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Abstract—This paper considers passive vision for robotics and
focuses on devising a real-time process for moving object detection
using a stereo rig. As several previous works, our method relies
on the use of dense stereo and of optical flow. Observing that
the main computational load of existing methods is related to the
estimation of the optical flow, we propose to use a fast algorithm
based on Lucas-Kanade’s paradigm. We derive a new uncertainty
model which explicitly takes into account all errors originating
from each estimation step of the process. In contrast with most
previous works, we describe a rigorous expansion of the error
related to vision based ego-motion estimation. Finally, we present
a comparative study of performance on the KITTI dataset, which
demonstrates the effectiveness of the proposed approach.

I. INTRODUCTION

A. Context and Problem Statement

Understanding complex environment in presence of dy-

namic objects is crucial for autonomous robotics. Such sit-

uation awareness could benefit to Advanced Driver Assistance

Systems (ADAS) as well as Search And Rescue (SAR) mis-

sions. Vision sensors are particularly suited for this task as they

are cheap, lightweight, and can provide, through dedicated fast

algorithms, both scene perception and ego-motion estimation.

Besides, using a stereo rig enables 3d reconstruction of the

scene at each frames, which can be used for mobile objects

detection. In the design of an embedded mobile object detec-

tion process, three main constraints have to be accounted for:

real-time processing, high reactivity, and precise management

of measurement and estimation errors to assess the reliability

of the decisions. We address these three constraints in our

work. We propose a new detection system which uses very

fast algorithms for the low-level operations (stereo matching

and optical flow (OF) estimation). The decision is based on

the processing of two consecutive stereo images only. This

features allows to maximize the reactivity of the system and

also eases the modelling of error propagation. This last issue is

rigourously addressed here thanks to a first order model based

on the Implicit Function Theorem.

B. Related Works

Different approaches have been proposed to address the

understanding of dynamic scenes from stereo-vision data.

Algorithms based on sparse sets of feature points have been

used in temporally integrated framework [1], or in graphical

approaches to segment stereo-images according to 3D motion

consistency [2]. However, because of their sparseness, these

methods provide limited coverage of the scene.

A great deal of work has also been done using dense stereo-

vision algorithms. Dense stereo provides the instantaneous

3d structure of the scene. It can be coupled with visual

odometry that computes the camera rotation and translation

[R,T] between two frames. From these informations, the scene

geometry in a new camera frame can be predicted under the

hypothesis of a static world. The discrepancies between the

new observation and this prediction reveal the independent

motions and are cues for the detection of moving objects.

Detection then stems from thresholding some residual field.

Depending on the residual value which is used, or equiv-

alently on the quantity which is predicted, two approaches

can be distinguished. One can either synthesize a predicted

image using previous image intensity (an approach which will

be denoted by image prediction methods in the following)

or directly predict geometrical quantities such as 3d points

coordinates, optical flow (OF) and disparity (direct methods).

Direct methods have been applied with different residual

values in the literature. For instance, [3],[4] and [5] consider

the differences between observed and predicted 3d points —

a vector field which is called Scene Flow. In [4] the authors

reduce Scene Flow noise using a Kalman filter for each pixel,

with a state vector made of 3d position and velocity. Unfor-

tunately, such temporal filtering reduce the system reactivity,

since multiple frames are required for the Kalman filters to

converge. Furthermore, this model may encounter difficulties

with non-uniformly moving objects. In [5] the authors include

disparity changes estimation in a variational minimization

framework that also computes OF. Variational minimization

methods are well known in the field of OF estimation, as

they provide smooth and accurate solutions. But they require

several solver iterations to converge to a good solution. Hence,

in practice they are not real-time for an embedded system using

high resolution stereo images. Other direct methods consider

residual values expressed in the image space: OF and disparity

in [6], OF alone in [7].

Alternatively, image prediction methods have been inves-

tigated. Dense comparison between observed and predicted

image can be done by computing OF [8], or by evaluation

of some similarity index within a small neighbourhood of the

current pixel: [9] uses Sum of Absolute Differences (SAD)

while a Zero-mean version (ZSAD) appears in [10].

Except for [9] and [10], all previous approaches rely on the

computation of some 2D or 3D residual field (which we denote

by M in the following), and the thresholding of a pixelwise

motion likelihood written as a weighted norm of M :

ξ(M) =
√

MTΣ−1
M M. (1)

If the covariance matrix ΣM models accurately the uncertainty
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about the residual field M , criterion (1) is called a Mahalanobis

distance, and leads to optimal decision. The main issue is that

the residual M depends on several variables (disparity fields,

OFs, [R,T]) which stem from complex estimation processes.

