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Chapter 2: Distributed event-triggered consensus of linear multi-agent systems
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t,  time of reception by Agent i of the /-th message, whatever the sending agent.

Chapter 3: Distributed event-triggered control for multi-agent formation sta-
bilization

q;  vector of coordinates of Agent i in some global fixed reference frame R
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G/ estimate of ¢; performed by Agent j.

G’ estimate of g performed by Agent j.
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Chapter 1

Introduction and state-of-art

1.1 Introduction

Multi-Agent System (MAS) has been an important subject of research this last decade with applications
to mobile robots, like unmanned air vehicles (UAVSs), autonomous underwater vehicles (AUVs), satellite
constellations, spacecraft, aircraft, and automated highway systems. They can be used in domain like ex-
ploration of unknown zones, surveillance or maintenance for difficult-access areas. Cooperation between
agents in a same fleet, where vehicles can be identical or different, can take many forms: exchange of
information, allocation of objectives, synchronization of speed, execution of several jobs simultaneously,
avoidance of collision... For cooperative estimation, the cooperation drives agents to share their measure-
ments so that they can improve the accuracy or the reliability of the resulting estimate. This can be
applied to enhance the global vision of the environment.

However, cooperation between agent induces that each agent can gather information from others agents
and/or an exchange between them. This results in new problems to consider and choices to make: com-
munication can be centralized or distributed, information on other agents can be provided by sensors
or broadcast messages, which in turn requires to define how and when an agent needs to broadcast a
message. When vehicle are very spaced or in presence of obstacles, using sensors for relative location
or sharing visual information can become difficult or even intractable, thus requiring transfer of commu-
nication between agents to obtain these information. However, other issues arise from communication:
network saturation, energy to broadcast messages, limited broadband, conflict in communication protocol
made by a large number of agents. All these problems induce the necessity to limit the number of com-
munication between agents in order to manage them better. Therefore, the limitation of the amount of
communication requires the agents’ control law, estimators and protocols of communication to be adapted.

This last decade, a large number of methods have been developed to reduce the number of commu-
nication between agents in problem of consensus, and more recently in the general frame of formation
problem. Consensus is an important problem in cooperative control, see e.g. [77, 113, 13, 37, 36]. In
such problems, the state components of several agents have to converge to the same value (example of
applications: all vehicles reach the same position and speed). Formation control consists in driving and
maintaining all agents of a MAS to some reference, possibly time-varying configuration, defining, e.g.,
their relative positions, orientation, and speed. Various approaches have been considered for that purpose
as described in [112, 87, 82, 72, 26, 14, 15].

Consensus and formation control usually require significant exchange of information between neigh-
boring agents so that each agent can properly evaluate its control law accounting for the control inputs
depending on its neighbor states. However, for distributed systems, the state values of the other agents
are not permanently available. This is why many authors, see e.g. [77], consider permanent communi-
cation between agent, or periodically updated as in [36], which is more practical. When discrete time
communication is used, , each agent usually builds estimators of the states of its neighbors to enable
proper computation of their control laws. However, in absence of permanent communication, the conver-
gence of the system to the consensus or the desired formation shape depends on the quality of the state
estimates and the time between two updates of information. Thus, specific methods have been developed

15



16 CHAPTER 1. INTRODUCTION AND STATE-OF-ART

to guarantee the convergence of the system while reducing the number of broadcast information, such as
intermittent communication [117] and more recently event-triggered communication.

In this approach, a communication is broadcast when a condition, based on chosen parameters and
some threshold, is fulfilled. It is well-suited to applications where number of communications should
be minimized, e.g., to improve furtivity, to reduce energy consumption, or limit interference between
transmitted data packets. Application examples with such constraints are presented in [59, 60] for the
case of a fleet of vehicles, or in [5] where agents aim at merging local feature-based maps.The main difficulty
consists in determining the communication triggering condition (CTC) that will ensure the completion of
the task assigned to the MAS, e.g., reaching some consensus, maintaining a formation, etc. In a distributed
strategy, each agent maintains an estimate of its own state only using the information it has shared with
its neighbors. It then evaluates the quality of the estimate of its state made by its neighbors. When
the discrepancy between this own state estimate and its actual state reaches some threshold, the agent
triggers a communication to update estimation made by its neighbors.

Using this triggering condition [23, 24] considers agents whose dynamic is modeled as a single integrator
and considers that the threshold decreases with time while the fleet reaches the consensus. The decreasing
threshold allows to obtain higher frequency of communication when thus system converges, and thus when
agents need to obtain a more accurate control value to reach the consensus. However, communication
frequency may become so high that the communication is almost permanent when consensus is close,
and the simplicity of the dynamical model of agents may not be appropriate for description of complex
vehicles. Thus, an event-triggered method for a double integrator dynamical system was developed by
[94, 57]. Threshold is exponentially decreasing with time, reaching higher frequency of communication
when system converges, but is bounded by a periodic communication when consensus is reached. The
method is still limited by its dynamics representation, which may prove too simple for real cases. This
motivates new developments by [136, 37, 35] who considers a multi-agent system with general linear
dynamics. State-dependent thresholds are then considered to ensure suitable convergence property for
the system. Problems of communication delay are studied in [39, 135, 79], providing a communication
model closer to physical phenomena.

All these studies proposed an event-triggered approach allowing to obtain a consensus without requiring
to permanent communication. However, in all these methods, state perturbation had been not considered
and the number of communications remains large. Moreover, these previous approaches are sensitive to
perturbations. This issue has been partly addressed by [45, 19] who proposes an event-triggered method
to mitigate the impact of perturbations in the case of dynamics described by simple integrator.

Some recent works combine event-triggered approaches with distance-based or displacement-based for-
mation control [61, 98, 99]. In these approaches, the dynamics of the agents are described by a simple
integrator, and control input is considered constant between two communications. The proposed CTCs
are all centralized, considering different threshold formulations. A constant threshold is considered in [98]
and a time-varying threshold in [61, 99]. CTC depends then on the relative positions between agents and
the relative discrepancy between actual and estimated agent states. They allows to reduce the number of
triggered communications when the system converges to the desired formation. A minimal time between
two communications, named inter-event time, is also defined. Nevertheless, no perturbations are consid-
ered in all these works. Finally, Logic-Based Communication (LBC) techniques have been introduced in
[84, 3] to reduce the number of communications in decoupled nonlinear MAS to reach a desired formation.
Agents have to follow parameterized paths, designed in a centralized way. CTC introduced by LBC lead
all agents to follow the paths in a synchronized way to set up a desired formation. Communication delays,
as well as packet losses are considered.

The objective of this thesis is to develop distributed controls and estimators for multi-agent system
to reduce the number of communication by using event-triggered strategy and taking state perturbation
into account. The study is dedicated to two main topics: first the problem of consensus for a system with
a general linear dynamics, second the formation control and tracking problem for a system modeled by
Euler-Lagrange dynamics.

Chapter 1 presents the state-of-art of the different approaches and the lists of notations and acronyms
needed for this thesis. More precisely, concepts of distributed control, graph theory and communication
protocol are presented. State-of-art of consensus approach, formation control and event-triggered strategy
are also described.
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In Chapter 2, reduction of number of communication for consensus problem is studied. Taking as
reference the work of [37], this study first recalls the main trigger parameters used in [37]. The triggering
condition depends mostly on the discrepancy between estimate state and current state. The objective of
the work presented in this chapter is to limit this discrepancy so that the number of communications is
decreased.

As the model proposed by [37] did not consider perturbations, the introduction of additive perturba-
tions requires to enlarge the study of the stability of the global system. Various models of perturbations
have been tested to observe their impact on the global stability conditions and the variations on the
number of communication. The stability is analyzed via a Lyapunov function where the perturbations
are introduced. Influence of the perturbation on the estimate discrepancy has also been studied.

In this context, a new estimator has been developed to reduce the estimate discrepancy, and so the
number of triggering. The main idea is to take into account the control input of the agents in the estimate
model to lower the bounds on the difference between the actual state and the estimated one. The CTC
and communication protocols are adapted to the new features.

Finally, performances obtained by the new and the reference methods are compared. Extension to this
work to non-linear dynamics and time-varying topology is discussed.

In Chapter 3, the problem of formation control for a multi-agent systems (MAS) with an event-
triggered strategy is considered. Agent dynamics are described by an Euler-Lagrange system including
perturbations. A control input is studied to lead agents to an unique oriented desired target formation
and to maintain the formation despite the presence of perturbations. The control law is derived from [82].
Two estimates for computing distributed controls are proposed, providing a trade-off between computation
time and amount of triggered communications.

Convergence to the desired formation and stability of the global system are studied using Lyapunov
analysis. A distributed CTC is designed guarantying the convergence. Performances obtained by the
proposed approach are illustrated with simulations focusing on the reduction in communications obtained.

Chapter 4 presents an extension of the previous approach to the case when the model of the agents de-
pends on some unknown parameters. The control input and estimator model are modified to include terms
of compensation of the errors due to the unknown parameters. Furthermore, problem of tracking a desired
trajectory while maintaining the desired formation and reducing the number of broadcast information is
considered. Contrary to LBC techniques, a single a priori trajectory is determined to follow the desired
path. Some conditions on the reference trajectory to allow tracking by agents with state limitations are
defined. Convergence of the system to the desired formation and the desired trajectory is studied using
CTC. Finally, performances obtained on simulations are presented to illustrate formation error, tracking
error and reduction in communications obtained. The problem of collisions avoidance between agents and
communication delays are also discussed.

Chapter 5 considers the problem of loss of information due to packet dropout. Previous estimator is
adapted to tackle this issue using a distributed CTC, based on the expectation of the estimate error made
by the neighbor of the agent. This condition is derived from stability analysis using stochastic Lyapunov
function as in [25, 95]. A communication protocol is developed that insure absence of Zeno behavior.
The expectation of the estimate error required for CTC computation, is evaluated with an new estimator.
Proof of convergence of the system with the proposed CTC is presented.

Chapter 6 tackles the issue of communication delay, without packet dropout. To avoid broadcasting of
outdated information, the message content is modified to transmit a prediction of agent state to update
estimation made by neighbors. Moreover, agent updates the estimation of its own state with the broadcast
value to guarantee the synchronization of estimations made by all agents. The CTC is modified using the
prediction state, allowing to take into account the delay in message reception. Two prediction models are
proposed to offer a trade off between the accuracy of the prediction and the computation time.

A concluding chapter synthesizes the results presented in this thesis and describes some potential
directions for future works.

1.2 Cooperation among the agents
Cooperative approaches are often inspired by biology considering schools of fish, flocks of birds, groups of

bees, and swarms of social bacteria. Earliest methods were based on simple local individual coordination
rules to define the global group behavior [89, 103]. In MAS, cooperation among the agents of the system
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is used to accomplish tedious and complex missions, such as surveillance or area exploration. In these
methods, measurements collected from different agents are associated to improve the cooperative detection
and localization. A MAS is justified when the global efficiency of the agents is larger than the sum of the
efficiency of each agent. Another advantage of MAS over a single agent system is its robustness to vehicle
loss due to failures. However, the cooperative movements of several vehicles imply to tackle the problem
of collision avoidance and limitation of distances of communication.

