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Abstract: Two formulations of robust model predictive control (MPC) that have robustness
properties with respect to bounded additive disturbance over conventional MPC are applied
to Unmanned Aerial Vehicle (UAV) translational dynamics. These controllers use results from
invariant sets theory. The tuning of the proposed MPC laws is studied, and their performances
are compared in simulations.
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1. INTRODUCTION

The last decade has witnessed a significant increase in the
number of tasks performed by Unmanned Aerial Vehicles
(UAVs). Among these we can cite commercial tasks such
as goods delivery (Mo et al. (2016)), terrain mapping
(Tahar et al. (2011)) and building inspection (Choi and
Kim (2015)). The design of controllers enabling UAVs to
perform autonomously such tasks should take into account
safety and technological constraints, such as distance to
obstacles or actuator limitations. Moreover, UAVs are sub-
ject to disturbances, such as ground effect or aerodynamic
perturbations when flying close to obstacles (McKinnon
(2015)).

Previous works have been carried out on robust control
of UAVs, from a switching model strategy (Alexis et al.
(2011)) to a robust PID controller (Kada and Ghazzawi
(2011)). These strategies are designed to guarantee robust-
ness with respect to bounded disturbances, but do not take
constraints into account.

In this context, constraint handling in the control law de-
sign can benefit from MPC strategies. Also, the ability to
cope with bounded disturbances on the system dynamics
has been extensively studied and current MPC strategies
allow for improved robustness and stability properties
(Scokaert and Mayne (1998) Langson et al. (2004)).

One possible robustification of an MPC strategy consists in
computing a trajectory for a disturbance free version of the
system by a classical MPC, while simultaneously making
use of an additional control law to maintain the state of
the perturbed system inside a “tube” around the nominal
trajectory (Langson et al. (2004)). This method requires
an a priori knowledge on the disturbance bounds affecting
the system. These strategies have been extensively studied
for linear systems (Mayne et al. (2006) Mayne et al.

(2005)). The problem of position stabilization of a UAV
in presence of constraints and disturbances can fit into
this framework.

The MPC strategies in this study are based on invariant
sets (Blanchini (1999)) using existing methods (Olaru
et al. (2010)). Stability is guaranteed by making use of
a terminal stabilizing constraint (Mayne et al. (2000)),
defined by sets whose construction is detailed. The tuning
of two linear robust MPC controllers (Mayne et al. (2005))
and a comparison of their performances are studied with
simulations. The disturbance model used in simulations is
based on experimental results (McKinnon (2015)).

This paper is structured as follows. In Section 2, the
equations of motion of a quadrotor UAV are introduced
while results on invariant sets and related properties are
presented in Section 3. In Section 4, two robust MPC
controllers are described, and their tuning is studied in
Section 5. Simulation results are presented in Section 6.

Notation Given two sets X ∈ R
n and Y ∈ R

n, the
Minkowski sum and Pontryagin difference are defined as

X ⊕ Y = {x+ y|x ∈ X, y ∈ Y },

X ⊖ Y = {x|x⊕ Y ⊂ X}

For two vectors x ∈ R
3 and y ∈ R

3, the cross product is
denoted x× y.
A polytope P ⊂ R

n is described as the convex-hull of a
finite set of points {v1, v2, ..., vnv

}

P = {x|x =

nv
∑

i=1

λivi,

nv
∑

i=1

λi = 1}

or as the set of solutions to a system of linear inequalities

P = {x|A(P )x+ b(P ) ≤ 0}

with A(P ) ∈ R
p×n, b(P ) ∈ R

p and p ∈ N.
The ith power of a matrix A is denoted Ai.
The eigenvalues set of a matrix A is denoted λ(A).



