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Abstract: This paper presents an algorithm to perform autonomous exploration with robotic
platforms equipped with a stereo-vision system in indoor, unknown and cluttered environments.
The accuracy of the vision-based localization depends on the quantity of visible features in the
scene captured by the cameras. A Model Predictive Control approach permits to perform the
exploration task with obstacle avoidance and taking into account the quality of the scene in order
to avoid areas where the visual odometry is likely to fail. Experiments were carried out with a
mobile robot to assess the improvement in localization accuracy and coverage for exploration.
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1. INTRODUCTION

Autonomous exploration allows to build maps of unknown
environments without human intervention. This can be
interesting, for instance, for search-and-rescue missions in
dangerous areas. UAVs and mobile robots can be comple-
mentary to perform this type of missions. Their success
depends on the accurate localization of the robot. The
localization algorithms are designed to be embedded on
UAVs and mobile robots. The UAVs have a low payload
that implies a limitation of the number of embedded sen-
sors. Moreover, these exploration missions are most of the
time conducted in indoor environments, where no global
localization systems, such as GPS, are available. Thus,
a good solution to address these constraints is to install
camera sensors, because they are lightweight, inexpensive
and the images provide a high amount of information.
A stereo rig composed by two cameras with a visual
odometry algorithm allows to compute the localization
of the platform from features extracted in the images
(Sanfourche et al., 2013).

All passive vision-based navigation systems are likely to
fail in low-textured environments, where the lack of in-
terest points in the images prevent the computation of a
good localization. The aim of this work is to develop an
autonomous exploration system with a command strategy
that seeks to avoid the situations where the robot is likely
to loose its localization due to lack of texture in the
environment. We experiment with a mobile robot in order
to validate the developed strategy, but the overall system
can easily be adapted for a UAV.

1.1 Related Work

The issue of evaluating the scene quality for vision-based
localization was studied in the context of navigation be-
tween waypoints. Sadat et al. (2014) take into account
the richness of the environment for the path planning,

they used a RRT* algorithm and add a criterion which
computes a viewpoint score based on the density of the
triangle in the 3D mesh of the environment. Mostegel
et al. (2014) evaluate the quality of the camera motions
for the localization quality and the possibility of seeing
new features. A combination of criteria on the features is
computed and used to define if a future position will be
well suited for the localization. In these two references, the
robotic platforms are equipped with a monocular camera,
which involves specific depth estimation issues to compute
the localization. In previous work (Roggeman et al., 2016),
we focused on the same problematic but with stereo-
vision system which makes it possible to obtain directly
information about the depth of the points. The present
paper elaborates on this work by addressing autonomous
exploration missions.

Some authors were interested in the active reduction of the
uncertainty during an autonomous exploration mission:
Bourgaul et al. (2002) aimed at exploring and building
an accurate map of the environment with a mobile robot
equipped with a laser range finder selecting the control
actions that maximize the accuracy of the localization.
Bryson and Sukkarieh (2008) developed an information-
based path planning method for a UAV. It plans a tra-
jectory which maximizes the accuracy of the map and the
vehicle location during the exploration of unknown areas.
It is based on the computation of the entropic information
gain before and after taking an action. This system can be
used with vision sensors.

1.2 Problem statement

This paper describes a complete architecture for au-
tonomous exploration on robotic platforms. The mission
considered in this paper is the exploration by a mobile
robot of an unknown and cluttered environment which
presents some low textured areas. The robot has to com-
plete its exploration mission avoiding the obstacles in the



room and keeping an accurate localization during all the
mission.

To achieve this mission, it is necessary to localize the robot
and map the environment. The localization is estimated
from the images of the stereo-vision system by the visual
odometry algorithm (Sanfourche et al., 2013), described
in Section 2.1. The mapping task is possible thanks to a
RGB-D sensor, explanations can be found in Section 2.2.
For the detection of the low-textured areas, a criterion
based on the prediction of the amount of information
available in the future images permits to define if a position
is appropriate for the localization. This criterion is ex-
plained in Section 3. The Model Predictive Control (MPC)
strategy presented in Section 4, uses the information of
mapping, localization and quality of texture of the scene
in order to find the optimal control to send to the motors.
Experiments were made in real situations and the results
are reported in Section 5.

