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This paper presents a comprehensive framework for the cooperative guidance of a 
fleet of autonomous vehicles, relying on Model Predictive Control (MPC). Solutions 

are provided for many common problems in cooperative control, namely collision 
and obstacle avoidance, formation flying and area exploration. Cost functions of the 
MPC strategy are defined to ensure a safe collaboration between the vehicles for these 
missions. An efficient way to select the optimal cost with limited computation time is 
also provided. The performance of the proposed approach is illustrated by simulation 
results. 

Introduction

Missions such as large area surveillance or multiple target tracking 
may often prove tedious, potentially dangerous or cumbersome for 
a human operator. Using autonomous, or at least partly autono-
mous, vehicles could greatly contribute to making these missions 
feasible. However, their complexity may prove very demanding in 
terms of technological requirements for a single vehicle. Splitting the 
task into several subtasks makes it easier to fulfill the demands. It 
is thus necessary to determine how the subtasks are defined and to 
which vehicles they are attributed. Two approaches can be defended. 
The first one consists in defining subtasks that do not interfere, but 
whose collection leads to mission achievement. The second one is 
aimed at defining imbricated subtasks whose coordinated achieve-
ments would be at least equal, but possibly greater, than those of a 
complex but unique vehicle. This approach, known as cooperative 
tasking, requires coordination of the entire vehicle set to guarantee 
the satisfaction of the initial mission needs. The determination of spe-
cific control laws and estimation procedures are required to enable 
vehicles to perform cooperative tasks. This field of research has been 
very active since the 1980’s and encompasses theories from various 
domains, such as game theory, artificial intelligence or distributed 
control. The numerous existing approaches vary according to the type 
of mission and the associated requirements in terms of constraints on 
formation flying [1], [2], communication exchange [3] or allocation 
of resources [4]. Many issues must be addressed, from the mode-
ling of the cooperative set of vehicles, the definition and management 
of the allocated tasks and required information, and the definition of 
cooperative control strategies enabling the coordination and safety of 
these vehicles.

In this paper, attention is focused on the design of control laws, as-
suming that the necessary shared information is available. Various 

characteristics can be attached to cooperation control from a system-
control perspective, e. g., they can be designed as implicit or explicit, 
based on regulated or reactive control law, obtained by centralized or 
decentralized control, with equality or hierarchy among the vehicles.

Implicit cooperation describes the behavior of individuals obeying a 
set of basic rules that results in a cooperative behavior. This consti-
tutes one of the basic features of biomimetic flocking [5]. In explicit 
cooperation, mission allocation and guidance laws are defined for 
enhancing cooperative behavior (see e.g. [6]).

Reactive or regulated control laws translate into a long-term versus 
short-term design of the guidance law. A regulated control law is desi-
gned to guide the vehicles along trajectories that have been previously 
designed, e. g., using path searching procedures, such as A star or 
Dijkstra [7] or other algorithms [8]. Reactive control is achieved using 
the current and predicted states of the system, including the vehicles 
and the environments [9]. It is designed to provide a trade-off between 
the mission objective and its safety, for the current time or a limited 
time horizon. Centralized or distributed cooperative control refers to 
the location where the control takes place. It can be achieved within 
a unique control unit interacting with all vehicles [10] or computed by 
each vehicle [11]. The latter implementation presents the advantage 
of being more robust in case of failure of one of the vehicles of the 
fleet, at the cost of increasing the amount of vehicle embedded com-
putation load. The selection of centralized or distributed control is also 
linked to the definition of hierarchy among the vehicles. They can be 
considered as equal in terms of decision for allocation or objective 
making, or some vehicles can obtain a superior status providing them 
with a higher decision weight. As in centralized computation, this hie-
rarchy lightens the computational burden required for each vehicle of 
the fleet, at the cost of making the fleet more vulnerable to potential 
failure of the privileged vehicles.
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This paper focuses on the design of reactive and distributed coo-
perative control laws. It can be addressed by designing a common 
criterion reflecting the mission objectives in terms of aim, safety 
assessment and so on. This criterion is evaluated according to each 
vehicle action and result, taking also into account the interaction 
between vehicles. Control laws can be thus derived by optimization of 
this criterion, relying on approaches such as model predictive control 
(MPC). This method has been used at Onera to define cooperative 
guidance laws for safely performing various cooperative missions 
with a fleet of autonomous Unmanned Arieal Vehicles (UAVs). The 
paper is organized as follows. In the next section, basic features of 
model predictive control are recalled and their extension to coopera-
tive control is presented. Then the proposed MPC method is applied 
to the main types of cooperative missions for a fleet of autonomous 
vehicles (formation flight with obstacle avoidance, area exploration).

Model predictive control approach for UAV cooperative
 

guidance

MPC has been widely used for the guidance of UAVs in various 
contexts. UAV flocking and formation flight has been discussed in 
[9]. In distributed MPC [12]–[14], each vehicle computes its control 
inputs at each timestep as a solution of an optimization problem over 
the future predicted trajectory. For tractability reasons, finite predic-
tion and control horizon lengths, respectively denoted as Hp and Hc, 
are used.

The future control inputs and the resulting state trajectories of a vehi-
cle i are written as
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When Hc < Hp, we assume that the control inputs are 0 after Hc 
steps. Once the optimal input sequence *iU  has been computed, 
each vehicle communicates its predicted trajectory to the rest of the 
fleet and applies the first sample of the computed optimal control 
sequence ( )*i kU . The optimization problems at time k take the fol-
lowing form:
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Ji is the cost function associated with vehicle i. The constraints 
coupling the dynamics of the vehicles, such as collision avoidance, 
are taken into account by means of a penalty factor in the cost 
function. At the next timestep, each vehicle searches for its solution 
of problem (1).

The cost function Ji is composed of a sum of terms reflecting the 
objectives of the mission. These terms are detailed in the following 
sections.

Vehicle model

The N UAVs are assumed to be identical. For the sake of simplici-
ty, the UAVs are assumed to be pointwise and their trajectories are 
considered to be two dimensional, in a horizontal plane. Note that 
extension to 3D motion is straightforward.

The state and control vectors for each vehicle i are defined as:
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where x,y is the vehicle position, v is its speed amplitude and X is its 
direction. The model dynamics are:
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where Dt is the sampling timestep and ( ),v w
i iu u  are the longitudinal 

and rotational accelerations. The constraints on the dynamics (3) and 
the control inputs are:
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We summarize the dynamics and the constraints as
( 1) ( ( ), ( ))i i ik f k k+ =x x u and ( , )i i i i∈ ×x u X  . Communication 

delays and ranges are not considered here, all of the UAVs are assu-
med to have access without delay to the exact state of every vehicle 
at all times.

Costs used for all types of missions

The cost function Ji is composed of a navigation cost nav
iJ  , a safety 

cost safety
iJ  and a control cost u

iJ  :

( ) ( ) ( ) ( )nav safety u
i i i iJ k J k J k J k= + + 	 (5)

The formulation of each cost function is presented in the following 
subsections.