Estimating the resulting uncertainty on M is very difficult and

requires some simplification. First attempts [6], [9] simply con-

sidered ΣM = Id, which leads to poor results. A formulation

of ΣM depending on disparity and optical flow is proposed

in [5], based on residual minimization energy. However, the

authors disregard the rotation R that is assumed equal to

the identity matrix Id3, and model only camera translation

uncertainty, which is a rather crude hypothesis, even in the

context of urban navigation. A Bayesian formulation of OF

error covariance ΣOF is used in [7] to model ΣM . The au-

thors also consider [R,T] uncertainty, but assume independent

rotational and translational errors without explicit mention of

the ego-motion estimation process. In [8], the approach relies

on first order expansion of the image displacement field with

respect to the angular and translational velocity vectors [Ω, V ].

Both ΣΩ and ΣT are chosen as constant diagonal matrices

which are evaluated a priori using a synthetic video. The first

order expansion puts limits on the dynamic of the vehicle or on

the framerate. Besides, the authors of [8] do not fully account

for the [Ω, V ] uncertainty but use 3σ bounds on the errors in

the subsequent expressions. Finally, reference [3] suggests an

heuristic to derive an approximate covariance matrix from the

least-squares criterion (1) but does not explicitly include the

error budget for disparity and OF estimation. As a conclusion,

to our knowledge, there is no previous paper presenting a com-

plete analysis of errors, especially regarding the uncertainty

over ego-motion parameters [R,T].

C. Contribution and Outline of the Paper

Our contribution is threefold. We present a moving object

detection system based on eFOLKI, a newly proposed fast

OF method [11] which allows real-time processing of large

images. We present a complete analytical formulation of

the uncertainty model of both direct and image prediction

methods. In particular, we account for the fact that [R,T]

parameters derive from the optimization of an ego-motion

criterion where image measurements (point matches) are also

involved. This indirect relationship is rigourously handled

thanks to the Implicit Function Theorem. Finally, we conduct

a comparison of various methods and error models through

an evaluation protocol based on challenging KITTI datasets

[12]. This experimental study demonstrates the efficiency of

the proposed image prediction method and the benefit of the

presented error model.

The paper is organized as follows. Section II describes the

detection process and discuss low level operations and choice

of the residual value. The uncertainty model is detailed in

Sec. III. The evaluation protocol and experimental results are

presented in Sec. IV, then we conclude.

Fig. 1. Motion detection pipeline (see explanations in the text).

II. SYSTEM DESCRIPTION

A. Overview

Fig. 1 presents a global overview of the moving object

detection pipeline. Independently moving objects are detected

by analysing two consecutive stereo images. Dense stereo is

computed for each stereo acquisition time and dense optical

flow is computed between successive times: these costly low-

level operations are discussed in the following. We use the

”efficient Visual Odometry” (eVO) of [13] which can run at

20Hz on a single core of an embedded CPU: some details on

this estimation process will be reviewed in Sec. III. With these

informations we compute a residual field M that is null under

rigid scene assumption. While the generic processing scheme

of Fig. 1 pertains also for a direct approach, we adopt here a

image prediction method based on the residual OF. Given the

error covariance matrix ΣM derived according to some model

of uncertainty, see Sec. III, the Mahalanobis distance ξ(M)
of Eq. (1) is computed and thresholded. Bounding boxes are

then fitted to the detected areas. In this section, we focus on

low-level operations and choice of the residual value.

B. Low-level Operations

Several papers present algorithmic choices to reduce stereo

computation time. A major breakthrough here is the publica-

tion of Semi Global Block Matching (SGBM) [14], a dense

stereo algorithm that can be implemented on FPGA [15] and

run at 25Hz on images of 740x480 pixels for a disparity

range of 128. However, for larger images and wider disparity

range, the real-time capability of SGBM can be questioned.

Alternatively, one may consider a simple Block Matching

(BM) algorithm that exhaustively searches stereo matches

along the epipolar line. BM runs in real-time without needing a

FPGA. The choice between SGBM and BM is discussed in [8],

and their relative performances evaluated. The inconvenient of

BM is that not only the disparity map is less accurate, but it is

also often unavailable on large regions. This calls into question

the benefit of dense methods, which is maximal coverage of

the scene. Hence, we do not consider BM here.

