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Abstract This paper presents a method for finding the global maximum of a spatially varying
field using a multi-agent system. A surrogate model of the field is determined via Kriging
(Gaussian process regression) from a set of measurements collected by the agents. A criterion
exploiting Kriging statistical properties is introduced for selecting new sampling points that each
vehicle must rally. These new points are obtained as a compromise between improvement of the
estimate of the global maximum and traveling distance. A cooperative control law is proposed
to move the agents to the desired sampling points while avoiding collisions. Simulation results
show the interest of the method and how it compares with a state-of-the-art solution.
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1. INTRODUCTION

Recent years have witnessed a growing development of
autonomous multi-agent systems (MAS) such as un-
manned aerial vehicles (UAV) or unmanned ground ve-
hicles (UGV). The main advantage of MAS is that agents
can cooperate to fulfill some mission more efficiently than a
single agent (Choi et al. (2009)). Typical missions are field
exploration or maximum seeking (Williams and Sukhatme
(2012)). A gradient climbing approach is often employed
to bring the vehicles to the extremum (Choi and Horowitz
(2007); Ogren et al. (2004)), based on a cooperative esti-
mation over the MAS (Zhang and Leonard (2010)). The
main drawback of gradient climbing is its local conver-
gence. As the maximum seeking is performed using a MAS,
one must also take into account limitations due to the
vehicle dynamics since the agents have to move to some
desired position to measure the field value.

The aim of this paper is to search for a global optimum
of an unknown field with a MAS, based on a Kriging
model (or Gaussian process regression) computed from
sampling points (Jones (2001)), while taking into account
the individual agent dynamics. Kriging is an interpolation
method that gives the best linear unbiased prediction with
prior assumption on the covariance of the estimated field.

Few papers have used a Kriging model in the context
of MAS. In Cortes (2009), Kriging is used to model a
time-varying field and estimate its gradient to drive the
agents to the field maximum. Gu and Hu (2012) partition
the space with Voronoi cells based on a Kriging model
of the field. The agents are controlled to minimize the
uncertainty of the model without explicitly searching for
the field maximum. In Karasev (2012), Gaussian process
regression is used to define the positions of the agents to
improve visual search. In Choi et al. (2008), the agents

stay in formation and several criteria based on the Kriging
estimate are presented to perform field exploration or
maximum seeking. At each instant the criterion is up-
dated and a new direction is considered for the agents.
The authors improved the method in Xu et al. (2011)
for field exploration. Each vehicle tries to minimize the
cumulated estimated field uncertainty evaluated on a grid
of target points. Centralized and distributed schemes were
presented and compared.

The proposed approach performs a trade-off between field
exploration where uncertainty is high and global maximum
seeking. Measurement effort is directed to areas that can
potentially improve the current estimate of the global
maximum, unlike other methods that focus on exploration
(which is time-consuming) or gradient climbing (which
may find only a local maximum). The Kriging model is
well suited to determine whether an area must be explored,
thanks to the estimation uncertainty model it provides.

This paper is organized as follows. Section 2 formulates
the problem. Section 3 presents the Kriging estimator
and related optimization criteria. Section 4 defines the
proposed criterion and control law for field exploration
and maximum seeking. Simulation results are described
in Section 5 to compare the proposed approach with that
of Xu et al. (2011).

2. PROBLEM FORMULATION

Consider some unknown, continuous, and time-invariant
scalar field φ defined over a compact space D ⊂ Rm, which
has to be maximized. The field φ may present several local
extrema but is assumed to have a unique argument of its
global maximum.

The aim is to perform the maximization of φ with a fleet
of N identical mobile agents. Each agent i ∈ 1 ... N is



able to measure φ and its current location xi(t) at any
time instant t. The search for the maximum is operated
by moving the agents in D. The dynamics of each agent is
modeled as

M ẍi + C (xi, ẋi) ẋi = ui, (1)

where M is the mass of the agent, C (xi, ẋi) a non negative
friction coefficient (Wang (1991)), and ui(t) their control
input. The field measurement model is

yi = y(xi) = φ(xi) + wi, (2)

where wi is a zero-mean Gaussian noise with known
variance σ2

w.

The agents are synchronized and time is discretized with a
period T . At each tk = kT , they compute their own control
input and may collect a field measurement and transmit
it, together with their location. Two agents are assumed
to be able to communicate when their distance is smaller
than r. The set of neighbors of agent i at time tk is denoted

Ni(tk) = {j | ‖xi − xj‖ 6 r} . (3)

This defines an undirected and time-varying communica-
tion graph. Communications are assumed to be lossless
and without delay. At time tk, each agent i possesses a
set Si(tk) gathering its own past field measurements and
those received from its neighbors. LetM(tk) be the set of
the agents that collect a measurement at time tk. The set
Si(tk) is then defined as

Si(tk) =

k⋃
l=0

{[yj(tl),xj(tl)] | j ∈ Ni(tl) ∩M(tl)} . (4)

Maximum seeking is performed with the help of a model
of φ taking the form of a Gaussian process, whose param-
eters are estimated from Si(tk). The model has to provide

simultaneously a mean estimate φ̂i,k of the field over the
space D and an estimation variance σ2

φ,i,k. Each agent

i ∈ [1, . . . , N ] updates its model of the field at time tk
only if Si(tk−1) 6= Si(tk).