Navigation cost

The navigation cost nav
iJ  is aimed at regulating the speed of the vehi-

cles and controlling the way in which they navigate to way-points. It 
is divided into five cost functions:
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The first two cost functions, ,nav horiz
iJ  and ,nav vert

iJ  , respectively 
defined by (7) and (8), are aimed at regulating the modulus of the 
horizontal component vh of the velocity around a nominal value vn and 
the vertical component vz of the velocity around a zero value (making 
the UAV fly at constant altitude in a 3D case).

( )  ( )
2

, ,

1

.
ck H

nav horiz nav horiz h
i i n

n k

J k W n k v
+

+

=

 − 
 

= ∑ v 	 (7) 



Issue 8 - December 2014 - MPC Strategies for Cooperative Guidance of Autonomous Vehicles
	 AL08-11	 3

( )  ( )
2

, ,

1

.
ck H

nav vert nav vert z
i i

n k

J k W v n k
=

+

+

= ∑ 	 (8)

Weighting coefficients W• are tuned to set relative priorities between 
each aspect of the mission. A method to tune these coefficients has 
been proposed in [14].

The following two cost functions, ,nav direct
iJ  and ,nav final

iJ , are 
used to make the vehicle fly along a straight-line reference trajectory 
oriented toward the next way-point and to drive it closer to this way-
point. The reference trajectory from the current position pi (k) of vehi-
cle i at time k to the next way-point p is composed of reference points 

( ) ( ), 1,ref
i p pn k n k k H ∈ + + p  located at positions that vehicle i 

would reach at timestep n if moving along a straight line to p at nomi-
nal velocity vn, regardless of any constraints. These reference points 
are defined by (9) and illustrated in figure 1. The resulting definition of 
cost ,nav direct

iJ  is given by (10).
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In order to steer the vehicle toward the next way-point by the end 
of the horizon of prediction, let us define a reference ball ( ),

ref
i pB k , 

illustrated in figure 1, as the smallest ball around way-point p that 
vehicle i can hypothetically reach from its current position by mo-
ving directly toward this way-point at nominal velocity vn. It is defi-
ned as ( ) ( )( ){ }, ,
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where ( ) ( )ip p id k k= p p-  denotes the current distance between 
vehicle i and the way-point p. Using these definitions, the cost 

,nav final
iJ  is defined by
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Finally, the fifth cost function ,nav fleet
iJ  is aimed at making the vehi-

cles remain together as a fleet. Its definition penalizes the predicted 
distance  ( )  ( )  ( )ij j id n k n k n k= −p p  between vehicles i and 
( )j i j≠ :
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where coefficients f
ijα  and f

ijβ  are defined by
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The coefficient ( )v
desd ij  defines a desired distance between the 

vehicles within the fleet, whereas ( )v
lossd ij  is the maximum distance 

allowed between vehicles of the fleet. Vehicles ( )j i j≠  beyond this 
maximum distance are not considered by vehicle i any more. This re-
presents, for example, limited communication and/or sensing ranges.

The definitions of f
ijα  and f

ijβ  have been chosen in such a way as 
to obtain a nearly constant cost for distances lower than ( )v

desd ij  or 
greater than ( )v

lossd ij  (defined by a derivative lower than 0.05) and a 
symmetric behavior at borders.

The change in ,nav fleet
iJ  with respect to the distance dij is plotted in 

figure 2.
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Safety cost

The safety cost safety
iJ  is aimed at avoiding collisions with obstacles 

and between vehicles within the fleet. It is composed of three cost 
functions:
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i i i iJ k J k J k J k= + + 	 (16)

The first two costs deal with collision avoidance between vehicles, by 
respectively penalizing the predicted distance dij between them and 
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The shape parameters of the hyperbolic tangent function of equation 
(17), v

ijα  and v
ijβ  , are defined by
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where ( )v
safed ij  represents a desired safety distance between the 

vehicles. These shape parameters have been tuned according to the 
same considerations as previously explained for the definition of the 
safety cost. The change in ,safe veh

iJ  with respect to the distance dij is 
plotted in figure 2.

The third cost ,safe obs
iJ  penalizes the predicted distance iod  of vehi-

cle i to any obstacle o. It is defined as:
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where N° stands for the number of obstacles and the parameters o
ioα  

and o
ioβ  are given by
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where ( )o
desd io  and ( )o

safed io  are desired and safe distances to 
obstacles.

Control cost

As traditionally defined in MPC, the control cost ( )u
iJ k  is aimed at 

limiting the control effort and thus the energy consumption of vehicle 
i. It is defined by the following quadratic form:
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Online computation of best cost

The MPC optimization problem (1) is a constrained nonlinear pro-
gram, the solution of which cannot be found analytically. Numerical 
optimization must hence be used to approximate the solution.

Global optimization procedures based, for example, on interval analy-
sis [15] or genetic algorithms [16] can be used, but may in practice 
be computationally prohibitive for real-time implementation. Numeri-
cal optimization methods, such as Sequential Quadratic Programming 
(SQP), Active Set or Interior Point methods, are thus generally prefer-
red [17], [18]. Other methods suitable for MPC problems have also 
been developed [19]. Nevertheless, a global solution can be hard to 
find because of potential local minima. The computational time requi-
red for a MPC approach strongly depends on the parameterization 
of the control sequence. Low dimensional parameterizations have, 
for example, enabled successful applications to control systems with 
fast dynamics [20], [21]. Another solution consists in considering a 
finite set of predefined feasible control sequences, from which the 
one minimizing the cost function will be selected [22]. This last solu-
tion is used in this paper for implementation of the MPC strategy, 
based on [14].
This systematic search strategy has several main advantages over 
a traditional optimization procedure. Firstly, the computation load 
necessary to find a control sequence is constant in all situations lea-
ding to constant computation delay. The second advantage is that 
the systematic search strategy can be less sensitive to local minima 
problems, since the entire control space is explored. Finally, the sys-
tematic search requires no initialization of the optimization procedure.

The studied search procedure consists in defining, prior to the mis-
sion, a set S of candidate control sequences that satisfy control 
constraints (4). At each timestep, the control problem (1) is solved 
using the proposed search procedure, as follows:
	 •using a model of the vehicle dynamics, predict the effect of each 
control sequence of the set of candidates S on the state of the vehicle;
	 •remove from S all of the candidate control sequences that lead 
to a violation of constraints on the state of the vehicle (4);
	 •compute the cost Ji corresponding to each remaining candidate 
control sequence;
	 •select the control sequence that entails the smallest cost.

