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a b s t r a c t

This paper describes the guidance law design of a group of autonomous cooperative vehicles using model
predictive control. The developed control strategy allows one to find a feasible near optimal control
sequence with a short and constant computation delay in all situations. The control strategy takes other
vehicles predicted positions into account for cooperation purpose. Numerical simulations are provided
where a group of quadrotors must reach several way-points while avoiding obstacles and collisions
inside the group. Results obtained using a realistic model of small quadrotors show that the approach
could be usable in practice.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the interest for autonomous vehicles has been
steadily growing. This type of vehicles finds its place in all kinds of
missions, civilian (search and rescue, transportation, foraging,
mobile grid of sensors, repairing) or military (recognition, surveil-
lance, combat). Autonomous vehicles thrive in missions that are
too dull, dirty or dangerous for human beings.

Using several cooperative vehicles stems from the idea that the
global performances obtained would overcome those of a single
vehicle. The first point is that the mission could be distributed
among the vehicles, lessening the requirements in terms of
technological burden. Another argument in favour of cooperation
is enhanced robustness. If a failure occurs on one of the vehicles, it
remains possible to (at least partially) re-affect the mission to the
remaining flock. Another point is that with simpler vehicles, the
probability of occurrence of a failure may be lower.

The control of a group of cooperative vehicles can be achieved
by centralised (Wang, Yadav, & Balakrishnan, 2007) or distributed
control (Rochefort, Piet-Lahanier, Bertrand, Beauvois, & Dumur,
2011; Siva & Maciejowski, 2011).

In a centralised scheme, actions of all vehicles are decided by
a single element using all the available information. This allows one
to elaborate the actions of the various vehicles all at once, easing
their synchronisation and optimisation. This however requires

potentially heavy computation to solve the unique centralised
problem which may limit the number of vehicles that can be taken
into account. It also demands a high level of robustness of the
transmission links in order to keep track of all vehicles. Finally, the
element responsible for the control computation could represent a
single point of failure if no other element is able to take its place.

On the other hand, distributed control lessens the computa-
tional burden as each vehicle computes its own control input and
therefore allows better scalability and robustness. Drawbacks are
twofold: first, the available computational abilities of each vehicle
may be a limiting factor for solving complex problems and second,
information available about other vehicles can be inaccurate,
incomplete or known with a delay.

Cooperative control law designs require to take into account the
behaviour of a vehicle together with those of the others. In order to be
more efficient, the control law should be based on both current and
predicted states of all the vehicles. Hence, Model Predictive Control
(MPC) seems a natural candidate for such laws. Indeed, in MPC the
control input is computed by minimising a cost function which
depends on predictions of the vehicles0 behaviours over a finite time
horizon.

Originally introduced to control systems with very slow dynamics
like chemical plants or temperature regulation, the MPC strategy is
now used to control systems with fast dynamics like Unmanned Aerial
Vehicles. In Kim and Shim (2003) and Kim, Shim, and Sastry (2002),
an MPC approach is used to control a six-degree-of-freedom nonlinear
helicopter model. A gradient descent procedure is used to solve the
optimisation problem, but closed loop stability issues are not
addressed. In Bertrand, Piet-Lahanier, and Hamel (2007), the authors
give a stability analysis of a contractive Non-linear MPC (NMPC) that
allows an isolated vehicle to follow a predefined trajectory. In Frew
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(2006), the author presents an MPC with a random search algorithm
that allows a single autonomous flying vehicle to either explore its
environment, track a predefined trajectory or join some way points in
a clustered environment.

Current research on cooperative distributed MPC focuses
mainly on the proof of convergence (Dunbar & Murray, 2004;
Müller, Reble, & Allgöwer, 2011; Venkat, Rawlings, & Wright,
2005), robustness (Siva & Maciejowski, 2011), and formation flying
(Olfati-Saber, Dunbar, & Murray, 2003) without addressing com-
putation delay issues. For a single system with fast dynamics, real
time feasibility of Non-linear MPC has been demonstrated, e.g. on
the Caltech ducted fan (Dunbar, 2001) or a twin-pendulum (Alamir
& Murilo, 2008). For large scale distributed systems, Scattolini
(2009) presents a review of selected MPC approaches.

In this paper, a distributed cooperative control algorithm based
on MPC for a group of autonomous flying vehicles is proposed. To
allow cooperation, each vehicle communicates its predicted posi-
tions to the others, which are taken into account by the MPC
approach. The MPC strategy also allows one to take into account
constraints of the vehicle (actuator limitations, maximum velocities,
etc.). In addition, the cost function can be designed to integrate the
required performances of all the tasks linked with the mission.

Originally introduced in Rochefort, Piet-Lahanier, Bertrand,
Beauvois, and Dumur (2012), this approach is extended in this paper
to three-dimensional problems. An application to realistic quadrotor
models is also described. Experimental results on ground mobile
robots are also proposed to complete simulation results.

In Section 2, the problem is stated. Section 3 exposes the control
strategy for the vehicles. Section 4 contains a short explanation of
the MPC approach whereas the objective function is detailed in
Section 5. Section 6 presents the proposed control sequence search
procedure. The robustness of this procedure is evaluated in Section 7
and compared to a classical optimisation procedure. A short study of
the influence of various parameters of the control search procedure is
also provided. Experimental results on ground mobile robots are
finally presented to complete simulation results. Conclusion and
perspectives of works end this paper.

2. Problem statement

A system composed of N autonomous vehicles moving in a
three dimensional space is considered. The model of the transla-
tional dynamics of a vehicle i is a discrete-time double integrator:

piðkþ1Þ ¼ piðkÞþΔt:viðkÞ ð1Þ

viðkþ1Þ ¼ viðkÞþΔt:ad;iðkÞ ð2Þ
where Δt is the sampling time. The state xiðkÞ ¼ ½piðkÞt viðkÞt �t of a
vehicle is composed of its position piðkÞ ¼ ½pxi ðkÞ pyi ðkÞ pzi ðkÞ�t and
velocity viðkÞ ¼ ½vxi ðkÞ vyi ðkÞ vzi ðkÞ�t . pi and vi are defined in a
common inertial frame F whose horizontal axes are xF and yF
and vertical axis zF is directed downward as seen in Fig. 1. The
control input of the vehicle i is composed of the desired accelera-
tions ad;iðkÞ ¼ ½axd;iðkÞ a

y
d;iðkÞ azd;iðkÞ�t along the three axes of F .

