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Abstract

We propose a complete loop (detection, estimation,

avoidance) for the safe navigation of an autonomous vehi-

cle in presence of dynamical obstacles. For detecting mov-

ing objects from stereo images and estimating their posi-

tions, two algorithms are proposed. The first one is dense

and has a high computational load but is designed to fully

exploit GPU processing. The second one is lighter and

can run on a standard embedded processor. After a step

of filtering, the estimated mobile objects are exploited in

a model predictive control scheme for collision avoidance

while tracking a reference trajectory. Experimental results

with the complete loop are reported for a micro-air vehicle

and a mobile robot in realistic situations, with everything

computed on board.

1. Introduction

The safe navigation of terrestrial and aerial autonomous

robots requires the development of new methods for event

detection and trajectory definition in uncertain environ-

ments. For vehicles with a limited payload and in situa-

tions where usual localization means (GPS/IMU) are un-

available or not accurate enough, a current trend in robotics

is to rely on embedded vision data for simultaneous local-

ization, mapping and obstacle detection [6].

This paper considers the definition of a generic strategy

relying mainly on embedded stereo-vision for detecting mo-

bile objects with no specific prior information, estimating

their motion and defining safe trajectory for autonomous

navigation. The target applications are micro-air vehicles

(MAV) in indoor cluttered environments and mobile robots

or passenger vehicles in urban environments.

This work builds upon existing results in embed-

ded vision-based localization and mapping (eVO algo-

rithm [26]), mobile object detection and tracking using

stereo-vision [9,10] and model predictive control (MPC) for

safe autonomous navigation [5,20,23,24]. The contribution

here is a fully integrated perception and control loop for

waypoint navigation with avoidance of unknown dynami-

cal obstacles. Experimental results in realistic conditions

are provided for a mobile robot in urban environment and a

micro-aerial vehicle in flying arena. Parallel computing can

be available on mobile robots, thus a more computationally

expensive method has been designed to fully exploit GPU

processing. On the other hand, a lighter algorithm is fully

functional and compatible with the embedded processing

capabilities of aerial vehicles. Specific modeling and avoid-

ance strategies are defined within the MPC framework to

take into account the mobile obstacles.

Some previous contributions have addressed similar is-

sues. In [16], objects are detected by feature tracking and

clustering and avoidance is achieved using a fuzzy con-

troller for a mobile robot. In [14], a 2D dynamic occu-

pancy grid is associated with a simple open-loop avoid-

ance strategy. In [15], experimental results on terrestrial

and aerial robots have been reported using a monocular

detection method, which did not take into account 3D in-

formation. A camera and a range sensor were combined

in [8] to track mobile obstacles and a potential field al-

gorithm for avoidance, with experimental validation on a

mobile robot. In [11], a methodology has been proposed

to detect mobile obstacles using occupancy grids, predict

their motion and avoid them via a motion planning strat-

egy. This was successfully applied on an autonomous pas-

senger vehicle equipped with several heavy sensors dedi-

cated to navigation in urban environment. In [31], stereo-

vision and a laser range sensor were used to detect mobile

objects based on a prior on color and shape. An heuris-

tic avoidance strategy was defined and tested on a mobile

robot. Randomised MPC for obstacle avoidance has been

reported in [7], with experimental results on terrestrial ve-

hicles. In summary, most previous references considered

combinations of sensors and computationally demanding

control strategies, while we focus here on exploiting a sin-

gle stereo sensor inside an integrated vision and control loop
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whose limited computational cost makes it compatible with

most robotic platforms.

Section 2 provides an overview of the complete percep-

tion and control loop, Section 3 describes the two vision-

based algorithms for detection and tracking of mobile ob-

jects. Section 4 details the filtering and motion prediction

step, which is exploited by a MPC controller (Section 5) for

safe autonomous navigation. Section 6 reports experimental

results on two robotic platforms.

2. Overview of perception-control loop

Experiments have been carried out on two target plat-

forms: a mobile robot and a micro-air vehicle (MAV).

