A Prediction-Correction Approach
for Real-Time Optical Flow Computation
Using Stereo

Maxime Derome™) | Aurelien Plyer, Martial Sanfourche, and Guy Le Besnerais

ONERA - The French Aerospace Lab, Palaiseau, France
{maxime .derome,aurelien.plyer,martial.sanfourche,
guy.le_besnerais}@onera.fr

Abstract. Estimating the optical flow robustly in real-time is still a
challenging issue as revealed by current KITTI benchmarks. We propose
an original two-step method for fast and performant optical flow estima-
tion from stereo vision. The first step is the prediction of the flow due
to the ego-motion, efficiently conducted by stereo-matching and visual
odometry. The correction step estimates the motion of mobile objects.
Algorithmic choices are justified by empirical studies on real datasets.
Our method achieves framerate processing on images of realistic size, and
provides results comparable or better than methods having computation
times one or two orders of magnitude higher.

1 Introduction

Estimating the dense temporal matching between two consecutive images —also
called Optical Flow (OF)— is a well know problem in computer vision. From
a single camera, it provides a clue on the motion and the 3D structure of the
scene. From a stereorig, although the 3D structure can be directly estimated
by stereo-matching, computing the OF is still necessary to provide dynamic
scene perception and estimate moving objects displacement. In this context,
estimating OF together with depth maps allows to compute the 3D motion
field—called Scene Flow (SF), which essentially summarizes all the information
about ego-motion, 3D structure and moving objects.

Recent works on stereo matching have lead to both accurate and fast algo-
rithms [7,9,10,19]. As for the OF estimation, numerous progress have been made
concerning robustness to outliers and illumination change [22] and large displace-
ments: through multi-scale or pyramidal approaches [1] or using feature matching
to drive the OF estimation [2,23]. However, compared to the significant efforts
made to improve the accuracy of OF, we feel that little attention has been paid
to the real-time capability of OF algorithms [16,25]. If we look at the KITTI
ranking for OF [8], we notice that the few algorithms that achieve video rate
computation give significantly lower performances than top-ranking methods.
We also observe that these top-ranking methods make use of stereo information
[14,20] or epipolar geometry [24].
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In fact, most of these algorithms estimate the SF and use an advanced mod-
elization of the scene [20] or of the objects [14] to improve the accuracy of the
results. Such approaches achieve leading performances but are computationally
expensive and require several minutes to perform. Algorithms proposed in [24]
perform one or two orders of magnitude faster but they are still too slow for
real-time application on KITTT’s image dimensions and, moreover, they rely on
the assumption of a static scene.

1.1 Contributions

In contrast with previous approaches that use stereo, our main purpose is not to
improve the OF’s accuracy but to reach the shortest processing time while keep-
ing a good estimation performance. Our approach is in the line to the work of
Wedel et al. [21] which decouples the stereo and the OF problems and first esti-
mates the disparity map to bootstrap SF estimation. Here we intend to benefit
as much as possible from the geometric information we can get from a stereorig,
and go even further in the decoupling by using a visual odometer to estimate the
camera motion. This can be related to Muller et al. [15] which uses ego-motion
information obtained from an inertial sensor to support the OF estimation and
avoid the staircase effects induced by the total variation regularization. But,
again, our goal here is to reduce computation time, not improve OF estimation.

Note that, although we consider a stereovision context, we focus on OF rather
than SF estimation. Let us first note that having estimated the OF and knowing
the depth maps at the two time instants, SF computation essentially reduces to a
change of coordinate frame. As shown by the literature review, the main compu-
tational bottleneck then lies in the OF estimation, which motivates the present
work. Besides, there are reactive tasks in vision-based robotics which can exploit
information deduced from the OF without calling for SF estimation. A sparse
representation of the scene, where moving objects are reduced to a bounding box
with a mean 3D velocity, can be sufficient for designing an obstacle avoidance
system, and requires much less computation than the full SF derivation.

Our contribution is two-fold. First, we present a simple prediction-correction
approach that exploits geometric information obtained by grayscale stereo
images to improve the OF estimation. Second, by carefully selecting the best
trade-off between computational efficiency and performance for the algorithms
involved in each step (stereo-matching, visual odometry, optical flow), we demon-
strate framerate processing (10Hz) while achieving good results on KITTI
datasets.