The vectors of horizontal velocity and desired acceleration are
respectively denoted vh

i ¼ ½vxi vyi �t and ahd;i ¼ ½axd;i a
y
d;i�t .

Vehicles0 control inputs and states are constrained by practical
limitations. In the simple model presented above, limitations are
represented by constraints (3)–(6) and apply, at each time k, on the
velocity vi and the control input ad;i of all vehicles:

0r:vh
i ðkÞ:rvhmax ð3Þ

�vzmaxrvzi ðkÞrvzmax ð4Þ

0r:ahd;iðkÞ:rahmax ð5Þ

�azmaxrazd;iðkÞrazmax ð6Þ

Our objective is to guide the vehicles to reach Nw way-points
located at positions pw ðw¼ 1;2;…;NwÞ in this predefined order.
A way-point is reached as soon as its distance to one of the
vehicles becomes lower than dvis. After that, all vehicles consider
the next way-point of the list. No feasible path has been previously
determined to reach the way-points.

To succeed in their mission, vehicles must also avoid collisions
with each other and external obstacles. At last, vehicles must,
when possible, travel together and at nominal velocity vn.

3. Control strategy

The apparition of cooperation is based on two features. The first
is the communication of information between vehicles. The main
piece of information shared is the predicted position bpi of each
vehicle, given in the common inertial frame F . Any other piece of
information acquired by a vehicle (e.g. position of external obstacle)
is also transmitted to the rest of the group.

The second feature consists in considering these predicted posi-
tions when computing one0s control input. This piece of information
allows each vehicle to regulate its distance to the other vehicles to
complete the objectives of collision avoidance and travelling together.

A safety ellipsoid, denoted Ev
saf ðiÞ, is defined around each

vehicle i to ensure collision avoidance (see Fig. 1). If a vehicle
enters this zone, it is considered as a collision with vehicle i.
A safety zone denoted Eo

saf ðoÞ is also defined around each obstacle
o. The vehicles must avoid entering these as well.

To take an additional safety margin for obstacle avoidance, a
desired obstacle passing distance greater than the safety zone is
defined by Eo

desðoÞ.
To travel as a group, each vehicle should be located at a desired

distance from the others. As this desired distance can be different
for horizontal and vertical components, an ellipsoid is used to
represent desired locations around vehicles. This ellipsoid around
vehicle i is denoted Ev

desðiÞ (see Fig. 1).
When a vehicle gets separated of the others by a large distance,

it is not considered to be part of the group any more. This border is
materialised by an ellipsoid Ev

farðiÞ for each vehicle i. Vehicles that
are outside this ellipsoid are ignored by i. This represents the loss
of communication and sensing that arises when vehicles are too
distant. A representation of these ellipsoids is given in Fig. 1.

To preserve scalability and ensure robustness to single vehicle
failure, each vehicle must compute its own control input within
the time of an iteration. This computation is done using an MPC
approach because it allows one to easily take the predicted
positions of the vehicles into account. Moreover, the objective
function used in the MPC approach gives the possibility to
arbitrate between the several objectives of the mission.

Fig. 1. Safety ðEv
saf ðiÞÞ, desired-locations ðEv

desðiÞÞ, and remoteness ðEv
farðiÞÞ ellipsoids

around vehicle i.
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4. Model Predictive Control (MPC)

Model Predictive Control (MPC) consists in using a kinematic
model of the system to be controlled to predict over a prediction
horizon of length Hp the effect of a given control sequence of length
HcrHp. This prediction ability is used to find, using a numerical
optimisation procedure at regular time intervals, the control
sequence that minimises a performance criterion while respecting
constraints on the state and the control input of the system.

The first element of the computed control sequence is then
applied as control input of the system. The state of the system, on
which predictions are based, is also updated and will be taken into
account at the next iteration.

In our study, in order to comply to the desired distributed
scheme, each vehicle i executes, at each time step k and synchro-
nously with other vehicles, its own optimisation procedure to find
its own control input. Control problem PiðkÞ solved simultaneously
by each vehicle i at time step k is described as:

PiðkÞ: find an kþHc �1
d;ik ¼ fan

d;iðkÞ;an

d;iðkþ1Þ;…; an

d;iðkþHc�1Þg, the
control sequence of length Hc that minimises the following cost
function, evaluated over the prediction horizon Hp:

Jrhci ðk; xiðkÞ; dp� i ðkþHp �1
kþ1 k�1Þ; cad;i ðkþHc �1

k kÞÞ
�����

under the constraints (3)–(6).dp� i ðkþHp �1
kþ1 k�1Þ

�� denotes the predicted (symbolised by b�)
positions of all vehicles except i (symbolised by �� i) between
instants kþ1 and kþHp�1. These predictions are obtained from
the optimisation procedures of other vehicles at time step k�1
(symbolised by b�ð�jk�1Þ). At each time step, after their computa-
tion, these predictions are shared by vehicles and are thus known
after a delay of one iteration. Hence they are available up to time
step kþHp�1 only.

The predicted state bxi ðkþHp

kþ1 jkÞ of vehicle i from time step kþ1 to
kþHp is computed from the current state xiðkÞ at step k and the
evaluated control sequence cad;i ðkþHc �1

k kÞ
�� using the model of the

vehicles given by Eqs. (1) and (2). From kþHc to kþHp, state of
vehicle i is predicted assuming that the applied control is null
ðcad;i ðkþHcjkÞ ¼ cad;i ðkþHcþ1jkÞ ¼⋯¼ cad;i ðkþHp�1jkÞ ¼ 0Þ.

Assuming that this control problem can be solved in due time,
the MPC approach consists of the following three steps, repeated
at each time step until the mission is accomplished.

1. each vehicle i computes its control sequence an

d;iðkþHc �1
k kÞ

�� ,
2. each vehicle then applies the first element of its control

sequence, an

d;iðkjkÞ,
3. each vehicle communicates the corresponding predicted posi-

tions to the other vehicles.

5. Objective function definition

The performance of an MPC strategy depends largely on the choice
of its objective function Jrhci ðk; xiðkÞ; dp� i ðkþHp �1

kþ1 k�1Þ; cad;i ðkþHc �1
k kÞÞ

����� .

This objective function will be denoted Jrhci ðkÞ in the rest of the
paper.

To consider the several aspects of the mission and balance
between them, the objective function can be defined as a weighted
sum of several subcosts or components. Each component repre-
sents the completion of one aspect of the mission.