The mobile robot is a four-wheel Robotnik Summit XL

(Fig. 1a) equipped with a stereo rig made of two electron-

ically synchronized USB cameras (5.5 mm S-mount lens)

separated by a baseline of 18 cm. The cameras are config-

ured to capture VGA frames at 20 Hz. The robot embeds a

PC with an Intel quad-core i7 processor and a Nvidia GPU

(GT640).

The MAV is an Asctec Neo hexarotor (Fig. 1b) made

available in the context of the FP7 EuRoC project [28],

which embeds a NUC dual-core i7 CPU, a triple-redundant

IMU and the VI-sensor [21] which includes up to four cam-

eras at 20 Hz (only the front rigid stereo-rig was used in this

research).

(a) Robotnik Summit XL (b) Asctec Firefly Neo with VI sensor

Figure 1: Robotic platforms used for experiments

The same integrated perception and control loop (Fig. 2)

was deployed on the two platforms, with only a few adap-

tations to take into account the sensors and state-space di-

mensions of each robot. The main localization algorithm

for the two platforms is the vision-based odometry eVO al-

gorithm [26], which is used alone for the mobile robot and

fused via Kalman filtering with the IMU for the MAV [18].

The robot low-level controller is used to make the motors

track the commanded linear and angular speeds, while the

low-level controller of the MAV is used to transform thrust,

roll, pitch and yaw rate orders into motor speeds.

3. Mobile object detection and pose estimation

Two methods for mobile object detection and tracking

using only embedded stereo-vision information have been

defined. One is based on dense (i.e. pixel-wise) processing,

the other relies on tracking and clustering of sparse features.

3.1. Detection from dense stereo­vision and ego­
motion estimation

Mobile object detection based on dense stereo-vision al-

gorithms has been studied in several works. They essen-

tially rely on stereo-vision reconstruction and ego-motion

estimation to predict a quantity from time k to k + 1 under

a rigid scene hypothesis. This quantity is then compared to

the observation to form a residual image which is thresh-

olded to provide candidate mobile objects. The prediction

can be performed on some geometrical quantity expressed

in the image space such as the Optical Flow (OF) and/or the

disparity [25, 30], or in the 3D space for instance the Scene

Flow (SF) as in [1, 32]. In contrast, the proposed method

uses stereo-vision and ego-motion estimation to predict an

image at time k + 1 which is compared to the recorded im-

age so as to detect moving objects. The algorithms pro-

posed by [2, 3] were also in this line. Our contribution is to

better account for uncertainty propagation in the prediction

process and to propose a GPU implementation able to run

in real time thanks to a careful selection of the algorithmic

components.

Figure 3: Flowchart of the dense detection method. Uncer-

tainty sources are coded as covariance matrices Σ.

The flowchart of the algorithm based on image predic-

tion is presented in Fig. 3. Stereo images are used for com-

puting a depth map and also for estimating ego-motion pa-

rameters (rotation matrix R and translation vector T ). All

further computations are conducted on the images issued

from the left camera: we denote Ik the left image at in-

stant k. Image prediction uses the current left image com-

bined with the estimated depth map and ego-motion param-

eters. The predicted image and the observed image are fed

into an optical flow algorithm. The estimated optical flow is

used as the residual, from which a χ2 statistic is computed

and thresholded for detection purpose. Further processing

steps clean the small isolated false alarms and fit bounding

boxes to the confirmed detection areas.

Rectified pairs of stereo images are considered, so that

the stereo configuration is characterized by intrinsic param-

eters {f, x0, y0} (identical for both cameras) and a baseline

b along the row (X) axis. At each observation time, a dense

depth map dk in the geometry of the left image is computed

2091



Figure 2: Perception and control loop for autonomous navigation in presence of mobile obstacles

by the fast “Accurate Coarse To Fine” (ACTF) method de-

scribed in [29]. Image points of pixel coordinates (x, y) and

disparity dk(x, y), are then triangulated as:

X̂k(x, y, dk) = −
b

dk(x, y)



x− x0

y − y0
f


 (1)