Since all of the candidates in the set S will be evaluated, the computa-
tion load of associated predictions should be as limited as possible. A 
simple parameterization of the control sequence is therefore adopted, 
by considering a control input constant over the control horizon Hc 
and then null over the remainder of the prediction horizon Hp. In addi-
tion, the distribution of the candidate control sequences is chosen 
so as to limit their number, while providing a good coverage of the 
control space.
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The following three rules have been chosen:
	 •the set S of candidates includes the extreme control inputs, to 
exploit the full potential of the vehicles;
	 •the set S of candidates includes the null control input, to allow 
the same angular and linear velocities to be continued with;
	 •candidates are distributed over the entire control space, with an 
increased density around the null control input.

Constraints on the control inputs (4) can be translated into constraints 
on the norm of the horizontal component ( )max

h ha≤a  and on the 
vertical component ( )max max

z z za a a− ≤ ≤  of the acceleration of the 
vehicle. Therefore, it has been chosen to define the set S in terms of 
accelerations as follows:

{ } ( ){ }0,0v zS S S Sω= × ∪ × 	 (25)

where S, Sv and Sz are respectively the sets of directions, modules 
and vertical components of the acceleration, defined by:
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v and z control the interval between two candidates; the number 
of candidates Nc, N, Nv, and Nz in S, S, Sv, and Sz respectively are 
deduced from , v, and z using (29) to (32).

( ). 1 .c v zN N N Nω= + 	 (29)

Nω ωη= 	 (30)

1v vN η= + 	 (31)

2. 1z zN η= + 	 (32)

The resulting complete set S is illustrated in figure 3. Using this set S, 
a vehicle can be aimed at any arbitrary way-point in some iterations. 
The minimal distance at which the vehicle can approach the way-
point depends on the precision of the control, defined by the values of 
the • and • parameters.

Applications

Applications of the MPC strategy for three different types of mis-
sions are proposed in this section. The first one concerns the gui-
dance of a fleet of quadrotor UAVs toward given objectives repre-
sented by way-points, while avoiding collisions with obstacles and 
between vehicles [14]. Exploration missions are then addressed 
by a cooperative grid allocation approach [23] and a cost-oriented 
approach [24]. The third type of mission is formation flying, for 
which an adaptable virtual structure is proposed along with the MPC 
approach [25].

Guidance of a fleet toward predefined objectives

Many missions consist in making a group of several autonomous 
vehicles successively reach predefined objectives. These objectives 
may be defined in terms of a sequence of way-points, toward which 
the group of vehicles must be guided. Cooperation hence consists 
in sharing information (predicted trajectories) and controlling each 
vehicle of the group in such a way that the fleet as a whole can safely 
reach each of the waypoints.

The proposed cooperative MPC scheme is illustrated in this sec-
tion for such a mission, where a group of N=7 vehicles must 
successively reach three way-points while avoiding collisions with 
obstacles and within the fleet. The vehicles considered are qua-
drotor UAVs, for which true dynamics include an inner loop for 
attitude control. Robustness to model mismatch of the MPC gui-
dance strategy is therefore evaluated, since the prediction model 
used in the MPC guidance scheme consists in a 3D extension of 
(3). The quadrotor model and simulation results are presented in 
the next paragraphs.
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Fig. 3 - Illustration of the set S of candidate control sequences, defined in terms of accelerations 
( )2, 3, 8 3 5, andv z zvN NNωζ ζ= = = = = - Projections on the (x,y)-plane (left picture) and on the (x, z)-plane (right picture)
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Quadrotor model and control strategy 

Four-rotor helicopter models are derived from the description given 
in [26].

The rotors of each quadrotor i are located at the four corners of a 
square, with opposite rotors rotating in the same direction and adja-
cent rotors rotating in opposite directions. The true control inputs of 
the rotors are the signals 1

iu  to 4
iu  , classically defined as:

1
iu  : the resulting thrust of the four rotors (which controls the motion 

along the z-axis of the vehicle);
2
iu  : the difference of thrust between the left and right rotors (which 

controls the roll ϕi and hence contributes to the motion along the y-
axis of the vehicle);

3
iu  : the difference of thrust between the  front and back motors 

(which controls the pitch θi and hence contributes to the motion along 
the x-axis of the vehicle);

4
iu  : the difference of torque between the clockwise and anti-

clockwise rotating rotors (which controls the yaw i of the vehicle).

It is assumed that, at each iteration k, the value of the state com-
posed of the position, attitude angles, and the linear and an-
gular velocities, is available for the computation of vehicle i 
control. The control strategy consists in applying the MPC gui-
dance law based on a simplified 3D version of the prediction 
model (3), described in § "Vehicle model", to compute a desi-

red acceleration vector ( ) ( ) ( ) ( ), , ,,
Tx y z

d i d i d id ik a k a k a k =  a .

This desired acceleration, along with a given desired value d,i for the 
yaw, is then converted into vehicle control inputs (k) to 4

iu (k). 
Note that attitude control of the quadrotor is achieved by using the 
approach proposed in [26].

Illustrations of the response of the controlled vehicle to an accelera-
tion step in the x direction and to a yaw angle step are given in figure 
4. The desired value is shown as a red dotted line, whereas the simu-
lated response is shown as a plain blue line.

Mission set-up and tuning parameters

In the simulated mission, the flock must successively reach three 
way-points, while avoiding obstacles and collisions. The vehicles 
must also travel as a group at nominal velocity vn = 2 m.s-1. Defining 

the z-axis downwards, the coordinate of the ground is z = 0 and the 
altitude of a vehicle is given by -z. At all times, the vehicles must fly 
between the altitudes of 0m (ground) and 25 m. These constraints are 
materialized with two obstacles of infinite dimensions, with a vertical 
safety distance of 2 m.

Initial positions of the vehicles are randomly chosen in the box defined 
by x∈[-205 m; -155 m], y∈[-45 m; 5 m], z∈[-15 m; -5 m]. Their 
initial velocities, attitudes and attitude derivatives are set to zero and 
the desired yaw angle d is also set to zero for all vehicles throughout 
the entire mission. The guidance sampling time is t = 0.5 s.

Values of the constraints on velocity and acceleration are given in 
table I.

max
hv 5 m.s-1

max
zv 1 m.s-1

max
ha 0.5 m.s-2

max
za 0.25 m.s-2

Table I - Velocity and acceleration constraints

Depending on the considered axis (x, y, z), different values can be 
assigned to distances ( )v

safed ij , ( )v
desd ij  and ( )v

lossd ij  introduced 
in § "Navigation cost" and "Safety cost" and respectively defining 
the safety and desired distances between vehicles and the distance 
threshold beyond which other vehicles are no longer considered. 
Corresponding ellipsoids ( )o

safe iε , ( )o
des iε  and ( )v

loss iε  are there-
fore designed, as illustrated in figure 5. Their parameterizations are 
given in table II. The same applies for the distances ( )o

desd io  and 
( )o

safed io  to any obstacle o, to which similar ellipsoids are associa-
ted ( ) ( )( )o o

safe deso oε ε  and whose parameters are also given in table 
II. The parameters of the search procedure used for the MPC strategy 
(lengths of horizons, size of the sets of control sequences and shape 
parameters) are given in table III and, finally, the tuning parameters 
of the objective functions are given in table IV. Let us recall that they 
define the relative importance of each component of the mission. 
Note that the weighting parameters of the control cost are defined 
here in terms of the horizontal and vertical components of the desired 
acceleration ad,i , which is considered as the control input computed 
by MPC for this case study.