Perhaps surprisingly, in previous works there are few dis-

cussions about the choice of the optical flow estimation algo-

rithm. To our knowledge, all references use variational methods

based on the framework originally presented by Horn and

Schunck [16]. For instance, Combined Local-Global Method
[17] is used in [7], while TV-L1 approaches close to the one

presented in [18] are considered in [4] and [5]. However, these

algorithms are not only computationally demanding, but also
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their robustness on real images is questionable. Indeed, TV-

L1 approach requires expensive image pre-processing to deal

with intensity changes in real world images, see for instance

the computation of TV-L2 residual images discussed in [5].

One can conclude that the main point which precludes real-

time operation of these methods is the use of such costly

variational OF methods. Here we propose to use eFOLKI [11],

a very fast OF algorithm based on Lucas-Kanade (LK) ap-

proach. Compared on the same GPU hardware, the runtime of

eFOLKI is between one or two order of magnitude lower than

variational methods such as TV-L1 [18] and Brox et al. [19].

Actually, looking at the OF benchmark of KITTI’s website,

eFOLKI appears among the very few methods able of real-time

operation on 2 megapixels images. LK methods are generally

considered as inaccurate in the computer vision community.

However, Ref. [11] shows that it compares favourably with

variational methods on the training dataset of KITTI, and that

it provides useful solutions for various vision problems based

on OF estimation. In the same line, we will show here that it

lead to results of sufficient quality for our detection purpose.

C. Choice of the residual field

Here we present in more details several direct and image

prediction methods, in order to introduce our original frame-

work and compare various approaches in the experiments.

1) Direct methods: Direct methods have been applied ei-

ther to Scene Flow, or to image quantities such as residual

OF and disparity. These approaches differ essentially by the

way they encode the depth information. We adopt the latter

which eases the error modeling step. At each time instant t,
we assume that disparity dt and optical flow (ut, vt) between

image It−1 and It are available. In previous frame at t−1, each

visible point of image coordinate (x, y) and disparity dt−1 is

triangulated

Xt−1(x, y, dt−1) = − b

dt−1

⎛
⎝x− x0

y − y0
f

⎞
⎠ (2)

with b the stereorig baseline, and f the camera focal in pixel.

Given the camera motion obtained from the visual odometry,

the scene can be transferred into the coordinate frame at t:

Xpred
t (x, y, dt−1) = RXt−1(x, y, dt−1) + T, (3)

under a rigid scene hypothesis. Then the predicted OF writes(
upred

vpred

)
(x, y) = Π

(
Xpred

t (x, y, dt−1)
)
−
(
x
y

)
, (4)

and the predicted disparity:

dpred(x, y) =
−bf(

0 0 1
)
Xpred

t (x, y, dt−1)
, (5)

where Π is the projection operator.

The residual is then M = {ut − upred, vt − vpred, dt − dpred}
— some authors [7] use the OF components only.

2) Image and disparity prediction method of [8]:
The predicted image in [9] and [8] is computed from previous

grayscale image intensity and from the predicted 3d structure

of Eq. (3):

Ipredt (x+ upred, y + vpred) = It−1(x, y) (6)

In Ref. [9], image correlation techniques are used to check the

consistency of the predicted image with respect to the observed

one. In [8], the residual optical flow (δu, δv) is computed

between the synthetized image Ipredt and the observed one

It. Note that pixel quantization, occlusions, etc., may lead

to unallocated pixels in the predicted image: intensities taken

from the observed image are used to fill these empty regions.

Thanks to the robustness of OF codes, these problems affect

the estimation only locally. Finally, the residual OF is also

used to warp dpred into

dwpred(x, y) = dpred(x+ δu, y + δv), (7)

and the resulting residual field is: M = {δu, δv, dwpred − dt}
3) Proposed method: Our method is close to the one of

Bak et al. [8], in the sense that we also compute a predicted

image and then estimate a residual flow on it. However, unlike

[8], we proceed backward by interpolating image intensities

at t − 1 from the reference frame coordinate at t. We first

triangulate current observed points of image coordinates (x, y)
and disparity dt

Xt(x, y, dt) = − b

dt

⎛
⎝x− x0

y − y0
f

⎞
⎠ (8)