Compensating ego-motion and going back in time, the pixel

coordinates of these points in the previous frame are pre-

dicted under the assumption of a static scene, as:

[
xpred
k−1

ypredk−1

]
= Πk−1

(
R−1

(
X̂k − T

))
(2)

where Π refers to the projection onto the image plane at

time k−1. The backward predicted image Ipredk is obtained

by interpolating image intensity Ik−1 at these predicted po-

sitions. Occlusions are filled with image intensity picked

up from frame Ik. Finally, from Ik and Ipredk , we com-

pute the residual OF φr(x, y) for each pixel position. This

pixel-wise OF estimation is the most computationally de-

manding step of moving object detection, for which a very

fast GPU implementation of the highly parallel local OF al-

gorithm eFolki [22] is employed. Detection is then achieved

by thresholding the χ2 map derived from the residual flow

Λ2(x, y) = φr(x, y)
TΣ−1

φr
φr(x, y). (3)

The main issue here is to propagate the uncertainty of each

component so as to correctly estimate the covariance ma-

trix of the residual OF Σφr
. In particular, previous refer-

ences [2,3] have neglected the uncertainty about ego-motion

parameters (R, T ). This term is accounted for in the pro-

posed model as detailed in [9].

From the raw detection image, several operations are

conducted to filter potential false alarms and provide po-

sition and dynamic attributes for each selected detection.

Connected components (CC) are extracted. For each CC, a

depth is computed from the median value of the disparities.

3D neighboring CC are merged (eg. if their 3D distance

is less than a threshold, e.g. 0.1 m) and median depth is

recomputed. Finally, CC which are too small (e.g. areas

less than 0.4 × 0.4 m2) are rejected. The 3D position of

the object is then easily derived from CC image position

and median depth. Velocity is computed from the median

disparity and OF over the CC. Note that here the “full OF”

between Ik−1 and Ik is required, not the residual OF. We

compute the full OF from the residual one and a predicted

static motion derived from depth, ego-motion and resid-

ual motion. This estimate, denoted by PCOF (Prediction-

Correction Optical Flow) in [10], is obtained at a very low

computational cost here, as all required components are al-

ready available from the detection step. Finally, a simple

consistency check between one frame and the previous one

is added to filter spurious detections: a detection in one

frame at some 3D position Xd is confirmed if there is a

detection in the previous frame whose position and velocity

are consistent with Xd, according to the χ2 norm of the 3D

distance.

The computation time of the overall process of resid-

ual computation, detection and bounding box construction

ranges between 50 ms (no obstacle) and 250 ms (several

detections) on the mobile robot.

3.2. Detection from 3D feature clustering

In order to deal with limited computing power and lack

of GPU, we also propose a generic sparse feature-based de-

tection algorithm using stereo images, assuming that several

image features are located on the mobile objects. Consid-

ering two successive stereo-images, mobile objects are de-

tected in a two-step process (Fig. 4):

1. Triangulated image features are classified into static or

moving particles by analysing the two-view and the
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three-view geometric consistencies of the stereo and

temporal features associations.

2. Moving particles are clustered into objects according

to a rough geometric prior of metric dimensions.

Figure 4: Summary of the sparse mobile object detection

algorithm.

Harris corner are detected in the left image Ik at pixel po-

sitions (xn
k , y

n
k ). An homogeneous spatial distribution of

the features is enforced thanks to a bucketing strategy. A

sparse disparity calculation described in [26] makes it pos-

sible to triangulate the 3D points X̂n
k associated to each

feature using Eq. (1). Then, the sparse OF φn
k between

time k and k + 1 is computed on each Harris feature by

the KLT algorithm [27]. A first classification into mov-

ing and static features is obtained by using the epipolar

constraint on temporal associations. More precisely, a ro-

bust RANSAC-based Fundamental matrix estimation pro-

cess is run on the OF vectors to classify the outliers features

as moving particles. The remaining associations provide

2D-3D matches which are used to estimate the 6D cam-

era motion (R, T ) in a robust manner by the gold standard

RANSAC-P3P algorithm [13], followed by a non-linear op-

timization on the inlier matches. Then the final detection of

moving particles is achieved by thresholding the residual

sparse OF (φn
k − φ(X̂n

k , R, T ))2, where the second term is

derived from the 3D position at time k − 1 and the ego-

motion assuming that the point belongs to the static back-

ground scene. This approach is the simplest way to check

the three-view geometric consistency.