Three important characteristics should be sought for the agents in a MAS: autonomy, local information
and decentralized /distributed control and communication. Autonomy is to be taken in the sense that
agents can control their own trajectories to reach their objectives. Local information translates the fact
that the agents have limited access to the state of the other agents. Local information can be obtained with
different means like sensors or radio communications. For example, state information of other vehicles can
be obtained by the measurements delivered by relative position sensors [105, 22, 55, 6], or be communicated
between vehicles using a wireless network, or by using visual devices like color LED [101, 33]. Finally,
in decentralized /distributed control and communication each agent computes its own control input and
takes its own decision on when it is needed to broadcast messages, as described in Section 1.3.

1.3 Centralized, decentralized and distributed control

In a multi-agent system, control and communications can be designed to be centralized, decentralized or
distributed. In centralized control, all information on agents states is broadcast and used by a central
controller which evaluates the control inputs of all agents in the network before broadcasting it to them.
This central controller can be an agent in the network or a separate station. In a centralized control,
agents don’t need to communicate between them but only with the central controller. This kind of control
input have been mostly studied during the last decade [97, 127, 75, 110]. However, they present some
major drawbacks. First, agents are dependent of the central controller: if the central controller cannot
broadcast message during a short time or breaks down, agents cannot take any further decision. They
can either stop to move, or continue their trajectories at the risk of collidingwith an obstacle. Same
problem occurs when an agent cannot receive message from the central controller due to a radio failure,
interferences, obstacles on the road, or a distance between agent and the central controller that is beyond
the reception range.

Another disadvantage is that the number of broadcast messages between the controller and agents
increases with the number of agents: a large number of agents induces an important time calculation and
a risk of network saturation. Furthermore, in practical implementation, a sampling interval is required
between transmissions of agents measurements to the central controller, the computation time of each
agent control inputs by the central controller, and the transmission of these values to all agents in the
network: in some case, computation of the control variables might become unytractable.

To overcome these issues, decentralized and distributed controls have been developed. In decentral-
ized systems, agents compute their own control inputs independently on the system. However, absence
of communication between controllers limits the achievable performances and the possible cooperative
missions. For example, for formation fleet, each agent follows a desired trajectory insuring the maintain of
the formation. Discrepancy between desired and current relative locations of agents cannot be corrected
by the agent neighbors due to the absence of communication.

In distributed control, agents compute their own control inputs using local information similarly to
decentralized control, but agents are also able to exchange information between them, which enhances the
cooperation. This type of methods is intended to fill the gap between centralized and decentralized
schemes. Recently, the potential advantages of distributed control have attracted many researchers.
Approaches have been developed for applications in many areas including cooperative control consensus
[77, 10, 13], formation control [82, 72, 105, 99] or flocking [89, 103, 91, 7]. Note that the presence of
a leader in the network can also be considered for centralizing some information and thus increasing
system performance [15, 90, 62]. Similarly, an hierarchy in sub-groups can also be integrated to centralize
information within the neighborhood and, select useful information before transmission to other groups,
avoiding problem of network saturation. Leaders can also be used to allocate objectives within the fleet.
In these methods, even if some agents are considered as leader and other as followers, agents are still in
charge of computing their own control.
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1.4 Stability of dynamic systems

Classical notions introduced in what follows are taken from [11, 53].

1.4.1 Autonomous system

The autonomous system is described by

(t) = f(x (1)) (L.1)

where f : D — R"™ is a locally Lipschitz map from a domain D C R™ into R™. Assume that z. € R" is
an equilibrium point of (1.1), i.e f (z.) = 0. The characterization and the study of the stability of (1.1)
is performed relatively to x. . To simplify the problem, all definitions and results are stated considering
2. = 0 as the equilibrium point. There is no loss of generality as any equilibrium point can be brought
back to the origin using the change of variable # = x — z. and the resulting system z = f (Z), where
Ze = 0.

1.4.2 Lyapunov stability

Stability of systems (1.1) can be demonstrated using Lyapunov stability definition. It is formulated as
follows

Definition 1. The equilibrium point z. = 0 of system (1.1) is defined as
1. Stable if for each € > 0, there exists a scalar n > 0 such that
[z ()| <n=llz ()] <€ VE=0
where z (¢, 2 (0)) is the solution of (1.1) with the initial condition z (0).
2. attractive if there exists 7 such as

e ) < 5= Jim «(t) =0

3. asymptotically stable if stable and attractive.

4. unstable if it is not stable.

Stability is defined in a neighborhood of the origin. The neighborhood S (x,¢) of a point x is a set
characterized by the parameter € and containing x. Then, the proof of stability of the origin is established
if a neighborhood S (0, €) can be found such that every trajectory starting from S (0,7) will remain within
S (0,€). A system is asymptotically stable if any trajectory inside S (0,¢€) goes towards the origin 2 = 0.
A system is called unstable if no trajectory can remain within S (0, €) for any n (Examples in Figure 1.1).

Definition 2. Define the set D consisting of all initial conditions x (0) from which any trajectory of the
system (1.1) converges to the origin. D is named the domain of attraction of the origin. Then, the origin
is defined as

1. locally asymptotically stable if the domain of attraction is strictly induced in R™, i.e. D C R™.

2. globally asymptotically stable if the domain of attraction is R", i.e. D = R™.

From Definition 1, the knowledge of the trajectory of x is needed to study and conclude to the stability
of the system, which is, in general, difficult or impossible to obtain. Thus, another formulation of the
stability has been formulated. Based on Lyapunov function, this method is called the Lyapunov’s second
method.
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Figure 1.1: Example of system(a) Stable; (b) Attractive; (¢) Asymptotically stable; (d) Unstable

1.4.3 Lyapunov’s second Method

This method aims at analysing the stability of the equilibrium point without relying on the trajectory
of the system. This method is based on the use of the Lyapunov function. The following theorem gives
sufficient conditions for the stability of system (1.1).

Theorem 1. Let x. =0 be an equilibrium point for (1.1) and D C R be a domain contaning x. = 0. Let
the candidate Lyapunov function V' : D — R be a continuously differentiable function such that

V(0)=0and V(z)>0in D— {0} (1.2)
V(z) <0 in D with V (z) = aa—‘;f(ac) (1.3)

Then, x = x. is stable Moreover, if

V(z) <0inD-{0} (1.4)
then x = x. s asymptotically stable.

Definition 3. A continuously differentiable fonction V(z) satisfying (1.2)-(1.3) is called a Lyapunov
function.

Note that Theorem 1 gives only sufficient conditions for stability. Thus, no conclusion can be drawn if
a Lyapunov function can not be found. Note also that the choice of the candidate Lyapunov function is an
important issue in the study of the stability and there is no general procedure for finding it. A commonly
used Lyapunov function is of the form V = 2”7 Pz where P is a symmetric positive definite matrix.
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1.4.4 LaSalle Invariance Principe
Let first define some definitions
Definition 4. The set M is said to be
1. Invariant if 2o € M implies that x (¢,x0) € M Vt € R.
2. Positively invariant if o € M implies that x (t,z¢) € M Vit > 0.

In previous section, Theorem 1 provides an efficient way to ensure the stability of a dynamic system.
However, no conclusion on the asymptotic stabilization can be obtained if the chosen Lyapunov only
verifies V () < 0. Although there are other points different from the origin where V () = 0, if one can
prove that any trajectory should no be attracted to these points, apart from x = 0, then the trajectory
must converge to zero. This is the LaSalle’s Theorem or LaSalle Invariance Principle.

Theorem 2. Let

1. M be a positively invariant set with respect to the system (1.1)
2.V : M = R be a Lyapunov function such that V (z) <0, Yz € M.
3. E={zeM;V(z)=0}
4. L be the largest invariant set contained in E.

Then every trajectory starting in M converges to L.

Since proof of asymptotic stability implies proof that x (t) — 0 as ¢ — oo, Theorem 2 requires to
demonstrate that the largest invariant set in E reduces to the origin. In that case, the following corollary
allows to conclude to the asymptotic stability of the origin.

Corollary 1. Let
1. = 0 be an equilibrium point of the system (1.1)
2. V : M — R, respectively V : R” — R, be a Lyapunov function such that V (z) < 0, Yz € M.
3. E = {:c eM;V (z) = 0} and assume that no trajectory can stay in E, other than the origin.

Then = = 0 is asymptotically stable, respectively globally asymptotically stable.

1.4.5 Input-to-State Stability (ISS) and input-to-state practically stable (ISpS)
Let first define some definitions

Definition 5. (From [53]) Let define the following Kappa-class:

Class K: a continuous function 5 (.) : [0, a) — [0, co) is said to belong to class K if it is strictly
increasing and g (0) = 0.

Class Ko.: a continuous function 5(.) : [0, a) — [0, 00) is said to belong to class K if it is K,
a =00 and lim,_, B (1) = co.

Class KL : a continuous function g (r, s) : [0, a) x [0, co) — [0, co) is said to belong to class L if
for each fixed s, the function (., s) belongs to K, and for each fixed r, the function g (r, .) is decreasing
and limg_, o B (r, s) = 0.

Consider the system

@ (t) = f(t (), u(t)) (1.5)

where u (t) is a continuous, bounded function of ¢ for all ¢ > 0. The system (1.5) is call input-to-state.
Suppose the unforced system & (t) = f (¢, « (¢), 0) has a globally uniformly stable equilibrium point .,
what can we say about the behavior of the system in presence of a bounded input w (¢)? Due to the
boundedness of w, it is possible to show that, in some case, the system converges to a ball of radium r,
where r depend on sup (||ul]).
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Definition 6. (Definition 2.1 from [48]) The system (1.5) is said to be input-to-state practically stable
(ISpS) if there exists a function f of class KL, a function v of class £ and a non-negative constant d
such that, for each initial condition z (0) and each measurable essentially bounded control u (.) defined on
[0, 00), the solution z (.) of the system (1.5) exists on [0, co) and satisfies

[ @O < B (llz ()], 2) 4+ ([lu (®)]]) + d- (1.6)
When (1.6) is satisfied with d = 0, then system (1.5) is said to be to be input-to-state stable (ISS).
Then, the following theorem gives sufficient conditions for the stability of system (1.5).

Theorem 3. A smooth (i.e. C*) function V is said to be an ISpS-Lyapunov function for the system (1.5)
if there exist class Koo function a(.), a(.), a(.), a function v of class K and a non-negative constant d

such that it can be found
a(llz@®l) <V (z,t) <a(fz@)), VYoeR"

and
%gf@¢>é—aﬂwam>+wwuum>+¢ Vo € R”

or

\M@WZVUW@N)+d:>%%f@J)S*aWI@M% Vo e R™.