These components are divided into four main categories, as
proposed in (7). The first is the control cost Jui that aims at
minimising the amplitude of the control inputs and thus the
energy consumption. The second is the manoeuvre cost Jma

i , its
purpose is to regulate the manoeuvres of the vehicles. The third is
the mission cost Jmis

i , its role is to promote mission completion. The
last category is the safety cost Jsafi that ensures collision avoidance:

Jrhci ðkÞ ¼ Jui ðkÞþ Jma
i ðkÞþ Jmis

i ðkÞþ Jsafi ðkÞ ð7Þ

5.1. Control cost Jui

This cost is defined in a usual quadratic form by (8), the
weighting coefficients W� are defined in Section 5.5:

Jui ðkÞ ¼ ∑
kþHc

n ¼ kþ1

cad;i ðnjkÞt : Wu;h 0 0
0 Wu;h 0
0 0 Wu;z

264
375:cad;i ðnjkÞ ð8Þ

Note that the choice of identical weights Wu;h for the two
horizontal directions is consistent with constraint (5) and does
not favour any special direction in the horizontal plane.

5.2. Manoeuvre cost Jma
i

As the considered control inputs consist of the accelerations of
the vehicle along the three axes, the control cost does not take the
current velocity and position of the vehicle into account. The
manoeuvre cost purpose is to regulate vehicles0 trajectories.

This cost, Jma
i , is composed of three elements, as defined in (9).

Jma;norm
i , defined by (10), urges the vehicle to move at nominal

velocity vn on the horizontal plan whereas Jma;alti
i , defined by (11),

tends to maintain the vehicle at its current altitude. Jma;rot
i finally,

defined by (12), penalises changes of velocity direction.
Let us recall that vhi and ahd;i denote respectively the projection

of vehicle i velocity vector and control input on the horizontal
plane and that vzi is the vertical velocity of vehicle i. The weighting
coefficients W� are defined in Section 5.5:

Jma
i ðkÞ ¼ Jma;norm

i ðkÞþ Jma;alti
i ðkÞþ Jma;rot

i ðkÞ ð9Þ

Jma;norm
i ðkÞ ¼Wma;norm: ∑

kþHc

n ¼ kþ1
ð:cvh

i ðnjkÞ:�vnÞ2 ð10Þ

Jma;alti
i ðkÞ ¼Wma;alti: ∑

kþHc

n ¼ kþ1
‖ bvzi ðnjkÞ‖2 ð11Þ

Remark on Jma;rot
i : The basic idea is to minimise the component

of cahd;i that is perpendicular to vhi as this is what causes the vehicle

Jma;rot
i ðkÞ ¼

0 if :vhi ðkÞ:¼ 0

Wma;rot :
‖vhi ðkÞ � cahd;i ðkjkÞ‖2

‖vhi ðkÞ‖2
if vhi ðkÞ:cahd;i ðkjkÞZ0

Wma;rot : 2:‖cahd;i ðkjkÞ‖2�‖vhi ðkÞ � cahd;i ðkjkÞ‖2
‖vhi ðkÞ‖2

0@ 1A if vhi ðkÞ:cahd;i ðkjkÞo0

8>>>>>>>>><>>>>>>>>>:
ð12Þ
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to turn. The case where vh
i � cahd;i o0 is separated so this element

does not favour slowing down over turning.

5.3. Mission costs Jmis
i

This cost is composed of three elements as defined in (13). The
first, Jmi;direct

i makes vehicles move along straight line reference
trajectories toward the next way-point. The second, Jmi;final

i drives
vehicles closer to the way-point. The third, Jmi;flock

i makes vehicles
group together:

Jmis
i ðkÞ ¼ Jmi;direct

i ðkÞþ Jmi;final
i ðkÞþ Jmi;flock

i ðkÞ ð13Þ

Each element is now detailed:
Definition of Jmi;direct

i : The purpose of this cost is to make vehicle
i move in a straight line toward the way-point to be reached w.
To do that, reference points are build between the vehicle and this
way-point to define a straight line reference trajectory as illu-
strated in Fig. 2. Each reference point pref

i;wðnjkÞðnA kþ1; kþHp
� �Þ is

placed at the location that the vehicle i would reach at step n, if it
were to move toward the way-point w in a straight line, at the
nominal velocity vn, and regardless of its constraints. The positions
of the reference points are given by (14) and Jmi;direct

i is defined
by (15):

pref
i;wðnjkÞ ¼ piðkÞþðn�kÞ �Δt � vn � piðkÞ�pw

:piðkÞ�pw:
8nA kþ1; kþHp

� �
ð14Þ

Jmi;direct
i ðkÞ ¼Wmi;direct : ∑

kþHp

n ¼ kþ1
‖ bpi ðnjkÞ�pref

i;wðnjkÞ‖2 ð15Þ

The weighting coefficient Wmi;direct is defined in Section 5.5.
Definition of Jmi;final

i : The purpose of this cost is to move vehicle i
closer to the way-point w by the end of the prediction horizon Hp.
To do that, a reference ball Bref

i;wðkÞ, illustrated in Fig. 2, is defined as
the smallest ball around w that vehicle i can hypothetically reach
from its current position by moving directly toward this way-point
at nominal velocity vn. The radius of the reference ball is given by
(16), and Jmi;final

i is defined by (17), where diwðkÞ ¼ :pw�piðkÞ:
denotes the current distance between the vehicle i and the way-
point w and dð bpi ðkþHpjkÞ;Bref

i;wðkÞÞ denotes the distance between
the predicted position bpi ðkþHpjkÞ of vehicle i at step kþHp and
the ball Bref

i;wðkÞ ¼ fx∣:x�pw:rrðBref
i;wðkÞÞg where rðBref

i;wðkÞÞ is defined
as

rðBref
i;wðkÞÞ ¼

0 if diwðkÞrHp �Δt � vn
diwðkÞ�Hp �Δt � vn otherwise

(
ð16Þ

Jmi;final
i ðkÞ ¼Wmi;final � ð: bpi ðkþHpjkÞ�pw:�rðBref

i;wðkÞÞÞ2 ð17Þ

The weighting coefficient Wmi;final is defined in Section 5.5.

Remark 1. The expressions of Jmi;direct
i and Jmi;final

i are chosen so
that these costs have a constant variation range. This allows one to
keep the relative importance of the various costs constant
throughout the mission, whatever the distance to the current
way-point.

Remark 2. Jmi;direct
i and Jmi;final

i are complementary. Indeed, Jmi;direct
i

incites the vehicles to follow a straight line toward the next way-
point instead of turning around while approaching (i.e. spiralling).
But if an obstacle is located between a vehicle and the way-point,
Jmi;direct
i incites the vehicle to stop in front of the obstacle to deviate
as little as possible from the reference trajectory. Jmi;final

i on the
other hand incites the vehicle to go around the obstacle to get
closer to the way-point.

