneous) cooperating vehicles
might be more efficient and robust in the completion
of complex tasks than a single vehicle. Cooperation can
be achieved with centralized (Wang et al. (2007)) or
distributed control (Rochefort et al. (2011), Siva and
Maciejowski (2011)). In a centralized scheme, actions of all
vehicles are easily synchronized. Distributed control on the
other hand allows better scalability: each vehicle carries
the burden of its own control input computation. Our
approach is to distribute the computation of the control
input and ensure cooperation by communicating intentions
and newly acquired information among vehicles.

When designing a cooperative control law, it is natural to
look toward Model Predictive Control (MPC). The main
advantage of MPC is to anticipate future consequences
of a control input. This is specifically interesting to take
the intentions of other vehicles into account. Moreover,
MPC allows to deal with fulfilment of different objectives
in complex missions by means of cost functions.

MPC is defined by on-the-fly resolution of an open-loop
optimal control problem at regular time intervals during
the mission. This optimal problem consists in finding the
control sequence which minimizes a cost function over a
horizon of prediction. Only the first part of this optimal
control sequence is applied until the next control problem
is solved with updated information. This allows the vehicle
to react to unforeseen events.

Main drawback of MPC is the unpredictable computation
delay of the optimisation procedure. Current research on
cooperative distributed MPC focuses mainly on proof of
convergence (Dunbar and Murray (2004), Müller et al.

(2011)), robustness (Siva and Maciejowski (2011)), and
formation flying (Olfati-Saber et al. (2003)) without de-
tailing the computation delay. In the meantime, real time
feasibility of Nonlinear MPC (NMPC) is studied for fast
dynamic systems, like the Caltech ducted fan (Dunbar
(2001)) or a twin-pendulum (Alamir and Murilo (2008)).

This paper presents a NMPC based distributed algorithm
that computes a near optimal feasible control sequence for
each member of a group of cooperating vehicles. The group
of vehicles must travel in an unknown environment to
sequentially reach several way-points. Meanwhile it must
avoid collisions (within the group and with other obstacles)
and remain gathered. The designed algorithm runs with a
constant computation delay in all circumstances and faster
than an algorithm using traditional optimisation.

The proposed approach is inspired by Frew (2006). In this
work Frew used a random search to find a near optimal
feasible control sequence for one vehicle in an unknown
environment with obstacles. In our work, a parsimonious
systematic search of the command space is used instead
of a random search. The objective function is also greatly
modified to extend the technique to multi-vehicle systems.

Section 2 states the problem. Section 3 contains a short
explanation of the MPC approach whereas the objective
function is detailed in section 4. Section 5 describes the
control sequence selection. Numerical simulations are pro-
vided in section 6 to illustrate and analyse the perfor-
mances of the proposed approach. Conclusion and per-
spectives of works end this paper.

2. PROBLEM STATEMENT

A system composed of N autonomous vehicles moving on
a horizontal plane is considered. This allows representation
of a group of ground vehicles or a flock of aerial vehicles
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maintaining a constant altitude. The dynamics of a given
vehicle i of the group are assumed to be represented by
the following discrete-time kinematic model:

xi (k + 1) = xi (k)+ ∆t.vi (k). cos (Ψi (k)) (1)

yi (k + 1) = yi (k)+ ∆t.vi (k). sin (Ψi (k)) (2)

vi (k + 1) = vi (k)+ ∆vi (k) (3)

Ψi (k + 1) = Ψi (k)+ ∆t.ωi (k) (4)

ωi (k + 1) = ωi (k)+ ∆ωi (k) (5)

where pi (k) = [xi (k) yi (k)]
T

is the position of vehicle i
in F at step k; F is the common inertial frame used as a
reference to communicate informations between vehicles;
∆t is the sampling time; vi (k) is the linear speed of vehicle
i in F at step k (linear will be omitted from now on); Ψi (k)
is the orientation angle of vehicle i in F at step k; ωi (k)
is the turn rate of vehicle i at step k. The control input
of vehicle i at step k consists of a speed increment and a

turn rate increment: ui (k) = [∆vi (k) ∆ωi (k)]
T

.