Compensating ego-motion and going back in the time, we

predict the coordinates Upred
t−1 of these points, in previous

frame, assuming a static scene:

Upred
t−1 = Π

(
R−1 (Xt − T )

)
(9)

The predicted image Ipredt−1 is obtained by interpolating image

intensity It−1 at the positions Upred
t−1 . We have to deal also

with occlusions and we fill empty regions with current im-

age intensity. Finally, we compute the residual OF (δu, δv)
between It−1 and Ipredt−1 . The main benefit of this approach is

to simplify image interpolation. Indeed, in our formulation we

need to interpolate irregular data from data located on a regular

grid, while the approach of Bak et al. requires the opposite,

ie. to interpolate regular data from irregularly arranged ones,

which is more computer demanding and may lead to local

artifacts. Finally, for reasons which are justified below in

the experimental study (see Fig. 2), we do not consider the

disparity in our residual, which then writes M = {δu, δv}
D. Detection of mobile objects

Knowing the residual field and an estimation of its co-

variance, we can compute the Mahalanobis distance ξ(M) of

Eq. (1). As done in [7], we add a geometric constraint by only

considering objects that are lower than Hmax = 2.5m. Since

we use KITTI datasets [12] in our experiments, we assume the
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camera horizontally oriented and positioned at Hcam = 1.67m

from the floor. Under these assumptions, valid pixels satisfy:

Hcam + b
y − y0

d
< Hmax. (10)

We then extract the connected components so as to form

detected blobs. For each blob, we compute a mean disparity

that is used to calculate its depth attribute. To ease the merging

process, blobs are considered as fronto-parallel planar regions,

and merged if they are close enough (e.g. closer than 30cm)

in 3D. When all neighboring blobs have been merged, small

blobs aggregates are suppressed. To do so, we estimate the total

surface of an aggregate by summing the surface associated to

each pixel belonging the aggregate’s blobs. We threshold this

value (e.g. by 0.16m2) and estimate bounding boxes for the

remaining blobs aggregates, as well as their depth attributes.

Figure 2.a) shows an example of such estimated bounding

boxes (in red) compared to ground truth bounding boxes (in

blue), manually annotated using Vatic [20]. Let us recall that

detections are made at each time independently.

III. ERROR MODEL

In this section, an error model for the residual field M,

is studied. We focus on the image prediction method seen in

II-C3, but the following reasoning can be adapted to other

methods. We look for an expression of the error covariance

matrix of M :

ΣM = ΣOF +ΣPred, (11)

where ΣOF and ΣPred are respectively the optical flow and

the prediction error covariance matrices.

We will assume that ΣOF can be modelled by σ2
OF Id2 (e.g.

σOF = 0.5 pixel). More sophisticated models, for instance

based on estimates of the local textural content of the image,

could be accounted for in the following analysis.

The chosen image prediction method of II-C3 is based on

the following mapping:

(x, y, d) �→ Upred
t−1 = Π

(
R−1 (Xt(x, y, d)− T )

)
. (12)

We deduce from these dependencies, that Upred
t−1 estimation

can be perturbed by an error in the estimation of (x, y, d) but

also of ego-motion parameters [R,T]. The impact of (x, y, d)
error has been considered in many articles. However, to the

authors knowledge, only Alcantarilla et al. [3] have proposed

an ego-motion uncertainty model directly related to the visual

odometry without considering parameters learned a priori.

Assuming (x, y, d) and (R, T ) error uncorrelated, one can

study separately Σ(x,y,d) and ΣR,T , as well as their respective

contribution to ΣM .

A. (x, y, d) Estimation Error

Because of pixel quantization, image coordinates (x, y)
are prone to error. We model this by considering standard

deviations σx and σy (e.g. equal to 0.1 pixel). Similarly,

the error of the disparity obtained with a dense algorithm is

represented by σd (e.g. equal to 1 pixel).

The contribution ΣPred(x,y,d) of (x, y, d) error can be

approximated using first order error propagation:

ΣPred(x,y,d) = JUpred
t−1

(x,y,d)

⎛
⎝σ2

x 0 0
0 σ2

y 0
0 0 σ2

d

⎞
⎠ JT

Upred
t−1

(x,y,d)

(13)

where JUpred
t−1

(x,y,d) is the Jacobian of Upred
t−1 (x, y, d)

B. (R, T ) Estimation Error

To model ΣR,T , we must know the energy minimized dur-

ing the odometry. In our case, we choose the same odometry as

the one used in [13], i.e. we minimize in a RANSAC procedure

[21] the reprojection error

E(R, T ) =
1

N

N∑
k=1

‖U t
k −Πt(RXt−1

k + T )‖2 (14)

where {Xt−1
k }k is a set of triangulated feature points that have

been extracted in It−1, and {U t
k}k their location in It obtained

by temporal matching.