A Delaunay triangulation of the moving particles then

gives access to a rough 3D structure. This structure is com-

puted in inertial frame, thanks to the knowledge of the es-

timated camera pose. Triangles are pruned according to

their size and orientation (only the most vertical ones are

retained). The remaining connected triangles form candi-

date objects. We finally compute 3D bounding cylinders

and select those whose width is inside a specified range.

3.3. Discussion

The feature-based method can be successfully embedded

on the MAV’s on-board computer, since it runs in less than

100 ms. It is very efficient but ultimately relies on feature

detection, and may fail if there is not enough features de-

tected on the mobile object. Risk of non detection is lower

with the first method based on dense (pixel-wise) process-

ing, but it comes at a higher computational cost. Yet if the

payload of the platform allows it, the use of a GPU makes

it possible to use it in real time in a safer navigation loop.

4. Filtering and motion prediction

4.1. Modeling

The mobile object detected is modeled as a cylinder of

radius r and height h, restricted to a circle in 2D. At each

time step k, the output of the image processing is a mea-

surement vector

Zk =
[
XT

k , rk, hk

]T
, (4)

where Xk is the estimated position of the center of gravity

of the cylinder in inertial frame (in 2D or 3D), rk and hk the

measured radius and height.

Since these measurements can be very noisy due to ge-

ometrical ambiguities, a step of Kalman filtering is per-

formed. This is also a mean to provide an estimate of the

object velocity, which is required for predicting its future

motion. The state vector of the Kalman filter at time k is

denoted by Xk =
[
XT

k , V
T
k , rk, hk

]T
and its associated co-

variance matrix is Pk. Zk is the measurement vector from

equation (4) and Rk the covariance of observation noise

(provided by the perception module). Qk is the covariance

of process noise and te the sampling period.

As in [14], a constant velocity motion is assumed for the

mobile object, which yields the dynamical model

{
Xk = AXk−1

Zk = CXk

(5)

with

A =




I te.I 0 0
0 I 0 0
0 0 1 0
0 0 0 1


 , C =




I 0 0 0
0 0 1 0
0 0 0 1


 (6)

where I is the identity matrix of appropriate dimen-

sion (2 or 3). Since this model is linear, a classical Kalman

filter can be applied. The process noise covariance matrix,

for estimating the velocity and shape parameters, has the

form Qk = diag
(
0, σ2

v .I, σ
2
s , σ

2
s

)
. The measurement co-

variance matrix has the form Rk = diag
(
σ2
x.I, σ

2
r , σ

2
h

)
.
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When no measurement of the mobile object is received

from the perception module, only the state prediction is ex-

ecuted. Therefore the mobile object position is extrapo-

lated with the last estimated velocity. When new measure-

ments are received, the update step resumes. In the case

of multiple objects being tracked, an index is associated

to each object. In case of loss of measurements, the pre-

diction is performed as described previously and when new

measurements are received, the tracking is simply based on

the shortest distance between predicted positions and newly

measured ones.

4.2. Delays

The first method introduces a small computation delay

between the time step at which the images are collected and

the time step at which the cylinder measurement vector is

actually received by the prediction algorithm. This delay,

denoted by ∆t, is estimated using time stamps and a cor-

rection is applied to the obstacle measured position as

X = Xr +∆t.I.V̂ (7)

where Xr is the received position, V̂ the current estimated

velocity from the Kalman filter and X the corrected position

which is then included in (4).