1.4.6 Comparison Method

Quite often when we study the state equation & = f (z,t), we need to compute bounds on the solution x ()
without computing the solution itself. A useful tool is the comparison lemma. The comparison lemma
compares the solution of the scalar differential inequality v (¢t) < f (¢,v (t)) with the solution of another
scalar differential equation w (t) = f (t,w (t)). The lemma applies even when v (¢) is not differential, but
has an upper right-hand derivative DT v (t)which satisfies a differential inequality.

Lemma 1. (Comparison Lemma, from [53]) Consider the scalar differential equation
w = f(t,w)
w (to) = Wy
where f (t,w) is continuous in ¢ and locally Lipschitz in w, for all ¢ > 0 and all w € D C R. Let [to, T)(T
could be infinity) be the maximal interval of existence of the solution w (t), and suppose w (t) € D for

all t € [to, T'). Let v (t) be a continuous function whose upper right-hand derivative DT v (¢) satisfies the
differential inequality

with v (t) € D for all t € [tg, T'). Then, v (t) < w (¢) for all t € [tg, T).

Then, consider the perturbed systems

(t) = f(z,t) +g(x,t) (1.7)

where g (x,t) is considered as a perturbation of the system # (t) = f (z,t). Let V (x,t) be a Lyapunov
function for the nominal system (1.7) and suppose the derivative of V along the trajectories of & (t) =
f (z,t) satisfies the differential inequality

V <h(t,V)

By the Lemma 1,
Vi(t,z(t) <y(t)
where
y(t) =h(ty)
y(0) =V (x(0),0).

This approach is particularly useful when the Lyapunov function can not respect all conditions needs
to use other theorems like LaSalle Theorem or ISpS Lyapunov.
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1.5 Graph theory

This section recalls some classical notions related to graph theory used in this thesis. The notations
introduced in what follows are taken from [21].

1.5.1 Connectivity notions

Graph theory is research area shared by mathematics and computer science. It is the study of graphs,
which mathematical structures used to model relations between objects. A graph G is defined a set of
nodes (or vertices), interconnected by edges. A node represents an object (place, computer, person, cell,
vehicle, agent) and every edge represents a relation between two objects (a distance, a connection, a logical
link, a speed, a communication). In our study, a node is a member of our fleet, name it an agent, and
edges indicate possible communications between agents.

A graph is denoted G = (N, £), where N’ = {1,2, ..., N} is the set of the N nodes and &€ C N x A the
set of edges. A subgraph of a graph G is another graph formed from a subset of the vertices and edges of
G. Two nodes directly linked by an edge in the graph are said to be neighbors. The set of neighbors of
an node i is N; = {j € N|(i,7) € €, i # j}. N;, the cardinal number of NV;, is the number of neighbors
of node 7. &;; is the edge between the node ¢ and node j.

Edges can be directed, indicating a direction from a node to the other one, as illustrated in Fig-
ure 1.2 (b). A directed edge represents a one-way interaction from a node to an other node, for example
a one-way communication. A graph with directed edges is called a directed graph, and edges are called
arcs. An wundirected graph is equivalent to a directed graph where all arcs are doubled, as illustrated in
Figure 1.2 (a). An edge &;; can be weighted to give importance of the connection between nodes ¢ and j
compared to others edge. A graph where edges are weighted is called a weighted graph, as illustrated in
Figure 1.2 (¢). A unweighted graph is equivalent to a weighted graph where every edges possess a unit
weight.

Finally, a graph where edges do not change with time is called a graph with fized topology. By
opposition, a graph where edges change with the time is called a graph with time-varying topology. In
practice, the topology of a graph can be time-varying because connections can appear/disappear due to
the influence of the distance between nodes, to interference, to material imperfections, or simply to the
choice of the communication strategy.

(a) Undirected graph Gi (b) directed graph Go (¢) Undirected weight graph Gs

Figure 1.2: Communication graph

1.5.2 Path and complex graph

In a graph, a path is a set of adjacent edges, i.e., edges sharing one vertex, which allow to link two nodes,
which are not necessarily neighbors. The number of edges defines the length of the path. In a directed
graph, a path is a set of adjacent edges which allows one to link two nodes by respecting the direction
of arcs. A directed path is called a chain. A directed graph is call connected if for all nodes, there exist
paths which can connect it to all other nodes. A graph is said to be strongly connected if every node is
reachable from every other node. A graph is call fully-connected or complete if every nodes is connected
by an unique edge (one in each direction) with all other nodes.
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A graph contains a cycle if there is a non-trivial path that starts and ends at the same node. In
opposite, a graph is call acyclic if it contains no cycles. A connected acyclic graph with an unique root is
called a tree. A directed spanning tree, or simply a spanning tree, is a graph where every subgraph is a
directed tree. A graph is called a ring if it is cyclic and composed by only one path.

Examples of previous particular graphs are illustrated in Figure 1.3.

OO

Figure 1.3: From left to right, tree, directed tree, chain, and ring graphs

1.5.3 Adjacency matrix A

The adjacency matrix A = [aij] NxN associated to a graph G is a square matrix of size N x N, where
N is the number of nodes. The value of each non-negative element a;; of the matrix is the weight of the
edge &;;. Thus if there is no connection between two nodes i and j, a;; = 0. If the graph is undirected,
one has a;; = aj; for all (¢,j). Moreover, if the graph is unweighted, one has a;; = 1 or a;; = 0 for all
(7,7). The adjacency matrix associated to graph on Figure 1.2 can be expressed as

1101 1 11010 05 07 0 18 09
10100 00000 07 0 15 0 0
AG)=|0 101 0| A@G)=|0 101 0] A@G)=| 0 15 0 02 0
10100 10100 18 0 02 0 0
10000 10000 09 0 0 0 0

1.5.4 Degree matrix D

The in-degree matrix Diy = [din,ij] v and out-degree matrix Dous = [dout,ij] vy aSsociated to a graph
G is a diagonal square matrix of size N x N defined by

Dout = dlag (AlN)
Din = diag (ATlN)

where 1y € RV*1 is the all-one vector. The graph is weight-balanced if Doy = Di,.

1.5.5 Laplacian matrix L

The Laplacian matrix is L = [l;;] y, 5 associated to a graph G is a square matrix of size N x N defined by
L = Doy — A

L is symmetric iff G is undirected. Moreover, in that case, every row and every column of L sums
to zero, which mean L satisfies L1y = 0. L has only one null eigenvalue A\; (L), and all its other non-
zero eigenvalues Ay (L) < A3(L) < ... < Ay (L) are strictly positive. If the graph is fully-connected,
Xi (L) =N for allie[2...N].

1.6 Communication protocol

A communication protocol is a system of rules that allows two or more entities of a communication system
to transmit information via any kind of variation of a physical quantity. These rules can define message
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syntax, synchronization of communication approach, detection of collision between transmitted packets of
data, bandwidth assignment, communication architecture, or error recovery. A protocol often describes
different case of a communications between two entities.

The study of communication protocol allows to understand a part of material constraints link commu-
nications and take it in account in the developpement of communication approach. Its offers an openning
on methods to transmit information, message content, or number of agents receiving a message from one
transmission or afte after several hops: all theses attributs will be used to develop approachs reducing
the number of broadcast messages in next chapters of this thesis. They can also be used to help to solve
technical problem as the packet dropout.

Initially, communication protocols were proposed for wired network. In September 1968, the University
of Hawaii began a research program to use radio communications for computer-to-computer and console-
to-computer links. The main idea was to use a unique radio channel for all messages instead of assigning
a subchannel for each message as done previously, which limited the number of simultaneous computers
connected. However, this unique channel leads to collisions between broadcast data packets. Then,
protocols were developed to solve the data collision problem. Protocols for message re-transmissions were
proposed to obtain a reliable network with an efficient data transmission. The first one was the ALOHAnet
protocol.

1.6.1 ALOHAnRet protocol

The goal of the Additive Links On-line Hawaii Area (ALOHA) system [1] is to provide a radio communi-
cation alternative to conventional wired communications. It can be used when all nodes send and receive
on the same channel. ALOHA protocols describe rules to solve collision problems between broadcast data
packets.

The first version of the protocol, named "Pure ALOHA”, can be expressed from each station by the
following step.

e A station sends data when needed.

e If while it is transmitting data, the station receives any data from another station, there is a message
collision. Then, the station finishes to broadcast the message and defines a random waiting time.
The message is broadcast again after this time. Note that all stations associated to the collision will
need to broadcast their message again later.

Stations

A /= = [

Time

Figure 1.4: Pure ALOHA protocol. Boxes indicate message frames. Black boxes indicate frames which
have collided. White boxes indicates messages broadcast successfully.

Figure 1.4 proposes an example of Pure ALOHA. In this example, station A transmits its message
successfully after two colliding communications, and station B after one.



26 CHAPTER 1. INTRODUCTION AND STATE-OF-ART

i B H 2 EE A

Slotted ALOHA protocol (shaded slots indicate collision)

Figure 1.5: Slotted ALOHA protocol. Boxes indicate message frames. Black boxes indicate frames which
have collided indicate when frames are in the same slots. White boxes indicates messages broadcast
successfully.

Pure ALOHA does not check if the channel is busy before transmitting. Then, ALOHA can not use
the full capacity of the communications channel since collisions can occur and data may have to be sent
again. The list of messages waiting for transmission can be large if the number of stations is important,
which makes no-collision frames difficult to obtain if the concept of "transmit later” is not specified.

Then, an improvement to the original ALOHA protocol is the Slotted ALOHA, which introduced
discrete time-slots and increased the maximum throughput. Consider the following assumptions

e All time-slot frames have the same length.

e A station can send message only at the beginning of a time-slot.

Stations cannot generate a message while transmitting or trying to transmit.

If a collision is detected, a station waits a random time before trying again to transmit.

The population of stations attempts to transmit according to a Poisson distribution.

Figure 1.5 proposes an example of Slotted ALOHA.

Since a station can send only at the beginning of a time slot, collisions can only occur during this
time-slot and their number is reduced. However, stations still do not try to detect if another station is
transmitting before it transmits its own message, which still leads to collision at the beginning of a time
slot.

This problem leads to the development of CSMA, a "listen before send” random-access protocol de-
scribed in the following section.

1.6.2 CSMA

Based on ALOHAnet, the Carrier Cense Multiple Access (CSMA) is a "listen before send” random-access
protocol. A station verifies the absence of an other message broadcast by an another station on the
transmission medium before transmitting itself. If a message is detected, the station waits for the end of
the neighbor transmission before initiating its own transmission. Then, stations using CSMA can send
and receive information on the same medium and in the same bandwidth while avoiding more collisions
than with the ALOHA protocol. The first implementation of CSMA was Ethernet. With this kind of
communication “someone speaks, others wait” is also one of the weakness of CSMA and Ethernet protocol.
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Indeed, while one station is transmitting, others machines receive and must wait even if they also need to
transmit data. Thus, a communication with a large throughput can lead to a saturation of the network.