2. PERCEPTION
2.1 Visual odometry algorithm: eVO

The localization of the robot is ensured by a visual
odometry algorithm, using the images providing by the
stereo rig. The aim is to estimate the localization of the
robot from its starting point. In our experiments, we use
eVO (Sanfourche et al., 2013) but other algorithms could
be used as well (Klein and Murray, 2007).

The following is a brief description of the algorithm. Two
tasks are working in parallel:

e Mapping: this task consists in providing a map with
a limited number of points localized in space. Interest
points (Harris and Stephens (1988) or FAST Rosten
and Drummond (2006)) are extracted from both
images and matched. The 3D position of the points in
space is then computed by a triangulation (see Eq. 1).

e Localization: The matching between the 2D points
in the left image and the 3D points in the map
derives from the temporal tracking of 2D points
with KLT (Shi and Tomasi, 1994). The position
and orientation of the left camera are computed
by minimization of the reprojection error, within a
RANSAC procedure (Fischler and Bolles, 1981).

The 3D points computed during the mapping task will
serve to evaluate the ability of the robot to localize itself
from a given position, see Section 3.

2.2 Environment reconstruction

For the obstacle avoidance and the exploration tasks, it is
necessary to have an occupancy map of the environment.
A Kinect sensor is installed on the robot and gives a 3D
representation of the environment in a 3D point cloud
format. We first remove the ground plan, using a RANSAC
method. Then, the obtained point cloud is transformed
into an Octomap model (Hornung et al. (2013)), which
is a representation of the volumetric occupancy. Finally,
the Octomap is projected onto the ground plane and
two 2D maps are created: an exploration map with the
explored and unexplored areas and an obstacle map with

the occupied and free areas. At time t,, the exploration
map is represented as a matrice denoted G(n) whose
elements g; ; are 0 or 1: 0 if the location is not explored,
1 if it is explored.

3. VISUAL QUALITY FOR THE LOCALIZATION

From the 3D points extracted by the odometry algorithm
and with a known future position, the proposed visual
quality criterion is derived from the prediction of the num-
ber of visible points in the future images, considering the
uncertainty (Roggeman et al., 2016). The whole process is
illustrated in Figure 1 and described in the following.
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Fig. 1. Two 3D points are triangulated with their covari-
ances at time t,. The two points are projected onto
the camera plane after a displacement (R,T): the
green one is predicted to lie in the image whereas the
red one is outside.

3.1 Future point position

From the 2D points extracted in the stereo images, the
position of a 3D point in the current camera frame, defined
by the position of the left camera, is given by

—p [Y— W
Y:(Iayaz)Tznil (uavad)zi' U — o (1)
d o

(u,v) is the 2D position of the point in the image and d
is the disparity. b denotes the baseline between the left
and right camera, «, the focal length and (ug,v) are the
coordinates of the principal point.

A change of basis is necessary in order to express the
position of the 3D point in the future camera frame.
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R and T are respectively the rotation and translation
between the two frames.

The 3D point is then projected on the future image plane,
corresponding to the camera frame.
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with K, the camera matrix
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The expression of p’ the position of the future 2D point
as a function of the position p, the disparity d and the
displacement parameters © is:

3.2 Uncertainty

The uncertainty on the position of the point p’ is ex-
pressed as a 2D covariance matrice. We assume that the
uncertainty related to © and (u, v, d) are independent. The
covariance is:

Sy =Jfo %0 Jfo + Ifuus Suwd-Jf . (7)

with Jy, and Jy, ., the Jacobian matrices of f with
respect to © and (u, v, d), respectively.
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Ji, Ji-1 and Jy are the Jacobian matrices of the projec-
tion function, the triangulation function and the change of
basis function. Their expressions can be found by derivat-
ing the functions given in Section 3.1.

8.8 Prediction of the number of points

We want to estimate the probability that the point p’ lies
in the future image. Using the 2D covariance matrix ¥,/,
representing the uncertainty on the position of the pre-
dicted point p’, the corresponding 90% confidence ellipse
is considered. z = (u,v)T is an image point. The ellipse
equation in the image frame is

(x—p)" S @—p) =5 (10)
with s = 4.605 for a 90% confidence ellipse, this value can
be found in a table of y? distribution with 2 degrees of
freedom.