4.3. Trajectory prediction

Since the model predictive controller of the au-

tonomous vehicle operates on a finite prediction horizon

of Hp time steps (see Section 5), the future positions

X̃i (i ∈ [k + 1, k +Hp]) of the mobile object are predicted

on the same horizon using the filtered position and velocity,

X̃k = X̂k (8)

∀i ∈ [k + 1; k +Hp] , X̃i+1 = X̃i + te.V̂i (9)

Ξk =
{
X̃

(j)
k , j = 1, . . . , Nobs

}
is defined as the set con-

taining the predicted positions of all the Nobs detected mo-

bile obstacles at time k, in the case of several obstacles.

4.4. Obstacle mapping

Collision avoidance is classically addressed with a dis-

tance map, p 7→ dobs(p) which returns at any position p
in space the distance to the closest obstacle [17, 20]. This

strategy can also be applied to mobile obstacles, with an

additional time dependence to the mobile object predicted

position: the collision checking function becomes dynamic.

For each time step k in the prediction horizon, the argu-

ments of the distance map at time k are thus the MAV pre-

dicted position pk and the set of predicted obstacle posi-

tions Ξk: dobs (pk,Ξk). This function is computed along

two different strategies, depending on the dimension of the

search space.

4.4.1 Two-dimensional case

As in [24], 2D collision distance maps are created by apply-

ing a morphological Euclidean distance transform (EDT) on

a binary occupancy grid. This procedure has been adapted

to the case of dynamical obstacles by managing in parallel

a binary occupancy grid and a 2D collision map for each

time step of the prediction horizon (Hp steps). For each

predicted position of a mobile object, the square containing

the 2D projection of its bounding cylinder is included in the

binary map corresponding to the time step. When all active

mobile objects have been processed, an Euclidian Distance

Transform map is computed from each binary grid to return

the distance to the nearest obstacle at any position and a

given future time step. Static obstacles can be easily taken

into account by incorporating them as an initialization of

the binary grids.

4.4.2 Three-dimensional case

Since the generation of a complete distance map is more

computationally demanding in three dimensions, the exact

distance to the closest point of the cylinder with respect to

the predicted MAV position p is instead computed on re-

quest. Following the method described in [4], this geomet-

rical computation consists in projecting the test point p on

the cylinder unit axis u, which yields one along-axis com-

ponent xu = (c − p) · u and one perpendicular compo-

nent yu =
√
‖c− p‖2 − x2

u, where c is the cylinder cen-

ter position. The collision distance can then be computed

by checking in which Voronoi intersection region the test

point is located (inside, on the side, above, below). Static

obstacles can be taken into account separately by using an

Octomap model and an associated EDT that provides the

distance to the closest static obstacle [17]. The collision

distance function dobs(·, ·) should then return the closest ob-

stacle between the mobile and static ones, at each prediction

step.

5. Model Predictive control

Model Predictive Control (MPC) is a widely-used con-

trol approach for waypoint rallying and trajectory tracking

in constrained environments [12], which is why it has been

selected here for the safe autonomous navigation mission in

presence of mobile obstacles.

A dynamical model of the vehicle ξk = f(ξk−1, Uk−1)
is exploited to build future state trajectories Xk on a finite

time horizon Hp. Based on this prediction, a control input

sequence Uk on a control horizon Hc (with Hc ≤ Hp) is

computed as the optimal solution to the minimization of a

multi-criterion cost function J (Uk,Xk). The first element

of this input sequence is applied on the vehicle, and the pro-

cedure is repeated at each time step to take into account
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changes in the environment. This is formalized as

Uk = {Uk, Uk+1, . . . , Uk+Hc−1} (10)

Xk =
{
ξk+1, ξk+2, . . . , ξk+Hp

}
(11)

U
∗

k = arg min
Uk∈UHc

J (Uk,Xk)

subject to ξi = f(ξi−1, Ui−1),
∀i ∈ [k + 1; k +Hp]

(12)

This strategy is applied on the two target platforms with

specific adaptations of the cost functions.

5.1. Mobile robot

It is driven by the kinematic model





pk = pk−1 + tevk−1

[
cos θk−1

sin θk−1

]

θk = θk−1 + teωk−1

(13)

where p is the 2D robot position and θ its heading angle.