Definition of Jmi;flock
i : The purpose of this cost is to form a flock of

vehicles. To do that, it penalises the predicted distancecdij ðnjkÞ ¼ : bpj ðnjkÞ� bpi ðnjkÞ: between vehicles i and j ðia jÞ. Jmi;flock
i

is defined by

Jmi;flock
i ðkÞ ¼Wmi;flock: ∑

N

j ¼ 1
ja i

∑
kþHp

n ¼ kþ1

1þtanhððcdij ðnjkÞ�βf
ijÞ:αf

ijÞ
2

ð18Þ

The weighting coefficient Wmi;flock is defined in Section 5.5,
αf and βf are defined below.

The choice to base the form of Jmi;flock
i on a hyperbolic tangent

stems from several constraints. Firstly, two vehicles i and j must
not be encouraged to be closer than the distance defined by the
ellipsoid Ev

desðiÞ, therefore the cost must vary a little under this
threshold. Secondly, it has been stated in Section 3 that vehicles
farther than the ellipsoid Ev

farðiÞ must be ignored by vehicle i.
Accordingly, the cost must vary little over this threshold. Finally,
between these two areas, it is desirable that the cost varies
smoothly. The hyperbolic tangent satisfies these properties.

The coefficients αf
ij and βf

ij are used to shape the hyperbolic
tangent according to our needs: αf

ij defines the width of the region
where the function varies rapidly and βf

ij defines the position of
this region in the abscissa axis. These terms depend on the relative
position of the vehicles i and j. For given positions of vehicles i and
j, the ellipsoids Ev

desðiÞ and Ev
farðiÞ respectively define the distances

dvdesðijÞ and dvfarðijÞ as seen in Fig. 1. The terms αf
ij and β

f
ij are derived

from these constraints and given by

βf
ij ¼ 6:ðdvfarðijÞ�dvdesðijÞÞ�1 ð19Þ

αf
ij ¼ ðdvfarðijÞþdvdesðijÞÞ=2 ð20Þ

The definitions of αf
ij and βf

ij have been chosen in order to
obtain a nearly constant cost inside Ev

desðiÞ and outside Ev
farðiÞ

(defined by a derivative inferior to 0.05) and a symmetric beha-
viour at borders. Fig. 3 depicts this cost as a function of the
distance between the vehicle i and the vehicle j.

Fig. 2. Representation of reference points pref
i;w and reference ball Bref

i;w .
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5.4. Safety cost Jsafi

This cost is composed of three elements as defined in (21). The
first, Jsaf ;vehici , defined by (22), aims at avoiding collisions with other
vehicles. The second, Jsaf ;obstaci , defined by (23), aims at avoiding
obstacles. The third, Jsaf ;trajeci , defined by (24), penalises the
difference between the trajectory that was transmitted to
the other vehicles at the previous iteration bpi ðkþHp �1

kþ1 k�1Þ
�� and

the new predicted trajectory bpi ðkþHp �1
kþ1 k�1Þ

�� :

Jsafi ðkÞ ¼ Jsaf ;vehici ðkÞþ Jsaf ;obstaci ðkÞþ Jsaf ;trajeci ðkÞ ð21Þ

Jsaf ;vehici ðkÞ ¼Wsaf ;vehic: ∑
N

j ¼ 1
ja i

∑
kþHp

n ¼ kþ1

1�tanhððcdij ðnjkÞ�βv
ijÞ:αv

ijÞ
2

ð22Þ

Jsaf ;obstaci ðkÞ ¼Wsaf ;obstac: ∑
No

o ¼ 1
∑

kþHp

n ¼ kþ1

1�tanhððcdio ðnjkÞ�βo
ioÞ:αo

ioÞ
2

ð23Þ

Jsaf ;trajeci ðkÞ ¼Wsaf ;trajec: ∑
kþHp �1

n ¼ kþ1
‖ bpi ðnjkÞ� bpi ðnjk�1Þ‖2 ð24Þ

The weighting coefficients W� are defined in Section 5.5, No is
the number of obstacles, cdio ðnjkÞ is the distance separating the
predicted position bpi ðnjkÞ of vehicle i from the obstacle o at step n.
The hyperbolic tangent is chosen for the same reasons as stated
before. The terms α� and β� are given by (25)–(28) similar to (19)
and (20). The values of desired and safety distances (respectively
dvdesðijÞ and dvsaf ðioÞ between vehicles, dodesðijÞ and dosaf ðioÞ with
obstacles) are defined using the corresponding ellipsoids as illu-
strated in Fig. 1:

βv
ij ¼ 6:ðdvdesðijÞ�dvsaf ðijÞÞ�1 ð25Þ

αv
ij ¼ ðdvdesðijÞþdvsaf ðijÞÞ=2 ð26Þ

βo
io ¼ 6 � ðdodesðioÞ�dosaf ðioÞÞ�1 ð27Þ

αo
io ¼ ðdodesðioÞþdosaf ðioÞÞ=2 ð28Þ

5.5. Definition of weighting coefficients W�

Each component of the objective function is weighted accord-
ing to its relative priority, that is the importance of the corre-
sponding task in the mission. As an example, remaining group
could be more important than travelling at nominal velocity but
less important than collision avoidance. Therefore, the group may
be split to avoid collision, but otherwise vehicles would adapt their
velocity to remain together.

The weights W� ¼w� � k� consist of:

k�: a normalisation coefficient, used to ensure that all compo-
nents of the objective function have the same order of
magnitude;

w�: the tuning parameter used to control the relative importance
of the normalised components of the objective function.

To define the normalisation coefficients, reference scenarios are
used whose normalised cost must be one. For Jmi;direct

i , Jmi;final
i

(progression toward the way-point) and Jsaf ;trajeci (small deviations),
a scenario where the vehicle does not move is used. For Jmi;flock

i
(travelling as a group) a scenario where the vehicle ignores all the
others is used. For the remaining of the coefficients, this scenario is
defined as the worst movement of vehicle i that does not
compromise the mission (e.g. highest acceleration allowed for
the entire control horizon for ku;h).

Normalisation coefficients are given in Table 1.

6. Control sequence search procedure

In this approach, a search procedure is used instead of tradi-
tional optimisation to solve the control problem PiðkÞ. Instead of
running an optimisation algorithm until a minimum of the cost
function is found, which would be computationally expensive, the
chosen search procedure consists in finding the control sequence
that yields the minimum cost among a predefined set of candi-
dates S.

