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Abstract: This demonstrator paper describes a flight-tested, fully integrated perception-control
loop for trajectory tracking with obstacle avoidance by micro-air vehicles (MAV) in indoor
cluttered environments. For this purpose, a stereo-vision system is combined with an inertial
measurement unit to estimate the vehicle localization and build a 3D model of the environment
on-board. Emphasis is placed on a model predictive control (MPC) algorithm for safe guidance
in unknown areas using the perception information. It combines an analytical linear quadratic
solution for trajectory tracking and an efficient discretization strategy for collision avoidance.
Experimental results in a flying arena and at an industrial site provide an overview of the
demonstrator capabilities.
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1. INTRODUCTION

Autonomous micro-air vehicles (MAV) can be of major in-
terest for industrial applications that require the coverage
of large areas or accessing high locations, e.g. for inspec-
tion or surveillance missions. However, the deployment of
such platforms in real-world indoor cluttered environments
with no prior information on the environment remains a
challenging issue. In the absence of an absolute localiza-
tion sensor (such as GPS), the vehicle should be able to
achieve simultaneous localization and mapping using only
its embedded sensors. Monocular or stereo-vision cameras
are the most popular choices in this context, since these
devices are compatible with MAV payloads and of limited
cost. Several vision-based localization and mapping algo-
rithms have then been proposed in the literature (Scara-
muzza and Fraundorfer (2011)). The incorporation of such
a localization system in an integrated perception and
control loop that can run on-board of a MAV requires a
huge effort in algorithmic optimization and many hours of
testing. Only a few fully-operational MAV demonstrators
with autonomous navigation embedded capabilities relying
on vision measurements have been recently reported (see in
particular Heng et al. (2014); Burri et al. (2015); Faessler
et al. (2016)). In line with this research, we propose a
demonstrator of autonomous MAV navigation in cluttered
environments relying on stereo-vision and IMU measure-
ments. It is built upon our previous work on vision-based
localization and mapping (Sanfourche et al. (2014)), em-
bedded perception and control loops (Roggeman et al.
(2014)), and model predictive control (MPC) with reduced
computational cost (Rochefort et al. (2014)).

The main contribution described in this paper is a new
MPC strategy for trajectory tracking with obstacle avoid-

ance in an unknown environment. It is integrated in a com-
plete perception and control loop embedded on a multi-
rotor MAV, which has been validated via extensive flight
experiments in both controlled facilities and real-world
environment. Many MPC algorithms have been designed
for trajectory tracking, the reader is referred to the recent
work of Mellinger et al. (2012); Hofer et al. (2016); Neunert
et al. (2016). Most of these approaches are based on non-
linear models and numerical optimization methods, which
entail a high computational cost that can be detrimental
when the controller should run alongside other algorithms
on an embedded processor with limited computational
power. Two classical strategies can be adopted for obstacle
avoidance, either the planning of an avoidance trajectory
which should then be tracked by another controller (as
in Park et al. (2009); Mellinger et al. (2012)) or reactive
strategies which make a direct use of the current estimated
states of the vehicle and the environment (Lee et al. (2011);
Belkhouche and Bendjilali (2012)). Our MPC algorithm
is a reactive strategy which combines a linear analytical
solution for trajectory tracking with a systematic search
procedure for obstacle avoidance using the vision-based
environment model built online. The overall algorithm has
a limited computational cost, which makes it suitable for
the considered application.

This paper is organized as follows. Section 2 provides an
overview of the embedded algorithmic chain. Section 3
recalls the vision algorithms for state estimation and
mapping. The new MPC algorithm is described in detail
in Section 4. Experimental results of the demonstrator are
presented in Section 5, and the associated demonstration
possibilities are finally summarized in Section 6.



2. PERCEPTION AND CONTROL ARCHITECTURE

The target vehicle for flight experiments is an Asctec Pel-
ican quadrotor controlled in diamond configuration (Fig-
ure 1). It includes an integrated IMU and a proprietary
low-level controller, which makes it possible to send di-
rectly acceleration control inputs to the MAV (through
a conversion to thrust, roll angle, pitch angle and yaw
rate inputs). It also embeds a quad-core i7 CPU on which
the complete perception and control algorithmic chain
from Figure 2 is processed, which makes the MAV fully
autonomous and robust to the loss of communication with
the ground station.