The control inputs are the linear speed v and the angular

speed ω. The cost function in (12) is defined as the weighted

sum

J = wwpJwp + wobsJobs (14)

of a navigation term Jwp and an obstacle avoidance term

Jobs, with associated weights w(·) [5].

The navigation cost is the sum of the distances between the

waypoint pw to be reached and the predicted robot positions

on Hp.

J (rob)
wp =

1

Hpvmaxte

k+Hp∑

i=k+1

‖pw − pi‖
2 (15)

The maximum velocity vmax serves as a normalization fac-

tor. The avoidance term Jobs penalizes the trajectories in

which the predicted robot positions are in collision with the

future positions of a mobile obstacle.

Jobs =
1

Hp

k+Hp∑

i=k+1

fobs (dobs (pi,Ξi)) . (16)

Construction of the distance function has been described in

Section 4.4. The function fobs normalizes this distance into

a cost between 0 and 1, such that fobs(d) is equal to 1 if

d < dsafe and to zero if d > ddes with a smooth decrease

in-between, as depicted in Fig. 5. The relative values of

the weights wwp and wobs define the importance of each

criterion one with respect to the other. The obstacle cost

is equal to zero if there is no obstacle in collision on the

predicted trajectory, therefore it is fixed to a large value so

that it dominates the navigation cost in case of emergency.

Figure 5: Penalty function for obstacle avoidance [5]

5.2. Micro­Air Vehicle

The MAV is assumed to be controlled directly in accel-

eration, which is afterwards translated into a thrust value

and associated roll and pitch angles transmitted to the low-

level Asctec controller. The yaw was kept constant in these

experiments, using a simple proportional controller. The

discretized MAV guidance model is thus directly

{
pk = pk−1 + teVk−1 +

t2e
2 Uk−1

Vk = Vk−1 + teUk−1

(17)

where p and V are the 3D MAV position and velocity in

inertial frame, and U is the linear acceleration which serves

as control input.

In the case of the MAV, since both position and veloc-

ity are controlled, a reference trajectory T =
{
Pref ,Vref

}

is defined in the inertial frame as a straight line from the

starting point to the waypoint pw with a constant reference

velocity vnom (acceleration ramps are added at the start and

at the end). It is discretized with the same time step te as

the control loops. The MAV control input is defined as the

sum

Uk = U lin
k + 1obsU

avoid
k (18)

where U lin
k is the optimal solution for trajectory tracking

only, and Uavoid
k is an additional component for collision

avoidance which is computed only if a collision is detected

along the predicted MAV trajectory (case 1obs = 1). A

linear unconstrained MPC formulation makes it possible to

compute the control input U lin
k as the first element of the

optimal sequence minimizing

U
lin
k = argmin

Uk

Jlin (Uk,Xk, T ) (19)

Jlin =

k+Hp∑

i=k

∥∥[pi, Vi]−
[
Pref
i ,Vref

i

]∥∥2
Q
+ ‖Ui − Ui−1‖

2
R

(20)

It can be shown that this tracking problem can be solved

using a LQ controller (see [19] for more details).
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If a moving obstacle has been detected and its predicted

position intersects the trajectory of the MAV controlled by

applying U
lin
k , the second control input contribution Uavoid

k

is then obtained by minimizing a cost function with the

same formulation as (14). The navigation cost is very simi-

lar to (15), defined as

J (mav)
wp =

1

Hpvnomte

k+Hp∑

i=k+1

‖Pref
i − pi‖

2 (21)

The only difference here is that the position error is com-

puted with respect to the reference position at time k.

The collision avoidance cost is exactly the one from equa-

tion (16), with the collision distance computed as described

in Section 4.4.2.

5.3. Computation of optimal cost

For computational tractability and since no analytical so-

lution is available, a systematic search approach on a dis-

crete set is used to find a suboptimal solution to the opti-

mization problem (12). The same control input is also ap-

plied on the entire control horizon, to reduce complexity.