This strategy does not provide the optimal control sequence
but, if the elements of S are chosen wisely, it can provide a near
optimal feasible control sequence. This strategy also has two
advantages over a traditional optimisation procedure. Firstly, the
amount of computation necessary to find a control sequence is
constant in all situations, hence the computation delay is constant.
This is of particular interest when faced to a collision risk, when
decision has to be taken fast. The second advantage is that the
strategy of systematic search is less sensitive to problems of local
minima as the entire control space is explored. Finally, the
systematic search requires no initialisation.

6.1. Search procedure

The studied search procedure consists in defining, prior to the
mission, a set of candidate control sequences. This definition will
be explained in Section 6.3. At each time step, the control problem
PiðkÞ is solved using the proposed search procedure as follows:

1. using a model of the vehicles dynamics, predict the effect of
each control sequence of the set of candidates S on the state of
the vehicle;

2. remove from S all the candidate control sequences that lead to
violation of constraints on the state of the vehicule (3) and (4);

3. compute the cost Jrhci ðkÞ corresponding to each remaining
candidate control sequence;

4. select the control sequence that implies the smallest cost.

Table 1
Forms of normalisation coefficients.

Coefficient Form

ku;h ðHc � ðahmaxÞ2Þ�1

ku;z ðHc � ðazmaxÞ2Þ�1

kma;norm ðHc � ðvhmax�vnÞ2Þ�1

kma;alti ðHc � ðvzmaxÞ2Þ�1

kma;rot ððahmaxÞ2Þ�1

kmi;direct ð∑Hp

n ¼ 1ðn � Δt � vnÞ2Þ�1

kmi;final ððHp � Δt � vnÞ2Þ�1

kmi;flock ðHp � NÞ�1

ksaf ;vehic ðHp=2Þ�1

ksaf ;obstac ðHp=2Þ�1

ksaf ;trajec ð∑Hp

n ¼ 1ðn � Δt � vnÞ2Þ�1

Fig. 3. Flocking ðJmi;flock
i Þ and avoidance ðJsaf ;vehici Þ costs.
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Remark 3. As explained is Section 6.3, the candidate control
sequences of the set S satisfy, by constructions the control
constraints of the vehicles (5) and (6). Additionally, thanks to step 2,
each candidate of the set S respects the velocity constraints of the
vehicles (3) and (4). Therefore, each control sequence of S is
guaranteed to be feasible, and thus, the selected control sequence is
also feasible. As the weights on the collision cost is higher than the
others, the selection of the control input is indeed prone to favour
a control sequence avoiding collision. However, as the cost consists
of several sub-costs, it is not absolutely guaranteed that the selected
sequence will avoid any collision. In the set S, the selection of
the control inputs is only performed so as to rule out control
sequences which could not be executed by a vehicle, according to
constraints (3)–(6).

Remark 4. The time needed to find the smallest value among the
discrete set of costs corresponding to each element of S is
negligible compared to the time necessary to predict the trajec-
tories and compute the costs.

6.2. Reducing the amount of computation needed

Because all the candidate control sequences of the set S are
evaluated, it is necessary to find ways to limit the amount of
computation needed. Three means are used to that end.

Firstly, instead of using an actual, accurate model of the
vehicles, the model used to predict the trajectories of the vehicles
is the simple model defined in Section 2 by Eqs. (1) and (2).

A second means to reduce the amount of computation needed
is to keep the control input of the vehicles constant during the
entire control horizon Hc . The control is then supposed null for the
remainder of the prediction horizon Hp, which means that the
vehicle velocity is constant. With this method, the number of
control inputs to be found goes from 3 � Hc (acceleration along the
three axes over the control horizon) to 3.

When small sampling time is used and control horizon is short,
the effect on the predicted positions of a sequence of different
controls can be approached very closely by using a constant
control. This effect is due to the small distances covered by the
vehicles during an iteration. This means that vehicle capabilities
are not impaired by this simplification.

A third and last means to limit the amount of computation is to
distribute the candidate control sequences of the set S in a
particular way. The objective is to have the smallest possible
number of elements, yet to explore the control space efficiently.
This aspect is explained in the next section.

6.3. Distribution of the control sequences

As stated in Section 6.2, the control sequences consist of a
constant control input during the control horizon, followed by a
null control input for the remaining of the prediction horizon.

The efficiency in our method relies on the distribution of these
control inputs over the control space. As our control inputs are the
accelerations along the three axes of the vehicles, the control
space is three dimensional. At first glance, three possible ways to
distribute the control inputs are:

1. generate many control sequences distributed uniformly over
the control space. This allows precise control, but takes time to
predict the effect of all the control sequences;

2. generate a moderate amount of uniformly distributed control
sequences. This will be fast but the control may lack precision
and cause oscillations or missed possibilities;

3. generate a moderate amount of control sequences randomly
distributed over the control space. In this approach, the set is
redefined at each time step. This is the approach of Frew (2006)
(but with constant velocity and a single vehicle). It is fast and as
the distribution changes iteration after iteration, the probability
to find the control that will allow the discovery of a new, better
trajectory increases. A set of predefined control sequences must
be added to the randomly generated set to ensure that particular
trajectories are always possible (like straight line, or maximum
turn rate).

In this work, another approach is chosen which uses a small
amount of control sequences distributed in a particular way over
the control space. The chosen distribution intends to implement
the following intuition:

At the beginning of a high amplitude manoeuvre (like a u-turn or
an emergency brake), a precise control input is not necessary because
the amplitude of control is the main concern. On the other hand, as
manoeuvre comes to an end, or for small amplitude manoeuvre,
higher precision is desirable.

This intuition motivates the three following rules.

1. the set S of candidates includes the extreme control inputs
(7ahmax and 7azmax) to exploit the full potential of the vehicles;

2. the set S of candidates includes the null control input (that is
axd ¼ 0, ayd ¼ 0, and azd ¼ 0) to allow one to continue with the
same velocity;

3. candidates are distributed over the entire control space with an
increased density around the null control input.