The main sensor for localization and mapping is a stereo
rig pointing in the x-axis direction, composed of two
USB cameras including 4mm S-mount lenses, separated
by a baseline of 22cm and synchronized electronically. The
other sensors are the Asctec IMU (which provides a reliable
pre-filtered attitude estimation) and a laser telemeter
pointing downward for height measurement. These sensors
are used to obtain a state estimate and information on the
environment that are exploited by a MPC-based guidance
module to follow reference trajectories or reach waypoints
while avoiding unknown obstacles. This module provides
acceleration control inputs directly compatible with the
Asctec low-level controller.

Fig. 1. Asctec MAV with stereo-vision sensors and embed-
ded processing capabilities

Fig. 2. Perception and control loop for autonomous navi-
gation with obstacle avoidance

3. VISION-BASED LOCALIZATION AND MAPPING

3.1 Visual odometry

Localization is achieved by our embedded visual odometry
algorithm eVO (Sanfourche et al. (2013)), whose input is
the image pair captured by the stereo-rig. The operating
principle is to build a map of isolated landmarks, which is
updated in a key-frame scheme as proposed in Klein and
Murray (2007). To be compatible with real-time process-
ing, this update mechanism presents the following simpli-
fying characteristics.
(1) Landmarks are pruned when they fall outside the
sensor field of view (as in Mouragnon et al. (2006)), which
allows to manage only a local map.
(2) The initial localization estimate of the landmarks in
the inertial frame is kept during all the key-frame lifetime.
With more computational power available, this position
could be adjusted by minimizing a multi-view reprojection
criterion.
The structure of eVO combines two macro-functions: lo-
calization and map management (Figure 3).
The localization function estimates position and atti-
tude by tracking previously mapped landmarks in the left
image. This feature tracking is carried out by an efficient
implementation of the KLT algorithm of Shi and Tomasi
(1994). The pose is robustly inferred from the subsequent
2D-3D matching in a two-stage process. First, a RANSAC
step on the Perspective-3-Points algorithm provides the
most probable estimate with respect to 2D-3D matching
and a set of known inliers. Then, a nonlinear least-square
optimization step (Lourakis and Argyros (2009)) is em-
ployed to minimize the reprojection error over the inlier
matches.
The mapping function manages the 3D landmarks in
a local map. The inclusion of new landmarks is activated
whenever the ratio between the successfully tracked fea-
tures and the number of 3D landmarks visible on the last
key-frame falls below a threshold. Then, new Harris points
are detected in the left image and are matched within the
right image, using a multi-scale exhaustive search along
the epipolar lines. A triangulation operation provides the
localization estimate in the sensor frame (linked to the
IMU), which is finally transformed into the inertial frame.
Using the inlier/outlier classification of the RANSAC step
from the first thread, a landmark is discarded when it is
repeatedly classified as an outlier at several successive time
steps.

3.2 State estimation

The eVO estimated position is combined with the ac-
celerometer measurements and the built-in attitude esti-
mate from the Asctec IMU in a Kalman filter scheme, as
in Lynen et al. (2013). A test on the filter innovation ampli-
tude (as in Roggeman et al. (2014)) is performed to detect
inconsistencies between the visual odometry and the IMU.
In case of fault detection, a sequence of reconfiguration
actions is carried out: reset of eVO, switch to relative
height regulation on the z-axis, and in last resort control
is given back to the human pilot. An independent Kalman
filter estimates the ground height and vertical velocity
from laser telemeter measurements and IMU attitude.



Track
Features

Compute
Pose

New
Keyframe

?

Extract
New Features

Stereo-
Matching Triangulation

Update
Database

Camera
Left

Predict
Features

Is
Initialized

?

Camera
Right

YESYES

NO

NO

Motion
Prediction

?

