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Abstract— We treat the problem of collaborative multi-
vehicle localization using time-varying range and relative ve-
locity measurements. The proposed solution combines local
nonlinear observers that estimate the relative positions between
agents and their neighbors, and cooperative filters that fuse each
agent’s local estimates to globally localize them with respect
to a target (and therefore to each other). Furthermore, we
explicitly introduce an estimator that filters the noisy measured
signals and feeds the aforementioned observers. Both scenarios
of a static as well as a dynamic target are considered. The
overall architecture is proved to provide a uniformly globally
exponentially converging localization under the assumptions of
persistently exciting motion and of a communication topology
that contains a directed spanning tree. The efficiency of the
results is illustrated through detailed numerical simulations.

I. INTRODUCTION

The last two decades have witnessed the explosion of
applications incorporating multiple agents. Inspired by the
behavior of animals in nature and motivated by the fact
that a variety of objectives can be more efficiently, rapidly
and robustly accomplished collaboratively rather than in-
dependently, multi-agent systems have been in the core
of attention from both theoreticians and practicioners. Of
particular interest have been applications involving multiple
(aerial, ground, marine) vehicles that need to collaborate to
achieve a common goal such as to ensure the exploration of
unknown environments, to follow targets, to seek dangerous
emitting sources or to ensure high-precision photography.

For most of these applications, the location of the vehi-
cles is an information of paramount importance since it is
exploited in the guidance, control and estimation algorithms
that ensure the succesful undertaking of the mission scenario.
However, such global information, as obtained for example
by GPS receivers, is not available in indoor environments and
in general, due to hardware malfunction or unavailability of
the minimum number of GPS satellites. Instead local, low-
cost sensors (cameras, infrared sensors, sonars) are usually
incorporated to provide a sufficient localization. We can dis-
tinguish two large types of localization scenarios [14], [18];
a) Mutual localization, referring to the scenario where each
agent needs to find its own (static) position in a reference
frame common to the entire network; and b) Collaborative
localization referring to the localization of a (dynamic) target
using an already mutually localized network.

This work is concerned with the second type of local-
ization problems. Depending on the community (control,
robotics, sensors) and the mission objective, we can have 2D
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or 3D models, centralized or distributed algorithms, a variety
of available measurements, e.g. absolute position (GPS),
relative positions, distances, bearings or IMU measurements,
and additional known points (anchors, markers). Addition-
ally, the solutions can be signal/information-based or model-
based which are essentially divided into optimization-based
and observer-based. Observer-based, distributed estimation
algorithms have recently been shown to present some rather
interesting robust characteristics. In particular, it was estab-
lished that distributed observers can enhance the quality of
estimation by eliminating noise, see [17], [15], which is of
great interest in all applications.

Hence motivated by these recent developments and unlike
the probabilistic and Kalman-filter-based approaches [3], [7],
[16], which cannot in general guarantee analytical global
convergence, we adopt an observer-based approach to treat
the problem of multi-vehicle collaborative localization us-
ing time-varying range and relative velocity measurements
without requiring any global positioning information. The
range measurements can be obtained using a variety of
sensors such as stero-vision systems that typically equip
robotic vehicles. This measurement scenario renders our
obtained algorithm applicable to GPS-denied environments
as well. We consider that the graph topology defining the
communication interconnection between agents contains a
directed spanning tree. We show that each agent can localize
itself with respect to the target by the combination of local
estimates of his neighbors’ relative positions and the fusion
with the neighbors’ own estimates.

As opposed to other works, e.g. [2], [4], [5], our algorithm
does not require global information (absolute position) but
rather local measurements. Compared to the relevant work
in [14] that treats the collaborative localization problem with
respect to a static target, instead of single integrators we
consider double integrator dynamics to model the agents’
translational dynamics and require no knowledge on the
rate-of-change of the distances. Futhermore we extend these
results to the scenario of a dynamic target and show that by
adopting an approach inspired by the recent developments
on dynamically scaled Lyapunov functions [6], [13] we are
able to prove uniform global exponential relative localization
using a strict Lyapunov function.