Fig. 4. Illustration of the set S of candidate control sequences (ζnorm ¼ 2, ζz ¼ 3, Ndir ¼ 8, Nnorm ¼ 3 and Nz ¼ 5). Projection on the (a) ðxF ; yF Þ plane. (b) ðxF ; zF Þ plane.
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Let us recall that the constraints on the control inputs are a
maximal norm for its projection in the horizontal plane (5)
and maximal and minimal values for its vertical component (6).
To reflect these constraints, it has been chosen to define indepen-
dently the sets of horizontal Sh and vertical Sz accelerations.
Additionally, Sh is defined using a set of directions Sdir and a set
of norms Snorm, and subsequently converted to obtain the compo-
nents along xF and yF of the acceleration. These sets are
defined by

S ¼ ffSdir � Snormg [ ð0;0Þg � Sz ð29Þ

Sdir ¼ 2:π:p
ηdir

� �
with p¼ 1 to ηdir ð30Þ

Snorm ¼ ahmax

ðζnormÞp
� �

with p¼ 0 to ηnorm ð31Þ

Sz ¼ 7
azmax

ðζzÞp
� �

[ 0f g with p¼ 0 to ηz ð32Þ

ζnorm and ζz control the interval between two candidates; the
number of candidates Nc , Ndir , Nnorm, and Nz in respectively S, Sdir ,
Snorm, and Sz are deduced from ηdir , ηnorm, and ηz using (33)–(36).
The resulting complete set S is illustrated in Fig. 4a and b:

Nc ¼ ðNdir � Nnormþ1Þ � Nz ð33Þ

Ndir ¼ ηdir ð34Þ

Nnorm ¼ ηnormþ1 ð35Þ

Nz ¼ 2 � ηzþ1 ð36Þ

Fig. 5a–d shows how, with this choice of control inputs, a
vehicle can aim at an arbitrary point. The minimal distance at
which the vehicle can approach the way-point depends on the
precision of the control, defined by the values of the ζ� and η�

parameters.

6.4. Discussion on the number of candidates

The particular distribution that has been chosen aims at
exploring the control space efficiently, i.e. exploring all of it but
insisting on the most useful part to reduce the amount of
computation.

To explore systematically the control space, each element of S
will be used to predict a trajectory and evaluate the associated
cost. The amount of computation is thus directly proportional to
the number of candidates Nc ¼ ðNdir � Nnormþ1Þ � Nz .

The values of Ndir , Nnorm and Nz must be chosen while
considering different points:

� precision of the actuators: it is unnecessary to test two control
inputs that will be executed in the same way;

� precision of the available measurements: it is unnecessary to
test two control inputs whose executions will be
undistinguishable;

� importance of precise guidance and computation capacity
of the on-board computer: more precision means more
computation delay.

Fig. 5. Top view of the evolution of a vehicle aiming for a way-point (represented by a diamond), with its movements restricted to the candidate control inputs. The initial
velocity of the vehicle is 2 m s�1 in the xF direction. (a) Initial step. (b) Step 5. (c) Step 9. (d) Step 13.
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7. Application to a flock of quadrotors

7.1. Quadrotor vehicles

Evaluation of the performances of the proposed approach in a
realistic context is performed, in simulation, using a flock of
miniature four-rotor helicopters derived from the description
given in Mokhtari and Benallegue (2004). The simulated dynamics
of the vehicles is derived from the application of Newton laws to a
realistic model of vehicle.

The rotors of each quadrotor i are located at the four corners of
a square, with opposite rotors rotating in the same direction and
adjacent rotors rotating in the opposite directions. The control
input of the rotors is the signals u1

i to u4
i classically defined as:

u1
i : the resulting thrust of the four rotors (controls the movement

along the z-axis of the vehicle);
u2
i : the difference of thrust between left and right rotors (controls

the roll φi and hence contribute to the movement along the y-
axis of the vehicle);

u3
i : the difference of thrust between front and back motors

(controls the pitch θi and hence contribute to the movement
along the x-axis of the vehicle);

u4
i : the difference of torque between the clockwise and anti-

clockwise rotating rotors (controls the yaw ψ i of the vehicle).

Let us denote by ηiðkÞ ¼ ½ψ iðkÞ θiðkÞ φiðkÞ�t the attitude vector of
vehicle i and by xiðkÞ ¼ ½piðkÞt viðkÞt ηiðkÞt _ηi ðkÞt �t its state vector.

It is assumed that at each iteration k the value of the state xiðkÞ
is available for computation of vehicle i control. The control
strategy consists in applying the MPC guidance law based on the
simplified prediction model (1) and (2), described in Section 4, to
compute a desired acceleration vector ad;iðkÞ ¼ ½axd;iðkÞa

y
d;iðkÞazd;iðkÞ�t .

This desired acceleration, along with a given desired value ψd;i for
the yaw, is then converted into vehicle control inputs u1

i ðkÞ to u4
i ðkÞ.

Attitude control of the quadrotor is then achieved by using the
approach proposed in Mokhtari and Benallegue (2004).

Illustrations of the response of the controlled vehicle to a step
of acceleration in the xF direction and to a step of yaw angle are
given in Fig. 6. The desired value is presented by the red dotted
line whereas the simulated response is the plain blue line.

7.2. Mission simulation

A flock of N¼7 quadrotors simulated by the model exposed in
Section 7.1 and guided using the proposed MPC scheme with the
prediction model (1) and (2) is now considered. In the simulated
mission, the flock must successively reach three way-points while
avoiding obstacles and collisions. The vehicles also have to travel
as a group at nominal velocity vn. Let us recall that the zF -axis is
directed downward. As the coordinate of the ground is zF ¼ 0, the
altitude of a vehicle is given by �zF . At all times, the vehicles must

fly between the altitudes of 0 m (the ground) and 25 m. These
constraints are materialised with two obstacles of infinite dimen-
sions, with a vertical safety distance of 2 m.

Vehicles are initially placed randomly in the volume defined by
xF A �205 m; �155 m½ �, yF A �45 m;5 m½ �, zF A �15 m; �5 m½ �.
Their initial velocities, attitudes and attitude derivatives are set
to zero, the desired yaw angle ψd is also set to zero for all vehicles
throughout the entire mission.

The values of the constraints on velocity and acceleration are
given in Table 2a–c, whereas the ellipsoids defining the

a b

Fig. 6. Controlled quadrotor step response. (a) Step response to a desired acceleration along xF of 0:5 m s�2. (b) Step response to a desired yaw angle of π/6 rad. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this paper.)

Table 2
Vehicles parameters.

(a) Velocity constraints
vhmax 5 m s�1

vzmax 1 m s�1

(b) Acceleration constraints
ahmax 0:5 m s�2

azmax 0:25 m s�2

(c) Other parameters
Δt 0.5
vn 2 m s�1

Table 3
Parameters of the ellipsoids defining the characteristic distances.