2. UAV MODELING

Consider an inertial frame I = (O, i, j, k) and a body frame
B attached to the vehicle, the UAV equations of motion
are

ξ̇ = v, (1)

mv̇ = −mgk +RF + Fext, (2)

Ṙ = RQ(ω), (3)

Jω̇ = −ω × Jω + τ, (4)

where ξ = (px, py, pz)
⊤ is the position of the center of

gravity of the quadrotor in I, v = (vx, vy, vz)
⊤ its velocity

in I, m its mass, R ∈ SO(3) the orientation matrix,
ω = (ωx, ωy, ωz)

⊤ its angular velocity in the body frame,
J its inertia matrix, g the gravity constant, and

Q(ω) =

(

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

)

.

The resulting force and torque generated by the quadrotor
propellers are denoted F and τ and are expressed in the
body frame B, Fext represents forces in the inertial frame
due to external disturbances.
Define

u = −gk +RrefFref/m

yielding

v̇ = u+ ((RF −RrefFref ) + Fext)/m. (5)

We assume that a control law defining the torque τ is
given and guarantees a fast convergence of the entries of
the orientation matrix R to a reference value Rref . The
motors dynamics are also neglected, thus F is assumed
to converge instantaneously to Fref . These asumptions
are accounted for in the definition of the bounds in the
disturbance term.
The equations (1) and (5) thus correspond to a double in-
tegrator with bounded additive disturbance. We discretize
this system with a zero-order hold on u with sampling-time
δt to obtain

x[k + 1] = Ax[k] +Bu[k] + w[k], (6)

A =















1 δt 0 0 0 0
0 1 0 0 0 0
0 0 1 δt 0 0
0 0 0 1 0 0
0 0 0 0 1 δt
0 0 0 0 0 1















, B =















δ2t
2

δt 0 0 0 0

0 0
δ2t
2

δt 0 0

0 0 0 0
δ2t
2

δt















⊤

where x = (px, vx, py, vy, pz, vz)
⊤, and w ∈ W is a term

related to the discretization of the term 1/m((RrefFref −
RF )+Fext). If u is bounded and if the attitude controller is
stabilizing, it can be shown that the error term RrefFref−
RF is also bounded. Since Fext is assumed to be bounded
too, the disturbance term w is bounded. This system (6)
will be referred to as the uncertain system.
The following sections will present MPC strategies for
the regulation of the uncertain system (i.e. the UAV
translational motion).

3. INVARIANT SETS AND FEEDBACK POLICY

The spatial and control constraints are defined by x ∈ X ⊂
R

6 and u ∈ U ⊂ R
3, with X and U bounded polytopes

containing the origin in their interior. We assume W is a

polytopic set containing the origin and such that w ∈ W .
Denote the disturbance-free system

x̄[k + 1] = Ax̄[k] +Bū[k]. (7)

This system is called the nominal system. Let us consider
the following control policy for the uncertain system

u[k] = ū[k] +K(x[k]− x̄[k]), (8)

with K ∈ R
3×6 such that AK = A + BK is Schur. The

error z[k] = x[k]− x̄[k] verifies

z[k + 1] = AKz[k] + w[k]. (9)

Definition 1. (Blanchini (1999)) The set Z is said robustly
positively invariant (RPI) for the system (9) if for all
z[k] ∈ Z and all w[k] ∈ W, z[k + 1] ∈ Z.
The following proposition states that the control policy (8)
ensures that the error remains in a RPI set Z.

Proposition 1. (Mayne et al. (2005), p.221) Suppose Z is
RPI for z[k + 1] = AKz[k] + w[k]. Assume that x[k] ∈
{x̄[k]} ⊕ Z and u[k] = ū[k] + K(x[k] − x̄[k]), then x[k +
1] ∈ {x̄[k + 1]} ⊕ Z for all w[k] ∈ W.

Define the following sets

X̄ = X⊖ Z, (10)

Ū = U⊖KZ. (11)

If the nominal system satisfies the constraints (x̄ ∈ X̄ and
ū ∈ Ū), then the uncertain system constraints are satisfied
(i.e. x ∈ X and u ∈ U).
Remark: the set containment Z ⊂ X and KZ ⊂ U have
to hold to guarantee X̄ 6= ∅ and Ū 6= ∅.