YES

Stereo-
rectification

Stereo-
rectification

NO

Localization Thread

Mapping Thread

Fig. 3. Architecture of eVO algorithm (Sanfourche et al. (2013))

3.3 3D environment modeling

To be able to navigate in a cluttered environment, a 3D
environment model is built and updated on-line by incor-
porating instantaneous sensor-to-scene distance measure-
ments, which are transformed into the global frame thanks
to the current vehicle state estimate. The rectified pair of
stereo images is used to compute a depth map with the
ELAS (Efficient Large-scale Stereo Matching) algorithm
by Geiger et al. (2010). This algorithm achieves a robust
matching of image features, followed by the computation
of a dense disparity through the probabilistic propagation
of the local depth information estimated on the matched
features. This depth information is then included in a 3D
occupancy grid, which divides the space in a lattice of
cells (Elfes (1989)). The widely-used open-source Octomap
model (Hornung et al. (2013)) is exploited. It is based on
an octree data structure whose elements (voxels) include
the probabilities of occupancy and free-space. These quan-
tities are updated by a ray-tracing method to incorporate
the depth information. The occupancy probability of a
voxel is increased whenever a new 3D point is located
inside, while at the same time all voxels on the ray be-
tween the sensor location and this end-point witness an
increase in their probability of being free. Octree is very
competitive in terms of memory occupation thanks to
a hierarchical structure that is able to adapt the map
resolution to the needed level of detail. Examples of maps
built on-board of the MAV can be found in Figures 5, 7, 8.

Since testing all voxels for collision around a potential
MAV position consumes a lot of CPU resources, an Eu-
clidean Distance Transform (EDT) is applied to obtain a
3D distance map to the closest obstacle (Lau et al. (2013)).
At each update of the Octomap, this map is built on the
same structure via a search of the closest occupied voxel
at each position (with predefined probability thresholds
and within a parameterized maximum distance). The grid
update strategy is quite computationally demanding and
cannot be achieved at high frequency. In practice, the map
update frequency is reduced to 2 Hz at VGA resolution and
two EDT structures are managed in parallel to ensure con-
current access to the distance map even during the EDT
update. To test for collision with obstacles, the guidance
algorithm sends a query on a position ξ to be evaluated,
for which the EDT map returns the distance dobs(ξ) and
direction unit vector nobs(ξ) to the nearest obstacle.

4. MPC GUIDANCE WITH OBSTACLE AVOIDANCE

4.1 MAV model

For control design purpose, the translational dynamics of
the MAV are described by

ξ̇ = V

V̇ = −T
m
Re3 + ge3

(1)

where ξ ∈ R3 and V ∈ R3 respectively denote the
position and velocity of the MAV in an inertial frame
I = (O; e1, e2, e3), T ∈ R+ is the module of the resulting
aerodynamic forces assumed to be mainly driven by the
thrust generated by the rotors,m is the mass of the vehicle,
g is the gravity constant and R is the rotation matrix defin-
ing the orientation of the frame B = (G; eb1, e

b
2, e

b
3) attached

to the MAV with respect to I. By classically defining the
control input u = − Tm Re3 + ge3 and assuming that the
inner attitude control loop ensures a faster convergence of
the orientation dynamics, the system (1) can be considered
as a double integrator for the guidance algorithm. The
discrete-time state-space representation xk+1 = Axk+Buk
is implemented, with

xk =

[
ξk
Vk

]
, A =

[
I3 TeI3
03 I3

]
, B =

 T 2
e

2
I3

TeI3

 (2)

where 03 and I3 respectively denote the zero and identity
matrices of R3×3, and where Te is the sampling period.

4.2 MPC guidance algorithm

As previously mentioned, the considered control problem
consists in making the MAV track a given reference tra-
jectory defined in terms of positions ξrk and velocities V r

k .
This trajectory can be generated by two means. If only a
waypoint is defined, the sequence is built using a constant
nominal velocity vnom and the MPC time step Te with
additional velocity ramps at the beginning and at the end.
If a pre-defined trajectory is specified, an interpolation
is performed to fit the discretization with the MPC time
step. If an obstacle leading to a collision risk is detected
during the flight, the designed control law must ensure
that the MAV will deviate enough without generating a
new reference trajectory (reactive avoidance). Therefore
the control input uk applied to the MAV is composed of
two components

uk = unk + 1obs
k uak (3)



where 1obs
k is conditional to a collision risk with an obstacle

(see Section 4.2.2), or is equal to 0 otherwise. The first
component unk will enable the tracking of the reference
trajectory in a nominal case, i.e. without obstacles. The
second one, uak, will make the MAV deviate from the
reference trajectory just enough to ensure the absence of
collision with obstacles.