Semi-axis Along

xF yF zF

(a) Between vehicles
Ev
saf 10 m 10 m 5 m

Ev
des 20 m 20 m 10 m

Ev
far 50 m 50 m 25 m

(b) To obstacles
Eo
saf 4 m 4 m 2 m

Eo
des 8 m 8 m 4 m

Table 4
Parameters of the search procedure.

(a) Horizons
Hc 4
Hp 24

(b) Size of sets of control sequences

Ndir 8

Nnorm 3
Nc 125
Nz 5

(c) Repartition
ζnorm 2
ζz 3
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characteristic distances are defined in Table 3a and b. The para-
meters of the search procedure are given in Table 4a–c and finally,
the tuning parameters of the objective function of the MPC
approach are given in Table 5a–d. Let us recall that they define
the relative importance of each component of the mission.

Fig. 7 presents the environment of the mission and the
resulting trajectories of the vehicles.

7.3. Mission analysis

The mission presented in Fig. 7 is considered to be a success,
because all way-points have been successfully reached and

vehicles have remained grouped together and avoided collisions.
The first obstacle is avoided by flying under it, whereas the two
other obstacles are avoided by turning around. Note that since
ψd ¼ 0, all vehicles are oriented along the xF -axis (i.e. ψ iðkÞ ¼ 0 for
all i and k).

The computation delay has remained identical throughout the
entire mission, even when vehicles faced obstacles.

Altitudes: The variation of the altitude of the vehicles through-
out the mission is given Fig. 8. In this figure one can see that,
excepted when they had to pass under the first obstacle, the
vehicles spread over the vertical axis to form a tighter group while
maintaining desired distances between them.

Distances: In Fig. 9, the distances between the vehicles and
obstacles are compared to the safety, desired-locations, and
remoteness ellipsoids. Fig. 9 shows that, during the mission, the
vehicles have always managed to avoid entering the safety
ellipsoid of obstacles or other vehicles. In Fig. 9a, it is also clear
that the vehicles remained tightly grouped during the mission,
except when they had to avoid obstacles.

Safety and mission costs: In Fig. 10, the evolution during the
mission of several cost components is presented. The safety cost,
depicted in the first two pictures, has increased each time vehicles
had to avoid obstacle collisions. Thanks to this higher value, this
cost overcame the other components and, as seen in Fig. 9, no
collision occurs.

The mission costs Jmi;direct and Jmi;final, that urge the vehicles to
move toward the way-point, present several increases. While very
short increases match the moments where the flock of vehicles
reached a way point and switched to the next, longer increases in
the mission cost correspond to the avoidance of obstacles. As
previously stated in Remark 1, these two cost components play a
complementary role. Indeed, while avoiding the second obstacle,
Jmi;final remains low, making the vehicles fly toward the way-point
although Jmi;direct becomes greater as the vehicles deviate from a
straight line trajectory to the way-point.

The mission cost Jmi;flock, whose purpose is to group the vehicles
together, presents increases at the same moments as safety cost.
This is explained by the inclination of the vehicles to spread when
confronted to obstacles in order to avoid collisions.

Constraints on the vehicles: In Figs. 11 and 12 it can be verified
that the constraints on velocity and acceleration of the vehicles are
satisfied throughout the mission.

7.4. Performance evaluation and comparison

Analysis proposed in this paragraph considers robustness to
model mismatch, variations of initial conditions and selection of
tuning parameters. It also compares the results with those
obtained using other optimisation tools.

Model mismatch: For each simulation, the simulated vehicle
model differs from the linear nominal model used for predictions

Table 5
Weighting coefficients of the objective function.

(a) Control
wu;h 2
wu;z 2

(b) Manoeuvre
wma;norm 10
wma;alti 2

wma;rot 5

(c) Mission
wmi;direct 10

wmi;final 20

wmi;flock 50

(d) Safety
wsaf ;vehic 100

wsaf ;obstac 400

wsaf ;trajec 0

Fig. 7. Top view of the trajectories followed by the vehicles to complete their
mission (way-points are represented by diamonds and obstacles by cylinders).

Fig. 8. Evolution of the altitudes of the vehicles (the dotted lines represent the
altitude constraints introduced in Section 7.2).
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in the MPC strategy as it includes the attitude control loop dynamics
and saturations.

Initial conditions: The robustness of the approach has been
tested in simulations. Using the set of parameters given by
Tables 2a– 5d, 200 simulations were conducted using different,
randomly chosen, initial positions for vehicles. Table 6 gives the rates
of success, collision and loss-of-a-vehicle over the 200 simulations.

The success rate of 98.5% and the absence of collision indicate that
our approach allows one to safely accomplish the mission in most
situations.

Fig. 13 on the other hand, that shows the evolution of the mean
time taken to compute the control of each vehicle throughout the
mission, emphasises the main advantage of the systematic search:
the computation time is constant in all circumstances.

Fig. 9. Comparison of distances with the safety ðEv
saf ; Eo

saf Þ, desired-locations ðEv
des ; Eo

desÞ, and remoteness ðEv
farÞ ellipsoids. (a) Distance between vehicles. (b) Distances from

each vehicle to each obstacle.

Fig. 10. Evolution of various costs during the mission. (a) Obstacle avoidance. (b) Vehicle collision avoidance. (c) Straight line toward the way-point. (d) Move toward the
way-point. (e) Group with other vehicles.
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Comparison with an active-set optimisation: The main objective of
the systematic search is to find a feasible, near optimal,
control in short, constant, time. In order to evaluate the optimality
of the found control, the same 200 simulations were conducted
using an active-set approach (function fmincon of matlab) instead
of the systematic search procedure. Available criteria
to evaluate the optimality of the control are given in Table 6,
they are the arithmetic mean and standard deviation (std)
of the following quantities: time necessary to complete the mission,
distance travelled by one vehicle, and overall costs of each of the
four categories (control, manoeuvre, mission and safety).

Analysis of comparison: Table 6 shows that results obtained
with the active-set approach are significantly worse, in terms of

collisions and computation time, than those obtained with sys-
tematic search. This is the result of the tendency to fall in local
minima that lead to collision.

This weakness can easily be corrected by initialising the
optimisation algorithm with a value closer to the optimal
one. This can be done using the systematic search to find a good
initial value, and then executing the optimisation algorithm.
The results obtained with this method are given in Table 6.
Although the overall costs are significantly lower, success rate
and mission length are very similar to those of systematic search
alone.

Influence of search parameters: The influence of the number of
control sequence candidates on the performance of the vehicles

Fig. 11. Velocity of the vehicles. (a) Horizontal velocity. (b) Vertical velocity.