0.5
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63%
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Time (s)

0

Fig. 4. Step response to a desired acceleration along x of 0.5m.s-2 (left picture) 
and to a desired yaw angle of π/6 rad (right picture)
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Fig. 5 - Safety ( )( )v
safe iε , desired-locations ( )( )v

des iε , 
and remoteness ( )( )v

loss iε  ellipsoids around vehicle i

Fig. 6 - 3D view of the trajectories followed by the vehicles to complete their mission 
(way-points are represented by diamonds and obstacles by cylinders)
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i

z
( )v

lossd ij

( )v
desd ij

( )v
safed ij

( )v
safe iε

( )v
des iε

( )v
loss iε

ellipsoid semi-axis length along x semi-axis length along y semi-axis length along z

safe 10 m 10 m 5 m

v
desε 20 m 20 m 10 m

v
lossε 50 m 50 m 10 m

o
safeε 4 m 4 m 2 m

o
desε 8 m 8 m 4 m

Table II - Parameters of the ellipsoids defining the characteristic distances 
between vehicles and to obstacles

Hc       4 Nv   3

Hp     24 Nz   5

N       8 v   2

Nc     125 z  3

Table III - Parameters of the search procedure

Wu,h              2 Wnav,horiz        10

Wu,z               2 Wnav,vert            2

Wsafe,veh       100 Wnav,direct        10

Wsafe,obs       400 Wnav,final          20

Wsafe,traj           0 Wnav,fleet          50

Table IV - Weighting coefficients of the objective functions

Mission success rate 98.5%

Collision rate 0%

% of loss of a vehicle 1.5%

Mean computation time (std) 18(1) ms

Table V - Performance results of the MPC strategy over the 200 MC simulations



Issue 8 - December 2014 - MPC Strategies for Cooperative Guidance of Autonomous Vehicles
	 AL08-11	 8

Simulation results and analysis 

The environment of the mission and the trajectories of the vehicles 
are presented in figure 6 for one realization of the mission (i.e., for 
given initial positions of the vehicles). This realization of the mission 
is considered to be a success, because all way-points have been 
successfully reached and vehicles have remained grouped together, 
while avoiding collisions. The first obstacle is avoided by flying under 
it, whereas the two other obstacles are avoided by turning around. 
Note that since d = 0, all vehicles are oriented along the x axis (i.e.,  
i (k) = 0 for all i and k).

Fig. 7 - Change in the altitudes of the vehicles (the dotted lines represent the 
altitude constraints)

Altitude variations of the vehicles are presented in figure 7 and 
distances between the vehicles and to obstacles are presented in 
figure 8. As can be seen, the vehicles remained tightly grouped 
during the mission, except when they had to avoid obstacles, and 
spread over the vertical axis to form a tighter group while maintai-
ning the desired distance between them. In addition, the vehicles 
always managed to avoid entering the safety ellipsoid of obstacles 
or other vehicles. Constraints on velocity and control inputs of the 
vehicles are satisfied throughout the mission, as can be seen in 
figures 9 and 10.

All of the aforementioned results concern one realization of the 
mission, i.e., one simulation corresponding to given initial posi-
tions of the vehicles. 200 Monte Carlo simulations have been run, 
randomly choosing these initial positions in the box defined by 
x ∈ [-205 m; -155 m], y ∈ [-45 m; 5 m], z ∈ [-15 m; -5 m]. 
Table V provides the rate of success, collision and loss-of-a-vehi-
cle (i.e., when the distance between two vehicles becomes grea-
ter than v

lossd ) over these 200 simulations. The mean value and 
standard deviation of the computation time (using Matlab on a 
standard PC) are also presented, over the 200 simulations. Note 

Fig. 8 - Distances between vehicles (left picture) and to each obstacle (right picture)

Fig. 9 - Constraints on the horizontal and vertical components of the velocity

Fig. 10 - Components of the desired acceleration (control input)
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that, for a given mission, the computation time remains constant 
throughout the whole mission.

Other studies on the influence of search parameters (number of 
control sequence candidates) and comparison to a traditional opti-
mization procedure (SQP) have also been conducted [14], confir-
ming the good performance and robustness of the proposed MPC 
strategy.

Area exploration via cooperative grid allocation

The cooperative exploration problem addressed in this section 
consists in zone surveillance. The zone is described by a value grid, 
as in [27] or [28]. Each point of the grid must be visited at least once 
by one of the vehicles belonging to the fleet.

Adaptation of navigation and objective criteria

 The first step is to allocate the grid points among the vehicles. In 
order to maintain a distributed control design approach, the procedure 
suggested here consists in allocating to each vehicle two grid points 
selected at each iteration step among the remaining points, using the 
following selection criterion. This criterion, denoted { }1 2, ,

attr
i p p

J  , is built 
as the sum of the three following terms:
	 • 

1,
pec

i pJ  estimates the maneuvering cost of the vehicle to reach 
the first grid point of the allocated pair,
	 • 

2 1,
pec

i p pJ  estimates the additional maneuvering cost for the vehi-
cle to reach the second grid point, while progressing to the first allo-
cated point,
	 • { }1 2, ,

dev
i p p

J  estimates the additional cost for the vehicles that

were initially directed to p
1
 or p

2
 and have to be redirected as they are 

allocated to vehicle i.

The first component of the criterion 
1,

pec
i pJ  is determined as a function 

of the distance between the first grid point and the predicted trajectory 
defined over the horizon of prediction. It is expressed as

( )  ( )
11

min
,,

pec
i pi pJ k d k= 	 (33)

 ( )  ( )
1 1

min
,

1,
min

p
i p i p

n k k H
d k n

 ∈ + + 
= −p p	 (34)

The criterion 
2 1,

pec
i p pJ  expression varies, whether the previous grid

point p
1
 is reached before, after half of the duration of the prediction 

horizon, or not reached at all. In the first case, 
2 1,

pec
i p pJ  is defined as

( )  ( )
22 1

min
,,

pec
i pi p pJ k d k= 	 (35)

In the second case, the former expression is transformed into

( )  ( )( ) ( )2 22 1 , ,, 1 . .pec rel
i p p i p pi p pJ k k H d k Hθλ θ= + + + 	 (36)

where  ( )2,i p pd k H+  is the distance between the predicted position 

of the vehicle at Hp and the second grid point, and  ( )2,
rel
i p pk Hθ + is 

the variation of the predicted attitude of the vehicle  ( )i pk Hχ +  and 

the direction of the line of sight arg (  ( )2p i pk H− +p p ).