Kinematics of vehicles is constrained by practical limita-
tions which are identical for all vehicles. These limitations
apply at every step k on the speed, on the turn rate and
on the control input of the vehicles.

vmin 6 vi (k) 6 vmax (6)

−ωmax 6 ωi (k) 6 ωmax (7)

−∆vmax 6 ∆vi (k) 6 ∆vmax (8)

−∆ωmax 6 ∆ωi (k) 6 ∆ωmax (9)

Our objective is to guide the vehicles in the environment to
reach several way-points. Meanwhile, vehicles must avoid
collisions with each other and external obstacles. When
possible, the vehicles must travel as a flock and at nominal
speed vn. We consider that the vehicles form a flock when
the distance between nearest neighbours is approximately
ddes and no vehicle is at a distance greater than dign > ddes
from the remaining of the flock. dign represents the loss of
communication and sensing with too distant vehicles.

To ensure collision and obstacle avoidance the distance
between a vehicle and a threat must be greater than
a threshold dsaf < ddes. This threshold is different for
vehicle to vehicle and vehicle to obstacle avoidances.

To preserve scalability and ensure robustness to single
vehicle failure, each vehicle must compute its own control
input. Cooperation takes the form of information sharing
between vehicles. The main information shared is the path
that the vehicles intend to follow in the future, described
in the common inertial frame F . Any other information
sensed by a vehicle (e.g. position of external obstacle) is
also transmitted to the rest of the group.

3. MODEL PREDICTIVE CONTROL (MPC)

Each vehicle computes its control input using a MPC
approach. It consists of repeatedly solving an open-loop
optimal control problem at regular time intervals. At step
k, the open-loop problem for vehicle i is defined by:

Find the control sequence of length Hc (control horizon)
u∗i (k + 1) = [u∗i (k + 1) · · · u∗i (k +Hc)] that minimizes
an objective function J .

The objective function J is evaluated over the time interval
of length Hp (prediction horizon) by predicting the effects

of the control sequence using the model of the vehicles.
Note that 2 6 Hc 6 Hp 6∞ and that the applied control
is null after Hc.

The effectiveness of the model predictive control strategy is
largely determined by the objective function minimized in
the problem above. Assuming this problem can be solved
in a time lower than ∆t, the model predictive approach
consists of two phases, repeated until the goal is reached:

(1) At step k, each vehicle i computes its optimal control
sequence u∗i (k + 1)

(2) At step k + 1, each vehicle applies the first term of
this control sequence.

4. OBJECTIVE FUNCTION DEFINITION

To compute the cost Jrhci associated with one control
sequence ui(k + 1), each vehicle i predicts the evolution of
its position, speed and turn rate caused by the application
of the entire control sequence according to the nonlinear
model of the vehicle (equ. 1 to 5). The only information
available on the other cooperating vehicles is the trajectory
prediction transmitted at the previous step.

Predicted values of parameters (the vehicle own parame-
ters and other vehicle predictions) are distinguished from
the real values by adding a hat on the notations.

4.1 Definition of costs

The objective function Jrhci that is to be minimized by
the vehicle i consists of three main costs: control cost Jui ,
mission cost Jmi , and cluster cost Jci . These costs include
several components, each one handling one aspect of the
mission.

Jrhci (k) = Jui (k) + Jmi (k) + Jci (k) (10)

Control cost Jui – This cost aims at moderating the
amplitude of the control inputs and therefore the energy
used to control the vehicle. It includes the cost of speed
increment J∆v

i and the cost of turn rate increment J∆ω
i .

Jui (k) = J∆v
i (k) + J∆ω

i (k) (11)

J∆v
i (k) = W∆v.

k+Hc∑
n=k+1

∆v2
i (n) (12)

J∆ω
i (k) = W∆ω.

k+Hc∑
n=k+1

∆ω2
i (n) (13)

The weighting coefficients W • will be explained later.

Mission cost Jmi – This cost aims at ensuring mission
completion. It includes four components; Jmvi which pur-
pose is to travel at nominal speed; Jmωi which purpose
is to favour straight lines; Jmti which purpose is to make
the vehicle move along a straight line reference trajectory

toward the next way-point; and Jmfi which purpose is to
make the vehicle move closer to the way-point. Last two
costs gain no benefit if nominal speed is exceeded to move
closer to the way-point.