Algorithm 1 Summary of the reactive MPC algorithm

1: OFFLINE
2: define the set Scr of reference candidate vectors
3: define avoidance planes Pc

4: ONLINE
5: loop (time step k)
6: Compute nominal control unk using (9)

and predicted MAV positions
{
ξ̄∗k+i

}
i=0..N

7: Test collision risk along
{
ξ̄∗k+i

}
i=0..N

using (10)

8: if (collision risk detected) then
9: for each avoidance plane Pc

10: (start with feasible plane at k − 1)
11: do
12: Look for a solution to problem (11)

by systematic search over Sc
13: if a solution has been found then
14: Set uk = unk + uak and exit loop
15: else if no solution but ∃ other avoidance
16: planes not tested yet then
17: Switch to next avoidance plane
18: else if no solution and no other avoidance
19: planes left to be tested then
20: Exit loop and switch to emergency

hover mode for the MAV
21: else (no collision risk detected)
22: Set uk = unk
23: Apply uk as control input to the MAV

Nominal MPC
To classically deal with control-offset while reference track-
ing, let us define the control increment δk = uk−uk−1 and

the augmented state zk =
[
xTk uTk−1

]T
.

For a given prediction horizon of size N we also introduce
the vector of control increments

∆k =
[
δTk δTk+1 . . . δTk+N−1

]T
(4)

and the reference vector

Xr
k =

[
(xrk)T (xrk+1)T . . . (xrk+N )T

]T
(5)

where xrk =
[
(ξrk)T (V r

k )T
]T

.
The nominal control component unk is designed by consid-
ering the following MPC problem:

∆∗k = arg min
∆k

Jk (6)

such that

Jk =

N−1∑
i=0

{∥∥x̄k+i − xrk+i

∥∥2

Q
+ ‖δk+i‖2R

}
+
∥∥x̄k+N − xrk+N

∥∥2

P

(7)
and

x̄k+i+1 = Ax̄k+i +Buk+i

uk+i = uk+i−1 + δk+i i = 0, .., (N − 1)

x̄k = xk

(8)

Assuming P = Q, the following analytical control law is
classically obtained:

∆∗k = −
(
BTQB +R

)−1
(QB)

T
[Azk −Xr

k ] (9)

where matrices A and B depend on A and B and are used
to explicitly compute the predictions x̄k+i (i = 0, .., N),
and where Q and R are block-diagonal matrices with
respectively Q and R as diagonal elements. From the
first component of the solution (9), the control input
unk = unk−1 + δ∗k is deduced. It hence consists in a state
feedback controller and the gain matrices Q and R can
be chosen so as to ensure the closed loop stability of the
tracking error dynamics.

Collision test and avoidance MPC
A collision test is performed for each position

{
ξ̄∗k+i

}
i=0..N

of the predicted trajectory
{
x̄∗k+i

}
i=0..N

, computed using

the solution ∆∗k. For a given predicted position ξ̄∗k+i, the

EDT map provides the distance dobsk+i = dobs
(
ξ̄∗k+i

)
and

direction unit vector nobsk+i = nobs
(
ξ̄∗k+i

)
to the closest

obstacle. A collision risk is considered if the following
condition holds for a least one point of the predicted
trajectory:

(nobsk+i)
T .

 (dxa)2 0 0
0 (dya)2 0
0 0 (dza)2

−1

.nobsk+i ≤
1(

dobsk+i

)2 (10)

where dxa, dya and dza define activation distances with
respect to each direction. In absence of collision risk along
the predicted trajectory, 1obs

k is set to zero in (3) and
uk = unk is applied. In case of collision risk, 1obs

k is set to
one and the second control component of (3) is computed
as follows.