The structure of the paper is as follows. In Section II we
present the dynamic model of the agents, the network topol-
ogy characteristics as well as the available measurements.
Section III follows with the two main results. First, a global
localization algorithm, combining local nonlinear observers
and fusion algorithms, is presented for the case of unfiltered
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measurements along with a classic Lyapunov stability proof.
Then, we extend this algorithm to the case where noisy mea-
surements are considered by including a nonlinear pre-filter
and present a thorough stability proof hinging upon the recent
developments of dynamically scaled Lyapunov functions. We
conclude the exposition with detailed numerical simulations
given in Section IV and some concluding remarks.

II. MODEL AND PROBLEM FORMULATION

A. Network topology
The interconnection graph (directed or undirected) de-

scribing the communication between the N +1 agents form-
ing the multi-agent system, target included, can be modeled
using the Laplacian matrix L := [lij ] ∈ R(N+1)×(N+1),
i, j ∈ {0, . . . , N}, whose elements are defined as

lij =

{ ∑
j∈Ni

wij i = j

−wij i 6= j
, (1)

where wij = 0 if i = j, wij > 0 if j ∈ Ni and
wij = 0 otherwise. In this case, Ni stands for the set of
agents transmitting information to the i-th agent. Note that,
by construction, L has zero row sum, i.e., L1N+1 = 0,
where 1N+1 is a column vector of size N filled with ones
or, equivalently, lii −

∑
j∈Ni

lij = 0. In particular, when the

graph topology is directed we assume that it includes a
directed spanning tree graph, which ensures that the flow
of information along the whole network. For more details
on network topologies refer for example to [19].

B. Dynamic model
We consider that the dynamics of each of the N +1 iden-

tical agents composing the multi-vehicle system of interest
can be described by the double integrator model

ẋi = vi (2)
v̇i = ui, i = {0, . . . , N} (3)

with xi, vi ∈ R3 denoting the position and velocity vectors
of the i-th vehicle in the inertial frame, while ui ∈ R3 is the
applied acceleration.

By the index i = 0 we denote the (static or dynamic)
target with respect to which the localization will be referred.
As is evident, the static scenario corresponds to a target’s
dynamics

ẋ0 = 0 (4)
v̇0 = 0. (5)

Now, we naturally define the relative position, velocity and
acceleration between two agents as

xij = xi − xj (6)
vij = vi − vj (7)
uij = ui − uj (8)

that yield the required relative dynamics

ẋij = vij (9)
v̇ij = uij . (10)

For our localization problem, we consider that the avail-
able measurements consist of the relative velocities and
distances 1

yi = col(vTij , d
T
ij) (11)

with the distance dij between agent i and its neighbor j
defined as

dij := |xi − xj | = |xij |. (12)

A simple derivation provides

ḋij =
xTijvij

dij
=
vTijxij

dij
. (13)

In conclusion, the complete model on which our design
will be based is summarized as

ẋij = vij (14)
v̇ij = uij (15)

ḋij =
vTijxij

dij
. (16)

III. COOPERATIVE LOCALIZATION

Before presenting our main results, we define some
additional notation and then remind the definition of a
persistently-exciting function. The notation for a matrix A
being positive (semi-)definite is expressed by A � 0(� 0),
while for the case of a positive scalar a we write instead
a > 0. The notation | · | will refer depending on its argument
either to the absolute value of a scalar function, to the
Euclidean norm of a vector or to the induced 2-norm of
a matrix.

Definition 1: Let the function vij : R≥0 → R3 be
continuous. It is persistently exciting (PE) if there exist some
T > 0 and µ > 0 such that∫ t+T

t

vij(τ)v
T
ij(τ)dτ � µI � 0, ∀t. (17)

For the distance-based localization scenario at hand, we re-
quire that certain relative velocities are persistently-exciting
which means that in order for an agent to be able to recon-
struct a relative position with respect to a neighboring agent,
it is necessary to move out of the line-of-sight for some
time which in fact is required for the relative position to be
observable. In practice, this condition imposes a requirement
on the applied accelerations (controls) which can always be
ensured for each agent by including an excitation term but
however, might complicate the stability analysis.