Jmi (k) = Jmvi (k) + Jmωi (k) + Jmfi (k) + Jmti (k) (14)

Jmvi (k) = Wmv.

k+Hp∑
n=k+1

(v̂i (n)− vn)
2

(15)
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Fig. 1. Representation of B̂ and p̂ref,i

Jmωi (k) = Wmω.

k+Hp∑
n=k+1

ω̂i (n)
2

(16)

Jmti (k) = Wmt.

k+Hp∑
n=k+1

∥∥p̂i (n)− p̂ref,i (n)
∥∥2

(17)

Jmfi (k) = Wmf .
(
D
(
p̂i (k +Hp) , B̂i (k +Hp)

))2

(18)

At all times, only the currently aimed way-point is consid-
ered. This way-point changes for all vehicles as soon as the
distance between one of them and the way-point is lower
than ∆t.vn.Hp.

p̂ref,i (n) is a reference point defined as the position
reached at step n by the vehicle i if it moves straight
toward the way-point position pw at nominal speed. The
reference points are given by the equation bellow.

p̂ref,i (n) = pi (k) + (n− k) .∆t.vn.
pi (k)− pw
‖pi (k)− pw‖

(19)

B̂i(k+Hp) is the smallest ball surrounding the way-point

that contains p̂ref,i (k +Hp). i.e. B̂i(k+Hp) is the smallest
ball around the way-point reachable at nominal speed in
an ideal scenario where the vehicle moves directly toward

the way-point. D(p̂i(k + Hp), B̂i(k + Hp)) represents the
distance between the predicted position of vehicle i and

ball B̂i.

These formulations ensure the shape and dynamic of the

costs Jmti and Jmfi remain the same at all times during the
mission whatever the distance to the way-point. Figure 1

depicts the reference points and ball B̂i.

Jmfi and Jmti are complementary. Jmfi will ensure the
vehicle moves closer to the way-point even if straight line
is not possible. Jmti will influence the vehicle to move
directly toward the way-point instead of turning around
while approaching (i.e. spiralling) toward the way-point.

Cluster cost Jci – This cost aims at ensuring collision
avoidance and keeping all vehicles grouped together. It
includes three components; Jcai which ensures collision
avoidance between cooperating vehicles; Jcoi which ensures

collision avoidance with external obstacles; and Jcfi which
is responsible for maintaining the vehicles close to each
other.

Jci (k) = Jcai (k) + Jcfi (k) + Jcoi (k) (20)

Jcai (k) = W ca.

N∑
j=1

k+Hp∑
n=k+1

1− tanh
((
d̂ij (n)− βa

)
.αa

)
2

(21)
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Fig. 2. Shape of avoidance and flocking cost

Jcoi (k) = W co.

No∑
j=1

k+Hp∑
n=k+1

1− tanh
((
d̂ij (n)− βa

)
.αa

)
2

(22)

Jcfi (k) = W cf .

N∑
j=1

k+Hp∑
n=k+1

1 + tanh
((
d̂ij (n)− βf

)
.αf

)
2

(23)

No is the number of obstacles; d̂ij (n) is the distance sep-
arating the vehicle i from the threat j (an obstacle or an-
other vehicle) at step n. The choice of hyperbolic tangent
for this cost is driven by two reasons. First the shape of
the function: a slope between two nearly flat regions with
quick transitions and differentiable everywhere as shown
in figure 2. Second the function is fast to compute (e.g.

fastest than the error function erf(d) = 2√
π

∫ d
0
e−t

2

dt).

The terms α• and β• are used to shape the hyperbolic
tangent to our needs. To explain this, let us take the
example of the vehicle avoidance cost Jcai . The term αa
allows to define the width of the region where the function
varies rapidly. The term βa allows to set the inflexion point
of the function in the abscissa axis. It is desirable that
the cost be nearly constant outside of [dsaf ddes] and vary
rapidly inside this region. Thus the terms are tuned to
ensure the derivative of the cost is lower than 0.05 outside
[dsaf ddes] and greater inside. They depend on the values
of the characteristic distances dsaf , ddes, and dign.