Then, the area of the intersection between the ellipse and
the image is computed. If the ellipse is entirely located
in the image, the area is that of the ellipse, if it is
completely out, the area is zero. In the other cases, the
area is estimated by computing the double integration of
the domain delimited by the ellipse and the edges of the
image.

The probability of a point to lie into the future image is
estimated by dividing the obtained area with the whole
ellipse area. A threshold on this probability is used to
define if a point is considered into the image. The final
criterion is the number of points satisfying this condition.

4. CONTROL
4.1 Robot kinematic model

We denote by X = (z,y,6), the 2D position and the
orientation of the robot, U = (v,w) is the control input,
with v the linear speed and w the angular speed and t. is
the sampling period. The kinematic model of the mobile
robot is:

Yn+1 = Yn +letn sin 6,
0n+1 = en + tewn

(11)

{ Tpt1 = Ty + teUy cos b,

4.2 MPC

Using the robot model (11), some trajectories are simu-
lated within a finite horizon H,, from a sequence of control
inputs U, which are defined on a control horizon H,.. The
control inputs and simulated state sequences at time t,
are denoted:

Uy, = {Una Unt1s-- s Un+Hc—1}

X ={Xp41, X2, Xogm, }
The linear and angular velocities are bounded by

(_UmaX7 _wmax>T and (Umaxa wmax>T-

A cost function J (U, X,) is defined to mathematically
represent the mission objectives (see Section 4.3). The
minimization of this cost function gives the optimal control
Uy to apply to the sytem as:

Uy = arg IginJ (Un, X))
with Xj, satisfying (11),
Vk € [n+1,n+ Hp
Only the first component U of the optimal solution is

applied to the system and the process is repeated at the
next time step.

(14)

This optimization problem is non-linear and non-convex.
There are different solutions to resolve it. Global optimiza-
tion algorithms can be used but their execution time is not
constant and it can be too long for a real-time application.
In this work, we chose to define a finite set of predefined
control sequences and select the optimal solution in this
set. This strategy permits to limit the risk of falling in a
local minimum.

4.8 Cost function

The expression of the cost function is

J = wiocJioc + wexleexpl + WobsJobs (15)
Each cost Je represents an objective of the mission. They
are explained in the following paragraphs. All the costs are
normalized. The weights we give more importance to one
objective compared to the others. The modification of the
weights induces changes in the behavior of the robot and
it requires trial and error to find an optimal tuning of the
weights. This is discussed in Section 5.2.

Localization quality cost Jio  This cost relies on the
visual quality criterion defined in Section 3. It favors
trajectories which go through positions where a large
number of points will be visible.

N(Xn+H1oc7yn)

Jloc =1- Nmax

(16)



where N(Xp4m,..,Vn) is the number of predicted land-
marks at n + Hioe and Npyax is the total number of 3D
points. H),. is the time horizon where the prediction is
computed, it must be fixed beforehand (see Section 5.2).

FEzxploration cost Joxp1  This cost favors trajectories which
go towards the unexplored areas. From a copy of the
exploration map at the current time G(n) (see Section 2.2),
the amount of future explored space is estimated on the
trajectory. From the known values of the range and the
opening angle of the mapping sensor, for each predicted
position, the corresponding explored space is added as
explored area in G(n). The obtained map, after the time
horizon, is denoted G(n + Hy). The proposed cost tends
to maximize the additional explored area from G(n) to
G(n + H,). The same process was used successfully in a
previous work (Roggeman et al., 2014). The expression of
the cost is:

2
T
Jexpl = Hyad ; ; 9ij(n) — gij(n+Hp)  (17)

d is the range and « the opening angle of the sensor, r is
the resolution of the map. 7 and j are the coordinates of
the elements of G.

Obstacle avoidance cost Ju,s ~ This cost penalizes tra-
jectories which go too close from the obstacles or which
intersect them. The expression of the cost is:
1 n+H,

O fobs (Guise(X0)).

p k=n-+1

Jobs = (18)

The obstacle map (see Section 2.2) is transformed into a
distance map, called Gg;4:: for each square in the grid, the
distance to the nearest obstacle is computed.

fobs 18 a function which normalizes the distance into a
cost between 0 and 1. Two distances are defined: dgec is
the security distance, the robot must not exceed this limit
and dges is a distance from which the obstacle is no longer
considered. fops(d) is equal to 1 if d < dgec and to zero if
d > dges, with a smooth decrease in-between. The curve is
displayed in Figure 2.
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Fig. 2. Penalty function for obstacle avoidance

5. EXPERIMENTS
5.1 Experimental set-up

Mission  The aim of the mission is to explore the room
showed in Figure 3. It measures approximately 11x11
meters. In this room, there is a wall with low texture. If the
robot arrives in front of this wall, the visual localization

is likely to fail. We want to verify if the addition of
the criterion on the quality of the localization permits
to improve the behavior of the robot, that is, whether
it successes to explore the whole space while keeping an
accurate localization. Moreover, there are two obstacles in
the room that the robot has to avoid.