In the latter case, the criterion is of similar form:

( ) 

1 22 12 1
,,,

1 . .
2

ppec rel
p pi p pi p p

J
H

k k dθλ θ
  

= + +     
	 (37)

where 
1 2,p pd  is the distance between p

1
 and p

2
.

The last component { }1 2, ,
dev
i p p  of the cost { }1 2, ,

attr
i p pJ  requires each vehi-

cle to establish a list of the potential pair of allocated points, to cross-
check with the other vehicles whether they are at risk of being devia-
ted from their initial choice. The list contains the available pairs of grid 
points classified by decreasing order of sum of 

1,
pec

i pJ  and 
2 1,

pec
i p pJ  .

Simultaneously to the selection of objectives, a navigation criterion must 
be computed. The functional developed for this purpose is derived from 
the cooperative MPC strategy presented in § " Guidance of a fleet toward 
predefined objectives". The differences between way-point guidance and 
way-point allocation are, first, that the way-points describing a grid zone 
are closer to each other than the way-points used to indicate a global path 
to the fleet and, second, that the trajectories are defined to be close to 
the grid points instead of being directed towards them. Hence, the navi-
gation criterion ,nav finalJ  must be adapted accordingly. In this context, 

it depends on the minimal distance  ( )
1

min
,i pd k  defined by (34) between 

predicted positions of the vehicle and the way-point that it must explore 
during the prediction horizon. The resulting expression of the criterion is

( )

 ( )( )
( )

 ( ) ( )( )( )

1

1

1

2
, min

,

, ,

2
,

,

. .

,

nav final
i p

nav final i p p n
i

nav final ref
i p i p

W d k

if d k H t v
J k

W d k H B k

otherwise


×


 ≤ ∆

= 
 × +



p

		
	 (38)

Application example

Figure 11 presents the trajectories obtained for an exploration mis-
sion on a grid zone, realized by four vehicles. The duration of the 
mission is 400 s. At the end of the mission, all vehicles must reach 
an exit point of coordinates x =-200, y =250.

Fig. 11 - Trajectories of the vehicles during a grid exploration mission
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of the representation only depends on the parameter dgrid. When a 
vehicle comes at a distance d from the center of square (l, m), the 
exploration level is updated as

( )( ), ,max ,l m l m explG G f d+ =

The exploration index is increased only if the vehicle is close enough. 
The function fexpl is chosen to be continuous and identically 0 for 
d > rsensor. Here,

( )
0

1 1 cos
2

sensor

expl
sensor

sensor

if d r
f d d if d r

r
π

≥
=   + < 

 

Fig. 12 - Illustration of exploration cost: colors reflect the exploration level

The cost function rewards trajectories that cooperatively increase the 
global level of exploration of the map. It is defined as

( ) ( )( )
( ) ( )( )

, ,,

. .

expl expl
i l m p l ml m

expl T
p

J W G k H G k

W G k H G k

= − + −

= − + −

∑
1 1

	 (41)

where G(k + Hp) is the predicted exploration map associated to the 
vehicle trajectory and 1 is the vector whose components are all 1. This 
cost function represents the total increase of the global exploration 
level resulting from a predicted trajectory. Since the vehicles share 
information, flying in already explored zones is therefore penalized.

Exit point (re)allocation

Two cases are studied. In the first one, the number of vehicles N is 
identical to the number of exits nt and a given exit point cj can shel-
ter at the most one vehicle. In the second, the number of vehicles 
exceeds the number of exits and at most nmax vehicles can reach a 
given exit point.

Case nt = N

 The aim is to define a cost that balances the distance to the exit and 
the cost in the control inputs (in other words, penalizes deviations 
from the trajectory to an exit point cj of position pcj ). This cost will 
serve as a measure of the interest for a given vehicle to go to an exit 
and will support the decision of dispatching the vehicles to the exits. 
Therefore, it must discriminate efficiently between different vehicles 
aiming for the same exit.

For each pair {vehicle, exit point}, the cost function

( ) ( )( ) ( )
1

2
, ,

pk H
af d
i j i i i cj

t k

J k k W t
+ −

=

= −∑u x p p 	 (42)

It illustrates some of the effects of the approach described. At the be-
ginning, the vehicles separate to reach a different row of grid points. 
While the number of remaining grid points remains high enough to 
limit multiple allocations, the vehicles follow straight lines. When allo-
cation is sparse, the trajectories may present oscillations, since the 
evaluation and comparison of costs require increased communica-
tions and the updating of allocated grid points.

Area exploration via a cost-oriented approach

Zone watching is defined in this section as a cooperative problem, 
where a number of autonomous vehicles must explore a wide area in 
a limited amount of time without any way-point defined in advance. In 
addition to zone coverage, the dynamical allocation of exit locations 
is considered.

Each vehicle defines its own trajectory online to achieve the coopera-
tive mission objectives:
	 • maximize the cumulated area covered,
	 • allocate and reach exit points at the end of the mission,
while respecting the constraints:
	 • collision avoidance,
	 • limited mission time,
	 • limited number of vehicles at a given exit.

The choice of optimal control entries should thus take into account 
four main aspects: collision avoidance, minimum control energy, map 
exploration and exit point assignment. The associated global cost 
function for this application is

,safety u expl nav direct
i i i i iJ J J J J= + + + 	 (39)

The costs safety
iJ  to avoid collisions and u

iJ  to limit the energy spent 
by the vehicles are those defined respectively in § "Safety cost" and 
"Control cost". The cost expl

iJ  is specific to the exploration problem 
considered (see next §). The cost ,nav direct

iJ  (defined in § "Navigation 
cost") is used to guide the vehicle to its allocated exit point, which is 
computed online, as indicated in § "Exit point (re)allocation". A dyna-
mic weight gives more importance to this last cost when the mission 
time approaches its limit (§ "Weighting of the functions").

Zone coverage

The cost function expl
iJ  should reflect the gain in terms of map explo-

ration for a potential trajectory. Each vehicle is assumed to have a 
seeker capability, described by a function fexpl of the relative position 
between the observed point and the vehicle.

The cooperatively explored area at time k is:

( )
1,...,
1,...,

i
t k
i N

t
=
=

Ω =  D 	 (40)

where Di(t) is the sensing footprint of vehicle i at timestep t. Since 
this representation is impractical, the mission field is approximated 
as a grid with spacing dgrid. A matrix G stores the level of exploration 
of each square of the grid. Each element Gl,m (where l, m are the 
integer coordinates of the square in the grid) ranges between 0 when 
no vehicle has explored this location and 1 when it has been entirely 
observed. Each vehicle stores a copy of this exploration map and 
updates it with the information from the rest of the fleet. The precision 

sensor footprint
Exploration grid

dgrid

r sensor
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is minimized and an assignment cost matrix ( ) 1,...,
1,..., t

i Nij
j n

R r =
=

=  
is obtained.