This energy is minimized over Θ = (θx, θy, θz, Tx, Ty, Tz),
with the three first parameter being Euler’s angles of R.

1) Heuristic formulation:
Alcantarilla et al. [3] estimate ΣR,T from the inverse of

Hessian matrix of criterion (14):

H ≈ JT
f(Θ)Jf(Θ) (15)

with: {
f(Θ) =

(
f1(Θ)T , · · · , fN (Θ)T

)
fk(Θ) = U t

k −Πt(RXt−1
k + T )

(16)

Unfortunately, with this approach, the estimation of un-

certainty depends of any multiplicative factor applied to the

energy E(Θ): minimizing αE(Θ) leads to an Hessian matrix

multiplied by α2. Furthermore, such a model does not repre-

sent the error related to the estimation of {U t
k, X

t−1
k }k, nor

their potentially correlated contributions to the error on Θ.

2) Analytical formulation:
The relation between Θ and input data {ztk}k = {U t

k, X
t−1
k }k

is implicit but can be recovered by applying the well-known

Implicit Function Theorem (cf. [22], chap 5). Considering the

implicit function ϕ : (Θ, z) �→ ∂E
∂Θ (Θ, z)

T
, we then obtain the

error covariance matrix below:

ΣΘ = H−1

(
∂ϕ

∂z

)
Σz

(
∂ϕ

∂z

)T

H−T (17)

where H = ∂2E
∂Θ∂Θ (Θ, z) ∈ R6×6, is supposed invertible.

Assuming the error independent for each feature k, Eq. (17)

becomes:

ΣΘ =
∑
k

H−1

(
∂ϕ

∂zk

)
Σzk

(
∂ϕ

∂zk

)T

H−T . (18)

As U t
k and Xt−1

k are computed separately during the sparse

temporal matching and the 3D reconstruction steps, we assume
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Fig. 2. Left camera image at t = 55 is shown in (a) with annotated BB (blue) and estimated BB evaluated as correct (red) following protocol IV-B. In (b-d):
Motion likelihoods ξ2(M) using eFOLKI and image prediction methods with ΣOF (i.e. L2 norm) in (b), ΣM(x,y,d) in (c), ΣM(x,y,d,Θ) in (d). In (e): eFOLKI
+ ΣM(x,y,d,Θ) applied to direct method. In (f): Brox et al. OF [19] for image prediction method with ΣM(x,y,d,Θ). Gray scale value on a range [0-20].

that they are not correlated, which leads to:

Σzk =

⎛
⎝ σ2

u 0
0 σ2

v
02×3

03×2 JXt−1
k

Σ(x,y,d∗)JXt−1
k

T

⎞
⎠ , (19)

where the upper left diagonal matrix is the error model of the

sparse temporal matching, and d∗ the disparity of the feature

point whose error is modelled by σd∗ — assumed lower than

σd (e.g. σu = σv = σd∗ = 0.5 pixel).

C. Residual Field Error

The global prediction error model then writes:

ΣPred = ΣPred(x,y,d) + JUpred
t−1

(Θ)ΣΘJ
T
Upred

t−1
(Θ)

, (20)

where JUpred
t−1

(Θ) is the Jacobian matrix of Upred
t−1 regarded as

a function of Θ. The uncertainty of the residual field ΣM is

estimated by Eq. (11) and used to obtain the motion likelihood

by Eq. (1).

IV. EXPERIMENTAL RESULTS

A. Residual Displacement Fields Comparison

We have evaluated different motion likelihoods ξ on

two sequences (09/28-0037 and 09/29-0071) of the publicly

available KITTI datasets [12]. Experiments have shown that

ξ(δu, δv, δd) is prone to more noise than ξ(δu, δv), without

improving the detection. Fig. 2 shows ξ(δu, δv) obtained on

sequence 09/28-0037 between t = 54 and t = 55: the camera

undergoes translation and rotation, and there are both slow

moving objects (pedestrians) and faster ones (cyclists).