The mission goal is to find the location xM of the maxi-
mum of φ on D,

xM = arg max
x∈D
{φ(x)} . (5)

Since φ is unknown, the search is performed on φ̂i,k, which
is updated iteratively in such a way that, there exists
Kε > 0 such that,

x̂iM (tk) = arg max
x∈D

{
φ̂i,k(x)

}
(6)

satisfies ||x̂iM (tk) − xM || < ε for all k > Kε. For this

purpose, φ̂i,k (x) has to be updated by properly selecting
field measurement points for each agent. Basics of Kriging
and various related policies to select such points are
presented in Section 3, before introducing the proposed
method in Section 4.

3. KRIGING

3.1 Basics of Kriging

Consider the scalar function

φ : x ∈ D → φ(x) ∈ R. (7)

φ is modeled by the Gaussian process

Ω(x) = r(x)Tβ + Z(x), (8)

where r is some regression vector and β is a parameter
vector (a linear regression model is used in this paper). Z is
a zero-mean Gaussian process with covariance function
modeled as

cov(Z(x), Z(x′)) = σ2
zξ(x,x

′), (9)

where

ξ(x,x′) = exp

[
−

m∑
i=1

1

θi
|x(i)− x′(i)|qi

]
(10)

is a spatial correlation function (Schonlau (1997)). Its
parameters are the nominal variance σ2

z , the range of the
spatial correlation θi, and qi ∈ [0, 2] which determines the
smoothness of the interpolation. Those parameters depend
on the characteristics of the field. They may be known a
priori or have to be estimated.

Assume that some vector of n noisy measurements of φ

y = [y(x1), . . . , y(xn)]
T

(11)

has been collected, under measurement model (2).

Define vectors

R = [r(x1), ..., r(xn)]T , (12)

kx = [ξ(x,x1), ..., ξ(x,xn)]T , (13)

and the covariance matrix K with components

Kij = ξ(xi,xj) + σ2
wIn. (14)

A linear estimator aTxy of Ω(x) is searched for. The bias
of this estimator is

E
[
Ω− aTxy

]
= r(x)

T
β − aTxRβ (15)

and its associated variance is

E[(Ω(x)− aTxy)2] = (axRβ − r(x)Tβ)

+ aTxσ
2
zKax + σ2

z − 2aTxσ
2
zkx

(16)

An unbiased estimator requires axRβ − r(x)Tβ = 0. The
mean of the estimator is then

φ̂(x) = r(x)Tβ + kTxK−1(y −Rβ) (17)

and its associated variance :

σ2
φ(x) = E[(Ω(x)− aTxy)2] = σ2

z(1− kTxK−1kx) (18)

In the following, each agent i builds its own model from

Si(tk), resulting in estimated mean φ̂i,k(x) and variance
σ2
φ,i,k(x).

3.2 Sampling methods for global optimization

Different methods exist to choose where to select the next
sampling point xd based on Kriging for finding the global
optimum of a field known only at sampled locations on a
multivariate input space.

Kushner (1962) uses the Gaussian cumulative distribution
function of the Kriging model to maximize the probability
of improving the estimate of the maximum. This crite-
rion promotes local extrema over exploration. Expected
Improvement (Schonlau and Welch (1996)) exploits the
Kriging model to determine the points which are the most
likely to improve in average the global maximum estimate.
To this end, it allows a trade-off between exploration and
maximum search. The convergence to the global optimum
of these strategies has been proven in Vazquez and Bect



(2010), providing that the correlation function satisfies
some assumptions.

Alternatively, the lower confidence bounding function

Clcb(x) = φ̂(x) + bσφ(x) (19)

proposed in (Cox and John (1997)) is useful for finding a
location

xd = arg max
x∈D
Clcb(x) (20)

where φ may reach an extremum or presents a high level of
uncertainty. Increasing the parameter b in (19) promotes
points with higher uncertainty.

4. PROPOSED METHOD

4.1 Sampling point selection for MAS

The previous methods assume that a single next sampling
point can be chosen arbitrarily in D. A specificity of
sampling point selection for MAS comes from the need to
determine a sampling point for each agent, which requires
sharing the exploration load among agents. Moreover,
sampling point selection has to account for the dynamics
of each agent.

