
Environment Mapping & Interpretation by Drone

Martial Sanfourche, Bertrand Le Saux, Aurélien Plyer, Guy Le Besnerais
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Abstract—In this paper we present the processing chain for
geometric and semantic mapping of a drone environment that we
developed for search-and-rescue purposes. A precise 3D modelling
of the environment is computed using video and (if available)
Lidar data captured during the drone flight. Then semantic
mapping is performed by interactive learning on the model, thus
allowing generic object detection. Finally, tracking of moving
objects are performed in the video stream and localized in the
3D model, thus giving a global view of the situation. We assess
our system on real data captured on various test locations.

I. INTRODUCTION

Active research have been carried out for automatically
producing maps of the environment explored by a drone.
Typically, those maps show 2D or 3D geometric representa-
tions, combined with sensor-based information such as tex-
tured images. The underlying assumption is that these models
constitute a first step toward drone autonomy, by allowing ego-
localization and trajectory planning [1]. The next step is se-
mantic mapping that provides informations object localization
and regions of interest [2].

Though, in many real-life situations, such as urban monitor-
ing or search-and-rescue (SAR) operations after an industrial
accident or a natural disaster, drones are not fully autonomous
but at least partially remotely operated. In the ground control
station, qualified professionals collaborate closely with the
drone operators to conceive the intervention scheme. In this
paper, we propose a complete workflow for mapping and
interpreting the drone environment. Our approach aims at
setting the users at the center of the system by using their
expert knowledge and provinding them in return with a global
view of the situation which helps them making decisions.

The article is organized as follows. In part II, we present
our approach for estimating precisely the drone trajectory and
modelling in 3D the environment: buildings, trees, obstacles,
ground, etc. We detail our method for remote detection of mov-
ing objects and events of interests from a moving platform in
part III. Finally, we propose interactive tools for interpretation
of objects and areas of interest in part IV, before presenting
the results of experiments in part V.

II. OFFLINE 3D MAPPING

This module produces high resolution geographical data
from video (and eventually Lidar) sensors mounted on the
drone. The main objective is to obtain a 3D model of the
observed scene (cf. Fig. 1), that will allow to produce easily
interpretable products like orthomosaics and Digital Elevation
Models (DEMs). The proposed processing chain decomposes
in precise drone trajectory estimation, calculation of the 3D

Fig. 1. 3D model of the area explored by the drone, built using the precise
flight-trajectory estimate obtained by bundle adjustment of the video images.

voxel model and DEM, and finally DEM texturing by video
mosaicing and orthorectification.

A. Refinement of trajectory parameters by bundle adjustment

In spite of drone localization using a precise GPS RTK
receiver and good (but let precise) attitude measurements, raw
navigation measurements often lead to geometric inconsis-
tencies and reconstruction artefacts, as shown in Fig. 2. We
use bundle adjustment [3], [4] to refine simultaneously the
trajectory and 3D structure parameters (such as a map of
3D landmarks) using heterogeneous data: video-frames, GPS
positions and 3D measurements if available.

Practically, we first detect points of interest in the K
video frames and match them to create N tracks. Then,
bundle adjustment consists in estimating the K image-capture
parameters and the N 3D positions in the local reference
system of the landmarks defined by the tracks. In the following,
we use the notations defined in Tab. I

1) Objective function: The standard objective function that
bundle adjustment aims to minimize is the cumulative match-
ing cost of back-projection of the landmarks in the images (first
term of Eq. 1). For better precision, we added a constraint that

TABLE I. NOTATIONS FOR PRECISE TRAJECTORY ESTIMATION

T i
k , Θi

k Estimates (at iteration i) of position and attitude
(3 Euler angles) of the camera (at capture time k)

Xi
n Estimate (at iteration i) of the landmark n position

uobs
k,n Position of landmark n as seen in image k

p Known camera parameters (camera intrinsic parameters,
camera position on the drone, relative pose between sensors)

Π Sensor model to compute the projection of Xi
n in image k

(given p, T i
k et Θi

k)
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Fig. 2. Comparison of an aerial image (source: IGN) and a altitude map
obtained using Lidar data set in the same reference frame from raw navigation
measurements. Ghost buildings appear and the scene geometry is distorted,
which means a localization drift occurs.

implies position estimates can not drift too much away from
the GPS RTK measures {T obs

k }k∈[1...K]. The new objective
function is then:

J =

K∑
k=1

N∑
n=1

δ(k, n)
∥∥uobsk,n −Π (Tk,Θk, p,Xn)

∥∥
Wk,n

(1)

+
K∑

k=1

∥∥Tk − T obs
k

∥∥
WT

where δ(k, n) indicates if uobsk,n exists (i.e. if Xi
n appears

in image k), ‖•‖W is the Mahalanobis distance defined by
the covariance matrix W , and WT is a covariance matrix
that allows a localization error of 15cm (based on the GPS
precision) with respect to the 3 directions.