1With some slight abuse of notation we denote the relative measurements
for each agent as yi instead of the more correct yij . Similarly, in what
follows we define the state of the observer as ξi instead of the more
appropriate ξij that would be coherent also with the notation of the
corresponding vector xij . The same notation will be adopted for the
estimation error zi and the mapping βi.
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A. Single vehicle localization from direct local measure-
ments: Static Target

In this subsection we will consider the problem of lo-
calization of each agent with respect to its neighbors by
incorporating local, noiseless measurements, and considering
a static target. This will be achieved by means of a carefully
designed nonlinear observer that is based on the invariant-
manifold observer methodology, see [1], [6] for the general
setting and [10]–[12] for recent applications on UAVs.

Proposition 1: Consider the dynamical system defined in
(14)-(16) and assume that vij is persistently exciting. Then,
the dynamical system

ξ̇i := −
Kijd

2
ij

2
uij −Kijvijv

T
ij x̂ij + vij (18)

x̂ij := ξi +
d2ij
2
Kijvij (19)

is a globally exponential observer with gain Kij > 0.
Proof: First, let us define the relative position estima-

tion error

zi := ξi + βi(yi)− xij =: x̂ij − xij . (20)

Then, the general form of the zi-dynamics gives

żi := ξ̇i + ∂yi
βiẏi − ẋij = ξ̇i + ∂dij

βiḋij + ∂vijβiv̇ij − ẋij

= ξ̇i + ∂dij
βi
vTijxij

dij
+ ∂vijβiuij − vij .

With the choice

ξ̇i := −∂dij
βi
vTij x̂ij

dij
− ∂vijβiuij + vij

and the β mapping as

βi(yi) :=
d2ij
2
Kijvij , (21)

the zi-dynamics obtains the more explicit form

żi = −Kijvijv
T
ijzi. (22)

From Lemma 5 of [8] we know that the nominal system

żi = −Kijvijv
T
ijzi, (23)

has a uniformly global exponentially stable (UGES) equi-
librium at the origin for a persistently-exciting (PE) and
uniformly bounded vij .

Remark 1: From the converse Lyapunov lemma (Lemma
1 of [8]) we know that there exists a quadratic Lyapunov
function

Vzi :=
1

2
zTi P (t)zi, (24)

with P (t) such that 0 ≺ c1I � P (t) = PT (t) � c2I , the
unique solution of the equation

Ṗ − PKijvijv
T
ij − vijvTijKijP = −Q, (25)

with Q(t) = QT (t) such that 0 ≺ c3I � Q(t) � c4I .

This lemma will be exploited in the construction of a strict,
dynamically scaled Lyapunov function of the more general
solution that follows in the next subsection.

Remark 2: Notice that in our algorithm, we further require
that the relative acceleration between neighboring agents be
either available or can be reconstructed. As is common in
the literature for example, the agents might transmit their
respective control actions (accelerations) to their neighbors.
Alternatively, and under the assumption that relative motion
is not too aggressive, we can consider that the relative
acceleration is reconstructed by numerical differentiation of
the available relative velocities.

B. Single vehicle localization from filtered local measure-
ments: Dynamic Target

In continuation of the previous scenario, we proceed to
extend the localization algorithm to the case of a dynamic
target in the presence of noisy velocity measurements, with-
out assuming any particular noise characteristics.

Proposition 2: Consider the dynamical system defined in
(14)-(16) and assume that vij is persistently exciting. Then,
the dynamical system

ξ̇i := −
Kijd

2
ij

2
(uij −Kvi(x̂ij , v̂ij , vij , r)(v̂ij − vij))

− Kij v̂ij v̂
T
ij x̂ij + v̂ij (26)

x̂ij := ξi +
d2ij
2
Kij v̂ij (27)

ṙ := −c7(r − 1) +
c22K

2
ij

c1c5
|vij |2|v̂ij − vij |2 (28)

˙̂vij := uij −Kvi(x̂ij , v̂ij , vij , r)(v̂ij − vij) (29)

is a globally exponential observer, for some ci > 0, with
r(0) ≥ 1 and gains

Kij := c8 +
c5 + c6 + c7c2

c3

Kvi(x̂ij , v̂ij , vij , r) := c9I + (r − 1)
c22
c1c5

K2
ij |vij |2I

+
c22
c6r

(K2
ij |v̂ij |2|x̂ij |2 + 1)I.

