
Model Predictive Control for Autonomous
Navigation Using Embedded Graphics

Processing Unit

Duc-Kien Phung, Bruno Hérissé, Julien Marzat,
Sylvain Bertrand

ONERA - The French Aerospace Lab, F-91123 Palaiseau, France
(duc kien.phung,bruno.herisse,julien.marzat,sylvain.bertrand@onera.fr)

Abstract: The objective of this work is to implement a Model Predictive Control (MPC)
algorithm on an embedded Graphics Processing Unit (GPU) card. A MPC model for the
autonomous navigation of a ground mobile robot is proposed. GPU CUDA code implementation
and CUDA optimization techniques are discussed for this specific problem. The GPU-accelerated
application permits extending the prediction horizon and evaluating more future trajectories
compared to usual time-constrained CPU implementations. Simulation results and a preliminary
experiment are presented to demonstrate the efficiency of the real-time algorithm.

Keywords: Model Predictive Control, Graphics Processing Unit, Embedded Control, Mobile
Robot, Autonomous Navigation

1. INTRODUCTION

Model Predictive Control (MPC) is an appealing control
strategy for real-time navigation of many systems, includ-
ing mobile robots, Unmanned Aerial Vehicles (UAV), etc.
MPC strategy uses the system dynamical model to predict
the future state of the system. At each time step, a perfor-
mance criterion is optimized for computing control inputs
to reach pre-defined goals (Findeisen et al., 2003). Unlike
most other methods, MPC considers a realistic dynamical
model of the system and may also consider the changes in
environment in real-time.

Some of popular optimization methods for MPC include
Sequential Quadratic Programming (SQP), Active Set or
Interior Point methods (Bartlett et al., 2000; Martinsen
et al., 2004). However, a global solution can be hard
to find because of potential local minima. Another basic
strategy for computing MPC (sub-)optimal control input
is systematic search (Frew, 2005; Bertrand et al., 2014).
It has several advantages over traditional optimization
procedure. Firstly, systematic search strategy can be less
sensitive to local optimal problems, since the entire control
space is explored (depending on the exhaustivity of control
space discretization). Secondly, the computational load to
find control sequence is constant in all situations leading to
constant computation time. This is a necessary property
to design real-time systems that require deterministic time
response. Finally, the systematic search does not require
an initialization of the optimization procedure. However,
when many control candidates are evaluated for optimiza-
tion, the computational load can be heavy. The usual
solutions are to use a simpler parameterization of control
sequence (e.g. constant input control over limited control
horizon) or to limit the prediction horizon (Bertrand et al.,
2014; Roggeman et al., 2016) but these approaches limit

the potential of MPC. In some situations, a limited predic-
tion horizon can lead to vehicle blockage near obstacles.

In order to maximize the prediction horizon as well as
the number of control candidate sequences and to han-
dle heavy computational load, a dedicated calculator like
Graphics Processing Unit (GPU) can be used. Tradition-
ally, GPU is designed with more and more rapid cores to
satisfy the increasing demands of graphics/gaming indus-
try. Nowadays, the modern GPU is not only a powerful
graphics engine but also a highly parallel programmable
processor with very fast floating-point calculation and very
high memory bandwidth that surpasses its CPU counter-
part. Moreover, recent advances in semiconductor tech-
nology open up the possibility to embed high-performance
yet low-power-consumption GPUs on small mobile robots
or mini-UAVs. The objective of this work is to propose a
MPC approach using GPU to control such robotic systems.

The paper is organized as follows. Section 2 recalls GPU
programming model and other parallelized control algo-
rithms available in the literature. Section 3 provides the
general predictive control approach. Section 4 applies the
MPC approach on a more specific case of mobile robot.
The GPU code implementation details and optimization
techniques are presented in Section 5. Simulation results
are provided in Section 6 and compared with a nonparal-
lelized MPC. Section 7 demonstrates a preliminary exper-
iment on our mobile robot platform. Section 8 provides a
brief summary of the paper and perspectives.