( )min ,
i

af
ij ij i ir J=

u
u x

The optimal assignment is obtained by the Hungarian algorithm [29].

Case nt < N

In this case, at the most nmax vehicles can go to the same exit point at 
the end of the mission. The (N×nt) matrix R is built. A basic consen-
sus mechanism is used to find a good admissible assignment: each 
vehicle forms a list of wishes based on its cost evaluations. These 
costs are centralized and whether no more than nmax vehicles aim for 
each exit is checked. In case of conflict, the admissible alternative 
exits are considered. The minimizing costs among these are chosen 
for each conflicting vehicle, consecutively.

In these two cases, the construction of the cost matrix is decen-
tralized but information must be centralized to perform the actual 
assignment.

The vehicles are now able to explore a zone and reach an exit at 
the end of the allocated time. The final constraints on the positions 
require a terminal allocation at all times, merely to ensure satisfac-
tion of the constraints on the maximal number of vehicles for each 
exit. Nevertheless, if enough time remains, the vehicles should 
focus on exploration. Therefore, the initial assignment could be 
reconsidered after some time: a reallocation of the vehicle may 
prove beneficial. One option is to repeat the assignment procedure 
presented in the previous subsection during the mission. Howe-
ver, it could lead to an undesirable situation where, in order to 
decrease the total cost, the global optimization assigns to a vehi-
cle an exit that cannot be reached before the end of the mission. 
Consequently, a penalty linking the time needed to reach the exit 
and the remaining mission time is added. It is expressed as fol-
lows:

2

0 if

if

safe

ij safe
safe

safe danger

T T

s T T
T T

T T

≥
=   −

<  − 

	 (43)

where T is the remaining time, 
i cj

danger
n

T
v
−

=
p p

 and

Tsafe = fsafeTdanger + Tmargin, pcj is the position of the exit, and Tmargin and 
fsafe are predefined parameters. The matrix used for the global assign-

ment is ( ) 1,...
1,..., t

i Nij
j n

R r =
=

′ = ′  with r′ij = rij + sij . The continuous variation of

the penalty prevents vehicles from choosing unreachable exit points, 
provided that the reallocation is performed often enough. Repeating 
the allocation procedure frequently represents a large computatio-
nal load, therefore instead of using the nonlinear dynamical model 
a simple linear model (double integrator) is used to approximate the 
dynamics. This does not significantly deteriorate the performance, 
because only estimates of the costs to go are required in order to 
choose a reasonable assignment. The linear approximation and the 
constraint translation is based on [13] and the reallocation can only 
be repeated at large time intervals.

Weighting of the functions

Each penalty function and its subcomponents are weighted with 
a coefficient W• = k•.w•, with k• a normalization coefficient 
and w• a weighting coefficient. The k• (Table VI) coefficients are 
chosen so that without weighting, the worst case cost would be 
around 1.

ksafety                                     
2

pH
kexpl               

1
2 . .sensor n p

grid

r v H
d

−
 
  
 

ku                        

( )2max max

1
. .cH v ω

knav                               

2
1

dist

Table VI - Renormalization coefficients

Note that knav is chosen so that exit allocation can be fairly performed 

between the vehicles: 
1 1

1
.

t

j

nN

i c
t i j

dist
n N = =

= −∑∑ p p  is the average

distance between vehicles and exits.

Since the total time allocated for the mission is known, it is prefe-
rable to rejoin the exit point only when the vehicles run out of time. 
A dynamic weighting procedure is proposed: the exploration and exit 
rejoining costs are weighted with respect to the difference between 
the estimated time to reach the exit and the actual remaining time. A 
scheme based on [30] is adopted: the exploration of the map is initially 
favored in the cost function, whereas exit points progressively take 
more importance in the cost function as the remaining time decreases. 
This translates into the algorithms by means of balancing coefficients 
Cexpl, Cu which multiply Wexpl, Wu as reported in Algorithm 1.

Algorithm 1: Calculation of the weighting coefficients

1) Compute d = dist(pi, pci) distance between vehicle i and its exit 
point.

2) Compute danger
n

dT
v

=  , the estimated minimal time to reach the

exit assuming a straight path and nominal speed. Compute 
Tsafe = fsafe.Tdanger + Tmargin , an overestimate of Tsafe considered as 
comfortable to reach the exit.

3) Compute:

exp

0

1

if

if

if

danger

dangerl
danger safe

safe danger

safe

C

T T

T T
T T T

T T

T T

 ≤


−
= < ≤ −
 >

( )min

min

1 if

if

if

danger

danger safeu
danger safe

safe danger

safe

C

T T

C T T T T
T T T

T T

C T T

≤


− + −= < ≤ −
 >
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Simulation results

Simulation parameters are grouped in table VII. The various require-
ments of the mission are first illustrated individually and quantitative 
simulation results are then given.

Collision avoidance and exit rejoining

The vehicles are positioned so that they have to cross paths to reach 
their exit points. No reallocation is allowed and map exploration is 
not taken into account. The dashed lines denote the past trajectories 
of the vehicles, whereas the dotted short lines depict the predicted 
trajectories at the current time. The circles denote the danger zones 
around the vehicles. Figure 13 shows that vehicles can reach agree-
ments, even in complex situations, to cross ways without endange-
ring themselves or the other vehicles.

	 vmin  	 0.3 	 vn
	 0.7 	 vmax 	 1.0

	 max
	 0.1 	 vmax

	 0.1 	 max 	 0.5

	 dsafe
v  	 4 	 ddes

v  	 8 	 wsafety	 5

	 wu	 0.5 	 wnav,horiz	 1 	 wexpl	 2

	 wd	 2 	 fsafe
	 1.1 	 Cmin

	 0.2

	 Hc
	 3 	 Hp 	 21 	 rmax

	 5

	 Tmargin
	 15 	 fsafe

	 1.1 	 dgrid
	 2.5

Table VII - Simulation parameters for area exploration by cost-oriented ap-
proach

   
Fig. 13 - Illustration of the collision avoidance

Map exploration and exit assignment

(a) Weighting factors are dynamic: exploration is favored first and the exiting 
cost progressively prevails

(b) Weighting factors are constant
Fig. 14 - Comparison of different exploration strategies: the colors of the vehi-
cles correspond to the assigned target

Map exploration and exit assignment are illustrated with a 4-vehicle 
scenario presented in figure 14. Exits are chosen randomly for each 
vehicle and no reallocation is allowed. It compares the behavior of 
the vehicles in two different settings: (a) dynamic weighting of explo-
ration and exit assignment with respect to remaining time versus (b) 
constant weights. The main difference is that, in case (a), the vehicles 
can go far away from their exit point as long as time remains and, 
consequently, it is easier for them to find new zones to explore, while 
in case (b) vehicles tend to stay close to their exit point.