αa = 6. (ddes − dsaf )
−1

(24)

βa = 1/2. (ddes + dsaf ) (25)

αf = 6. (dign − ddes)−1
(26)

βf = 1/2. (dign + ddes) (27)

4.2 Definition of weighting coefficients

Each component of the objective function is weighted
according to its relative priority, that is the importance
of the corresponding task in the mission. As an example,
remaining a group could be more important than travelling
at nominal speed but less important than collision avoid-
ance. Therefore, the group may split to avoid collision,
but otherwise vehicles would adapt their speed to stay
together.

The weights W • = w•.k• consist of:

k• a normalisation coefficient, used to gather all com-
ponents of the objective function in a same order of
magnitude to ease the tuning of the weighting factors;

w• a tuning parameter used to control the relative impor-
tance of the components of the objective function.
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Table 1. Normalization coefficients

k∆v =
(
Hc.∆v2

max

)−1
kmf =

(
(Hp.∆t.vn)2

)−1

k∆ω =
(
Hc.∆ω2

max

)−1
kca = (Hp/2)−1

kmω =
(
Hc.ω

2
max

)−1
kco = (Hp/2)−1

kmt =

(∑Hp

n=1
(n.∆t.vn)2

)−1

kcf = (Hp.N)−1

kmv =
(
Hc.max (vn − vmin, vmax − vn)2

)−1

To define the normalization coefficients, we use reference
scenarios whose normalized cost must be one. For most of
the components, we define this scenario as the worst move-
ment of the vehicle that does not compromise the mission
(e.g. highest turn rate allowed for the entire control hori-
zon for k∆ω). One exception is the progression toward the

way-point (Jmti and Jmfi ), which uses a scenario where the
vehicle does not move. Second exception is the travelling as
a group component which uses a scenario where the vehicle
is at a distance greater than dign from all the others.

Normalization coefficients are given in table 1.

5. CONTROL SEQUENCE SEARCH PROCEDURE

To simplify our optimisation problem (and decrease com-
putation delay), a constant control input is applied during
the entire control horizon or until the maximal value for
speed or turn-rate is reached. A null control sequence is
then applied for the remaining of the prediction horizon.
Because short control sequences are used and because
control inputs are variations of speed and turn rate, this
simplification does not impair vehicle capabilities. The
optimisation procedure must thus find only two elements:
a speed increment ∆v and a turn rate increment ∆ω.

To avoid the unpredictability of the delay introduced by
the optimisation procedure, a search procedure among a
finite set of admissible control sequences have been chosen.
Doing so, the amount of computation remains the same in
all circumstances. This procedure has four phases.

(1) Define a finite set of candidate control sequences
Cu = C∆v×C∆ω. Each candidate consists of a sequence
of speed increment and a sequence of turn rate
increment. It must respect the constraints on control
input, speed, and turn rate. The appropriate number
of candidates is discussed in section 5.2;

(2) Using the nonlinear model (equ 1 to 5), predict the
trajectory that corresponds to each candidate;

(3) Compute the cost of each candidate;
(4) Use the candidate that implies the smallest cost.

Note that the time needed to find the smallest value among
a discrete set of scalar values is negligible compared to the
time necessary to predict the trajectories.

5.1 Distribution of the candidates

The subtlety in our method lies in the creation of the set
of candidates, and more precisely, in their distribution in
the control space. At first glance, three possible ways are:

(1) generate many control sequences distributed uni-
formly over the control space. This will allow precise
control, but will take time to predict all trajectories;

(2) generate a moderate amount of uniformly distributed
control sequences. This will be fast but the control
may lack precision (oscillations, missed possibilities)

(3) generate a moderate amount of control sequences
randomly distributed over the control space. This
is the approach of Frew (2006) (but with constant
speed). It is fast and as the distribution changes
iteration after iteration, the probability to find the
control that will make the oscillation cease or discover
a new solution increases. A set of predefined control
sequences must be added to the randomly generated
set to ensure that particular trajectories are always
possible (like straight line, or maximum turn rate).