2. RECALLS ON PROGRAMMING GPUS AND
PARALLELIZED CONTROL ALGORITHMS

2.1 CUDA Programming Model

In order to facilitate GPU programming, NVIDIA has
been developing the leading proprietary programming

model for GPUs, called CUDA (Compute Unified Device
Architecture). CUDA provides an abstract scalable pro-
gramming model. It is designed to be an extension to C.
CUDA also supports a subset of C++, such as templates.
The GPU is programmed by implementing device func-
tions, called kernels. When a kernel is called, a thread grid
is created to execute the kernel on the GPU. A thread grid
is a 3D grid of thread blocks. Each block in turn is a 3D
grid of CUDA threads. The programmer can specify the
dimension of thread blocks and thread grids.

Threads within the same thread block are able to syn-
chronize execution and share data by using the shared
memory, but there is no synchronization available between
different thread blocks. Thread blocks are required to
execute independently: it must be possible to execute them
in any order, in parallel or in series. This independence
requirement allows thread blocks to be scheduled in any
order across any number of cores, enabling programmers to
write code that scales with the number of core (NVIDIA,
2015).

The thread blocks can allocate memory from shared mem-
ory and use it to share data between the threads in a
thread block. Since shared memory is located inside on-
chip streaming multiprocessor, the access latency is very
fast. Utilizing shared memory is key to improving perfor-
mance of memory-bound kernels.

2.2 Review on parallelized control algorithms

Generally, there are two approaches to accelerate a con-
trol algorithm (Huang et al., 2011). The problem-parallel
approach consists in doing multiple execution of the same
algorithm on different data. The data-parallel approach
consists in exploiting the intrinsic property of the algo-
rithm (e.g. structure of matrices).

In problem-parallel approach, the usual requirements are
the problems have the same size and they are solved
using the same algorithm. Typical examples are projectile
Monte-Carlo trajectory analysis (Ilg et al., 2011) and
real-time projectile guidance for impact area constraint
(Rogers, 2013). In these examples, the same Monte Carlo
dynamic simulation can be run hundreds or thousands of
times in parallel using different initial conditions. This
“single-program-multiple-data” framework is suitable for
implementation on GPU.

Most of the algorithms in data-parallel approach exploit
the structure of matrix calculation. Soudbakhsh and An-
naswamy (2013) make use of the structure of the com-
putations and the matrices (cost and constraint matrices)
in the MPC to reduce the computational time. It can be
shown that the computation time of MPC with prediction
horizon Hp can be reduced to O(log2Hp). Specifically, a
plant model with time delays was reformulated to get a
form with sparse matrices. The computational time was
analyzed to detect computational bottlenecks. The matri-
ces in primal-dual method have block diagonal and block
tridiagonal structures. Exploiting this sparsity, computa-
tions were parallelized to minimize the execution time.

In order to maximize the use of GPU/FPGA, the data-
parallel approach can be implemented together with
problem-parallel approach. The implementations are quite

diverse. Examples include MPC implementation with in-
terior point method (Constantinides, 2009; Gade-Nielsen
et al., 2012, 2014), solving quadratic programming prob-
lem (Huang et al., 2011), RRT/RRT∗ motion-planning
algorithm for a robotic manipulator (Bialkowski et al.,
2011).

In this work, we have implemented a MPC control algo-
rithm with the hybrid data-parallel and problem-parallel
approach for a nonlinear system.

3. GENERAL MPC APPROACH

We consider the general discrete model of a vehicle dy-
namics:

x(k + 1) = f(x(k),u(k)), (1)

where x is the state vector and u is the control vector. We
define Hp as the prediction horizon and Hc (1 ≤ Hc ≤ Hp)
as the control horizon.

Using the dynamical model (1), future control inputs
and the resulting state trajectories of the vehicle can be
computed as follows.

U = (u(k)>,u(k + 1)>, ...,u(k +Hc − 1)>)>,
X = (x(k + 1)>,x(k + 2)>, ...,x(k +Hp)>)>.

(2)

For each future trajectory, a cost function J which repre-
sents the objectives of the mission is computed. Concretely,
the optimization problem at time k is the following:

minimize J(U ,X)
over U ∈ U
subject to ∀t ∈ [k + 1; k +Hp],x(t) ∈ X

(3)

where U is the considered control space and X is the entire
space free of obstacles. One possible solution for problem
(3) consists in considering a finite set of predefined feasible
control sequences, from which the one minimizing the cost
function will be selected. Finally, the first command of
that optimal sequence is applied to the system and the
operation is performed again at the next time step.