Dynamic reallocation

Dynamic reassignment is illustrated in figure 15. The current assign-
ment in the figures is depicted by matching colors. In this particular 
instance, the vehicle beginning in the top left corner keeps his initial 
assignment during the mission, whereas the two others do not. One 
of them first changes its exit, whereas the last one also changes its 
plan later on.

  

  
Fig. 15 - Online reassignment of the exit points: the colors of the vehicles 
correspond to the assigned target

Performances

To evaluate the performance of the strategies, a set of 70 missions 
was simulated with different configurations. The settings were:
	 • No exploration is considered: each vehicle chooses an exit and 
rejoins it as soon as possible (A)
	 • Exploration is considered, but weightings of exploration and exit 
rejoining in the cost function are fixed throughout the mission (B)
	 • Exploration is valued at the beginning of the mission and exit 
reaching progressively becomes the dominant cost (C)
	 • Configuration is identical to (C) but reassignment is granted (D)

In each mission, a 78 m x 78 m field is explored by 4 vehicles, 
with a mission time of 300s. The position of the vehicles and the 
4 exit locations are chosen randomly for each run. The mission 
is performed for the 4 configurations and the results are given in 
table VIII. Expl(%) is the portion of the map that has been explored 
during the mission. It takes into account both the number of squares 
explored and their respective level of exploration. Danger(%) gives 
the ratio between the time during which a dangerous situation has 
occurred and the mission duration, that is, when 2 vehicles come 
closer than a distance of dv safe at some point during the mission. dexit 
gives the average distance of the vehicles to their exit targets at 
the end of the mission. We can observe that map exploration costs 
allow a better exploration and dynamic weighting increases the effi-
ciency of the exploration even more, as expected. However, it also 
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increases the number of dangerous situations: adding the explora-
tion cost increases the chances of several vehicles coming into the 
same zone and therefore increases the collision risks. Furthermore, 
dynamical reallocation does reduce these risks significantly, while 
preserving the exploration efficiency. The results presented show 
that a global complex mission can be satisfactorily fulfilled by using 
a short-sighted and distributed control architecture. The proposed 
method renders the problem tractable and allows the actions to be 
taken online to be chosen.

Expl (%) danger (%) dexit (m)

A 20.9 (3.0) 1.4 4.2 (0.2)

B 44.4 (5.0) 5.7 8.4 (2.7)

C 58.3 (3.2) 11.4 6.2 (1.7)

D 59.1 (3.3) 8.5 6.5 (2.5)

Table VIII - Simulation results (standard deviations are given in brackets)

Formation flying using an adaptable virtual structure

Another guidance law is derived in this section to achieve formation 
flight toward a way-point for a fleet of autonomous vehicles. The for-
mation is now defined by a virtual geometrical structure - here, an el-
lipse - that can modify its shape and orientation to avoid collision with 
obstacles in the environment. The proposed guidance law is divided 
into two layers, with a MPC scheme at each level. The higher layer 
controls the structure itself, to fulfill the goals and constraints of the 
required mission. The trajectory of the fleet is built on-line using this 
layer, as well as the adaptation of the structure to the environment. 
The lower layer controls the vehicles, so as to attract and keep them 
within the structure without side collision.

Virtual structure control

The first layer of the guidance law generates the change in the virtual 
structure and adapts its shape so that it does not collide with the 
obstacles on its way to a way-point. It has been chosen to describe 
the formation shape as an ellipse, represented only by its center and 
characteristic matrix (this description can be steadily extended to that 
of an ellipsoid in 3D).

Model of the virtual structure

An ellipse with center pc = [xc yc]
T and characteristic matrix M is 

defined by all points p = [x y]T such that

( ) ( )1 1T
c c

−− − ≤p p M p p 	 (44)

The characteristic matrix M of the ellipse can be written as

2
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M = 	 (45)

where the parameters of the ellipse are:
	 • e , the angle between the first principal axis and the horizontal;
	 • a , the length of the first principal axis of the ellipse;
	 • b , the length of the second principal axis of the ellipse;
	 • A , the area of the ellipse, equal to πab.

The dynamical evolution of the ellipse is modeled by
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,
, ,

v v v

a a a

b b b

u u u u u u
u u u u u u

u u u

α α α

χ χ χ

− + − +

− + − +

− +

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤

	 (47)

where xc, yc, e, a, b are the aforementioned parameters of the ellipse, 
vc is the speed of the center and c is its orientation (see figure 16). 
The control inputs uv, u

 govern the movement of the center of the 
ellipse pc by acting on its speed and angular velocity, while the 
control inputs u


, u


; ub modify the characteristic matrix M (shape 

and orientation).

Fig. 16 - Ellipse parameterization

This dynamical model should be related to the dynamics of the UAVs 
so that it does not scatter the formation. The control inputs must thus 
be selected within a suitable range and suitable dynamics. This is 
yet a clear advantage over methods that abruptly modify the virtual 
structure and, as a result, do not take into account UAV constraints.

Guidance law design

The cost function Jz associated with the motion and shape of the vir-
tual structure is composed of terms dealing with the mission objec-
tives and the constraints on the structure itself. The optimal control 
inputs at time k should minimize the cost function Jz , such that

* * * * *, , , , arg min

,
, ,

z
a b v

v

a b

u u u u u J

u u
u u u

χ α

α

χ

=

	 (48)

Where

, ,z nav direct nav horiz v abmin cJ J J J J J= + + + + 	 (49)

The components of Jz are designed in such a way that
	 • Jnav,direct drives the ellipse to a way-point and Jnav,horiz constrains 
its speed to a desired value (costs defined in § "Costs used for all 
types of missions" and applied here to the ellipse center and velocity);

b

a
χe

c
vc

y

x

yc

xc

0

C
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	 • Jv keeps the ellipse area close to the initial one, A;
	 • Jabmin maintains a and b greater than a boundary value, so as to 
avoid the flattening of the ellipse along one of its axes;
	 • Jc modifies the matrix M to avoid obstacles.

Costs related to ellipse constraints

( ) ( )
1

ˆ 1
pH

v
v

t

J w â k t b k π
=

= + + −∑ A 	 (50)

( )( ) ( )( ){ }1, 2 1 2
1

ˆ, , ,
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abmin
abmin

t

J w f â k t l l f b k t l l
=
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where

f(â(k + t), l
1
, l

2
) is a continuous function, and l

1
 and l

2
 are user-defi-

ned parameters, such that
	 • f takes the value 1 when â(k + t) ≤ l

1
,

	 • f takes the value 0 when â(k + t) ≥ l
1
 + l

2
,

	 • f undergoes a continuous change between these two extreme 
values.

For example, an appropriate choice for f is the function presented in 
figure 17, which is related to the one used in § "Applications".