Assume that the estimate of the maximum of φ performed
by agent i at time tk is

f imax(tk) = max
x∈Si(tk)

{φ̂i,k(x)}. (21)

The proposed technique, inspired from (19), consists in
selecting the next sampling point for agent i as

xdi (tk) = arg min
x∈D

{
J
(k)
i (x)

}
(22a)

s.t. φ̂i,k(x) + bσφ,i,k(x) > f imax(tk) (22b)

where

J
(k)
i (x) = ‖xi(tk)− x‖2 −

∑
j∈Ni(tk)

α‖xj(tk)− x‖2, (23)

where α and b are two positive tuning parameters.

The constraint (22b) defines the subset of D potentially
containing the global maximum. Using (23), one searches
in this subset for a sampling point close to the current
agent location xi(tk) and far enough from the other agent
locations xj(tk), j ∈ Ni(tk). However, the convergence to
the maximum position is not guaranteed.

4.2 Control law

Once agent i has computed its next sampling point xdi (tk),
it should modify its trajectory to reach this point and
collect a new measurement there.

For convenience and readability of the equations, time
dependence in tk is omitted in this section. The control law
is designed so that each vehicle moves towards xdi with a

desired velocity ẋdi , and avoids colliding with its neighbors.
It is expressed as

ui =C(xi, ẋi)ẋi − k3(xi − xdi )

+ 2k2

N∑
j=1

(xi − xj)
1

q
exp

(
− (xi − xj)

T (xi − xj)

q

)
− k1(ẋi − ẋdi )

(24)
with k1, k2 and k3 three positive gains, q a parameter
related to the safety distance between two vehicles of the
fleet. For convenience,

g(xi,xj) = exp

(
− (xi − xj)

T (xi − xj)

q

)
(25)

is denoted gij and δij = xi − xj is the difference vector of
position between vehicles i and j.

The stability of the control law is analyzed by considering

V =
1

2

N∑
i=1

[
ẋTi M ẋi + (xi − xdi )

T k3(xi − xdi ) + k2

N∑
j=1

gij


(26)

which can be shown to be a Lyapunov function using
derivations similar to that in (Cheah et al. (2009)).

Algorithm 1 summarizes the steps performed for maximum
seeking. A measurement is only collected by agent i when
it reaches its next sampling point xdi (tk).

Algorithm 1 Maximum seeking Algorithm

for every time instant tk do
for each agent i do

if xi(tk) = xdi (tk) then
Acquire a measurement yi at xi(tk) (2)
Broadcast {yi,xi(tk)} to neighbors j ∈ Ni(tk)
Update Si(tk)

end if
if Si(tk) 6= Si(tk−1) then

Update the Kriging model (17) and (18)
Solve (22) to find xdi (tk)

else
xdi (tk) = xdi (tk−1)

end if
Compute the control input ui(tk) (24)

end for
end for

5. SIMULATION RESULTS

The proposed method is compared on a two-dimensional
example, assuming a complete communication graph, to
a reference technique described in Xu et al. (2011) and
briefly summarized in what follows.

5.1 Reference method

The method proposed in Xu et al. (2011) evaluates the
next sampling points for all agents in such a way that
the sum of the variances of the Kriging model at some
reference points is minimized. The next sampling points
x = [x1, ...,xN ]T are chosen by agent i to minimize

CiXu(x) =
1

|J |
∑
ξj∈J

σ2
φ,i(x, ξj) (27)



where σ2
φ,i(x, ξj) is the predicted variance of the Kriging

model of agent i at the target point ξj assuming that

measurements are taken at x = [x1, . . . ,xN ]T . J is a set
of properly chosen target points spread on D, and |J | is
the cardinality of J .

The target displacement speed ẋdi of each agent is taken
proportional to the gradient of (27), and achieved by using
control law (24) with xdi (tk) = xi(tk). The agents collect
measurements with a period equal to τ (two values are
considered in the simulations). This is repeated iteratively
until the criterion (27) falls below some threshold. At each
period τ , the estimate of the maximum of the mean of the
Kriging model can be computed.

5.2 Simulation conditions

In both cases, a fleet of N = 3 identical agents is
considered, with M = 1 kg, C = 0.001 kg/s. The fleet is
assumed to remain within a square field of size 50× 50 m2.
Measurements are assumed noise free, σ2

w = 0. The
communication graph is assumed to be fully connected,
r > 50

√
2 m. The information is centralised as each

agent has a complete knowledge of the others. The same
Kriging model is used by all agents but depending on their
current positions, the argument of the optimality criterion
satisfying the constraints is different. A synthetic field φsim
has been generated as the sum of three two-dimension
Gaussian functions with maxima equal to 1.2, 1, and 1,
located at [15 15], [40 35], and [10 35]. The covariance
matrix for the three Gaussian functions is a diagonal
matrix with values {100 100}. The global maximum of
the field is equal to 1.25, located at [14.94 16.15].