4. ROBUST MPC

4.1 Robust model predictive controller

This section presents the design of a nominal system
control law using an MPC approach. Take an MPC algo-
rithm given by the solution of the optimal control problem
PN (x̄[k]) with the quadratic cost function

VN (x̄0, ū) =

N−1
∑

i=0

(x̄⊤

i Qx̄i + ū⊤

i P ūi) + x̄⊤

NQf x̄N . (12)

The weighting matrices Q, P and Qf are positive defi-
nite, N is the length of the prediction horizon. PN (x̄[k])
consists in minimizing VN (x̄0,u) with x̄0 = x̄[k]. In this
optimization problem, the control input sequence ū =
{ū0, ū1, ..., ūN−1} is the decision variable.

PN (x̄[k]) :V 0
N (x̄[k]) = min(VN (x̄0, ū)),

ūi ∈ Ū, ∀i ∈ {0, ..., N − 1},

x̄0 = x̄[k],

x̄i ∈ X̄, ∀i ∈ {0, ..., N − 1},

x̄N ∈ X̄f ,⊂ X̄

x̄i+1 = Ax̄i +Būi, ∀i ∈ {0, ..., N − 1}.

The optimal control sequence is denoted ū
0. The terminal

weigth Qf and the terminal set X̄f are defined to ensure
stability.

Proposition 2. (Mayne et al. (2005), p.221) Let Kf ∈
R

3×6 be a feedback gain matrix. Suppose Kf , Qf and X̄f

are such that:



(A+BKf )X̄f ⊂ X̄f ,

Kf X̄f ⊂ Ū, (13)

X̄f ⊂ X̄,

((A+BKf )x̄)
⊤Qf (A+BKf )x̄+ (Kf x̄)

⊤PKf x̄,

− x̄⊤Qf x̄ ≤ 0, ∀x̄ ∈ X̄f . (14)

Then the origin is exponentially stable for the controlled
nominal system (7) and recursive feasibility of the opti-
mization problems is ensured.

Its feasibility domain is denoted X̄N . Once the optimiza-
tion problem PN (x̄[k]) is solved, the nominal control input
ū[k] is set as the first element of the optimal control input
sequence ū0

0. The next nominal state x̄[k + 1] and the
control input u[k] are given by (7) and (8).
The successive optimization problems can be precom-
puted: they involve the nominal state only, which is not
impacted by the disturbance sequence. It is therefore possi-
ble to compute beforehand the nominal system trajectory.
The control input component K(x[k]− x̄[k]), that ensures
the uncertain system remains in a “tube” centered on this
trajectory, is computed online.

4.2 Modified Robust MPC

The control input sequence ū is the decision variable of
the optimization problem PN (x̄[k]) previously described.
The modification presented here, as initially proposed in
Mayne et al. (2005), consists in letting x̄0 = x̄[k] be a
decision parameter. At each time step, the nominal state
x̄[k] and the optimal control sequence ū

0 are taken as the
solution of the optimization problem P̌N (x[k]):

P̌N (x[k]) :V̌ 0
N (x[k]) = min(VN (x̄0, ū)),

ūi ∈ Ū, ∀i ∈ {0, ..., N − 1},

x[k] ∈ {x̄0} ⊕ Z,

x̄i ∈ X̄, ∀i ∈ {0, ..., N − 1},

x̄N ∈ X̄f ⊂ X̄,

x̄i+1 = Ax̄i +Būi, ∀i ∈ {0, ..., N − 1}.

The optimal control sequence is denoted ū
0 and the

optimal initial state x̄0
0. The control input applied to the

system is

u[k] = ū0
0 +K(x[k]− x̄0

0).

Its feasibility domain is denoted XN . It can be proved that
X̄N ⊕ Z = XN (Mayne et al. (2005)). The conditions on
Qf and X̄f defined in Proposition 2 guarantee recursive
feasibility and robust exponential stability of the set Z for
the controlled uncertain system.
The successive optimization problems involved in this con-
troller can not be solved offline, indeed, the disturbance
w[k] can not be forecast and it impacts the state x[k+ 1].
Therefore, the optimization problems have to be solved
online.