Fig. 12. Evolution of the desired accelerations. (a) Desired acceleration along xF . (b) Desired acceleration along yF . (c) Desired acceleration along zF .

Table 6
Comparison of the systematic search approach with an active-set optimisation method and a combination of active-set initialised with a systematic search.

Optimisation scheme Systematic search Active-set Combination

Success rate (%) 98.5 85 99
Collision rate (%) 0 15 0.5
Vehicle loss rate (%) 1.5 0 0.5
Mean computation time (std) (ms) 18 (1) 102 (16) 121 (18)
Mean mission time (std) (s) 475 (6) 471 (5) 471 (5)
Mean travelled distance (std) (m) 922 (18) 914 (15) 917 (14)
Mean control cost (std) 672 (110) 828 (113) 706 (122)
Mean manoeuvre cost (std) 1658 (155) 1472 (146) 1435 (168)
Mean mission cost (std) 83 451 (8682) 64 719 (5131) 63 933 (5188)
Mean safety cost (std) 13 757 (4959) 12 740 (2658) 12 704 (3911)
Mean total cost (std) 99 538 (10 501) 79 759 (5758) 78 778 (7048)
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has also been studied. This is done by changing one of the
following parameters:

Ndir : defines the number of candidate values for the argument
of the horizontal component of the acceleration in the set of
candidate control sequences;

Nnorm : defines the number of candidate values for the norm of
the horizontal component of the acceleration in the set of
candidates;

Nz : defines the number of candidate values for the vertical
acceleration in the set of candidates.

These results, given in Tables 7–9, allow one to make two
observations. Firstly, and predictably, the control-computation
time increases with the number of candidates, as the computation
load increases. Secondly, the success rate is penalised when the
number of candidates decreases, as the vehicles dispose of a less
precise control. This effect is particularly significant for the
number of vertical accelerations because of the tight constraints
on the altitude of the vehicles that require precise movements
along the vertical axis.

Table 7

Influence of Ndir .

Ndir 4 8 16

Success rate (%) 57 98.5 98.5
Collision rate (%) 0.5 0 1.5
Vehicle loss rate (%) 42.5 1.5 0
Mean computation time (std) (ms) 13 (1) 18 (1) 32 (4)
Mean total cost (std) 109 509 (14 258) 99 538 (10 501) 95 562 (9386)

Table 8
Influence of Nnorm

Nnorm 3 4 5

Success rate (%) 95.5 98.5 99
Collision rate (%) 0.5 0 0
Vehicle loss rate (%) 4 1.5 1
Mean computation time (std) (ms) 13 (1) 18 (1) 25 (3)
Mean total cost (std) 130 028 (11 859) 99 538 (10 501) 93 378 (9623)

Table 9
Influence of Nz .

Nz 3 5 7

Success rate (%) 59.5 98.5 100
Collision rate (%) 2 0 0
Vehicle loss rate (%) 38.5 1.5 0
Mean computation time (std) (ms) 13 (1) 18 (1) 27 (3)
Mean total cost (std) 154 945 (17 369) 99 538 (10 501) 88 478 (8961)

Fig. 14. Illustrative results for the MPC strategy. (a) Example of predicted and chosen trajectories. (b) Computation time at each iteration.

Fig. 13. Mean time taken to compute the control of each vehicle throughout the
mission.
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8. Experimental results

To go beyond simulation results, experiments on simple ground
mobile robots have been set up. The chosen platform is the low-
cost LEGO Mindstorms NXT which has been considered in pre-
vious works on cooperative multi-robot systems (Benedettelli,
Casini, Garulli, Giannitrapani, & Vicino, 2009; Brigandi, Field, &
Wang, 2010; Maze, Wan, Namuduri, & Varanasi, 2012; Valente,
Hossain, Gronbak, Hallenborg, & Reis, 2010) but not with guidance
laws based on MPC, which is usually difficult to embed due to
computational load. The chosen discretisation strategy to select
the optimal control input (Section 6) makes it possible to embed
the MPC guidance laws on such mobile robots with limited
capabilities, which is otherwise usually not feasible. An illustration
of the resulting trajectory set for the considered case of LEGO
Mindstorms NXT robots is given in Fig. 14, where it can also be
seen that the computation time required at each iteration is
constant and comfortably smaller than Δt (chosen equal to
0.3 s). Also note that the selection algorithm can easily be
parallelised on future embedded multi-core architectures, so as
to sample more trajectories within the limit of a time step.

Two scenarios involving two robots were considered: collision
avoidance and fleet navigation with collision and obstacle

avoidance. For the first scenario, the obtained trajectories are
given in Fig. 15, where it can be seen that the two robots reach
their destination with good accuracy and that collision avoidance
is effective. For the second scenario, the obtained trajectories
(Fig. 16) illustrate the fleet behaviour of the vehicles (distance
dvdes ¼ 0:2 m is respected) before they encounter the obstacle and
avoid it (with a safety distance dvsaf ¼ 0:1 m) and finally head
toward the same way-point.

9. Conclusion

In this paper the design of a guidance law for the distributed
control of a group of cooperative vehicles has been presented. The
proposed method consists of the resolution, by each vehicle, of an
MPC problem where the cost function is composed of different
components dealing with the different objectives of the mission:
travel as a flock, reach way-points, avoid obstacles and other
vehicles of the group. Intentions of all vehicles, in terms of
predicted trajectories, are considered to make the group coop-
erate. Constraints on vehicles’ control inputs and velocities are also
handled by the proposed approach.

Since a distributed strategy has been chosen, a systematic
search approach has been proposed instead of classical optimisa-
tion to ensure that each vehicle can solve its MPC problem
efficiently. It has been shown that the resulting computation delay
is indeed significantly shorter than with a classical optimisation
and constant in all situations without penalising efficiency. These
properties make this algorithm suitable for embedded control.

Numerical simulations have been presented in the case of a
flock of quadrotor vehicles, and completed by experimental results
on ground mobile robots, to illustrate the good performances of
the proposed approach.

Future work will focus on a more extensive study of the effects
of the search procedure parameters and adding other features in
the algorithm such as cooperative area exploration capability with
distributed sensors embedded on the vehicles. Another improve-
ment of the proposed algorithm will consist in handling more
realistic communication characteristics of the vehicles (e.g. limited
range and/or direction, communication delays and loss of
communication).

Fig. 15. Collision avoidance trajectory.

Fig. 16. Fleet navigation with obstacle avoidance (motion from left to right).
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