2 Prediction-Correction of Computation in Stereo

The main idea behind our approach is to split the OF estimation into two steps:
(i) estimate the static part of the OF, which amounts to predict the optical flow
between two time instants from 3D structure and camera motion; (ii) correct
the OF to account for moving objects.
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The static part of the OF can be deduced from the disparity map and the ego-
motion respectively computed by stereo and visual odometry algorithms. Thanks
to the epipolar constraint, the estimation of disparity with calibrated stereo
images boils down to a 1D search whereas OF requires a 2D search. Besides,
unlike OF algorithms, stereo algorithms handle well boundaries. Recovering the
ego-motion by visual odometry is a 6-parameters estimation problem that can be
solved efficiently even in presence of moving objects, using a robust estimation
procedure such as RANSAC [6].

The correction step mainly aims at estimating the part of the OF due to
moving objects. It also corrects errors in the depth map propagated by the pre-
diction step. In many situations, the associated residual OF is of low magnitude
and good results can be obtained from fast local OF estimation algorithms. Local
problems can be encountered when dealing with fast moving objects, though.

Before presenting the prediction and the correction stages of the proposed
Prediction-Correction OF (PCOF) approach, we briefly define the notations used
in this paper.

2.1 Convention and Notations

We consider the pinhole camera model for the left camera frame which is taken
as reference.

— I, left camera (grayscale) image at time instant ¢

— f, camera focal in pixel

— b, stereorig baseline

~ (z,y), pixel location

— (x0,¥o0), coordinates of the optical center projection into the image plane
— (u,v), optical flow between I and I;11

— d;, disparity map at time instant ¢

— X3, 3D coordinates in (left) camera frame at time instant ¢

- Xi(z,y,d) = —ﬁ (x — x0,Y — Yo, f), the triangulation function at ¢

— II, the projection operator which maps a 3D point to the image plan

R and T, the camera rotation and translation between t and ¢ 4+ 1 such that
Xiv1 = RX; + T for a static point.

2.2 Prediction Stage

The predicted OF (upred, Vpred) is computed by assuming that the scene static
between t and ¢ + 1:

(1) ) = st - (7). 0

Upred

where ftp_ﬁd(x, y,d;) is the predicted position in I;11, of a point located in (z,y)
in I;:

@, y, di) = T (RX(x,y,d;) + T). (2)
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From the predicted optical flow, one can predict the image that should be
observed if there were no moving objects in the scene [5]. This can be done
from ¢ to t + 1 (forward scheme) or from ¢t + 1 to ¢ (backward scheme). As we

intend to estimate the OF in the geometry of image ¢, we adopt, as in [4], a back-
ward scheme and use §ffld(ac, y, d¢) to warp Iy into frame t. Another advantage

of the backward scheme is that the predicted image IP™*? can be synthesized by
a simple interpolation starting from a regular grid

(2, y) = Lea (€55 (2,9, dy)).- 3)

while the forward scheme leads to an irregular interpolation.

2.3 Correction Stage

For the sake of comparison we present two different correction strategies that
respectively use the predicted OF (upred, Uprea) and the predicted image I7 red

Prediction Warping Optical Flow (PWOF). A natural way to compensate
the camera motion is to initialize an OF algorithm with (upred, Uprea) and run it
on one pyramid level only. This strategy is similar to the one of Revaud et al. [17],
who initialize a TV-L1 OF algorithm with a flow obtained by the interpolation of
sparse set of matches. Here the initial warping corresponds to the static part of
the optical flow, hence in a non-pyramidal approach, the motion of fast moving
objects might be difficult to estimate.

Prediction Correction Optical Flow (PCOF). Another option is to com-

pute the OF (8u,dv) between I, and IP™**. In this context the brightness
consistency equation writes:

Li(w,y) = 1" (@ + bu(x,y), y + 6vo(,y)). (4)
By definition (cf. Eq.3), IP™** writes:

"2, y) = Toa (2 + tprea(z, 9),y + Vprea(. ) 5)

Thus, by combining Eqgs. 4 and 5, we obtain the final OF estimate (u,v) after
correction:

u(z,y) = du(z,y) + Uprea(r + du(z,y), y + ov(z, y)) (6)
v(z,y) = v(z,y) + vprea(z + du(z, y), y + dv(z, y)) (7)

3 Algorithmic Choices: Odometry, Stereo and OF

In this section we present the various algorithms which have been considered and
justify our choices by an empirical performance/cost study on KITTI datasets.
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3.1 Ego-Motion Estimation