In this work another approach has been chosen, which is
to use a small amount of control sequences distributed
in particular way over the control space. Our distribution
intends to implement the following intuition :

At the beginning of a high amplitude manoeuvre (like a u-
turn or an emergency brake), a precise control input is not
necessary because the amplitude is the main concern. On
the other hand, as manoeuvre comes to an end or for small
amplitude manoeuvre, high precision is desirable.

This intuition motivates the three following rules.

(1) The set of candidates includes the extreme control
inputs (that is ±∆vmax, and ±∆ωmax) to exploit the
full potential of the vehicle;

(2) The set of candidates includes the null control input
(that is ∆v = 0, and ∆ω = 0) to allow to continue
with the same speed and turn rate;

(3) Candidates are distributed over the entire control
space with an increased density around zero.

To meet these rules, we have chosen to use an inverse power
function and add the null control input.

C∆v =

{
±∆vmax

ϕp

}
∪ {0} with p = 0 to η∆v (28)

C∆ω =

{
±∆ωmax

ϕp

}
∪ {0} with p = 0 to η∆ω (29)

C∆v is the set of candidates of speed increments; C∆ω is the
set of candidates of turn rate increments; ϕ controls the
interval between two candidates, its value will be studied
later; η∆v and η∆ω define the smallest available control
input (6= 0), which is also the highest possible precision
of our control strategy. Figure 3 shows the trajectories
generated by the different values in C∆ω for two different
initial turn rates and two values of ϕ. In this figure, the
speed of the vehicle is kept constant at vn.

5.2 Discussion on the number of candidates

The particular distribution that has been chosen is an
attempt to explore the control space efficiently, i.e. explore
all of it but insist on the most useful part to reduce the
amount of computation. The definition of these distribu-
tions links the maximum possible precision of the control
input η∆v and η∆ω to the number of candidates N∆v and
N∆ω with N• = 2 ∗ η• + 1.

To explore systematically the control space, each can-
didate of speed increment will be combined with each
candidate of turn rate increment to form N∆v.N∆ω can-
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Fig. 3. Trajectories predicted from the set of candidates of
turn rate increments

Table 2. Simulation parameters

vn 0.1 m.s−1 Hc 4 ∆t
vmax 0.2 m.s−1 Hp 24 ∆t
vmin 0.05 m.s−1 dsaf 0.7 m

∆vmax 0.02 m.s−2 ddes 1.3 m
ωmax 0.3 rad.s−1 dign 5 m

∆ωmax 0.15 rad.s−2 N∆v 5
∆t 0.5 s N∆ω 15

didate control sequences. As each candidate will be used
to predict a trajectory and evaluate the associated cost,
the amount of computation is directly proportional to the
number of candidates.

The values of η∆v and η∆ω must be chosen while consider-
ing different things: the precision of the actuators: it is un-
necessary to test two control inputs that will be executed
in the same way; the precision of the available measure-
ments: it is unnecessary to test two control inputs which
executions will be undistinguishable; the importance of
precise guidance and computation capacity of the on-board
computer: more precision means more computation delay.

6. NUMERICAL SIMULATION

The proposed search scheme is tested on the scenario
presented in figure 4. Initial positions and orientations of
the vehicles are randomly chosen in the region −12.5;m 6
x 6 −7.5;m;−3.5;m 6 y 6 1.5;m;−π 6 θ 6 π. Vehicles
must reach the various way-points in the indicated order.
Mission is a success if the group of vehicles reaches the
third way-point within 500s. Mission fails if one vehicle is
separated from the flock by more than dign or if a collision
arises.

Figure 4 depicts an example of a simulation done with the
proposed search scheme using the parameters and weights
defined in table 2 and 3. Unless stated otherwise, these
parameters were used in all simulations.

x(
m
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way-point

3rd

way-point

Fig. 4. Test scenario and example of realisation

Table 3. Weighting coefficients

w∆v
i 2 wmω

i 5 wca
i 100

w∆ω
i 10 wmf

i 10 wcf
i 50

wmv
i 5 wmt

i 5 wco
i 200

Our test procedure consisted in solving repeatedly (500
times) this scenario while randomly changing the initial
positions and orientations of the vehicles. Each column
of table 4 contains the results obtained with a specific
set of parameters. Using the set given in table 2 as a
base, the influence of three parameters specific to our
scheme of search was studied: the number of candidate
speed increments N∆v; the number of candidate turn rate
increments N∆ω; and the repartition of the candidates
defined by ϕ. Last column contains the results obtained
using a traditional optimisation (Matlab fmincon) instead.