Proof: First, let us define the relative position estima-
tion error

zi := ξi + βi(yi, ŷi)− xij =: x̂ij − xij . (30)

Then, the general form of the zi-dynamics gives

żi := ξ̇i + ∂ŷi
βi ˙̂yi + ∂yi

βiẏi − ẋij
= ξ̇i + ∂d̂ij

βi
˙̂
dij + ∂v̂ijβi

˙̂vij + ∂dij
βiḋij + ∂vijβiv̇ij

− ẋij

= ξ̇i + ∂d̂ij
βi

˙̂
dij + ∂v̂ijβi

˙̂vij + ∂dijβi
vTijxij

dij
+ ∂vijβiuij

− vij ,

which with the choice

ξ̇i := −∂d̂ij
βi

˙̂
dij − ∂v̂ijβi ˙̂vij − ∂dij

βi
v̂Tij x̂ij

dij
− ∂vijβiuij + v̂ij
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reduces, after defining evij := v̂ij − vij , to

żi = −∂dij
βi(

v̂Tij x̂ij

dij
−
vTijxij

dij
) + v̂ij − vij

= −∂dij
βi
vTij
dij

z − ∂dij
β
x̂Tij
dij

evij + evij .

Selecting further the β mapping as

βi(yi, ŷi) :=
d2ij
2
Kij v̂ij =

d2ij
2
Kij(vij + evij )

∂dij
βi = dijKij(vij + evij ),

the zi-dynamics obtains the more explicit form

żi = −Kijvijv
T
ijzi −Kijevijv

T
ijzi −Kij(vij + evij )x̂

T
ijevij

+ evij

= −Kijvijv
T
ijzi −Kijevijv

T
ijzi − (Kij v̂ij x̂

T
ij − I)evij .

Taking the function Vzi defined in (24) and computing its
time derivative along trajectories of the zi-dynamics yields

V̇zi :=
1

2
zTi (Ṗ (t)− P (t)Kijvijv

T
ij − vijvTijKijP (t))zi

− zTi P (t)Kijevijv
T
ijzi − zTi P (t)(Kij v̂ij x̂

T
ij − I)evij

≤ −c3
2
|zi|2 + c2|zi|2Kij |evij ||vij |

+ c2|zi|(Kij |v̂ij ||x̂ij |+ 1)|evij |

≤ −(c3
2
− c5 + c6

2
)|zi|2 +

c22
2c5

K2
ij |vij |2|evij |2|zi|2

+
c22
c6

(K2
ij |v̂ij |2|x̂ij |2 + 1)|evij |2,

where we applied Young’s inequality to the two cross-terms
of the first inequality. In order to handle the last two cross-
terms in the above right handside we employ a dynamic
scaling of the form

Wzi :=
Vzi
r
, (31)

with

ṙ := −c7(r − 1) +
c22
c1c5

K2
ij |vij |2|evij |2, r(0) ≥ 1. (32)

Then, the time-derivative of Wzi can be shown to be

Ẇzi =
V̇zi
r
−Wzi

ṙ

r

≤ V̇zi
r

+ c2|zi|2c7
(r − 1)

r
− c1

|zi|2

r

c22
c1c5

K2
ij |vij |2|evij |2

≤ −(c3
2
− c5 + c6 + c7c2

2
)
|zi|2

r

+
c22
c6

(K2
ij |v̂ij |2|x̂ij |2 + 1)

|evij |2

r
,

with the last right handside term depending on the error
between the filtered v̂ij and the true measurements vij .

Choosing

˙̂vij := uij −Kvi(x̂ij , v̂ij , vij , r)evij , (33)

with Kvi a (free) positive gain function of x̂ij , v̂ij , vij , r,
yields the dynamics of the filtering error evij := v̂ij − vij

ėvij := −Kvi(x̂ij , v̂ij , vij , r)evij . (34)

By simple derivations one can show that the following
function

Vev :=
1

2
|evij |2, (35)

is a Lyapunov function for the evij
-dynamics since it satisfies

V̇ev = −eTvij
Kvi(x̂ij , v̂ij , vij , r)evij ,

and hence, ensuring global exponential convergence of the
estimate v̂ij to vij . Similarly, for the r-dynamics we take the
function

Vr :=
1

2
(r − 1)2, (36)

that gives

V̇r = −c7(r − 1)2 + (r − 1)
c22
c1c5

K2
ij |vij |2|evij |2.