Fig. 3. The robot in its environment, in the back of the
room, there is a textureless wall which is a difficulty
for the visual localization

Material ~ For the experiments, we use a turtlebot (see
Figure 4), equipped with a stereo rig composed of two
cameras with 4.0mm lens and separated by a 21cm long
baseline and a Kinect sensor, with a range fixed to 2.5 m
and an opening angle of 0.5 rad. The perception algorithms
are working on the embedded computer whereas the MPC
algorithm is working on a deported station. A motion
capture system computes the localization of the robot, it is
considered as the ground truth and serves for comparison
with the visual localization.

Parametrization

e Localization criterion
- Probability threshold: sp-opq = 0.5
- Uncertainty Yo = diag(ogw,Ugy,agz,ag,ag,af)
and X, 4 = diag(02,02,0%) with:
- position: 0, = 0y = 0, = 0.005 m
- orientation: o9, = 0y, = g, = 0.001 rad
- image point position: o, = o, = 0.2 pixel
- disparity: o4 = 0.4 pixel
e MPC
- Time step: te = 0.25 s
- Horizons: H, = 20, H, = 8
- Obstacle distances: dges = 0.5 m, dgee = 0.5 m
- Map resolution: » = 0.2 m per pixel
- Speed limitations: vmaz = 0.25 M.5™, Wmae =
0.4 rad.s™!
- Weigths: wexpr = 0.3, wobs = 0.7

The weights on the exploration cost and the obstacle cost
are fixed at the beginning. Only the weight on the quality
of the localization is modified during the experiments. The
weights are normalized after each change on w,. so that
the sum of the weights remains equal to 1.

5.2 Results

In Figure 5, two results of exploration missions are dis-
played. In the left image, the weight on the localization
quality cost is zero. At the beginning, the robot turns to
the right, it is the optimal trajectory because it maximizes



Fig. 4. The Turtlebot platform used for the experiments:
the stereorig is visible on the upper part; and the
Kinect sensor is below.

the observed area, but this leads the robot in front of
the textureless wall and the visual localization becomes
inaccurate, rapidly leading to a large drift of the esti-
mated trajectory and the exploration mission cannot be
performed. In the second experiment, the weight wi,. is
increased to 0.07. The robot begins at the same position,
but in this case, it goes straight forward and does not face
the wall. The mission then continues successfully, the zone
is entirely explored.

Trajectory (weights: loc 0.0, expl 0.3, obs 0.7) Trajectory (weights: loc 0.07, expl 0.28, obs 0.65)
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Fig. 5. Results of two experiments with different values of
Wioc, the visual localization is the blue line and the
ground truth is the red one, the grey area is the free
explored spaces and the black area is the occupied
areas

Others experiments were made to confirm these results and
to define what could be the best parametrization for the
robot in order to have the best exploration result. The re-
sults of these experiments are summarized in Table 1. The
values of Hj,. and wi. were modified, and we computed
measures on the localization error and on the success of the
exploration mission. The relative error is the error between
the total travelled distance computed by the visual local-
ization algorithm and the ground truth relative to the total
travelled distance. This value is expressed as a percentage.
The maximal distance column shows the maximal distance
estimated by visual localization between two time steps
in the visual localization. As the maximal speed was set