2) Hierarchical optimization: In order to process video
sequences of several thousand images and even more 3D
landmarks, we propose a 2-step approach.

a) Bundle adjustment on key-frames: Due to strong
redundancy between adjacent video-frames, the sequence can
be summarized by a limited numer of key-frames. However,
enough spatial covering is needed to allow matching of features
between key-frames. Following a procedure previously used
for Simultaneous Localisation and Mapping (SLAM) [5], key-
frames are chosen according to statistics of feature tracking
over the sequence. This iterative algorithm proceeds as follows.
In the first image, C points of interest are detected using a
Harris corner algorithm. Those points are tracked in subsequent
images using a KLT tracker [6]. Tracking errors k → k + 1
are detected by reversing the KLT tracker from k + 1 → k
and checking the dispersion error in image k. When the
matching number drops below a given ratio (typically 80%
of the tracked points), the current image defines a new key-
frame. C new points of interest are detected in this key-frame
and the procedure iterates.

Then a loop-closing procedure allows to integrate global
structure across the sequence. GPS information is used to link
key-frames which are distant temporally but cover the same
geographic area, under the assumption of a flat scene. Points of
interest in both key-frames are matched using SIFT descriptors
[7], thus allowing to extend tracks over the whole sequence.
Eq. 1 is finally minimized on a reasonable number of variables
using a Levenberg-Marquardt-type algorithm that benefits from

the sparsity of the Hessian matrix associated to the objective
function [4].

b) Fast processing of remaining images: Each image
is now treated separately to insure a fast process. Given the
3D landmark locations estimated during the previous step, the
pose of each image is computed using the 2D/3D matching
induced by KLT tracks.

B. Digital elevation models and orthomosaı̈cs

A DEM represents the scene relief as an image in which
each pixel corresponds to a cell of given resolution in the
horizontal plane and stores the height of the 3D measurements
falling into the corresponding cell. For the Lidar sensor, the
depth is directly provided and the location of reflecting 3D
points can be easily deduced from the sensor parameters
(angular resolution). If only the monocular camera is mounted,
we use stereovision for triangulating 3D points. We exploit
the viewing parameters refined by bundle adjustment and a
very efficient GPU-based optical flow algorithm: eFolki [8] to
obtain robust matchs between two successive keyframes. Each
cell is then given the maximum altitude of all the 3D points
that fall inside.

Orthomosaics are synthetic aerial images corrected of the
relief effects. Practically, generating an orthomosaic consists
in texturing the DEM. In case of Lidar-based DEM, one
needs to get the additional colorimetric information from the
camera. The centre of each DEM cell is projected in the
key-frames (while checking they are observable using a Z-
buffer-like procedure) and we take the average of the intensity
levels of the retrieved image pixels. For a camera-only DEM,
the orthomosaic is easy to build by considering the average
intensity level of the pixels with the highest altitudes that fall
into the corresponding cell.

III. EVENT AND MOVING OBJECT DETECTION

We present here a module for detection and tracking of
moving objects. Detection is based on the analysis of the
image motion or optical flow. We exploit here the same optical
flow algorithm as used to compute the depth maps in the 3D
mapping module (see section II). Motion-based detections are
then used to initialize a more robust appearance-based tracking,
using the Tracking-Learning-Detection (TLD) algorithm [9].

A. Moving object detection

Detection of a moving object in stereo could be obtained
by normalizing 3D residuals of the sene reconstruction with
the hypothesis of a static environement such as in [10]. The
probleme is more difficult with a monocular camera. We have
to consider the residual which respect to the 3D structure of
the scene which consists of an epipolar flow, and possible
missed-detection cases (for example when target and drone
have coplanar trajectory).

As we are interested to ground moving vehicles, we model
the scene as a ground plane with some 3D elements. Under the
the assumption that the ground plane is mainly in the image
field of view, the ground motion is modelled by a homography
which is robustly estimated by RANSAC from image features
matched in successive views. By subtracting the estimated



homographic optical flow to the raw image flow, we obtain
the residual part that corresponds to 3D objects and moving
objects. We accumulate these indicators for multiple image
couples in order to improve the signal to noise ratio and (in
case of erroneous labelling of 3D object) for distinguishing
between 3D objects and moving objects by analysis temporal
statistical moments of the residual optical flow. The detection
is done by hysteresis thresholding of the standard deviation
and by taking the local maximum.