Image prediction methods appear less subject to noise than

direct ones. Indeed, the displacement between Ipredt and It
is smaller than the one between It−1 and It, so the optical

flow estimation is more accurate in the first case. Moreover, as

shown in images (b-d), noise is reduced by a better uncertainty

model, though at the cost of a lower SNR on moving objects.

We have also compared eFOLKI with the variational optical

flow of Brox et al. [19] which is more accurate than TV-L1

on Kitti dataset, as shown in [11]. Parameters of eFOLKI are

J = 5 resolution levels, K = 5 iterations, three window radii

{12,8,4} and rank order 4. Parameters of Brox et al. OF are

α = 0.5, γ = 500, 10/20/100 solver/inner/outer iterations.

Comparing residual fields in Fig. 2 shows that the residual

obtained with Brox et al. OF (f) is less noisy than eFOLKI’s

(d), but that slow moving objects or partially moving ones are

more visible in the latter. Such behaviour is confirmed in Fig. 3

by the better recall of eFOLKI.

B. Evaluation Protocol
To evaluate the various tested approaches, we have manually

annotated ground truth bounding boxes BBGT using Vatic.

Detection is based on a discrete overlap ratio:

ω(BB,BBGT ) =
ABB ∩ BBGT

ABB ∪ BBGT

. (21)

A detected BB is valid when there exists a BBGT such that

ω(BB,BBGT ) is below some threshold (e.g. 25%). To avoid

multiple instances of the same detection, we count one True

Positive for each BBGT whatever the number of valid BB it is

associated to. Since some BB are too small to be considered as

valid, we don’t consider a BB as a False Positive if it belongs

to a BBGT detected by another valid BB. Other estimated

BB are considered as False Positive, and BBGT with no

associated detections are False Negative. Several evaluations

were done using different thresholds on ξ2(M) to construct the

Precision/Recall curves displayed in Fig. 3. They demonstrates

the gain of our method which returns a number more important

of correct bounding boxes. A precision of approximately 80%

and a recall of 50% is achieved on both sequences. This recall

value may seem low, but only two frames are used in our

process with no temporal or spatial filtering.
Let us remark that the benefit of a global error model

including the pose uncertainty is more significant in video
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TABLE I
PROCESSING TIME FOR EACH STAGE (EXCEPT DENSE STEREO)

Odometry Prediction OF: eFOLKI/Brox ξ2(M) CC + BB
40ms 2ms 27ms/480ms 7ms 5-10ms

Fig. 3. Precision / Recall for two KITTI sequences, thresholding ξ2(M)
from 1 to 15, using: eFOLKI + ΣM(x,y,d) (P1), eFOLKI + ΣM(x,y,d,Θ)
(P2), and Brox et al. optical flow [19] + ΣM(x,y,d,Θ) (P2-BROX).

09/28-0037 than in 09/29-0071. Indeed, rotation is present only

in video 09/28-0037 and rotation error affects more far objects

which are better handled by ΣΘ (Fig. 2 (c) and (d)).

C. Processing Time

Table I summarizes processing times with a CPU Intel Core

i7 (12 cores) and a GPU GeForce GTX TITAN. Note that

multi-threading the odometry would significantly decrease its

runtime. We do not use a FPGA implementation of SGBM

but the OpenCV CPU ones, which runs here in 425ms for 256

disparity levels.

The use of eFOLKI fast algorithm saves a considerable

amount of time compared to variational OF and allows the

whole process to achieve near video frame rate (ie 10Hz)

leaving apart the calculation of disparity map. The latter

operation remains the computational bottleneck of the process.

SGBM on a FPGA could be a solution. One could also use

geometrical informations returned by the system to speed-

up stereo — e.g. the disparity range may be deduced from

previous disparity map and camera pose.

V. CONCLUSION

We have presented a framework for mobile object detection

from a moving stereo rig based on an image prediction strategy.

It is compatible with real-time processing thanks to the fast

dense OF method eFOLKI. A new complete error model

has been derived, which allows to handle rigourously the

uncertainty related to visual odometry. We have conducted

an experimental study on several real videos from the KITTI

website to compare our approach with various proposals of the

literature. According to this study, image prediction strategy

improves the SNR of the likelihood. It also shows that the fast

OF algorithm eFOLKI is compatible with good detection rates.

We now plan to add temporal filtering and to improve image

prediction using a 3D scene model of higher level, such as,

for instance, 3d mesh representation of [23].
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