To estimate the camera motion from stereo images, we choose the visual
odometer eVO proposed in [18]. Given 2D-3D matchings {[z} 1,y ], X['}, it
minimizes the following reprojection error:

N

E(R,T) = %Z

n=1

2

[xfjl} — II(RX} +T)
Y1

(®)

In [18], feature points extraction and 3D triangulation is done only at
keyframes, so as to reduce computation load and reduce drift. Here we only
consider two consecutive stereo pairs, so the feature points processing is per-
formed at each frame. Despite this setting, the camera motion can be estimated
at 20 Hz on a single CPU. In practice, the optimization of (8) is done within the
RANSAC framework [6] to ensure the system robustness in presence of moving
objects as long as the major part of the image is covered by static elements.

3.2 Dense Stereo Matching

Dense stereo matching, or dense disparity estimation in our rectified stereo con-
text, has been extensively studied and several fast algorithms are available. They
include Semi-Global Matching (SGM) [10] whose implementation on FPGA [7]
allows stereo matching at 25Hz (for 128 disparities and images of 740 x 480
pixels), Efficient Large-scale Stereo (ELAS) [9] running at 20 Hz on a CPU (for
KITTI size images, when enabling sub-sampling option) and Adaptive Coarse-
to-fine-stereo (ACTF) [19] that reaches 32 Hz on a 240 cores GPU (for 256 dis-
parities and images of 640 x 480 pixels). We choose the last one which offers a
remarkable trade-off between speed and accuracy, and is particularly efficient for
preserving the boundaries of foreground objects. Yet, as SGM is considered as
a reference method in stereovision, we also consider it in Subsect. 4.1 for com-
parisons purpose — actually, we use the Semi-Global Bloc Matching (SGBM)
which is the OpenCV version of SGM that differs by its cost function. Because
of the uniquess criterion enforced by the left-right checking, some parts of the
disparity map might remain undefined. As done in [19], we fill these parts with
the nearest valid pixel disparity found by an horizontal and vertical search.

Regardless of the stereo algorithm used, the disparity map is then regularized
by performing the first iteration of the consensus framework introduced in [3]. It
essentially fits plane models on the disparity over small overlapping windows—
we use 16 x 16 and 32 x 32 overlapping windows. This smoothing preserves the
boundaries quite well, while efficiently filtering the map and rejecting outliers.
Besides, this algorithm is highly parallelizable and the gain brought seems to
worth the small computational overhead.

3.3 Optical Flow

In the following, we consider High Accuracy Optical Flow (HAOF) [1], TV-L1
optical flow [25] and Large Displacement Optical Flow (LDOF) [2] algorithms,
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that are often cited as references among variational methods derived from the
seminal work of Horn and Schunck [11]. We also consider FOLKI [12], an OF
algorithm based on Lucas-Kanade paradigm [13], that achieves real-time perfor-
mances on a GPU [16]. In our experiments, we use LDOF and OpenCV version
of HAOF and TV-L1 with default parameters, and FOLKI with: J = 5 resolu-
tion levels, K = 4 iterations, two window radii {8;4} and rank order 4 (more
explanations about these parameters can be found in [16]).

4 Results on KITTI Datasets and Processing Time

For the evaluation, we have considered KITTI 2012 [8] and KITTT 2015 [14]
datasets, which contain stereo images acquired from a moving car in urban envi-
ronment. The 2012 dataset presents static scenes, whereas the 2015 dataset
focuses on moving objects.

4.1 Comparison of the Correction Approaches and OF Algorithms

Experiments on KITTI 2012 dataset are summarized in Table 1. We compare
the performances of both PWOF and PCOF strategies described in Subsect. 2.3,
while testing different OF algorithms: FOLKI, HOAF and TV-L1. In all cases,
as explained in Subsect. 3.2, we choose ACTF stereo followed by a filtering step,
for the dense stereo matching used in the prediction stage.

Table 1 first demonstrates that the PCOF strategy, based on OF estimation
on a predicted image, performs equally or better than PWOF whatever the
OF method. An illustration is given in Fig.1 in a case where the prediction is
particularly inaccurate because of a visual odometry error. Leading performances
are achieved with PCOF and FOLKI optical flow. This might appear surprising
at first, since local methods like FOLKI are reputed to be less accurate than
variational methods like HAOF and TV-L1. However FOLKI is very robust and
converges faster than HOAF and TV-L1. Moreover the higher performance of the
latter methods to adaptively smooth the OF are not very relevant here because
the sought residual flow is often rather inhomogeneous. Finally the last line of
Table 1 shows that using SGBM instead of ACTF stereo slightly increases the
results, but at the expense of a computational overhead (cf. Subsect. 4.3).