B. Moving object tracking and localization

Successive detections at close image locations indicates a
probable target, and trigger the tracking algorithm. TLD tracks
image features located inside a bounding box that is initialized
around the detection blob. During the frame-to-frame tracking,
the object changes its aspect smoothly. TLD learns the different
aspects of the object to be able to redetect it in case of object
occlusion (behind a 3D element of the scene or when the object
goes outside of the camera field of view). At each moment, the
object detected and tracked is located in the global scene model
by computing the intersection of (1) the ray coming from the
optical center and passing by the center of the bounding box
and (2) the DEM.

IV. GENERIC OBJECT DETECTION

The third component of our system aims at developping
scene-understanding tools which help the operational planning:
object classifiers applied the geometric model and to images
of the drone camera.

A. Interactive learning and semantic mapping

Orthomosaı̈cs give a global overview of the scene. They
are used to learn interactively classifiers of objects of interest.
The operator selects examples of interesting areas and useless
areas, from which small patches are extracted and then indexed
by appearance features (histograms of oriented gradients) to
constitute a training set. Fast online learning is then performed
by online gradient boost, a variant of boosting which allows us
to deal with two major problems raised by interactive learning:
mislabelling (due to imprecise selection or wrong labelling)
and unbalanced datasets (in the images we are dealing with,
positive samples are often scarce) [11].

Fig. 3. Interactive learning interface on the orthomosaı̈c (left) and resulting
semantic map by online gradient-boost (right).

Once the training is done on a few areas, classification can
be processed on the whole image by a standard sliding-window

Fig. 4. Graph of the key-frames of the video sequence captured by the
drone, displayed according to the drone location. Temporal links between
key-frames are shown in red, while geographical (i.e. loop-closing-obtained)
links are shown in blue.

approach (cf. Fig. 3). For drone planning, the interest is two-
fold. Target-detection maps (like cars or persons) are useful
for defining the target of the drone flight and thus planning
the path that leads to it. Obstacle-detection maps (such as trees
or buildings) are useful for planning paths that avoid potential
dangers, especially when approaching the target.

B. Adaptation of detectors to the video domain

During successive flights, the classifier parameters are then
used in a detector that performs on frames of the video flow
and detects the objects of interest in them. These images have
viewing angle and resolution that differ from the orhomosaı̈c
ones. Geometric adaptation is performed by rectifying patches
extracted in the video-frames, using the exact homography that
depends on the camera parameters and the drone position given
by the GPS [12].

V. EXPERIMENTS

The platform used for experiments is a Yamaha RMAX
helicopter with a 1,3MP monochrome camera for video and
a 4-line-scan laser measurement sensor for range data. The
localization of the helicopter is given by a decimeter-class GPS
system. Several flights were performed in various locations that
present peri-urban scenes with buildings, trees and open areas.

c) 3D mapping: Fig. 4 shows the result of the bundle
adjustment step of the 3D mapping (cf. section II-A) performed
over selected key-frames captured by the drone. Fig. 5 which
shows 10cm resolution DEM and orthomosaı̈c built using only
images and monocular stereovision.

d) Event and moving object detection: Fig. 6 and Fig. 7
show respectively the motion-base detection and appearance-
based tracking of targets of interest (for example someone
trying to catch the drone’s attention in an emergency situation).
Video of the whole process can be viewed online 1.

e) Generic Object Detection: In Fig. 8, we present
some results of the adapted classifiers of section IV used on
new images captured by the drone: vegetation, vehicles, and
buildings. Video of the whole process can be viewed online 2.

1https://www.youtube.com/watch?v=JyHaeBkvKTQ
2https://www.youtube.com/watch?v=OTxaLcouOHE



Fig. 5. DEM with image-only data (10cm resolution) and corresponding
orthomosaı̈c obtained using stereovision.

Fig. 6. Residual motion detection by optical flow (left) and corresponding
detection of moving object(right).

VI. CONCLUSION

We have presented a complete workflow for environment
mapping using remote-sensing from a drone. This system
allows to sense and understand objects and regions of interest,
and to localize them in a 3D model. On-board equipment is
minimal: a calibrated camera and a standard GPS is enough,
even if a Lidar can be added to obtain a better precision. With
this setup, the system is able to deliver geo-localized ortho-
mosaı̈cs, DEMs, semantic maps, alarms for moving objects.

Fig. 7. Tracking of the objects in the video (right) and simultaneous
localization on the orthomosaı̈c (left).

Such a system aims first at providing drone operators with tools
for a better understanding of the environment in which the
drone evoluates, and second, to benefit from qualified experts
for adding knowledge to the geometric models.

Fig. 8. Detections after adaptation to the video-domain for various objects
classifiers: vegetation (left), vehicles (middle), and buildings (right).
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