Variations on basic CSMA include addition of collision avoidance, collision detection, and collision
resolution approach. Transmissions by one station are generally received by all other stations connected
to the medium in most of these strategies.

CSMA /CD : Collision Detection

The CSMA/CD is used to improve the performance of CSMA by terminating transmission as soon as a
collision is detected, thus shortening the time required before a retry can be attempted.

The CSMA/CD is based on the ALOHA protocol, where each station decides when it needs to transmit
a message. When a station needs to send data, it checks if it receives any data from another station. If
it is the case, the station waits for the end of the neighbor transmission, and begins to transmit after. If
the station detects an other station broadcasting a message at the beginning or during the transmission
(collision), it stops sending data immediately. A random waiting time is defined before trying to transmit
again the message to avoid collision with the same machine. Note that a message is erased if it is not
transmitted successfully after 16 trials to avoid network saturation. Then, a large number of stations can
also lead to a problem of network saturation.

The CSMA/CD can be assimilated to a group of person where everybody can speak when he wants.
If two persons speak at the same time, they stop a try again after a short time. It can be noticed
CSMA/CD are mostly for wired network or fully-connected network, because stations need to be able
to detect collisions with other stations. When a station receives messages from two neighbors which
are not themselves neighbors, both stations cannot detect the collision and messages cannot be received.
CSMA/CA was created to solve this problem.

CSMA /CA : Collision Avoidance

CSMA /CA [9] is mostly used for networks where two stations can transmit to a third one without detecting
each other (distance between the two stations too large). A station is defined as transmission leader and
authorize or not the communication when station asks it. To implement CSMA/CA, a station broadcasts
a short RTS (Ready to Send) frame with few information to ask the communication. If the communication
is accepted, the leader station broadcasts a CTS (Clear To Send) frame, and the station transmits its
message. In opposite, if the transmission station is busy, the transmission is deferred for a random time
interval.

This method is used in the WIFI network, where the leader station are named Access Points (AP).
The CSMA/CA can be assimilated to a classroom where pupils ask to answer a question and where the
teacher decides who speaks first.

CSMA /CR : Collision Resolution

The CSMA/CR is used to improve CSMA /CD performance. The difference is if many stations transmit
at the same time, a station continues to transmit message since the broadcast signal is identical. Station
stops to transmit data when signals begin differents. This protocol allows to finish a communication from
one station without waiting delay or re-transmission.

This method is used in CAN network. The CSMA /CA can be assimilated to singers who can continue
to sing together since they are reading the same score.
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Figure 1.6: Example of system with the CSMA /CR protocol

CSMA access modes

The access modes are transmission process. Strategies exposed here are added rules on CSMA protocols
previously exposed: they define if a station can transmit information immediately or later when it needs
and the transmission medium is idle. Transmission medium can be managed by only one access modes
strategy respected by all users. Else, rules are not harmonized between stations and transmissions become
unbalanced or impossible. Note that some communication protocols can work only with one defined access
mode. Access modes are summarized in Figure 1.7.

CSMA 1-persistent 1-persistent CSMA is an aggressive transmission strategy. When the transmitting
station is ready to transmit and the transmission medium is idle, the station transmits immediately. If
it is busy, it waits until the transmission medium becomes idle by listening the medium continuously.
When the medium becomes idle, the station transmits immediately without trying to know if an other
station wants to transmit also. In case of a collision, the station waits for a random period of time before
following the same procedure again.

1-persistent CSMA is used in ALOHA systems and CSMA /CD systems including Ethernet.

CSMA Non-persistent  Non persistent CSMA is a non aggressive transmission strategy. When the
transmitting station is ready to transmit and the transmission medium is idle, the station transmits
immediately. If it is busy, it waits for a random period of time without listening the medium. After this
time, it checks the transmission medium and tries to transmit again by following the same steps.

This approach reduces the risk of collision, but can induce a longer delay before transmission compared
to 1—persistent.

CSMA 0-persistent In this approach, a supervisory station assigns transmission order to each station.
Slots of fixed time are managed, and each station transmits during the time-slot assigned to it while other
stations wait.

0-persistent CSMA is used by CobraNet and LonWorks.
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Figure 1.7: CSMA access modes

CSMA P-persistent  This is an approach between 1-persistent and non-persistent CSMA access
modes. When the transmitting station is ready to transmit and the transmission medium is idle, the
station transmits a message with a probability p. If the station does not transmit (the probability of
this event is 1 — p), it waits until the next available time-slot. If the medium is busy, it waits until the
transmission medium becomes idle by listening the medium continuously. When the medium become idle,
the station transmits again a message with probability p.

CSMA 1-persistent is a CSMA p-persistent with a probability p = 1. p-persistent CSMA is used in
CSMA/CA

1.6.3 Token Ring

Token ring is a communications protocol for local area networks. Messages travel around a ring graph and
circulate in a unique direction (direct ring graph topology), which allows one to avoid message collisions
as in contention-based access protocol like CSMA or Ethernet. Messages are contained in frames, and a
limited number of frames is employed inside the network.

The protocol uses a three-byte frame called a "token” which is added at the head of the message. The
token contains the destination of the message and a special byte which takes the value 1 if the frame is
busy and 0 else. A station can transmit a message only if the token is idle. As the communication network
is a direct ring, each station receives the message broadcast by the previous station and reads its token.
If the station is the message recipient, it changes the token back to 0 and transmits the message to the
next station. When the message gets back to the originator, it sees that the token has been changed to 0
and thus the message has been received successfully. Message is removed from the frame, which can be
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used by an other agent to transmit information.

Token Ring is more deterministic compared to Ethernet or CSMA /CD protocol, and collision between
frames are impossible. Thus, Token Ring keeps its performance constant with a large number of station,
when Ethernet degrades with an higher number of collisions. It can also manage a “priority access”, in
which some station can have priority over the token, which is not possible on Ethernet where stations
have equal influence on the network. However, Ethernet has less topology constraints than Token Ring
which needs a direct ring topology, sometime difficult to obtain with wired network and even more difficult
in wireless network. Moreover, Token Ring is more complex to implement than Ethernet and requires
specialized processor.

Later versions of Ethernet has gradually eclipsed Token ring by its lower cost, a higher throughput
and lower structure.

Token Ring access modes The data transmission process can be summarized as follows:
e Empty information frames are continuously circulated on the ring.

e When a station needs to transmit a message, it modifies the token of a idle frames and changes the
token to 1. Frame is sent in the network.

e The frame is examined by each successive station. The station that identifies itself as the message
destination copies it from the frame and changes the token back to 0.

e When the frame gets back to the originator, it sees that the token has been changed to 0 and that
the message has been copied and received. It removes the message from the frame.

e The frame continues to circulate as an "empty” frame, ready to be taken by a station when a message
needs to be sent.

Figure 1.8: System with CSMA /CR protocol
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1.7 State-of-art : Consensus problem

Consensus is an important problem in cooperative control, see [77, 113, 13, 37, 36]. In such problem, several
agents have to be synchronized to a common value: this problem is called the consensus or agreement
problem in the literature. Applications of consensus in cooperative control of multi-agent systems are
numerous.

In the case of multi-vehicle systems, it can be interesting for the vehicles to achieve a consensus on
positions, like in rendez-vous problem to reach an objective at the same instant [30, 96]. It can also be used
to achieve a cooperative motion in formation [32, 58] or flock [90, 89], or to synchronize the orientations
of the vehicles [75, 100, 8]. In this case, the consensus can be defined in terms of (relative) positions of
the vehicles, velocities and / or orientations. A consensus on the agents’ speed can also to help avoiding
collisions between vehicles [114, 80].

In the case of power grids, consensus approach can also be used to control distributed energy sources
in order to ensure the production of a predetermined amount of active or reactive power. Each source can
be considered as a node of a network with communication capabilities to neighbor sources [42, 27].

Consensus can also be used like in [93] to couple oscillators and kinematic models of groups of self-
propelled particles.

In addition to control approaches, it is also worth mentioning that consensus is also used for distributed
estimation. State estimation from noisy measurements provided by multiple sensors can indeed be ad-
dressed by a distributed consensus approach. Local information fusion is performed in the multi sensor
network taking into account communication links between its nodes and using a consensus protocol as in
[123, 78, 92].

Although consensus problems have a history in computer science, we will focus here on their applica-
tions to cooperative control of multi-agent systems. The main purpose of this section is to summarize the
recent progress of consensus methods proposed by the cooperative control community.

1.7.1 Consensus definition

Consider a multi-agent system composed of N agents, which communication topology is described by
an graph G, as exposed in Section 1.5. It is assumed that neighbor agents, i.e. agents between which a
communication link exists as defined inG, can exchange information. Let’s define by z; the state of the
ith agent. It is assumed that a consensus is desired on this state vector.

Two type of consensus can be defined: asymptotic consensus and bounded consensus. An asymptotic
consensus is obtained when the state of all agents converge asymptotically to the same value (see Defini-
tion 7) . A bounded consensus is obtained if the discrepancy between the states of the agents converge
within a bounded domain (see Definition 8).

Definition 7. The multi-agent system reaches an asymptotic consensus iff

lz (£) = i (D) I = 0, (1.8)

lim
t—o00

for all pairs(i, j) of agents.

Definition 8. The multi-agent system reaches a bounded consensus iff there exists some € > 0 such that

W (lz; (¢) —z; (1) [| <€ (1.9)

t—o0

for all pairs(z, j) of agents

1.7.2 Continuous-time and discrete-time consensus

As described in [77, 113, 74, 76], a continuous-time consensus protocol can be obtained by the dynamic
equation

B ()= = 3 ay (1) (@ (1) — a5 (1) (1.10)

JEN;
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where N; is the set of the Agent i’s neighbors, a;; () the (4,7)-th element of the adjacency matrix A
associated to the communication graph G, and t the time instant . Remark that (1.10) can be written
in matrix form as © = —Lx, where L is the Laplacian matrix associate to the communication graph G
and x = [ DU ]T. If consensus is reached, the state of each agent remains constant with
respect to time. Continuous-time consensus requires permanent communications between the agents.
Thus a significant exchange of information is required which makes its practical implementation almost
impossible.

As presented in [77, 42, 67, 63, 27] a discrete-time consensus protocol can be obtained by considering
for Agent i the difference equation

x; (k+1) = x; (k‘) —€ Z Qij (k‘) ($z (k) — X (k)) (1.11)

JEN;

where € > 0 is a constant coefficient that can be used for example to account for a discretization period
and where k denotes the time index. Again, if consensus is reached, the state of each agent remains con-
stant with respect to time. Communications between the agents are required at each time step k which
is more easy to implement in practice than continuous-time consensus. Nevertheless a huge number of
communications is still required, which will motivate the work of communication reductions

In both cases, if Zje/\/,- a;; = 1 the state of each agent is updated using a weighted mean of the
differences between its own state and the states of its neighbor. In continous-time consensus approaches
considered in [63, 102, 96, 42], the coefficients a;; (t) of (1.10) are not defined as the coefficients of the
adjacency matrix but as time-varying weights a;; (t) = m;;(t) that follow specific rules.