4.2 Advantages of the Prediction-Correction Approach

Static Environments. In the case of a static environment, Table1 demon-
strates that the prediction step, which exploits ego-motion and the dense stereo
matching computation, already performs far better than FOLKI OF. This is
partly due to the fact that object boundaries are over-smoothed by window-
based OF methods such as FOLKI. Moreover, despite the static environment,
the correction stage brings a significant improvement.
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Table 1. Optical flow performances on KITTI - 2012 training set in term of percentage
of outliers (Out-) and average error in pixels (Avg-) on the whole image (-All) and on
the non-occluded area (-Noc)

Optical flow Out-Noc | Out-All | Avg-Noc | Avg-All
FOLKI 21.95% |31.01% | 5.5px 11.2px
Predicted OF 6.70% | 9.85% |1.2px 1.7 px
PWOF - HAOF 596% | 9.18% | 1.1px 1.6 px
PWOF - TV-L1 6.66% |15.59% | 1.2px 2.3 px
PWOF - FOLKI 8.03% |11.79% | 1.6 px 2.2 px
PCOF - HAOF 592% | 9.18% | 1.1px 1.6 px
PCOF - TV-L1 7.39% 10.42% | 1.3px 1.8 px
PCOF - FOLKI 543% | 8.77%  1.1px 1.6 px
PCOF-SGBM - FOLKI| 527% | 8.08% | 1.1px 1.8 px

Dynamic Environments. In presence of moving objects, the correction stage
becomes necessary to estimate the OF which cannot be deduced only from the
camera motion and the scene geometry, see Table 2. Figure 2 presents two exam-
ples from KITTI 2015 dataset with moving cars. The prediction fails to estimate
the OF on moving objects which is provided by the correction step. PCOF
significantly improves FOLKI results, but still encounters difficulties with very
large motions (cf. Fig. 2, second column) for which LDOF [2] is more suitable
(cf. Table2) but leads to an important computational overhead (cf. Table5).

Table 2. Optical flow performances improvement brought by the PCOF approach, on
KITTI - 2015 training set. Percentages of OF outliers, on the whole image (-all), on
the background (e.g. static part, -bg) and the foreground (i.e. on moving objects, -fg)

Optical flow Fl-bg |Fl-fg Fl-all

FOLKI 40.10% | 55.53 % | 44.57 %
Predicted OF |17.53% | 86.69 % | 29.46 %
PCOF 14.46 % | 55.55 % | 22.62 %

PCOF - LDOF | 13.97% | 29.62 % | 18.16 %

4.3 Processing Time

Algorithms on CPU. Tests have been done on a workstation with 6 CPUs
(Interl Core i7 at 3.2GHz). With 400 feature points, the visual odometer [18] runs
in 50 ms using a single CPU. Most of the processing time is spent in the feature
points extraction and could be significantly speeded up by parallelization. SGBM
performs in 730ms (OpenCV implementation) and appears unfit for framerate
processing.
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Fig. 1. First row: left camera image (left) and predicted image (right). From second to
fifth row: OF (left) and error map (right) displayed using KITTI color convention, for
the predicted OF, and PCOF using TV-L1, HAOF, and FOLKI. Blue corresponds to
low error on the OF estimation, and orange to high error. Qut-Noc is also displayed.
(Color figure online)

Fl-bg | Fl-fg | Fl-all
2.51% | 59.81% | 10.54%

Prediction OF Fl-fg | Fl-all
100% | 8.29%
GET b

Flbg | Fifg |
1.70% | 60.01%

Fl-fg | Fl-all I Fi-bg | Fifg | Flall
5.74% | 3.83% 2.40% |38.26% | 7.43%

Fig. 2. Error on the estimated OF fields (blue corresponds to low error, and red to
high error), and percentage of outliers (i.e. points for which the OF end-point error is
> 3pz and > 5 %) for the optical flow (Fl-all, Fi-bg and Fl-fg) on the whole image but
also on the background (e.g. static part) and the foreground (i.e. on moving objects).
(Color figure online)
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Table 3. Average processing time (in ms) on KITTI dataset, with two different GPUs,
for each step of our pipeline and for different optical flow algorithms with and without
(in brackets) pyramidal approach