Note that in our proposed method, at time step k, future
trajectories over entire prediction horizon Hp and the cost
function J are calculated based solely on current state
x(k) and predefined control sequences U . This method
is thus not suitable if there are changes in constraints on
intermediate states x(k + 1), x(k + 2), ..., x(k +Hp).

4. SPECIFIC MPC MODEL

We consider here the discrete dynamics of a mobile robot
in 2D: {

x(k + 1) = x(k) + ∆t v(k) cos(θ(k)),
y(k + 1) = y(k) + ∆t v(k) sin(θ(k)),
θ(k + 1) = θ(k) + ∆t ω(k).

(4)

where x = (x, y, θ)> is the state vector containing the
linear coordinates (x, y)> and direction angle θ, u =
(v, ω)> is the control vector with linear speed v and
angular speed ω, ∆t is the sampling time step.

The constraints on the control inputs of system (4) are:

|v| ≤ vmax, |ω| ≤ ωmax. (5)

4.1 Cost function

The cost function J consists of a speed control cost Jv,
an angular speed control cost Jω, a speed regulation cost
Jr, a navigation cost Jnav, and a safety cost Jsafe. Each
cost function includes a corresponding weighting factor,
denoted by W . These factors are tuned by trial and error
in simulation. The formulation of each cost function is
detailed in the followings.

The control cost aims to limit the control effort and
therefore the energy consumption. Both the speed and the
angular speed control costs are defined as:

Jv(k) =

k+Hc−1∑
n=k

Wvv
2(n), Jω(k) =

k+Hc−1∑
n=k

Wωω
2(n). (6)

The speed regulation cost aims to regulate the speed of
the robot near a nominal value vnom (can be negative):

Jr(k) =

k+Hc−1∑
n=k

Wr
(|v(n)| − |vnom|)2

(|vnom|+ vmax)2
. (7)

The robot is required to visit a certain waypoint at position
pgoal. The navigation cost is then proportional to the sum
of square of distance between predicted position p̂ and the
goal pgoal:

Jnav(k) = Wnav

k+Hp∑
n=k+1

‖p̂(n)− pgoal‖2. (8)

As for the safety cost, we define a safety function as follows:

fsafe(k) =
1− tanh(α(d(k)− β))

2
, where (9)

α =
6

ddes − dsec
, β =

ddes + dsec
2

, (10)

d(k) is the distance between the robot position and the
closest obstacle at time step k and ddes is the desired dis-
tance to the obstacles. Beyond this distance, the influence
of the obstacles is ignored, dsec is the security distance to
obstacle that the robot must not cross. This continuous
function fsafe is equal to 1 when d(k) < dsec and equal to
0 when d(k) > ddes. Finally,

Jsafe(k) = Wsafe

k+Hp∑
n=k+1

fsafe(n). (11)

4.2 Control candidate selection

We define a certain number of control sequences where v
and ω are varied. Let Ncs ≥ 3 be an odd number of speed
variations which are uniformly distributed from −vmax to
vmax. Define a positive integer ns = (Ncs−1)/2. The speed
control candidates are then:

vi =
ivmax

ns
with i = −ns,−ns + 1, ..., ns − 1, ns. (12)

Similarly, let Ncy ≥ 3 be an odd number of angular speed
variations which are uniformly distributed from −ωmax to
ωmax. Define ny = (Ncy − 1)/2. The angular speed control
candidates are then:

ωj =
jωmax

ny
with j = −ny,−ny + 1, ..., ny − 1, ny. (13)

control direction changes

Fig. 1. Example of changing the control direction with
control horizon Hc = 12, D = 3, C = 4

In a general case, the control candidate can be different
in all predicted control steps. However, that makes the
number of sequences extremely large. Instead, we defined a
positive integer D as a number of possible different control
values in the control horizon. Therefore, the control values
will be unchanged in C = Hc/D steps. The change of
control values (change of angular speed in this case) is
illustrated in Fig. 1.