Proposition 3. For all x ∈ Z, V̌ 0
N (x) = 0, x̄0

0 = 0, ū0 = 0
and u = ū+K(x− x̄) = Kx

Once the uncertain system has reached the RPI set Z, the
optimization problem is trivial and Z is invariant for the
uncertain system.

Both controllers presented in this section have robustness
properties with regard to bounded additive disturbance.
The tuning of their parameters is studied in the next
section, and their closed loop performances are compared
in Section 6.

5. TUNING PARAMETERS

The two controllers involve two sets of tuning parameters,
(K,Z) and (Kf , Qf , X̄f ), the influence of which is analyzed
below. The impact of the weighting matrices Q and P and
of the prediction horizon length N of PN (x̄) and P̌N (x)
are not detailed here.

5.1 Feedback gain K

The set Z defines the maximal error z[k] = x[k] − x̄[k]
between the nominal and the uncertain state, and can be
considered as the key element of the control law regarding
the precision of the controlled system with respect to the
disturbance W. Moreover, it also defines the sets X̄ and Ū

of the optimization problems:

• a smaller set Z implies a larger set X̄ = X− Z.
• for a given feedback gain K, a smaller set Z implies
a larger set Ū = U−KZ.

For a given feedback gain K, it is possible to define
the minimal Robust Positive Invariant (mRPI) set Z∗

(Blanchini (1999))

Z∗ =

∞
⊕

i=0

Ai
KW.

A feedback gain K leading to smaller eigenvalues of AK

will result in a smaller set Z∗ and a larger set KZ∗.
The tuning of K impacts both the disturbance rejection
and the constraints of the optimization problems.
Remark: In general, Z∗ is not polytopic and cannot be
explicitly characterized. Hence, the set Z is chosen as an
RPI outer polytopic approximation of the mRPI Z∗ (Olaru
et al. (2010)).

5.2 Feedback gain Kf

For a given horizon length N , the admissible initial condi-
tion set X̄N is defined by the terminal constraint set X̄f .
This set is given by the following relations

X̄1 = {x̄ ∈ X̄|∃ū ∈ Ū, Ax̄+Bū ∈ X̄f},

X̄i+1 = {x̄ ∈ X̄|∃ū ∈ Ū, Ax̄+Bū ∈ X̄i}, ∀i ≤ 1.

For given sets (Ū , X̄), a larger set X̄f leads to a larger
set X̄N of admissible initial conditions. The set X̄f has to
verify (13). A smaller feedback gain Kf leads to a larger
set X̄f , hence to a larger set X̄N .
Remark: Due to (14), the feedback gainKf has an impact
on the terminal cost x̄⊤

NQf x̄N .

6. SIMULATIONS

Consider below the example related to a critical flight of
a UAV close to a wall. The state constraints are x ∈ X =
{x| − 5m ≤ px ≤ 5m,−0.5m ≤ py ≤ 1m,−0.2m ≤ pz ≤
1m,−1m.s−1 ≤ vx, vy, vz ≤ 1m.s−1}. The control input
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Fig. 1. Projection of the disturbance set on (py, vy).

constraints are u ∈ U = {u| − 1m.s−2 ≤ ux, uy, uz ≤
1m.s−2}. The structure of the above constraints are such
that the three directions (px, vx), (py, vy) and (pz, vz)
can be adressed independently. Hence, the 6 dimensional
optimization problem is separated into 3 independent 2-
dimensional optimization problems. In the following, the
results will be presented for one direction. Similar results
are obtained in the other two directions.

The sampling-time is δt = 0.1s and the horizon lengthN =
15. The weighting matrices Q and P are Q = diag(10, 1)
and P = 0.1. The disturbance w is modeled as the sum of
two components

• the external force wext accounting for the discretiza-
tion of the disturbance term Fext/m due to the prox-
imity of the system to a wall, whose value is taken
from experimental data (McKinnon (2015)),

• a bounded term wran accounting for the discretiza-
tion of the disturbance term (RrefFref − RF )/m,
whose value is randomly generated in a set Wran at
each time step

The projection of the set W is presented in Figure 1.