As in [23], the sets of candidate control inputs are defined

to contain the bounds of the input space as well as the null

input, and distribute the other values with an increased den-

sity around the null input. The number of candidates can

be adapted to be compatible with the time step te governing

the control loops.

6. Experiments

Experiments were conducted with the mobile robot and

the MAV presented in Section 2 in realistic conditions, with

no specific prior information available on the mobile obsta-

cle characteristics or motion.

6.1. Mobile Robot

These experiments are representative of a urban naviga-

tion scenario. The robot should reach a waypoint located 10
meters in front of the starting position. A pedestrian crosses

the path of the robot from the right side with respect to the

robot general direction. The speed of the pedestrian is about

1 m/s and that of the robot 0.4 m/s. The time step is equal

to te = 0.25 s. Results on a typical run are presented in

Fig. 6, with a focus on different moments of the experi-

ment. It can be seen that this obstacle is correctly detected

by the dense detection algorithm (the few outliers are fil-

tered by the motion prediction module) and that the MPC

algorithm achieves a safe avoidance (within a parameter-

ized safety distance of 2 m) before eventually reaching the

waypoint.

6.2. Micro­air vehicle

The MAV mission is to rally a point 5 meters ahead at a

speed of 0.3 m/s, while a mobile obstacle crosses the refer-

ence trajectory from the left. This obstacle is a foam pen-

dulum hung to a rope and moved using pulleys by a human

operator (Fig. 7). Ground truth localization from a motion

capture system are available for both the MAV and the mo-

bile object, which makes it possible to evaluate the perfor-

mance of the vision algorithm as well as the safety level

of the control algorithm (target separation distance). Four

successful experiments have been performed. Evaluation is

based on the ground truth distance d between the MAV and

the mobile obstacle, whenever it is below an activation dis-

tance (fixed here to 2.5 m). More precisely, the score is the

sum of weights computed over all time steps and defined as:

• 0 for emergency (d < 0.8 m),

• 0.3 for risky (0.8 m < d < 1.2 m),

• 1 for optimal (1.2 m < d < 1.6 m),

• 0.5 for conservative (d > 1.6 m).

The avoidance scores on the four experiments led to an

average of 0.739 (std ±0.083), in-between conservative and

optimal. As concerns the tracking accuracy of the mobile

object, the sparse method running on-board of the MAV ob-

tained a distance RMS (averaged on the four tries) of 0.12 m

(std ±0.01 m), computed between the embedded estimate

and the ground truth trajectory provided by the motion cap-

ture system.

7. Conclusions

This work has defined an integrated vision-based estima-

tion and control loop to achieve safe autonomous navigation

in presence of unknown mobile objects. Two methods rely-

ing on stereo-vision data have been proposed for detecting

and estimating the position of obstacles. One of the vision-

based estimation methods is dense and thus requires more

computational power, which can be obtained through the

assistance of a GPU board, while the second method relies

on sparse features and therefore consumes fewer resources,

compatible with a typical embedded PC of a MAV. They

are associated with a motion prediction module and a MPC

algorithm to define safe trajectories online. Experimental

results have shown that, by selecting the vision algorithm

adapted to the on-board computing resource, the methodol-

ogy can be successfully embedded on a mobile robot and

on a micro-air vehicle.
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Figure 6: Experimental results with the mobile robot. Purple diamond: waypoint, Blue line: robot trajectory, Dashed red

line: predicted optimal trajectory, Green point: obstacle center, Blue dashed line: predicted trajectory of the obstacle

(a) Embedded mobile object detection in image (green rectangle) (b) Experimental setup. Top left: human operator,

Top middle: mobile object, Bottom left: MAV, Top

right in red: waypoint.

(c) Rviz view (early detection). Green cylinder: current es-

timated object, Yellow cylinder: last object position on pre-

diction horizon. Light blue circle: collision detection.

(d) Rviz view (end of mission). Light red line: reference

trajectory, Thick red line: MAV trajectory with avoidance

maneuver. Green cylinder: object estimated position.

Figure 7: MAV experiment: trajectory tracking with mobile object detection and avoidance
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