In [63], these coefficients are defined by m;; (t) = N%, where N; is the cardinal number of NV;, if Agent ¢
and j are neighbors, m;; (t) = 0 else, such as to obtain an average of the states of the neighbors. Then,
each agents converges to a barycenter of these states , without favoring a specific agent. If a distance
d;j (t) can be defined between the states of any Agent ¢ and Agent j, [102] proposes to define m;; (t) = i
to favor the convergence of the Agent i to its closest neighbors. This methods tends to scatter the agents
into “smaller groups” when they are initially too distant from each other. Thus [96] proposes a method
where m;; (t) is weighted to preserve the “weakest links”. Longer distances make thus increase the value
of my; (t), making the agents converges to an unique group.

As previously mentionned, coefficients used in the consensus equation (1.10)-(1.11) can be chosen
as elements of the adjacency matrix or using other rules that may also depend on the communication
topology and account for its changes. In [42, 27], the coefficients m;; are chosen as m;; (k) = m in
the case of a discrete-time consensus to manage distributed sources in power grids. In this way, topoiogy
switches are taken into account to adapt the number of contributing energy sources, allowing to account
for the power demand (Example Figure 1.9).

@

1/4

@D 1/4

1/2

@, /e

O

Figure 1.9: Example of weight m;; (¢) with strategy proposed by [42].
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1.7.3 Influence of the communication topology

Many works in cooperative control assumes a static fully connected communication topology, where each
agent can communicate with all the other agents. However, real-world communication topologies are
usually not fully connected. In many cases they would depend on communication ranges of the agents. In
case of mobile agents, the communication topology hence changes with respect to time and communication
links may appear or disappear between the agents.

Nevertheless, some conditions on the communication graph must be satisfied to obtain a consensus.
It is shown in [46] that the consensus can be achieved if the union over the time of all the undirected
communication graphs is connected frequently enough. As an extension to this work, [70] shows that a
consensus can be achieved asymptotically in the case of time varying topologies if the union of the directed
communication graphs contains a spanning tree frequently enough. In [78, 76], consensus is shown to be
obtained in case of a directed communication graph if it is also strongly connected and balanced. A
solution to ensure this condition can be the introduction of a virtual leader to guarantee a connected
graph between agents as in pinning methods [124, 125].

Therefore, properties of the communication graph related to its connectivity have a strong impact
on the convergence to a consensus and on the speed of convergence. [77] shows that a consensus can
be reached between all the agents only if a connected graph (time-invariant or time-varying) is used.
Moreover, the greater the number of connections is, the faster the converge to the consensus will be
(Example on Figure 1.10).

1.7.4 Communication strategies for consensus

When the communication graph is not fully connected (e.g. agents with limited communication range)
theoretical and practical issues related to communications arise. Most consensus control strategies are
based on two types of communications : information relay or local information.

In a communication strategy based on “information relays”, an information received by one agent is
transmitted to all other agents to which a communication link exists. This process may allow each agent
to obtain information on every other agent of the system, provided that the communication topology is
connected. This strategy allows each agent to get better global information on the MAS and helps the
convergence to a unique consensus. However, it induces a large number of communications between the
agents.

In a “local information” based method, information are exchanged between direct neighbor agents only
and are therfeore not relayed anymore to other non-direct neighbor agents. With this communication
strategy less data are transmitted between the agents helping to reduce computational and communication
burden. However, relying on more local information may tend to scatter the agents into several groups,
also increasing the risk to break communication links between them.

1.7.5 Consensus with communication delay

In multi-agent systems, communication delays naturally arise because of the bandwidth limitation or
saturation of the communication channels, the possible asymmetry of the communication graph, the time
required to compress and extract data in the broadcast message, or the limited transmission speed due
to the physical characteristics of the transmission medium (e.g. acoustic wave communications between
underwater vehicles).

Since consensus approaches require communications, especially directly between the agents in the
distributed case, communication delays may impact on the convergence of the agents to a consensus.

Let 7;; (t) denote the time delay associated to the information transmission from Agent j to Agent i.
7i; (t) can be assumed to be constant and identical for all agents [78] (7;;(¢t) = 7 V (¢,4) and Vt), time-
varying [10] or distance-varying [96]. In most of the works like [78, 77, 10, 13], communication delay is
assumed to be upper-bounded such that 7;; (t) < Tmax Y (i,7),Vt. The estimation or knowledge of Tij 18
of a huge importance to decide if it can be compensated (e.g. [134]) or if robustness in the convergence
analysis has to be addressed [78, 77, 13].

The continuous-time consensus approach proposed in [78, 77, 10, 13] in presence of known time-delays
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Figure 1.10: Consensus with (a) A small-world with 300 links, (b) a regular lattice with interconnections
to three nearest neighbors and 300 links, (c¢) a regular lattice with interconnections to the 10 nearest
neighbors and 1000 links. [77]

is defined by
B =— Y g [wi (t— 73 (8) — @ (t — 735 (1))]

JEN;

where the value of z; (t — 745 (t)) is used to be synchronized with the received information x;. Note that
system converges faster to the consensus as the delay is smaller. In [78], a simple case with a constant
known communication delay, i.e. 7,; = 7 ¥V (7,7), is studied. In the case of an undirected, connected
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communication graph with fixed topology, the consensus is proven to be reached iff

-l im)

Another consensus approach can be used by considering that the time delay only affects the broadcast
information and not the own state of the agent. In this case, a continuous-time consensus protocol can

be formulated as
= il (8) — 2 (t— 7))
JEN;

In this framework, some methods exist to compensate the communication delay and improve the speed
of convergence and its accuracy. In [134], a distributed protocol is proposed to actively compensate for
communication delays, based on a prediction of the agent behavior. Agents with linear dynamics, a fixed
topology and a fixed communication delay 7 are considered and the consensus equations are defined as

u; (t) = F a;j Buj (t+s)ds
0+ 5],
zi (t) = Z aij (z; (t —7) — x5 (t — 7))
JEN;

where F' is a gain matrix such that A+ BF is semi-definite negative. If the delays are exactly known and
bounded, the work of [134] proves that this consensus problem can be solved. Furthermore, the delays
are allowed to be time-varying and unknown in the particular case of agents with open-loop dynamics
containing only one zero eigenvalue.

1.7.6 Dynamic models of the agents

As introduced above, there exist works in the literature where the agents are considered to be governed
by models more complex than first-order dynamics. In [131, 94, 19], a second-order consensus problem is
studied, which can be expressed as

0 (1) = @Y Ly () [w (8) =2 (0] + B Y Ly (1) v (£) — v; (1)]

JEN; JEN;

where o and 3 are positive constants and [/;; is an element of the Laplacian matrix L.

In contrast to the first-order consensus problem, it has been shown in [85] that agents with second-
order dynamics may not converge to an asymptotic consensus even if the network topology contains a
direct spanning tree. Some other works like [131] propose conditions on « and /5 to guarantee convergence
in this case.

n [20, 115, 67, 37, 38, 35, 36, 39, 34, 134], a general linear model is considered and the consensus
protocol is defined in the case of time-invariant topologies by

T; (t) = Aux, (t) + Buy; (t) (1.12)

N
ui (t) F Z aij (i (t) — x; (1)) (1.13)

where A and B are respectively the state and control matrices, and where F' a matrix designed such that
A+ BF is semi-definite negative to ensure closed-loop stability of the system. F' can be found such that
F = BT P where P is the solution of the Riccati equation

PA+ ATP —2PBBTP 4 2aP < 0, (1.14)
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where o > 0 is a positive design parameter. Remark that the general linear dynamics consensus protocol
(1.12) can be written in matrix form as

where z = [ #{ ... 2l ... z}§ }Tand/_l:IN(@A—i—L@(BF).

1.7.7 Consensus and estimators

In previous sections, communication between agents have been considered either permanent or periodic
depending on the time representation that is used (continuous-time or discrete-time). In the more general
case of limited communications (periodic, event-based, etc.), current information on the state of neighbor
agents may not be available for the evaluation of the control imput. This information can be replaced by
estimates of the states of neighbor agents as proposed in [37, 38, 35, 36, 107, 106, 109, 128].

This can be expressed for simple integrator dynamics and time-invariant topologies by

JEN;
or for general linear dynamics by
T; (t) = Ax; (t) + Bu; (t) (1.15)
wi(t) = F Y ay(yl(t)—yi () (1.16)
JEN;

where y; denotes the estimate of Agent j’s state made by Agent 7. Some classical example of estimators
are:

(i) Zero-hold estimator: between two reception times, the estimate y; (t) performed by Agent i is
considered to be equal to the last received state value send by Agent j, i.e. y}(t) = x; (t;x). In that
case, the control input is also maintained constant between two instants of reception of messages sent by
neighbors of Agent . This is the approach adopted in [94, 23, 57].

(ii) Dynamic estimator based on a prediction model: the estimate is computed as the solution of a
differential system which imitates the dynamics (or a part of it) of the agent’s. For example, in [35, 37, 38],
y; (t) is computed by considering the dynamic equation

where y' (£) = [ yi" (t) ... ¥iT () ... y§ (t) ]T. The choice of the estimator dynamics, and hence
the possible introduction of estimation errors in the consensus protocol, has a direct impact on the
properties of the obtained consensus (asymptotic or bounded)

1.7.8 Virtual agent, leader and Pinning consensus

In many consensus approaches, the common value to which the state of the agents converge mainly depends
on the chosen consensus protocol and the initial states of the agents. If one would like to influence the
transient behavior of the agents or the obtained consensus value, different methods can be used.

A first approach consists in introducing virtual agents without modifying the consensus protocol.
These virtual agents are considered as other standard agents in the consensus protocol, but their control
input can be defined in a different way to influence the global behavior of the MAS. Virtual agents can be
used to drive the consensus to a desired setpoint, to avoid obstacles in the case of multi-vehicles systems
as in [90, 89].

Another approach consists in introducing one or several agent(s) that will be considered by others as
leader(s). A leader can be real or virtual and is used to impose a reference to the MAS by making all the
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other agents, named followers, to track the leader and thus converge to a same objective. This approach
is often reffered to as consensus tracking [113, 13, 118].

Addition of a virtual leader may also help improving the connectivity in the communication graph
(e.g. by ensuring the existence of a spanning tree): when agents belong to different communication
subgraphs, a virtual leader that becomes a common reference between these agents hence connects these
subgraphs togeteher. This strategy can be helpful in cases where the agents may split in different subgroups
(presence of obstacles for multi-vehicles systems, packet dropouts, etc.). When consensus is used to obtain
a formation, a leader can also be used to help to maintain the desired geometrical configuration.