Let consider for example a case where the prediction
horizon is Hp = Hc = 24 steps. Choose the number of
speed variations Ncs = 7 and angular speed variations
Ncy = 11. We consider D = 3 different control values.
Then, the number of possible control candidate sequences
is P = (NcsNcy)D = 456533. The speed control candidate
data will be a 2D matrix with column height P and row
width Hp. In this example, the size of the 2D matrix is
L = P × Hp = 10956792. The angular control candidate
and other intermediate prediction and cost matrices have
large size as well. The computation of these huge data for
prediction and cost is relatively slow on traditional CPU.
This is where the advantages of GPU computing come into
play. Well-designed CUDA program can handle these data
in an efficient manner.

5. CUDA CODE IMPLEMENTATION

Below is the overview of algorithm steps with the parts
that are executed on GPU in bold blue texts:

• Initialization
• Control vectors generation
• Copy control vectors to GPU device vectors
• Loop for each step until visited all waypoints

· Supervision (check waypoints achievement)
· Update environment map data to GPU
· MPC

(1) Calculate predicted state using (4)
(2) Calculate cost components as in Sec-

tion 4.1
(3) Find control candidate sequence that

entails minimum cost
· Publish the optimal control (speed and angular

speed)

In order to obtain an efficient program, we implemented
the following CUDA optimization techniques:

A) 1D vector representation for 2D array. As seen
in the previous section, very large 2D arrays are used
in our algorithm. Hence, it is imperative that 2D arrays
are represented in efficient way. We choose to represented
2D arrays as 1D vector, with stride length equal to the
width of 2D array. This is also the way 2D arrays are
represented in memory (ISO, 2011, Section 6.5.2.1). This
representation is also convenient for data manipulation
within primitive operation library (CUDPP) below.
B) Efficient calculation of primitive parallel opera-
tions. Many intensive operations on CPU can be replaced

3 1 7 0 4 1 6 3

3 4 8 7 4 5 7 9

3 4 11 11 12 12 11 14

3 4 11 11 15 16 22 25

Fig. 2. Example of inclusive sum scan of L = 8 elements

by equivalent but more efficient parallelized CUDA codes.
We illustrate this point by a simple example. In MPC
algorithm, it is required to calculate the predicted values

θ̂ of direction angle based on past angle and angular speed
control as per (4):

θ̂iHp+j = θ0 + ∆tSj , (14)

where θ0 is the initial angle at this iteration step, and Sj

is a cumulative sum defined as:

Sj =

j∑
k=0

ωiHp+k. (15)

Predicted angle θ̂ and ω are essentially 2D matrices with
size L = P × Hp and are represented as 1D vector with
length L, as explained earlier. Implementations of sim-
plified C++ code and CUDA code are shown in Fig. 3.
Equation (15) is implemented by line 4 in C++ code,
or equivalently by line 4 in CUDA code. Equation (14)
is implemented by line 5 in C++ code, or equivalently
by line 7 in CUDA code. The difference between them is
that for loops are not needed in CUDA code since the
calculations of equations (15) and (14) are implemented
in parallel. The important operation here is to calculate
the cumulative sum (running sum or scan) of the angular
speed control ω (line 4 in C++ code in Fig. 3). The step
complexity and work complexity of serial scan algorithm
are both O(L). When L grows big, the calculation time
can be relatively long.
At first look, scan operation seems like a sequential op-
eration since the running sum depends on past values.
However, scan operation can be calculated very efficiently
in parallel. An example of well-known parallel scan by
Hillis and Steele (1986) is shown in Fig. 2. This algorithm
requires log2 L = 3 steps, compared to 7 steps (7 addi-
tions) in serial scan. However, this algorithm applies the
sum operator O(L log2 L) times, which is asymptotically
inefficient compared to the O(L) applications performed
by serial scan. Another principal difficulty in our appli-
cation is calculating the running sums for P chunks of
data with length Hp in parallel, i.e. a parallel segmented
scan operation. For this operation, we make use of one of
the most powerful scan algorithms designed for GPU in
a specialized library called CUDPP (CUDA Data Parallel
Primitives) (Sengupta et al., 2011). CUDPP is an utility
library for data-parallel algorithm primitive operations.
Step complexity of CUDPP scan algorithm is O(log2 L)
and work complexity is O(L), both of which are asymptot-
ically optimal. Using efficient parallelized algorithms like
CUDPP segmented scan has greatly reduced the calcula-
tion time in our CUDA application, as will be shown in
Section 6.