Failure and success rates for each set of parameters are
given in table 4 (Collisions, Lost vehicles, Success). It
contains also the average of the following values, computed
on the successful missions only: time needed to complete
the mission tarrival; computation delay (to compute the
control input of one vehicle, tcomputation); total cost of the

mission detailed in three parts : control cost Ju, mission
cost Jm and cluster cost Jc.

6.1 Comparison with a traditional optimisation procedure

The optimisation algorithm we have chosen to make this
comparison is fmincon, because it is readily available in
Matlab. Our objective, as already stated, is to find a
control scheme that has a constant and short computa-
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Table 4. Success and average efficiency over 500 simulations for several sets of parameters

N∆v/N∆ω/ϕ 5/15/1.75 3/15/1.75 7/15/1.75 5/11/1.75 5/19/1.75 5/15/1.5 5/15/2 fmincon

Collisions 10 11 27 16 14 10 11 15
Lost vehicles 21 36 41 20 41 18 38 69

Success 469 453 432 464 445 472 451 416
tarrival 437s 415s 443s 438s 436s 437s 436s 450s

tcomputation 11.4ms 7.9ms 15.6ms 9.5ms 14.3ms 12.0ms 12.0ms 85.2ms

Ju 315 317 291 346 309 343 306 310

Jm 7152 8495 7033 7248 7210 7202 7221 6860

Jc 53543 84631 45970 54591 55314 54432 54380 43326

0   100 200 300 400 500

50

100

150

time (s)C
om

pu
ta

tio
n 

de
la

y 
(m

s)

 

 fmincon

proposed scheme

Fig. 5. Computation delay during the mission

tion delay with performance comparable to a traditional
optimisation.

The simulations done with our search scheme present a
computation delay five to seven time shorter than fmincon.
In addition, figure 5 pictures the average computation
delay during the mission. While it stays constant with
our scheme, the computation delay induced by fmincon
varies greatly depending on the situation. In particular,
the optimisation takes two times longer if an obstacle is
present. In the same time, our search scheme is a little
more efficient at avoiding lost vehicle, but leads to slightly
higher costs.

6.2 Influence of the number of candidates

As stated in section 5.2, the control becomes more precise
when the number of candidates increases. This claim is
supported by the observation of the cluster cost for the
various values of N∆v: with a more precise control of the
speed, the vehicles can stay closer to each other and the
associated cost decreases. As this observation is not true
for N∆v, it is possible that increasing the precision of
control has little influence beyond a threshold.

A very straightforward observation is the increase of com-
putation delay tcomputation when the number of candidate
control sequences increases.

6.3 Influence of candidate distributions

As stated in 5.1, the particular distribution of the can-
didates allows to insist on the more useful parts while
exploring the entire control space. The question arises of
the distribution that will produce the best performance.
As it causes more lost vehicles, the value ϕ = 2 can
be excluded. But ϕ = 1.5 and ϕ = 1.75 can not be
distinguished one from the other.

7. CONCLUSION

In this paper, an algorithm has been proposed for the
distributed control of a group of cooperative vehicles. This

algorithm consists in the resolution of a NMPC problem
using an efficient search approach instead of classical
optimization. The advantage of this scheme is that the
induced computation delay is shorter and constant in all
situations without penalizing efficiency. These properties
make this algorithm ideal for embedded control. Numerical
simulations have been produced to support these claims.

The influence of the number of candidates and their
repartition over the control space have been studied.
Several sets of parameters offer comparable efficiencies.
Additional work will be done to distinguish between the
various possibilities.

Future work will focus on the objective function and on the
relative weights. To avoid collisions, a system of priority
could be implemented among vehicles.
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