Selecting then the functions

Kij := c8I, c8 > c3 − c5 + c6 + c7c2

and

Kvi(x̂ij , v̂ij , vij , r) := c9I + (r − 1)
c22
c1c5

K2
ij |vij |2I

+
c22
c6r

(K2
ij |v̂ij |2|x̂ij |2 + 1)I, c9 > 0,

we can finally establish that the composite function Wzi +
Vev + Vr serves as a Lyapunov function for the complete
dynamics with

˙︷ ︸︸ ︷
Wzi + Vev + Vr ≤ −c8

|zi|2

r
− c7(r − 1)2 − c9|evij |2,

which establishes UGES of the origin.
Remark 3: Notice that in the case where the mapping βi

is simply defined as

βi(yi) :=
d2ij
2
Kijvij ,

then the resulting error dynamics is described as

żi = −Kijvijv
T
ijzi − evij .

Then, using the PE condition, UGES of the nominal zi-
system with respect to the origin, and UGES of the origin
for the evij -system we can immediately conclude, e.g. from
cascaded systems [9] or Input-to-State (ISS) arguments [14],
UGES of the interconnected system.
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C. Collaborative localization from fusion of local estimates
and measurements

In this subsection, we take advantage of the collaborative
setting between the agents, that is the information sharing
with their local neighbors, in order to enhance the localiza-
tion capabilities of the agents, in particular, that do not have
direct relative measurements with respect to the target.

To this end, define the fused estimate of the relative
coordinates between agent j and the target as

x̂ji0 := ρj − x̂ij (37)
ρ0 := 0 (38)

Then, the proposed consensus-based estimation mechanism
for agent i is given by

ρ̇i := v̂i0 +
∑
j∈Ni

(x̂ji0 − ρi), (39)

with v̂i0 an estimation of the relative velocity vi0 when not
available to be defined, that exploits the fusion of its own
estimate with the ones of its neighbors to produce a more
accurate fused-estimate.

Proposition 3: Consider the dynamical system defined in
(14)-(16) and assume that vij is persistently exciting. Then,
the dynamical system

ξ̇i := −
Kijd

2
ij

2
(uij −Kvi(x̂ij , v̂ij , vij , r)(v̂ij − vij))

− Kij v̂ij v̂
T
ij x̂ij + v̂ij (40)

x̂ij := ξi +
d2ij
2
Kij v̂ij (41)

ṙ := −c7(r − 1) +
c22
c1c5

K2
ij |vij |2|v̂ij − vij |2 (42)

˙̂vij := uij −Kvi(x̂ij , v̂ij , vij , r)(v̂ij − vij) (43)

ρ̇i := v̂i0 +
∑
j∈Ni

(x̂ji0 − ρi) (44)

v̂i0 := v̂ij +
∑

k∈Mj ,l∈N0

v̂kl + v̂l0, (45)

for some l, withMj defining a directed path from the target
to the jth agent, and with r(0) ≥ 1, ensures that every agent
is globally exponentially localized with respect to the target,
for some ci > 0 and with gains

Kij := c8 +
c5 + c6 + c7c2

c3

Kvi(x̂ij , v̂ij , vij , r) := c9I + (r − 1)
c22
c1c5

K2
ij |vij |2I

+
c22
c6r

(K2
ij |v̂ij |2|x̂ij |2 + 1)I.