C) Fine-grained data-parallelism To efficiently utilize
the GPU, a program must expose substantial amounts of
fine-grained parallelism. For example, launching a kernel
on the GPU is a relatively expensive operation. For kernels
that perform simple operations like scaling or addition, the
calculation time is very low and comparable to the time
delay required to call the kernel itself. In order to maximize
the GPU utilization, we write kernels that group data
together to hide the kernel call latency. As an example,
each thread in vectorScaleAdd4 kernel (Fig. 3) groups
and handles the calculation of 4 sets of data. Specifically,
each thread performs 4 additions and 4 scaling operations.
Simple optimization like this is important since CUDA
program is required to handle very large amount of data.
In practice, each kernel is optimized using profiling (time
measurement using Eclipse Profiling Tool) to select suit-
able parameters like amount of data to be handled by each
thread, kernel grid/block size, etc.
Other optimizations include extensive shared memory uti-
lization and kernel concurrency. Large data such as occu-
pancy maps are copied into fast on-chip shared memory
to minimize access time. Whenever possible, kernels are
executed concurrently to minimize overall execution time.
D) Limit memory management overhead The CUDA
memory management functions cudaMalloc and cudaFree
are more than two orders of magnitude more expensive
than the equivalent C standard library functions malloc
and free. In our code, whenever possible, memories (for
example control candidate vectors) are allocated before
MPC calculation loop. The memory is reused in each
kernel invocation in the control loop. The memory is de-
allocated only when the control loop finishes.
E) Limit memory transfer overhead One of the most
limiting overhead in parallel computing with GPU is the
need to explicitly transfer data between CPU memory and
GPU memory. Also, transfer a large chunk of data once is
often faster than transfer small data many intermittent
times. In our program, the data are grouped and trans-
ferred as few times as possible before MPC calculation.
F) Make use of fast intrinsic CUDA functions
CUDA framework provides intrinsic functions (sinf, expf,
etc) that are less accurate than standard math functions
but execute faster (as they map to fewer native instruc-
tions). We trigger the option use fast math in the compiler
option to make use of these intrinsic functions.

There are some challenges in the development with CUDA.
For instance, CUDA does not support some standard
libraries, e.g. std::vector. However, usually there are some
high-level libraries available for the developers, e.g. Thrust
library that can be used in replacement of these convenient
tools. One challenge is that when using different libraries
together, sometimes it is required to convert from one
format compatible with a library to another - a task not so
straightforward especially if the conversion has to be done
in low-level device codes to optimize execution time.

6. MOBILE ROBOT MPC CONTROL SIMULATION

In this simulation, we run our GPU CUDA algorithm
on a Jetson TK1 card with Tegra K1, a NVIDIA Ke-
pler “GK20a” GPU with 192 CUDA cores (up to 326
GFLOPS). In order to compare the performance, we also

1 for (i=0;i<P;++i) {

2 cum_sum_omega = 0.0;

3 for (j=0;j<Hp;++j) {

4 cum_sum_omega += omega[i*Hp+j];

5 predicted_theta[i*Hp+j] = theta_0 + delta_t *

cum_sum_omega;

6 }

7 }

1 L = P*Hp;

2 // Using CUDPP library with a class planner scanplan

3 // iflags: flag vector to mark the beginning of a segment

4 cudppSegmentedScan(scanplan , cum_sum_omega , omega ,

5 iflags , L);

6

7 vectorScaleAdd4 <<<gridSize ,blockSize >>>(predicted_theta ,

cum_sum_omega , L, delta_t , theta_0);

Fig. 3. Comparison between C++ code (left) and CUDA code (right)

vmax 1.0 m/s

vnom 0.7 m/s

ωmax 0.5 rad/s

Table 1. Speed parameters

Wv 5 Wsafe 150

Wω 5 ddes 0.8

Wr 2 dsec 0.6

Wnav 5

Table 2. Cost parame-
ters

Hp 24 Ncy 11

Hcs 24 D 3

Hcy 24 C 8

Ncs 7

Table 3. Search proce-
dure parameters

Fig. 4. Trajectory plot of the robot passing through 3
waypoints (green crosses) while avoiding obstacles
(black circles)

run the equivalent CPU C++ code on a PC workstation
Intel Xeon W3520 @ 2.67 GHz.