nb Hijoc wioc duration distance coverage rel. err. max dist.
0 0 0.0 66.41 19.03 27.24 107.98 0.513
1 0 0.0 16.36 2.92 13.28 40.19 0.073
2 0 0.0 14.1 2.74 12.24 29.97 0.08
3 0 0.0 32.76 6.26 26.84 21.39 0.111
4 0 0.0 35.09 7.58 31 91.42 0.152
5 1 0.02 184.67 52.07 72.92 25.76 0.063
6 1 0.05 229.18 63.82 75.04 34.96 0.076
7 1 0.07 186.51 48.75 71.68 30.62 0.08
8 1 0.11 66.54 19.1 51.68 33.48 0.068
9 2 0.02 102.95 28.75 61.12 28.18 0.065
10 2 0.05 132.74 37.37 66.04 37.39 0.058
11 2 0.07  98.78 27.37 59.8 21.33 0.064
12 2 0.11 91.7 23.31 55.96 24.83 0.063
13 3 0.07 106.68 28.13 60.72 32.63 0.064
14 3 0.08 106.53 27.53 59.08 23.26 0.071
15 4 0.07 80.65 20.36 53.96 19.5 0.059

Table 1. Table of the experimental results: the

duration is expressed in seconds, the distance

in meters, the coverage as a percentage of

the whole area to explore, the relative error

as a percentage and the maximal distance in
meters.

to 0.25 m.s~! and the maximal duration between two
time steps is approximately 0.20 s, the maximal travelled
distance between two time steps is approximately 0.05 m.
Hence the value of the maximal distance allows to evaluate
to the drift induced by the visual navigation.

The first five runs (number 0-4) were done without using
the localization cost (ie. Hipe = wioc = 0). Among them,
three experiments present a high error on the maximum
distance (experiences 0, 3 and 4 with 0.513, 0.111 and
0.152 m maximum distance respectively), whereas with a
positive weight, the maximal error is below 0.08 m. These
experiments also present the lowest exploration coverages
because they were too hazardous and had to be stopped
by the user. We can conclude that, the addition of the
criterion on the quality of the localization permits to avoid
the occurrence of large drift in the visual localization.

During the experiments (5-15), Hjo. was fixed between 1
and 4, and Table 1 shows that the coverage is higher if H)o¢
is lower. Indeed, if H)o is low, the robot goes more easily
in the corners of the room whereas it tends to avoid them
when H, is higher (see Figure 6). In this figure, with the
same value of wy,c, the result of the exploration appears
completely different depending on the value of Ho.. Let us
recall that the visual quality is computed from 3D point
seen in the past. The best way to keep them in the field of
view within a large horizon of time is to follow a straight
trajectory. Using a shorter horizon permits curved paths
and eases the exploration of corners.

Figure 7 present four results obtained with a short horizon
Hy,. = 1 and various values of wi,.. We can see that the
results relative to the exploration depends on the value
of Wipe : if Wiee is too high (experience 8, wy,. = 0.11),
the robot adopts a cautious behavior by keeping a large
number of previously seen point in its field of view, which
precludes him to explore new areas whereas with a lower
value (experiences 5, 6 and 7, wjoc = 0.02, 0.05 and 0.07



Trajectory (weights: loc 0.07, expl 0.28, obs 0.65)

Trajectory (weights: loc 0.07, expl 0.28, obs 0.65)

(a) Hloc =1 (b) Hloc =2

Trajectory (weights: loc 0.07, expl 0.28, obs 0.65)

Trajectory (weights: loc 0.07, expl 0.28, obs 0.65)

(C) Hoe =3 (d) Hype = 4

Fig. 6. Results of four experiments with different values of
Hloc with Wloc — 0.07

respectively), the robot explores the whole area, keeping a
good visual localization.

Trajectory (weights: loc 0.02, expl 0.29, obs 0.69) Trajectory (weights: loc 0.05, expl 0.29, obs 0.67)

(a) Hie =1 (b) Hype =2

Trajectory (weights: loc 0.07, expl 0.28, obs 0.65)

Trajectory (weights: loc 0.11, expl 0.27, obs 0.63)
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(C) Hioe =3 (d) Hioe = 4

Fig. 7. Results of four experiments with different values of
Wioc with Hloc =1

According to the previous parametric experimental study,
we conclude that a good parametrization is using Hio,. =
1 and wj,. between 0.02 and 0.07.

6. CONCLUSION

In this paper, we have presented a complete architecture
to perform autonomous exploration with a mobile robot

using a vision-based localization system. The model pre-
dictive control stategy is designed to avoid the situations
where the localization is likely to fail due to the lack of
texture in the environment. Experiments were carried out
in the real world and demonstrated that this system can
improve the exploration behavior of the robot and ensure
safe localization.
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