An example of method using leaders in consensus problems is pinning control theory for synchronization
of dynamical networks [124, 125]. A virtual leader is added to the network as neighbor of one or very few
agents and defines a desired reference. Assuming a connected communication graph, all the agents of the
network will therefore be synchronized with this virtual leader even if they have no direct communication
link to it.

1.8 State-of-art: Formation control

Within the recent decades, formation control constitutes an important research topic in multi-agent con-
trol domain. Formation control refers to the problem of controlling the relative positions, velocity and
orientations of agents to maintain them as a fleet while allowing the group to move towards a common ob-
jective. It aims at accomplishing complex missions such as mapping, exploration, monitoring environments
or data collection while insuring security and autonomous navigation.

Formation control design requires first to select a feasible formation pattern, given the constraints on
the variations of agent states and thus determine the series of actions on each agent so as to maintain the
formation shape, drive it to the objective and potentially enable switching between formation patterns.
Formation control may be separated into formation tracking control and formation regulation control.
Formation tracking control is defined a potentially distributed control law that each agent applies to
reach a desired formation. The formation regulation control is applied once the agents have reached the
required positions on the desired pattern and aims at correcting any variation of the agent states in a
neighborhood of the desired state values. The formation may be either rigid or flexible depending whether
the formation structure remain fixed (rigid formation) or can evolve for a short duration of time, e.g. to
avoid obstacles, before rejoining the initial desired structure (flexible formation).

Given the numerous results on formation control and their varieties, different attempts have been made
to classify the approaches as presented in Figure 1.11. In this section, only the main classes of formation
control are recalled: formation tracking control, virtual structure and flocking control.

1.8.1 Classification of Formation tracking control

In [73, 18], a first classification of formation control schemes is defined relying on the function of the
agent state components on which the control law depends. The classes consist in Position-based control,
Displacement-based control and Distance-based control. They can be compared in terms of requirements
of sensing abilities and interaction topology. In order to present the different approaches, the following
example, a single-integrator p; (t) = u; where p; is the Agent ¢ current position will be used. Denote
Yi = gi (p1,...,pN) the measurement and z; = h; (p;)the output of Agent i. The desired formation is
expressed as F' (z) = F (z*).

e Position-based control [84, 3, 130, 121]
The agents control their own positions defined in a global coordinate frame. The desired formation
is prescribed also in this global frame. In such case, the measurement consists in the absolute po-
sition of the agent in this frame. Interaction between agents is not an absolute requirement as the
resulting formation can be reached by individual control as in [121]. The resulting control expresses
as u; = —kp (pi (t) — p} (t)) where the denomination p stands for position. This control law can
be modified by accounting for the interaction between agents and adding control input of the form
ZjeNi w;j(p; —pi) with N; the set of neighbors of Agent ¢ and w;; the components of the Laplacian
matrix describing the connection graph. In position-based control, the control law is most often
centralized and handled by a global administrator. Few distributed approaches have been proposed
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in this scheme

e Displacement-based control [82, 72, 105, 104, 99]

The agents control their relative positions with respect to their neighbors defined in a global coordi-
nate frame. The desired formation is no longer defined as a set of positions but as desired displace-
ments. In such case, the measurements are performed in each agent local frame and consist of the
coordinates of its neighbors in this frame. This implies that an agent needs to know its local frame
orientation in the global coordinate system. Interaction between agents is an higher requirement, the
graph must be connected. The resulting control expresses as u; =k, > jen; Wij (pj —pi —p; + D )
which stresses the need for interaction. Then, an unique formation shape with an unique orientation
in the global coordinate system is obtained. Connectivity preservation has been studied by [47].
The interconnection makes it possible to enhance robustness against failures as studied in [21].

e Distance-based control [12, 32, 54]

The agents control their inter distance to achieve the desired formation. This formation is defined
as desired distances between agents and is no longer unique in terms of orientation and translation
with respect to the global frame. In such case, the measurements are performed in each agent local
frame and consists of the coordinates of its neighbors in this frame. Knowledge of their own frame
orientation in the global frame is no longer needed. As the desired formation expresses in terms
of desired distances, the fleet can be described as a rigid body. Therefore, the interaction graph
requires to be rigid or persistent. Various control laws have been defined in this scheme. They can
either be obtained as a gradient function of the sum of weighted relative distances between agents.
Another expression of the control law studied in [54] is u; = =k, V(3 ¢y, (lp; — pil” — ||p3‘ —p; ||2)
In any case, the control law is always a non-linear function of the state.

Position-based control is particularly beneficial in terms of the interaction topology, but it requires agents
more advanced sensors to measure their own position accurately, much more than the other approaches.
Moreover, an a priori trajectory has to be evaluated for each agent, which induces problems of path
following generation.

In opposite, distance-based control is more advantageous in terms of the sensing capability because
only need to know the relative distance between agents. However, it requires more interactions between
agents to obtain a stable formation shape where displacement control can obtain a formation with only
N — 1 interactions. It also requires short inter-agent distance if the distance is measured by sensors.
Thus, displacement-based control is moderate in terms of both sensing capability and interaction topology
compared to the other approaches. A trade-off between the amount of interactions among agents and the
requirement on the sensing capability of each agents is required to choose the formation approach.
Although the classification of formation control in terms of position, displacement and distance based
control is of interest as it allows to evaluate some trade-off between the complexity of measurement versus
the level of information exchange and connectivity, other classifications exist that focus on other aspects of
the problems. The formation problem can be seen as either a specific shape that the agents must achieve
or a set of distributed trajectories that the agents track with prescribed synchronicity [13]. These two
features have been referred respectively as formation producing and formation tracking. These problems
have been studied through matrix theory based approach [32], potential function based approach [75] and
Lyapunov based approach [62] to name a few.

Another potential classification of formation control problems can rely on how the desired formations
are expressed. If an explicit description is provided by desired positions or desired inter-agent displacement,
the approaches would be defined as morphous formation control while if the formations are described as
expected behaviors, e.g. collision avoidance and cohesion, they belong to amorphous formation control
techniques. Leader-follower and virtual structure approaches are widely used examples of morphous
formation control. Flocking and behavioral formation are amorphous formation types. Description of
these techniques is presented in the following paragraphs.
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Figure 1.12: Tracking control formation. (a) Position-based approach [3]. (b) Displacement-based ap-
proach [82]. (c) Virtual structure: distance-based approach [75]. (d) Leader-follower approach [65].
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1.8.2 Leader-follower method

In leader-follower techniques [26, 15, 6, 65], a trajectory is designed only for some leader agent based on
mission goals. The other follower agents, aim at tracking the leader as well as maintaining some target
formation defined with respect to the leader. A virtual leader has been considered in [14, 15, 90] to gain
robustness to leader failure. This requires a good synchronization among agents of the state of the virtual
leader. In the way idea, hierarchy structure can be used to select several leader to lead more efficiently the
fleet, improved stability of the system and avoid collisions. However, permanent communication between
agents and the leader is assumed: in most works, agents evaluate their control input with value based
on information received from the leader. Note data on the environment can be collected by all agents,
centralized by leader before be transmitted to others agents. Agent’s control can also be combined with
some behavioral rules to manage obstacle avoidance or described agent behavior if it loses its leader.

Different leader-follower methods have been considered. In [69], agents positions around the leader are
defined but not allocate to a specific agent. A protocol assign a position to an agent if it is the closer to it
location and if this position is free. This attribution is distributed and so not require intervention of the
leader to attribute position. Messages are periodically broadcast from each agent to check their position.
In case of loss of agent, its former positions is assign to an other one to fill the gap such as obtain the
most compact formation possible.

[16, 15] proposed an optimal control for formation approach for non-holonomic vehicle with obstacles
avoidance. A moving reference point represents an agent following a predefined reference trajectory.
The real-time movement of the reference point can be known in advance or in-flight through wireless
communication by each agent. Each agent must try to keep the prescribed relative distance and angle
from this reference point. An obstacle avoidance cost function, evaluated using agents coordinate and a
prediction of agents coordinate, guarantees obstacle avoidance while fleet doesn’t deviate too far away
from the desired trajectory. Inter-vehicle collision avoidance is also ensured by collision cost function.

[65] proposed a distributed coordinated tracking for multiple networked Euler-Lagrange systems where
only a subset of the followers has access to the leader. A distributed adaptive control, using the information
of both the neighbors and the neighbor’ neighbors, is defined to account for parametric uncertainties. A
distributed continuous estimator is designed to estimate the leader’s coordinate when agent has not access
to its current coordinate permanently. The control is robust to bounded perturbation.

Using only sensors information, [6] develops a model to identify V-formations or circular formations
of an existing MAS formation. The model considers the location of entities to determine formation shape
and adapt its control to insert agent inside the existing formation. For example, a least squares is used
to define the median of the V-formation, and select the branch with the smallest number of agents to
choose this future new agent position. Leader, which can be virtual or real, is located at the head of the
V-formation and at the center of the circular formation. Other agents take position around it and track
its trajectory.

Synchronous formation control approach using distributed control is proposed in [62, 97]. Virtual
leader is used as reference of the formation. Consensus on agents velocity and integration of the tracking
error allow a synchronization of the network to the desire formation. In [62], sufficient conditions are
proposed to guarantee the converge of the system in presence of sampled-data and communication delays.

1.8.3 Virtual structure

Virtual structure [87, 112] is an alternative way to address the problem of leader failure. In a virtual
structure, no agent has a predominant position regarding the others agent, but the entire formation is
treated as a single entity where the agent control is designed to satisfy constraints between neighbors. A
variety of virtual structure method can be formulated. For example, cooperative path following (CPF),
distance-based control, and displacement-based control are virtual structure methods. In distance-based
control, the constraints are distances between agents. In displacement-based control, relative coordinate
or speed vectors between agents are imposed. Recently, [82, 72] propose a stable formation control law
by using tensegrity structure, following the convention in [4]. In architecture, a tensegrity structure is a
structural principle based on the use of isolated components in compression inside a net of continuous
tension. Components are linked by compressed members (usually bars or struts) which prevent component
to touch each other, and by tensioned members (usually cables) which prevent components to be separated
from a fixed distance. The whole draws the system spatially and allows to obtain a stable structure.
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Then, this specific structure, close to the displacement-based control, allows to introduce flexibility in
the structure by not only using fixed distance, but also rejections and attractions between agents. [82]
proposes also a method to define weights in the control input.

Consensus strategies have also been mostly applied to achieve vehicle formations (Cf. Section 1.7).
In [32], information exchanged are studied to improve system stability and the vehicle formation energy.
Consensus is reach on the only equilibrium point, defined as the desired relative position of the vehicles.
The effectiveness of the method is shown by a Nyquist stability criterion on the formation stabilization.
Fixed time communication delay is also considerate. Still inspired from distributed consensus approach,
[112] proposes a nonlinear formation control method for non-holonomic mobile robots. Since the reference
trajectory is not know continuously, a finite-time distributed observer of the desired trajectory is proposed.
Thus, the formation control design can be done with limited information of the desired trajectory. Method
allows a flexible, intermittent, and time varying communication topology among vehicles.