We consider a known environment with many fixed obsta-
cles. The goal of the mobile robot is to visit a few way-
points one by one while avoiding obstacles. The sampling
time is ∆t = 0.25s. The speed parameters are shown in
Table 1. The cost parameters are listed in Table 2.

In a specific example, we consider the search procedure
parameters as shown in Table 3. The data vector length
is L = (NcsNcy)D × Hp = 10956792. Fig. 4 shows the
trajectory plot (blue line) of the robot. The robot is able to
find the waypoints (green crosses) while avoiding obstacles
(black circles).

Fig. 5 compares the average execution time for the MPC
code executed by CPU versus GPU for different data
vector length L. For smaller data, the CPU C++ program
executes faster since the clock rate of CPU is fast and
the CPU is not limited by the memory transfer over-
head. However, as the data grow larger and larger, the
CPU C++ program takes exponentially longer. The GPU
CUDA program execution time only increases slightly and
it runs in real time (i.e. less than ∆t = 250ms) for all
tested lengths of data vector.

Fig. 5. Comparison of execution time of CPU C++ versus
GPU CUDA programs with different data vector
length L. Green dashed line represents the sampling
time ∆t = 250ms.

In some other simulations, we reduce data vector length
L so that the CPU C++ program can run in real-time.
However, the quality of predictive control degrades as
compared to CUDA program (abrupt direction change
near obstacles due to short prediction horizon, robot
blockage between several obstacles due to fixed control
values over control horizon, etc).

7. PRELIMINARY EXPERIMENT

We performed a preliminary experiment on a four-wheel
Robotnik Summit XL robot (Fig. 6). The robot is
equipped with an Asus Xtion depth sensor to create an
occupancy map. The localization of the robot uses wheel
odometry and Inertial Measurement Unit.

The Tegra card is mounted on the front part of the
robot. It is powered by a 12V portable battery. The
Tegra card is connected to the mobile robot on-board PC
by LAN cable. Communication between Tegra card and
other modules is facilitated using ROS (Robot Operating
System by Quigley et al. (2009)) middleware. The Tegra
card receives odometry data and projected occupancy map
from appropriate topics published by the on-board PC
program. Then, the control algorithm is executed on Tegra
card as described in Section 5. After finding the optimal
trajectory, control signals (speed and angular speed) are
published to a ROS topic. The on-board PC program then
subscribes to this topic and control the motors accordingly.

The experiment was carried out in a parking in our
research center (Fig. 7). A short video of this experiment
is available at http://bit.ly/2nwgXmy.

The robot was able to successfully find 2 waypoints while
avoiding the obstacles (mainly 2 pillars) as depicted in
Fig. 8. This experiment shows that our algorithm can per-
form in real-time and achieve safe autonomous navigation.
In the near future, we will perform experiments with more

Fig. 6. SummitXL
robot

Fig. 7. The robot navigates in our
experiment

Fig. 8. RVIZ visualization of the experiment: yellow and
green cubes are obstacles detected by the depth sen-
sor; two magenta hemispheres represent the way-
points; green line represents the trajectory of the
robot; zones in dark gray are unexplored region.

complex scenario (e.g. more obstacles) to further test the
efficiency of our parallelized CUDA algorithm.

8. CONCLUSION

We have proposed a MPC approach for autonomous nav-
igation using GPU. It is shown that our CUDA pro-
gram permits extending the capability of MPC compared
to more constrained CPU implementations (longer con-
trol/prediction horizon, more control candidates, etc). Our
application can run successfully in real-time on mobile
robot. Moreover, this work permits to evaluate the system
performance in more realistic condition using small, low-
power-consumption GPU that can be integrated into small
embedded systems. Future works include more extensive
experiments on mobile robot and other platforms such
as mini-UAVs. This application can be further optimized
with more advanced embedded GPUs (such as the new
Tegra X1) with enhanced capabilities (e.g recursive CUDA
kernel call, more efficient unified memory handling).