6.1 Feedback controller K

The feedback gain K is computed by using a pole place-
ment strategy for the matrix AK . The method presented
in Olaru et al. (2010) defines, for a given feedback gain
K, a sequence of RPI sets Z = (Z0, Z1, ...) such that
∀i ∈ N, Zi+1 ⊂ Zi. These sets are presented in Figure 2
for λ(A+BK) = {0.70, 0.60}. The iterations increase the
complexity of the polytope (i.e. the number of vertices of
its convex hull) while decreasing its area (Figure 2).
The 6th iteration Z6 is presented in Figure 3 for λ(A +
BK) = {0.30, 0.20}, {0.70, 0.60} and {0.90, 0.80}. The
associated bounds on ū are |ū| ≤ 0.34, 0.54 and 0.59m.s−2.
For a given i ∈ N, placing poles closer to 0 tends to reduce
the size of Zi while increasing the size of KZi.

The simulation is run with λ(A+BK) = {0.70, 0.60} and
Z = Z6.

6.2 Terminal constraints

The feedback gain Kf is computed using a pole placement
strategy for the matrix A + BKf . In this study, the
algorithm used to compute the set X̄f is the following

• Initialization: Ω0 = {x ∈ X̄|Kfx ∈ Ū},
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.

• Iteration: Ωi+1 = {x|A(Ωi)x + b(Ωi) ≤ 0, A(Ωi)(A +
BKf )x+ b(Ωi) ≤ 0}, ∀i ≥ 0.

The computation stops at the lth iteration such that
Ωl+1 = Ωl, which implies (A + BKf )Ωl ⊂ Ωl. Thus, the
set Ωl verifies the conditions of Proposition 2.
Finite time convergence of the algorithm is not guaranteed
with the above strict stopping criterion. However, a rela-
tive convergence test can be used based on the decrease
of the Hausdorff distance between consecutive iterations.
It can be noted that the convergence speed increases for
smaller eigenvalues of A + BKf which is relative to the
contraction factor of the set mapping.

Figure 4 presents the sets X̄f and X̄N obtained for different
sets of eigenvalues of A + BKf . Closed-loop eigenvalues
with absolute value close to 1 increase the size of the
set of admissible initial conditions while increasing the
complexity of the set X̄f , that defines constraints in the
optimization problem.
The simulation is run with λ(A+BKf ) = {0.95, 0.90}.

6.3 Controller performance comparison

The two controllers presented in Sections 4.1 and 4.2 have
been simulated with the same initial conditions x[0] =
(0.5, 0, 0.5, 0, 0.5, 0)⊤ and random disturbance sequence.
The stabilization problem consists in steering the state of
the system to the reference chosen to be the origin. The
closed-loop evolution of py are illustrated in Figure 5, and
the control input in Figure 6.
The control input is closer to the bounds of U (|uy| =
1m.s−2) for controller 2. This is due to the fact that x− x̄
takes extremal values in Z for controller 2 (Figure 7).
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Moreover, Figure 6 illustrates that ū and K(x − x̄) have
the same sign until ū = 0 (i.e. once the uncertain system
has reached the set Z as mentioned in Proposition 3). This
version allows the “tube” control input K(x − x̄) to not
only reject disturbance but also to contribute in steering
the state of the uncertain system to the reference.

In both simulations, the state of the uncertain system x
remains in the “tube” x̄⊕ Z as illustrated in Figure 7.

7. CONCLUSION

We have presented the computation of the sets involved
in the robust model predictive controllers developed in
Mayne et al. (2005) for a simplified UAV model. The
tuning parameters of those MPC controllers and their im-
pact on both the system performance and the optimization
problem have been studied. Two robust model predictive
controllers have been compared with simulations, using
disturbance models from McKinnon (2015).
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