Proof: For i = 1, . . . , N , we define

σi := ρi − xi0 (46)
σ0 := 0, σ̇0 = 0. (47)

Then we obtain the consensus system

σ̇i := −
∑
j∈Ni

(σi − σj) +
∑
j∈Ni

(x̂ij − xij) + evij

+
∑

k∈Mj ,l∈N0

evkl
+ evl0

= −
∑
j∈Ni

(σi − σj) +
∑
j∈Ni

zi + evij

+
∑

k∈Mj ,l∈N0

evkl
+ evl0 ,

with σi seen as the individual states of the N agents and
σ0 the state of a leader, while the last 4 terms are seen as
external signals. Defining the stacked variables

σ := col(σ0, . . . , σN )

τi :=
∑
j∈Ni

zi

τ := col(τ0, . . . , τN ),

and a stacked vector ψ containing all the linear terms in
velocity errors, we obtain the dynamics

σ̇ := −(L ⊗ I3)σ + τ + ψ. (48)

As is well known, from the properties of the assumed
underlying graph topology, we have that the nominal system
σ̇ = −(L ⊗ I3)σ has a uniformly global exponentially
stable equilibrium at the origin. The claim is established by
standard arguments on cascaded systems (see for example
Lemma 2.1 or Proposition 2.3 of [9]) since the complete
error system consists of two nominal UGES subsystems
interconnected through the terms τ , ψ that satisfy a linear
growth condition.

Remark 4: Although not presented here, notice that our
results are also applicable for switched communication
graphs (due e.g. to loss of communication link or measure-
ments) under the additional assumption of uniform connec-
tivity as is done e.g. for the single-landmark multi-agent
localization in the recent work [14]. We stress again that in
our setting however the derivative of the relative distances is
not required and furthermore, measurement noise is explicitly
treated by means of additional filters.

IV. SIMULATIONS

In this section we study the efficiency of the obtained algo-
rithms by means of detailed numerical simulations that serve
as proof–of–concept. We will consider two two-dimensional
scenarios with bidirectional communication topologies and
continuous measurements. First, we consider a simple sce-
nario where two dynamic agents are localizing themselves
with respect to a static target. We consider that the mea-
surements are perfect and thus, incorporate the algorithm of
subsection III-A along with the fusion scheme of subsection
III-C. Then, we proceed with a more complex localization
scenario with three agents and a dynamic target. For this
scenario we further consider that the relative velocity mea-
surements are corrupted by white Gaussian noise and apply
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Fig. 1. Scenario 1: Positions of target (blue), vehicle 1 (red) and vehicle
2 (black).
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Fig. 2. Scenario 1: Agents’ true velocities.

the observer of subsection III-B and the consensus-based
scheme of subsection of III-C.

A. Two–agent localization with respect to a static target with
noise-free measurements

We consider a target that is static while the two agents
move along a circular path and a star-like path respectively,
see Fig. 1. The initial positions (in m) and velocities (in
m/s) of the agents are respectively given as x0(0) = [0, 0]T ,
x1(0) = [2, 0]T , x2(0) = [10,−5]T and v0(0) = [0, 0]T ,
v1(0) = [0, 2]T , v2(0) = [1, 1]T . The parameters related
to the observer and the stability analysis are selected as
c1 = c3 = 0.9, c2 = c4 = c9 = 1, c5 = c6 = c8 = 0.1,
c7 = 0.05, while the observer gains are chosen as K10 =
c8 + (c5 + c6 + c7c2)/c3, K12 = K13 = K21 = 0.1. There
is of course always a compromise between convergence rate
and robustness (related e.g. to high-gain effects or noise)
and as such we have selected small but reasonable (from
the convergence viewpoint) values of the gains. Furthermore,
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Fig. 3. Scenario 1: Estimation error for x10.

0 10 20 30 40 50
-8

-6

-4

-2

0

0 10 20 30 40 50

t (sec)

-5

0

5
x12 − x̂12 (m)

Fig. 4. Scenario 1: Estimation error for x12.

we assume that we do not have any prior knowledge on
the relative positions and thus, choose the estimates as
x̂ij(0) = 0 which translates to initial observer states given

by ξi(0) = −
d2
ij(0)

2 Kijvij(0). Finally, the initial conditions
for the fused estimates are taken as ρ1(0) = [0, 0]T , ρ2(0) =
[0, 0]T .

As it can be observed from Fig. 2, where the velocities of
each agent are depicted, the chosen motions are sufficiently
rich for observing the relative positions and as such the rela-
tive velocities satisfy the persistence-of-excitation condition.
The comparison of the errors between the true and estimated
relative positions are shown in Figs. 3-5. We can observe a
fast, smooth convergence to zero with an exponential rate of
convergence.