The values of the parameters for the Kriging model are
selected as q1,2 = 2, σz = 0.5, and θ1,2 = 50. Linear regres-
sion was used for the deterministic part of the Gaussian
process model. The sampling period is T = 0.01 s. The
agents move using the control law defined in Section 4.2,
with q = 0.1, k1 = 47, k2 = 50 and k3 = 1600. The
maximum velocity of the agents is fixed to 2 m/s.

The parameters used by the proposed approach are b = 3
in (22b) and α = 1

N = 1
3 in (23). The optimization

problem (22) is solved using the global optimizer DI-
RECT (Jones et al. (1993)). As the control law brings
asymptotically the agents to the desired position xdi (tk)
with a null desired velocity ẋdi (tk) = 0, it has been chosen
to sample a measurement when ||xi(tk)− xdi (tk)|| < ε with
ε = 0.01 m.

For the reference method, two different values of the
sampling period τ have been used: τ1 = 5T , and τ2 = 20T .
There are 100 target points ξj in J , uniformly distributed
on a grid to cover the entire area D.

5.3 Simulation results

Figure 1 illustrates the evolution with time of the value

of Gkmax(x) = φ̂k(x) + bσφ,k(x) for all x ∈ D with the
proposed method and the synthetic field φsim. Red dots
represent measurement locations. Figure 1(a) shows Gkmax
after three measurements of each agent. In Figure 1(b),
the agents spread to explore D. In Figure 1(c), the field

(a) (b)

(c) (d)

Figure 1. Maximum seeking by 3 agents with the proposed
method

is mostly known and measurements have been performed
near the true maximum location but the remaining level
of uncertainty does not allow to end the mission. This re-
quires the exploration of the few area still satisfying (22b).
In Figure 1(d), no point satisfying (22b) can be found, so
the search is stopped. Note that the variance (18) is not
null everywhere: only areas of interest have been explored.

To compare the proposed method to the reference one,
simulation results are averaged over several identical ran-
dom initial locations of the agents in D. Figure 2 presents
the evolution with time of the distance between the actual
maximum location and the location of fmax(tk). Figure 3
provides the number of measurements required by each
method with respect to time. Figure 4 synthesizes the
performances by showing the relation between the distance
to the maximum and the number of measurements ac-
quired. The results obtained with the proposed method are
represented with blue curves, while the red and black ones
are those obtained using the reference method respectively
tuned with τ1 = 5T and τ2 = 20T . Solid lines are averaged
results while dotted lines correspond to the minimal and
maximal values collected over all the runs.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

k

di
st

an
ce

 to
 th

e 
m

ax
im

um

 

 
Proposed criterion
Xu criterion, period=5
Xu criterion, period=20

Figure 2. Distance to the maximum w.r.t. time
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Figure 3. Number of measurements w.r.t. time

0 100 200 300 400 500
0

5

10

15

20

25

30

number of measurements 

di
st

an
ce

 to
 th

e 
m

ax
im

um
 (

m
)

 

 
Proposed criterion
Xu criterion, period=5
Xu criterion, period=20

Figure 4. Distance to the maximum vs number of mea-
surements

All methods present a similar dispersion of results. The
reference method exhibits different characteristics depend-
ing on the choice of the sampling period τ . When τ is
small, convergence to the maximum is precise but slow
and the number of measurements is large. When τ is
larger, the distance to the maximum decreases quickly but
never converges, while few measurements are required. The
proposed method does not need a tuning of τ and appears
to combine all desired properties: a quick convergence to
the maximum is achieved with few measurements.

While the reference method is built for field exploration
by minimizing the variance of the Kriging model using
displacement of the agents to areas of high uncertainty,
the proposed criterion (22) only focuses on exploring areas
where the maximum could be located. These simulation re-
sults support the use of the proposed criterion to limit the
exploration area for a faster convergence to the maximum
with few information.

6. CONCLUSION

In this paper, a novel method of maximum seeking for a
MAS has been presented. It relies on Kriging to perform
global optimization of some unknown field. Unlike other

methods based on gradient climbing, the method can
deal with multiple extrema. The proposed criterion for
selecting next sampling points prevents from exploring
entirely the search domain, by favoring sampling in areas
the more likely to improve the estimate of the global
maximum. The dynamics of the agents is also taken into
account in the sampling point selection process. Simulation
results have been provided for comparison with a reference
method, which shows that the number of measurements
to be taken by the agents tends to be smaller to get a
quick convergence to the maximum of the field. In future
work, the potential presence of outliers should be taken
into account in the Kriging process to get a more robust
maximum seeking scheme.
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