The main objective of the second control component uak
is to deviate the MAV trajectory. Defining, for a given
control horizon 0 < Nc ≤ N , the vector of avoidance

control actions Ua
k =

[
(uak)T (uak+1)T . . . (uak+Nc−1)T

]T
,

uak is computed as the first component of the solution of
the optimization problem

Ua∗

k = arg min
Ua

k

Ja
k

s.t. uk+i ∈ U i = 0, .., (N − 1)

uk+i =

{
unk+i + uak+i if i ≤ Nc − 1

unk+i otherwise

(11)

where U defines the set of constraints on the control input
applied to the vehicle.
The avoidance cost Ja

k is defined so as to achieve a good
trade-off between obstacle avoidance, reference trajectory
tracking and control energy by

Ja
k = wobs.Jobs

k + wnav.Jnav
k (12)

where wobs and wnav are weighting positive factors.
The first cost component, Jobs

k is introduced to penalize
proximity to the obstacle. It is defined as

Jobs
k =

N∑
i=0

fobs
(
dobsk+i

)
(13)

where fobs is a smooth function mapping the distance
to the nearest obstacle into a cost between 0 and 1
(see Rochefort et al. (2014) for an example and weight tun-
ing guidelines). The second cost component, Jnav

k penal-



izes deviations from the reference trajectory to be tracked
and magnitude of avoidance control actions:

Jnav
k =

N∑
i=0

∥∥x̄k+i − xrk+i

∥∥2
+

Nc−1∑
i=0

∥∥uak+i

∥∥2

x̄k+i+1 = Ax̄k+i +Buk+i i = 0, .., (N − 1)

x̄k = xk

uk+i =

{
unk+i + uak+i if i ≤ Nc − 1

unk+i otherwise
(14)

Finding online a solution to the constrained optimiza-
tion problem (11) may be computationally expensive. To
reduce computation burden, a simple systematic search
procedure similar to Frew (2005) and Rochefort et al.
(2014) has been adopted. For simplicity of implementa-
tion, the avoidance control actions are assumed to be
of constant value over the control horizon, i.e. uak+i =
uc (i = 0, . . . , Nc − 1). The systematic search procedure
adopted to solve the optimization problem (11) consists
in finding the candidate vector uc

∗
, over a predefined

finite set Sc = {ucs}s=1,..,NS
of NS candidate vectors, that

minimizes the cost function while satisfying the control
constraints. Assessing one by one the candidates in Sc
allows to guarantee a constant computation time at each
iteration, which can be tuned directly through the value
assigned to NS .
Since generating {ucs}s=1,..,NS

by spanning the entire 3D
control space may result in a very high number of can-
didate vectors in Sc, it has been chosen to generate a
set of reference candidate vectors leading to trajectory
deviations in a predefined reference avoidance plane (as
in Belkhouche and Bendjilali (2012)). Several avoidance
planes and corresponding candidate vectors are then de-
duced from these references, to allow 3D obstacle avoid-
ance for the vehicle.

Let us denote by Pr the reference avoidance plane de-
fined by (e1,−e2) and its normal unit vector −e3. The
corresponding set Scr =

{
uc

r

s

}
s=1,..,NS

of reference can-

didate vectors are generated in this reference frame
(e1,−e2,−e3), under the constraint (uc

r

s )T (−e3) = 0.
Let us define the unit vector

n =
ξrk+1 − ξrk∥∥ξrk+1 − ξrk

∥∥ (15)

along the local portion of the reference trajectory to
be tracked. Avoidance planes are then defined as planes
containing n and obtained by a rotation of Pr mapping
e1 into n. For a given avoidance plane Pc, and corre-
sponding rotation matrix Rc such that n = Rce1, the
set Sc of candidate vectors can be deduced from Scr by
ucs = Rcuc

r

s , s = 1, .., NS .
Two examples of avoidance planes are the local ”horizon-
tal” plane Pc

H defined by (n, nH) and the ”vertical” plane
Pc
V defined by (n, nV ), with

nH =
n× e3

‖n× e3‖
nV =

n× nH
‖n× nH‖

(16)

Rotation matrices associated to these planes are given by

Rc
H = [n |nH |nV ] Rc

V = [n |nV | − nH ] (17)

The definition of the avoidance planes can be achieved
offline, as well as the computation of the correspond-

ing candidate vectors. During the flight, if an obstacle
is detected, the systematic search procedure is run by
considering successively all the possible sets of candidate
vectors, i.e. all the possible avoidance planes. The search is
stopped and considered as successful as soon as an avoid-
ance plane leads to a feasible solution to problem (11). At
the next time instant, if an obstacle is still detected, the
avoidance plane that has provided a feasible solution at the
previous time step is considered first for the systematic
search. This improves the smoothness of the avoidance
trajectory achieved by the vehicle. If no feasible solution
can be found, the search is considered as unsuccessful and
the vehicle enters in an emergency mode while stopping
trajectory tracking and starting hovering.