Finally, we illustrate the transient performances of the
fusion schemes for agents 1 and 2 in Fig. 6. We can establish
that the two agents are succesfully localized with respect to
the target.
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B. Three–agent localization with respect to a dynamic target
with noisy measurements

For the second scenario, we consider a network of 3 mov-
ing agents along with a dynamic target with their positions
shown in Fig. 7. The initial positions (in m) and velocities
(in m/s) of the agents are respectively given as x0(0) =
[4, 0]T , x1(0) = [2, 0]T , x2(0) = [10,−5]T , x3(0) =
[3 sin(π/8), 5 cos(π/8)]T , v0(0) = [0, 4]T , v1(0) = [0, 2]T ,
v2(0) = [1, 1]T , v3(0) = [6 cos(π/8),−6 sin(π/8)]T . The
parameters related to the observer are chosen as c1 = c3 =
0.9, c2 = c4 = c9 = 1, c5 = c6 = c8 = 0.01, c7 = 0.005
and the observer gains as K10 = c8 + (c5 + c6 + c7c2)/c3,
K12 = K13 = K21 = K23 = K31 = K32 = 0.03. Some
of the gains were given smaller values with respect to the
previous scenario in order to reduce the effect of noise and
avoid unwanted phenomena such as overshooting. As in the
previous scenario, we assume that we do not have any prior
knowledge on the relative positions and thus, choose the esti-
mates as x̂ij(0) = 0 which translates to initial observer states
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Fig. 7. Scenario 2: Positions of all agents.

given by ξi(0) = −d2
ij(0)

2 Kijvij(0). In addition, the initial
conditions for the fused estimates are again taken as ρ1(0) =
[0, 0]T , ρ2(0) = [0, 0]T while the initial condition for the
dynamic scaling r(t) is selected as r(0) = 1. Furthermore,
we consider the standard scenario where relative velocity
measurements are corrupted by band-limited white Gaussian
noises nij (although any type of noise can be considered)
with noise power intensity σm = 10−4/5 (m/s)2/Hz and
a sampling period of Ts = 10−3 (s).

From Figs. 8, 9 (and although not depicted here, similarly
for all relative velocities) we see that the relative velocities
are persistently-exciting and thus, we can obtain converging
estimates of the relative positions. Furthermore, by zooming
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Fig. 8. Scenario 2: Relative velocity v10 (noisy, estimated, true).

on a particular time interval we observe the effect of the
noise as well as the result of the filtering. Of course, the
former can be further adjusted by proper selection of the filter
gains. In addition Figs. 10-15 show the errors between the
estimated and true relative positions. In all these figures we
see that the estimation algorithms have successfully filtered
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the measurement noise and the convergence of the estimates
is smooth and exponential as expected.
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Fig. 10. Scenario 2: Estimation error for x10.

Finally, we can see the fused estimates for the three agents
in Fig. 17. We can observe that all agents are succesfully
localized with respect to the target and furthermore, that the
effect of the noisy measurements has been significantly re-
moved (although some slight oscillations do appear). Hence,
the transient behavior is quite smooth and the convergence
is exponential as was proposed by the theoretical analysis.

V. CONCLUSIONS

We have proposed a global solution to the problem of
multi-vehicle localization based on continuous measurements
of ranges and relative velocities. Under the standard as-
sumption of persistent relative inter-agent motion related
to distance-based multi-agent scenarios, we have presented
an algorithm that produces a uniformly globally conver-
gent localization that is established analytically through a
novel Lyapunov-based stability analysis. The localization
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Fig. 11. Scenario 2: Estimation error for x12.
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Fig. 12. Scenario 2: Estimation error for x13.

algorithm is a combination of nonlinear observers providing
local estimates of the neighbors’ relative positions,for each
vehicle, and consensus-based filters fusing local estimates
with the neighbors’ estimates. To support the theoretical
developments simulations have been successfully carried out
for 2D-scenarios of static and dynamic targets; the former
one including also noise on the measured velocities.

Current work is focused on extending our algorithm to
account for non-mutually localized networks, filtering of
relative distances, measurement latency, field-of-view con-
straints and uncertainty in the communicated accelerations.
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