An other kind of virtual structure approach is presented in [17]. A control law is proposed to create
formations of different choosing shapes. Areas are defined and the agents move and spread homogeneously
inside. When the fleet move in the global system, agents inside the formation moves while preserving its
shape. Gradient attracts agents inside the area while keeping them within the delimited area and the
most spread as possible. Note to spread the agents over a desired area, some authors like [21] use the
Voronoi repartition to optimize the distribution of the agents without allocate them a specific position.

In [87, 86], a virtual structure method for spacecraft formation is proposed. The proposed decen-
tralized control input allows agents to track a desired position in the formation and to maintain it.
[104, 105] address the problem of decentralized state estimation in fixed topology formations of vehicles.
Displacement-based control is used to guarantee a fixed distance and orientation between agents, and
so no changing of topology can happen. Presence of perturbations are considerate. Another method
developed by [12] proposes an adaptive control input for formation stabilization for and heterogeneous
Euler-Lagrange system. Control law is based on distance-based approach and ensuring asymptotic con-
vergence of the inter-vehicle distance errors to zero.

[97] presents a centralized synchronization approach to trajectory tracking of Euler-Lagrange vehicles
while maintaining time-varying formations. Each vehicle tracks its desired trajectory while synchronizing
its position with others agents to keep relative displacement with them, as required by the formation.
Then, control is based on the formation error, measured by the position error and the synchronization
error. A synchronous controller for each vehicle’s translation is defined to guarantee that both position
and synchronization errors approach zero asymptotically. Moreover, a rotary controller is also designed to
ensure that the robot is always oriented toward its desired position. Both translation and rotary controls
are supported by a centralized high-level control for task monitoring and vehicle global localization.

The virtual structure method is often combined with leader-following method to drive fleet to a desired
target or trajectory. Derived from leader approach, a sub-category of virtual structure is virtual leader
approach [14, 15]. Instead of a real vehicle used as the leader of the formation, a virtual vehicle described
by its current state is used to place other agents around it and drive the formation. Thus, a synchronization
of the virtual leader current state must be managed between agent.

1.8.4 Flocking methods and Behavior-based control

In behavior-based controls, also named flocking control or swarm control [89, 103, 75, 91, 7, 33, 101, 90, 52],
are inspired by birds, fish or bacterium behavior. They impose several behavior rules (attraction, repulsion,
imitation) to each agent. Their combination leads the MAS to follow some desired behavior. Such
approach requires the availability to each agent of observations of the state of its neighbors. These
observations may be deduced from measurements provided by sensors embedded in each agent or from
information communicated by its neighbors. In all cases, these observations are assumed permanently
available. In addition, if a satisfying global behavior may be obtained by the MAS, Behavior-based
flocking cannot impose a precise configuration between agents. Moreover, in opposite with formation
controls where the distances desired among agents are always fixed, flocking control defines no constraints
on distance among AUVs.

In the first works made by [88], agents follows three rules : flock centering, which attempt to stay close
to nearby neighbors, collision avoidance, to avoid collisions with nearby agents, and velocity matching,
to match velocity with nearby agents. These rules can be expressed an attraction force between agents,



1.8. STATE-OF-ART: FORMATION CONTROL 43

repulsion force if agents too close, and velocity synchronization. By following these three rules, the MAS
converge to a compact group without collision which moves in a same direction with the same velocity,
like a fleet of bird (cf Figure 1.13).

In [75, 90, 91, 51], the fleet keeps the formation in a predefined geometric shape. Studying [89] works,
it defines the same three behavior rules. However, so some cost functions have been create to modulate
the attractive and repulsive forces between agents and improve the global behavior of the fleet. Moreover,
virtual agents are associated to obstacles, which allows agents to avoid its without introduce new rules.
In phase of obstacle avoidance, the formation can split itself in two part to bypass an obstacle before go
back to its initial shape. Collective potentials are defined to penalize deviation from the optimal compact
formation, even during phase of obstacle avoidance. The repulsive potential function between agent and
obstacle/agent is developed such as be inversely proportional to the norm of the distance between them.
All these rules are summary in three distributed flocking algorithms to lead to a self-organizing flocking
behavior.

Collision-free formation control for second-order vehicles is considered in [64]. The proposed control
approach uses Laplacian graph and potential function to achieve a desired formation and collision avoid-
ance. Security distance is defined such as guarantee the repulsive force start its action enough early to
avoid the collision without disturb system convergence.

Finally, [40] proposed a distributed method of coordination without communication, using only agent’
sensors. Distributed control allows to form a certain pattern and following a designated vehicle referred
as leader, without a priori knowledge of the path leader is following. Agents use sensor to detect leader
and closer neighbors, before move to obtain a desire distance and orientation with its. A symmetric axis
center on the leader is used to help the organization of agent’s destination point.

Figure 1.13: Example of flocking control

1.8.5 Issues in formation control

While fulfilling basic requirements such as trajectory tracking, following path generation, formation shape
generation, switching between formation shapes, designing efficient formation control must also be per-
formed by accounting for the environmental effects and the limitations and constraints of the vehicles and
the communication network they realize. Among environmental effects, external perturbations (e.g. wind
effects for aerial vehicles) and presence of obstacles can affect the convergence to the desired formation.
Uncertainty on the relative positions of agents may lead to collision. Limitation of speed and acceleration
play a major role in the efficient realization of the formation.

Environmental disturbance To obtain a high degree of reliability, disturbances, noises measurement
and their effects on the agents must be modeled with a suitable degree of accuracy to evaluate their
effects on the stability of the system. In UAV and AUV for example, the main sources of the dynamic
disturbances are wind and wave, which scatter agents in the formation and create discrepancy between
an agent current state and its estimate made by one of these neighbors. Thus, model of these effects must
be generated and be considered in the control law and stabilization of the global system.
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Communication constraints According to most control and coordination strategies studied, a wireless
network is necessary in the fleet to gather information on others agents when information cannot be
obtained using sensors. Note in some cases, formation shape is designed using communication topology
constraints such as keeping distance between agents lower than communication range. The resulting
formation thus always enables exchange between agents. In case of AUV, disturbances of sea layers,
small bandwidth, and strong attenuation of signal in underwater medium induce chance of data packet
loss and/or dropout due to attenuation in the environment. In a minimal case and/or a large number of
problems, communication delays may appear and can disturb or make obsolete received information. Thus
delay compensation must be employed while designing formation control strategies. Finally, in case of
low data rate due to specific problem like in acoustic communication or limited data bandwidth, compact
control language or linear quadratic optimal control must be employed. The control algorithm must also
be based on on board computing power.

Some works try to join the formation control with the event-triggered communication (cf Section 1.9).
[61, 98, 99, 112] model each agent with a simple integrator and proposed an event based on the error
measurement. Command control is keeping constant between two broadcast messages.

Collision and obstacle When a group of multiple vehicles moves in formation, it is necessary to avoid
collision between agents as well as avoid collision with obstacles intersecting the formation path. Thus,
obstacle avoidance is highly essential in formation control. Remark the obstacle may be static or dynamic.
Collision and obstacle avoidance can be managed in real-time obstacle avoidance using sensor and potential
function based approach like in flocking methods, or offline by defining a tracking trajectory which avoid
obstacles.

1.9 State-of-art: Event-triggered method

Distributed cooperative control usually requires significant exchange of information between neighboring
agents so that each agent can properly evaluate its control law. In a UAV fleet for example, computation of
the cooperative control law of an agent requires that values of speed and position of other vehicles must be
updated regularly. That’s why controlling a network with limited communication resources is a challenging
task. Indeed, in absence of direct measurements, delivery of a message may induce delays, potential loss of
information and additional expenses in terms of energy. Others issues are network bandwidth saturation
and loss of stealth for military applications. Sensible selection of the information content and of the time
when it is required may prove an efficient way to tackle these issues.

Many approaches for consensus or flocking in multi agent networks assume permanent communication,
as in [74, 77, 113]. They often rely on continuous updating of neighbor state values, which involves
continuous communication with all agents in the fleet. This results in heavy communication load and
high frequency bandwidth. It also involves a large quantity of information processing at each time instant
especially for a large number of agents. Therefore, practical implementation of the methods in multi-
agent systems becomes soon intractable. In order to decrease the amount of processed information and
the associated communication burden, methods have been proposed that limit their requirement to discrete
time information publishing.

In periodic communication strategy, or discrete communication, as in [36, 42, 63], agents update their
command with new information broadcast and received at a constant period T. To avoid saturation of
message reception, the instants of communication of all agents may be shifted in time, but with the same
constant period T'. This method requires a synchronization of clocks between agents in the fleet. Although
numerous developments have been performed in the field of periodic sampling methods, they still present
flaws in terms of heavy communication loads and large amount of information to be processed.

Another approach suggested to overcome this drawback is intermittent communication [114, 116, 117,
119]. In intermittent communication strategy, the periods of communication broadcast alternate with
periods of absence of communication. When communication are broadcast, it can be effected by means of
permanent or periodic communication strategy. However, the absence of communication periods result in
a global decrease of the amount of transmission required. However, the duration of broadcasting is often
longer than the silent period and during broadcast, there is no restriction on information sent.

Instead of a priori planning of communication time, it seems more efficient to consider broadcasting
only when it is required and thus to define a condition that will trigger communication, if fulfiled. Event-
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triggered communication, or event-based control communication, is a promising approach to limit commu-
nication. The main difficulty consists in determining the communication triggering condition (CTC) that
will ensure the quality of the completion of the task assigned to the MAS, e.g., reaching some consensus,
maintaining a formation, etc. As the state values of the other agents are not permanently available, it
becomes mandatory for each agent to dispose of estimates of the state values of its neighbors to compute
its cooperative control law. However, it is difficult to assess the quality of the state estimates. Therefore,
to dispose of a suitable reference, each agent estimates its own state only using the information it has
shared with its neighbors. When the discrepancy between its own state estimate and its actual state
reaches some threshold, the agent triggers a communication. This type of approach has been considered,
e.g., in [136, 35, 94, 39, 107, 23, 106]. The methods developed in this context mainly differ from each other
by the complexity of the dynamic model of the agents [136, 35, 94, 45, 28], by the structure of the state
estimator [23, 39, 107, 106], and by the determination of the threshold of the CTC [94, 110, 31, 135, 28].

In this thesis, the event-trigger methods presented are used to decrease the amount of broadcast
information between agents of a fleet. However, similar approaches have also been developed to save
energy in static sensor’ networks [50, 68, 95, 25]. Note that, event-triggered strategies described here are
dedicated to consensus problem at the exception of the approaches exposed in Section 1.9.9.

1.9.1 Notations

In this study, agents broadcast messages at specific instant. If 7;; is the communication time between
two Agents i and j, broadcast messages are not received at the same instant that it has been sent. The
following notation are introduced to underline the difference between the time when a message has been
sent and when it has been received:

° t; . denotes the time at which the k-th message sent by Agent j has been received by Agent ¢, and
t;’,k+1 denotes the next.

e ¢} denotes the time at which the last message has been sent by Agent j, and t; 41 denotes the
next.