REFERENCES

Bartlett, R. A., Wachter, A., Biegler, L. T., 2000. Active
set vs. interior point strategies for model predictive con-
trol. In: American Control Conference. Vol. 6. Chicago,
IL, USA, pp. 4229–4233.

Bertrand, S., Marzat, J., Piet-Lahanier, H., Kahn, A.,
Rochefort, Y., 2014. MPC Strategies for Cooperative
Guidance of Autonomous Vehicles. AerospaceLab (8),
pp. 1–18.

Bialkowski, J., Karaman, S., Frazzoli, E., Sep. 2011.
Massively parallelizing the RRT and the RRT*. In:
2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). St Louis MO, USA, pp.
3513–3518.

Constantinides, G. A., 2009. Tutorial paper: Parallel ar-
chitectures for model predictive control. In: IEEE Euro-
pean Control Conference. Budapest, Hungary, pp. 138–
143.

Findeisen, R., Imsland, L., Allgower, F., Foss, B. A.,
Jan. 2003. State and Output Feedback Nonlinear Model
Predictive Control: An Overview. European Journal of
Control 9 (2), 190–206.

Frew, E., 2005. Receding Horizon Control Using Ran-
dom Search for UAV Navigation with Passive, Non-
Cooperative Sensing. In: AIAA Guidance, Navigation,
and Control Conference and Exhibit. Portland OR,
USA.

Gade-Nielsen, N. F., Dammann, B., Jørgensen, J. B.,
2014. Interior Point Methods on GPU with application
to Model Predictive Control. Ph.D. thesis, Technical
University of Denmark.

Gade-Nielsen, N. F., Jørgensen, J. B., Dammann, B.,
2012. MPC Toolbox with GPU Accelerated Optimiza-
tion Algorithms. In: The 10th European Workshop on
Advanced Control and Diagnosis (ACD 2012). Lyngby,
Denmark.

Hillis, W. D., Steele, Jr., G. L., Dec. 1986. Data Parallel
Algorithms. Communications of the ACM 29 (12), 1170–
1183.

Huang, Y., Ling, K. V., See, S., 2011. Solving Quadratic
Programming Problems on Graphics Processing Unit.
ASEAN Engineering Journal.

Ilg, M., Rogers, J., Costello, M., 2011. Projectile Monte-
Carlo Trajectory Analysis Using a Graphics Processing
Unit. In: AIAA Atmospheric Flight Mechanics Confer-
ence. Portland OR, USA.

ISO, 2011. C programming language standard ISO/IEC
9899:201x N1570 Committee draft.

Martinsen, F., Biegler, L. T., Foss, B. A., Dec. 2004. A new
optimization algorithm with application to nonlinear
MPC. Journal of Process Control 14 (8), 853–865.

NVIDIA, 2015. CUDA C Programming Guide.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,

Leibs, J., Wheeler, R., Ng, A. Y., 2009. ROS: an open-
source Robot Operating System. In: ICRA workshop on
open source software. Vol. 3. Kobe, Japan, p. 5.

Rogers, J., 2013. GPU-enabled projectile guidance for
impact area constraints. Vol. 8752. Baltimore, MD,
USA, pp. 87520I 1–23.

Roggeman, H., Marzat, J., Bernard-Brunei, A.,
Le Besnerais, G., 2016. Prediction of the scene
quality for stereo vision-based autonomous navigation.
IFAC-PapersOnLine 49 (15), 94–99.

Sengupta, S., Harris, M., Garland, M., Owens, J. D., Jan.
2011. Efficient Parallel Scan Algorithms for Many-core
GPUs. In: Kurzak, J., Bader, D. A., Dongarra, J. (Eds.),
Scientific Computing with Multicore and Accelerators.
Chapman & Hall/CRC Computational Science. Taylor
& Francis, pp. 413–442.

Soudbakhsh, D., Annaswamy, A. M., 2013. Parallelized
model predictive control. In: IEEE American Control
Conference (ACC). pp. 1715–1720.