ACTF + filtering | Prediction | FOLKI HOAF TV-L1
GTX TITAN (2688 cores) | 11 + 7 1 27 (15) | 127 (31) | 128 (226)
Quadro 2000 (192 cores) |50 + 31 1 150 (113) | 843 (283) | 703 (1401)

Algorithms on GPU. Except for the ego-motion estimation, every step of
PCOF can be done on GPU. We provide in Table3 runtimes obtained on a
high performance GPU (GeForce GTX TITAN) and a standard one (Quadro
2000). Among the OF algorithms tested with PCOF, only FOLKI has proven to
be fast enough for framerate processing (10 Hz). HAOF can also be considered
using PWOF (i.e. no image pyramid) on the TITAN.

Note that the stereo part (ACTF and consensus filtering) runs on the GPU,
in parallel with the visual odometry performed on the CPU in 50ms. Thus
PCOF processing time is around 80 ms with the GeForce GTX TITAN, which
fits framerate processing on KITTI sequences (10 Hz).

Table 4. Extract of KITTI 2012 OF ranking, with methods using stereo image (st),
epipolar geometry (ms) or more than two temporally adjacent images (mv)

Method Setting | Out-Noc | Out-All | Avg-Noc | Avg-All | Runtime
1 | PRSM st mv 2.46% | 4.23% 0.7px 1.0px | 300s
4 |SPS-F1 ms 3.38% |10.06% | 0.9 px 29px |11s
9 | MotionSLIC | ms 3.91% |10.56% |0.9px 2.7px | 11s
10 | CNN-HPM 4.89% |13.01% |1.2px 3.0px |23s
13 | PCOF-SGBM | st 540% | 8.73% |1.2px 2.1px |0.8
14 | PPM-Fast 541% |15.19% 1.2px 3.4px |2.8s
15 | PCOF st 5.59% 9.69% | 1.2px 1.9px |0.08s
49 | eFolki 19.31% |28.79% | 5.2 px 10.9px |0.026s
58 | FlowNetS + ft 37.06% |44.49% |5.0 px 9.1px |0.08s

4.4 KITTI 2012 and 2015 Optical Flow Rankings

Looking at KITTI 2012 and 2015 Optical Flow benchmarks (Tables4 and 5),
we can conclude that the stereo information pays off. On one hand, the pro-
posed approach performs favourably compared to pure OF algorithms. On the
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Table 5. Extract of KITTI 2015 OF ranking, with methods using stereo image (st),
epipolar geometry (ms) or more than two temporally adjacent images (mv)

Method Data | Fl-bg | Fl-fg Fl-all | Time
1 |PRSM st mv| 5.33%|17.02% | 7.28% 300s

8 | PCOF-LDOF st 14.34%  41.30% | 18.83% | 50 s
9 | CNN-HPM 18.33% | 24.96 % | 19.44% | 23s
10 | MR-Flow 19.42%  27.65% | 20.79% | 12
14 |PCOF + ACTF st 14.89 % | 62.42% | 22.80 % | 0.08 s
15 | CPM-Flow 22.32% | 27.79%  23.23% | 4.2
16 | MotionSLIC ms 14.86 % | 66.21 % | 23.40 % | 30s

other hand, although our approach gives a higher percentage of outliers than SF
algorithms that also use stereo information (noted st), it runs several order of
magnitude faster. Finally, let us emphasize that PCOF is among the only three
algorithms able to achieve framerate processing (10 Hz) on the KITTT datasets.

As for the KITTT 2015 ranking, the percentage of OF outliers (Fl-all) is
significantly higher, mainly due to the large motions induced by fast moving
objects. Using LDOF instead of FOLKI significantly improves the performances
in this case, but at the expense of an important computational overhead (cf.
PCOF-LDOF and PCOF + ACTF in Table5).

5 Conclusion

We have proposed to fully exploit stereo information for fast and performant OF
estimation. In the prediction step, the static part of the OF is derived from depth
and visual odometry. The correction step improves the estimation and estimates
the OF associated with moving objects, with corrrect performance except for the
fastest ones. Relying on relevant algorithmic choices, we have been able to reach
framerate (10 Hz) processing while maintaining high quality OF estimation, as
shown by a performance evaluation on KITTI datasets. On-going work concerns
the integration of covariance propagation in the prediction/correction process
and the application of the proposed pipeline to an obstacle avoidance system for
lightweight ground and aerial robots.
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