5. FLIGHT EXPERIMENTS

Several flight experiments have been performed to validate
the proposed perception and control architecture. Valida-
tion of vision-based perception and trajectory tracking by
the nominal component of the MPC has been performed
first in a flying arena, as presented in Section 5.1. Real-
world scenarios have then been experimented in an indus-
trial warehouse, where tracking of longer trajectories and
obstacle detection and avoidance capabilities have been
validated (see Section 5.2).

5.1 Vision-based perception and trajectory tracking

The results presented here were obtained in a flying
arena equipped with a motion capture system as ground
truth reference. Two reference trajectories are analyzed:
a circle of circumference 20 m in a plane at low speed
(0.3 m/s) and a more complex 3D trajectory of 30 m
length with sharp turns at higher speed (0.65 m/s). These
trajectories were generated using the polynomial tools
described in Oleynikova et al. (2016). The localization
results are evaluated by computing the RMS between the
position estimated on-line by our vision-based algorithm
and the motion capture system. The tracking accuracy is
evaluated by comparing the reference trajectory with the
actual one. Localization and tracking results are plotted
in Figures 4 and 6, while the corresponding RMS values
are reported in Table 1. An evaluation of the on-board 3D
model conducted in the flying arena (Figure 5) provided
a very high Matthews Correlation Coefficient (Matthews
(1975)) of 0.94 with respect to a ground truth model
obtained by a combination of lidar scanning and motion
capture positioning.

5.2 Obstacle avoidance in industrial environment

In the context of the research partnership between
ONERA and SNCF (French Railways), real-world experi-
ments have been conducted in a large warehouse (Figure 7)
to demonstrate autonomous inspection capabilities. The
full perception and control loop was running on-board
of the MAV and achieved safe trajectory tracking and
environment modeling using only the embedded vision
measurements. One scenario included following a reference
trajectory crossing the path of a pillar, as the environment
model was not known in advance. As shown in Figure 8,
this obstacle was detected and avoided using the proposed
MPC algorithm, with a desired separation distance of 2 m.



6. CONCLUSIONS

A complete loop including vision-based localization and
environment mapping as well as MPC trajectory tracking
with obstacle avoidance for autonomous MAV navigation
in GPS-denied cluttered environments has been described
in this paper. Emphasis has been particularly placed
on the control algorithm and on the experimental flight
validation of the embedded algorithms in a flying arena
with ground truth reference but also at an industrial
facility. Building on these elements, this flight-tested MAV
demonstrator is able to perform the following tasks:

• Autonomous take-off and landing.
• Fully embedded vision-based localization and real-

time 3D environment modeling, with associated
ground station visualization.
• Trajectory tracking with autonomous avoidance of

obstacles, within a desired safety distance.

(a) Circular trajectory (b) 3D trajectory

Fig. 4. Trajectory tracking in flying arena during trajec-
tory tracking (blue: reference, red: MAV trajectory)

(a) Scene view (b) Octomap built on-board

Fig. 5. 3D model construction in flying arena

Fig. 6. Evaluation of vision-based localization in flying
arena (full: eVO, dashed: motion capture)

Table 1.

Localization and tracking accuracy in flying arena
RMS of

localization
error (m)

RMS of
tracking
error (m)

Circular trajectory 0.067 0.131

3D trajectory 0.077 0.219

(a) SNCF industrial site for flight experiments

(b) 3D model autonomously built on-board by the MAV while
following a reference trajectory (in red) composed of portions of
ellipses (onward) and straight line (return)

Fig. 7. Flight experiments at SNCF warehouse,
Sotteville-lès-Rouen, France
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