Fig. 17 - Function f

Costs related to obstacle avoidance

Fig. 18 - Ellipse-obstacle intersection

The structure should maneuver to avoid collision with obstacles in the 
environment. Assuming that the obstacles are described as convex 
surfaces (volumes in a 3D case), the intersection area between the 
virtual structure and the obstacles is computed to detect and quantify 
potential collisions (figure 18). Using this value as a penalization in 
the criterion makes it possible to find a path that minimizes this inter-
section and thus the risk of possible collision.

The collision avoidance term Jc uses the intersection area Al
inter(k+t) 

at time k+t for each obstacle l (No being the number of obstacles in 
the neighborhood). The weight is chosen to give greater importance 
to the first prediction steps rather than the future ones.
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c l
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°
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−
= +∑∑ A 	 (52)

UAV control

The UAV control layer computes the motion of each vehicle so that it 
remains within the ellipse and avoids collision with the other vehicles. 
It thus has three goals:
	 • to attract the UAV inside the area;
	 • to allocate each UAV inside the area;
	 • to avoid collision between UAVs (using the cost defined in § 
"Safety cost").

This control is decentralized (each UAV determines its own control 
inputs), yet it uses the prediction of the future state of the virtual struc-
ture, which is available using the developments from § "Virtual struc-
ture control". MPC is used again, since allocation and collision avoi-
dance may benefit from a prediction of the impact of control inputs on 
the future states of the vehicles.

The fleet is still composed of N identical UAVs that are assumed to 
have instantaneous access to the state of all the other vehicles, which 
is xi = [xi, yi, vi, i]

T for the i-th vehicle.

For each UAV, the control inputs uv
i and u

i are determined at each 
time k in such a way that

,

, arg min
vu ui i

v
i i iu u J

ω

ω∗ ∗ = 	 (53)

where for this application

,safe veh u t e
i i i i iJ J J J J= + + + 	 (54)

The components of Ji are designed in such a way that
	 • Ji

safe,veh  modifies the direction and the speed to avoid collision 
with other UAVs (§ "Safety cost"),
	 • Ju

i minimizes the energy consumption in terms of control inputs 
(defined in § "Control cost"),
	 • Jt

i drives the UAV within the area,
	 • Je

i keeps the speed and orientation of the UAV close to those of 
the center of the structure.

Attraction and allocation of the UAVs within the structure

The Mahalanobis distance [31] evaluates the norm between a point 
p = [x y]T and the center pc = [xc yc]

T of an ellipse, weighted by a 
function of the length of its main axis (see figure 19):

( ) ( ) ( )T
M c cd = − −p p p M p p 	 (55)

where M is the characteristic matrix of the ellipse.

The term Ji
t is used to lead the UAVs within the virtual structure. 

The Mahalanobis distance is used to reflect the shape of the 
ellipse.
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where the function g is defined as
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The weight (Hp - h)/Hp is meant to give more importance to the first 
predictions than the later ones. The function g(i, h) is built on the 
basis of the Mahalanobis distance of the UAV position to the ellipse 
center. This function introduces a potential field that guides the UAV 
within the area. A discontinuity has been added, to make a stron-
ger difference at the boundary of the virtual structure. A projection of 
function g is provided in figure 20.

Fig. 19 - Mahalanobis distance to an ellipse (in red) over the position space

Fig. 20 - Shape of the function g (2D projection)

Formation consistency

The cost Ji
e is used to keep the speed and orientation of the UAV close 

to those of the ellipse vc and c.
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The weights wn
t depend on the Mahalanobis distance between the 

UAV and the ellipse. When the distance is less than a value l3, wn
t 

is equal to one and when it is greater than l4, wn
t is equal to 0. The 

function f (figure 17) is used again.

( )( )( )3, 4,t
n M iw f d t l l= p 	 (59)

Simulation results

A simple scenario has been defined to test the guidance law. The 
formation should reach a predefined way-point ptarget starting from 
p

0
, with an initial orientation of the ellipse perpendicular to the motion 

direction. Two rectangular obstacles cross the trajectory of the for-
mation. In order to avoid collision with these obstacles, the virtual 
structure must modify its shape so as to pass the obstacles safely. 
Only the deformation is considered here (uχ = 0), but an additional 
rotation of the structure could be handled similarly.

The initialization parameters of the simulation are given in table IX. 
Note that the virtual structure has a longer prediction horizon than the 
UAVs, since it holds more information on the final destination and the 
target.

wnav = 10-2 wv = 10-4 wab = 10 wabmin = 10-3

N = 8 vn = 4 vmin = 2 vmax = 6

dmax = 0.3 dt = 1 d v
safe

 = 6 d v
des

 = 6

Hp,uav = 10 Hc,uav = 5 Hp,ell = 30 Hc,ell = 5

l
1
 = 70 l

2
 = 90 l

3
 = 5 l

4
 = 10

a0 = 200 b0 = 100 vc = 4 N° = 2

0 = π/2 p0 = [100 0] ptarget = [2000 0]

Table IX - Simulation parameters

An example of gathering of the UAVs within the virtual structure is 
shown in figure 21.

    
Fig. 21 - Gathering of UAVs within the ellipse structure

The complete scenario is illustrated by the sequence in figure 22. 
The ellipse modifies its shape accordingly when approaching the obs-
tacles and no collision has been reported. The UAVs were initially in 
a vertical formation inside the ellipse. When the ellipse changes, the 
formation is modified to keep all of the UAVs within the structure. It 
can be seen that, since the range of the ellipse control inputs has been 
chosen to cope with the UAV dynamics, the vehicles have sufficient 
time to remain within the virtual structure when it is modified. The area 
of the ellipse is also kept close to its initial value. Figure 23 shows the 
values of the control inputs ua and ub that govern the deformation of 
the structure over time. These input values modify the length of the 
two principal axes simultaneously and almost symmetrically, to cope 
with the area constraint.
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Fig. 23 - Control inputs for ellipse deformation

The proposed method thus makes it possible to maintain the 
UAVs within an elliptical virtual structure with collision avoidance, 
using the two-layer guidance law. The higher layer modifies the 
characteristics of the virtual structure with only knowledge of the 

obstacles and target, while the lower layer modifies the formation 
and distribution of the UAVs in a decentralized way, based only on 
the knowledge of the actions from the upper layer. Other shapes 
for the virtual structure could be taken into account within this gui-
dance scheme by modifying the dynamical model of the structure 
and the criteria that govern the shape modification.

Conclusions and perspectives

In this paper, the design of distributed cooperative control laws 
for a fleet of autonomous vehicles has been presented using 
Model Predictive Control. This approach proves very flexible for 
taking into account mission objectives and safety and reliability 
constraints. The use of an ‘any-time’ optimization procedure gua-
rantees that a control value will be obtained in a given amount 
of time, depending on the computational ability of the vehicles. 
Future developments include detection and rejection of outlying 
data, definition of suitable observers taking the cooperativeness 
of the vehicles into account and demonstration of robustness pro-
perties of the resulting control laws 

Fig. 22 - Obstacle avoidance by deformation
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