° t}; denotes the time of reception by Agent i of the last sent message, whatever the sending agent.

Remark if a communication delay 7;; exists between Agent ¢ and Agent j, the instant when Agent 4
receives the k-th message broadcast by Agent j is equal to 5 = tjk + 7i;. Else if ;5 = 0, one obtains
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Figure 1.14: Examples of communication instants ¢; ;, and receiption time tf  for agents i and j where
(4,7) € 1, 2, 3].

1.9.2 Communication triggering condition

The idea of event-triggered communication is that information are not updated continuously, but only
at specific instants which are not necessarily periodic. Then, information are broadcast at appropriate
time and only when agents need it. This appropriate time is derived from the state of a condition, named
communication triggering condition (CTC), which will lead to broadcast a message when it is satisfied. As
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said before, the main difficulty consists in determining a CTC which constitutes a good trade-off between
limited information and good performances of completion of the task assigned to the MAS.
The CTC is of the general form

fi()>0 (1.17)

where f;, called an event, depends on chosen parameters. Most of the times, the condition f; associated
with an Agent ¢ depends of the discrepancy between Agent i state estimate and its current state.

In centralized system, decisions are taken by a leader, and so (1.17) is evaluated using information
from all agents. It decides when an agent has to share an information with an other one. In case of
distributed system, every agent decides itself when it has to transmit information to its neighbors. Thus,
fi is expressed using local information and local estimate values. Agent ¢ broadcasts a message to its
neighbors when its own condition (1.17) is satisfied. Note that as condition f; mostly depends on the
error between agent current state and its estimate, CTC may prove very sensitive to state perturbation.

1.9.3 Distributed event-triggered and estimators

The triggering condition depends on the discrepancy between its own state estimate and its actual value.
This estimate is updated using the information it has shared with its neighbors and a dynamical model
of evolution. Hence the error is due to potential time tag differences between agents and difference in
estimate model structure and real agent dynamics. It is thus of major importance that there exists a
synchronization of the update of estimators especially in the presence of communication delay. It is also
necessary that the estimators of all agents are structurally identical. Some examples of estimators are
presented in the following section.
One of the simplest estimator structure used e. g. in [94, 135, 129, 30, 43, 112, 136] is

vl () =i (1) (1.18)

where x; is Agent 7 state and yf is the estimate of the state of Agent i performed by Agent j. The estimate
remains constant until the next triggering condition. In presence of a communication delay 7;; like in [84],
estimators are updates at time t = ¢; , + T, where T' > 7;; for all (¢, 7). This protocol allows all agents
to receive the message from Agent i before updating yg , and to do it in a synchronized way. However,
drawback of (1.18) is its low accuracy, which leads to frequent triggered communication.

Another estimator presented in [37, 38, 35] is

gt = Ayl (1), (1.19)
vl (tf,k) = =z (tf,k) (1.20)

where A is the agent dynamic matrix. The state evolution due to the control inputs is not taken into
account. For consensus, this estimator reflects agent state evolution when the consensus is reached,
corresponding to a zero control input. In [38], a compensating term is added of the form

yl (#4) =i (8,). (1.21)

to account for the communication delay when estimator is updated. (1.21) thus tolerate absence of
synchronization between agents. However, even if (1.20) is more accurate than (1.18), it still doesn’t take
into account the control inputs.

1.9.4 Selection of an event-triggered condition

The design and selection of an event triggered condition is of major importance. Although systematic
procedure to define a CTC doesn’t exist, two schemes can be distinguished.

The first scheme consists in defining CTC by seeking for a function f; translating some mission re-
quirements. For example, in case where agents need to not exceed some security distance in a formation,
the function f; depends on the error between agent’s current coordinate and its coordinate estimation
and a threshold to compare this error with the security distance bounds. Thresholds may be constant
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or time-varying, as in [94, 23, 31, 28] where the threshold is time decreasing exponentially. Advantages
of these methods are that they often guarantee a limited number of communication and can be easily
distributed. However, the convergence and the stability of the global controlled system are often difficult
to prove. Thus this scheme to construct CTC is mostly limited to simple and double integrator dynamics.

The second scheme to elaborate suitable CTC consists in deriving it from the conditions of global
stability of the system. Usually, this is performed using a Lyapunov function which integrates a function
of estimation errors. Bounds on this function that insure satisfaction of Lyapunov theorem conditions
provides the expression of CTC . This scheme is used for system with complex dynamics to guarantee
global stability and convergence [37, 35, 39, 110, 23, 81, 107, 106, 122]. However, this approach presents
some drawbacks . First the resulting CTC guarantees convergence to a stable system but doesn’t ensure
decrease of the number of communications. In order to avoid continuous communication, proof of absence
of Zeno behavior (cf. Section 1.9.5) must be established. An other disadvantage is the difficulty to obtain a
distributed CTC from considerations on the global system stability. It is potentially feasible to transform
the designed CTC so that it only requires only local information, but it is usually at the expense of the
number of trigger. Finally, it is often difficult to provide a physical interpretation in terms of mission
requirement of the resulting function.

The following example [94] is presented to illustrate the determination of a CTC. The problem to be
addressed is consensus in a network. The dynamics of each agent is described by

sy = [ e

wi(t) = > (vi(t)—yi(t)
JEN;

yi () = i (t)

where x; € R™ is the state of Agent i, u; € R™ is its control input evaluated using y; € R"™, the estimate
of the state of Agent j performed by Agent ¢. Assume that the communication graph is connected and
there is no communication delay. Thus all Agent i’s neighbors have the same estimate of Agent ¢ state,
(m,j) € Ni, yi = y] =y

The CTC is defined by f; > 0 where

fi (te (1) = e ()| = (co + cre™") (1.22)

with el (t) = x; (t) — y! (¢) is the error between Agent i state estimate and its current state, cg, ¢; and «
are constant design parameters.

The CTC associated with (1.22) translates the requirements for reaching a consensus into f; becomes
positive when the error e} between the current state z; and its own estimation y¢ is larger than the adaptive
threshold defined by c¢p, ¢; and «. It indicates that Agent i trajectory diverges from the trajectory
estimated by other agents. The consensus makes it necessary to correct this error by broadcasting a
message containing Agent i state values to others agents. Thus, when f; > 0, a communication is
broadcast, e! is reset to zero and f; becomes negative. As cie™®! is time decreasing, less triggers occur
at the beginning of the mission, when agents are remotely located and the error is growing faster. When
agents become closer, consensus requires increased accuracy on the state estimate. The decrease of the
threshold reflects this need and the CTC increases the number of communications. The constant term cg
guarantees there is no continuous triggering event by keeping f; negative when e! is reset to zero.

Figure E.2 compares results obtained with periodic communication and event-trigger communication
developed by [94]. Less broadcast messages are needed using event-triggered method than periodic com-
munication method. Moreover, both systems converge at the same time.

Most often, the CTC is considered to be computed continuously. Since MAS are generally sampled-
data systems, event-triggered methods based on discrete sampling characteristics appears to be more
practical. Thus, by combining event-triggered control and periodic sampled-data control, some methods,
[135, 57, 66, 79], check the event condition periodically. The control inputs are also only computed at the
same sampling time and hold to this value over the periodic time interval. This simplifies the prediction
of the error evolution.

This sampling period guarantees the minimum inter-event time studied in Section 1.9.5. The CTC
must guarantee that the system converges during the sampling period, using only local information without
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Figure 1.15: Comparison between event-triggered method proposed by [94] and basic periodic communi-
cation method.

broadcasting message.

1.9.5 Zeno behavior and inter-event time

The Zeno behavior corresponds to cases when an infinite number of discrete transitions is made in a
finite time interval. A CTC which can not ensure the non-existence of Zeno behavior may potentially be
continuously triggering. The absence of Zeno behavior may be established by proving the existence of a
positive minimal time 7; = ¢; 41 —%; . between two triggering events, called inter-event time. The maximal
number of communications made by the CTC can be upper-bounded by a periodic communication with
period T equal to the inter-event time 7;.

Definition of minimal inter-event time has been presented in [20, 24, 23, 29, 31, 37, 38, 35, 34, 39, 60,
98, 30, 136, 133, 49]. Tt can be derived by determining an upper-bound of the estimation error e; obtained
at the time after the CTC has been satisfied. If it is strictly positive, absence of Zeno behavior is proved.
The resulting inter-event times are often very small and may prove difficult to obtain when the agent
dynamics is complex.

Guaranteing the absence of Zeno behavior can be directly done using a CTC evaluated at periodic
instant [135, 57, 66]. However, this requires to prove system convergence with this periodic evaluation.

1.9.6 Event-triggered with communication delay

In most practical applications, there exists a delay between the instant when a message is broadcast and
the time of reception. In [38, 39, 79, 135], this communication delay is considered and accounted for in a
condition that guarantees system convergence.

[135] study a periodic event-triggered consensus problem for a MAS with simple integrator dynamics.
Two event-triggered strategies combined with sampled-data control are proposed: the first one is based
on an exponential delay function and the second on a quadratic Lyapunov function. The time delay is
assumed to be upper-bounded by the sampling period. Then, a sufficient condition on the value of the
sampling period and time delay is obtained to guarantee the asymptotic stability of the system.

[38] develops a distributed event-based consensus protocol for linear systems with limited communica-
tion and transmission delays. Event is classically designed as a function of discrepancy between current
and estimate states, which triggers when it overcomes a specified threshold. The estimator of agent state
takes in account the communication delay with which agents received information, to improve model ac-
curacy. Lower-bounds on the inter-event times are computed and shown to be positive to prove absence
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of Zeno behavior. [39] extends this previous work by considering that agents are connected by directed
graphs. Event condition structure is deeply modified due to loss of symmetry in the system, but is still a
distributed function and absence of Zeno behavior can also be proved.

[79] proposes a discrete event-triggered communication approach for a class of networked Takagi—-Sugeno
(T-S) fuzzy systems with communication delay and state perturbation. Delay is assumed to be upper
bounded by a parameter 6. Thus, the sampling period between two events calculation is chosen larger
than ¢, so that broadcast messages are received before the CTC is re evaluated . Parameter § constitutes
a trade-off between the sampling period and the allowable network-induced delay. The control law is
defined by logic Zero-Order-Hold (ZOH) . Note that in this case, the sampling period of the control law
can be chosen lower than the sampling period between two events,contrary to [135] where there must be
identical. The last transmitted state values are used as estimation of agent state for computing the control
law. With the appropriate selection of the sampling period, the discrete event-triggered communication
guarantees absence of Zeno behavior.

1.9.7 Package dropout, perturbations, switching topology and input satura-
tion.

Communication delay is not the only disturbing factor that can affect the performances of event-triggered
system. Other factors that can potentially counteract the stabilizability of the system are packet dropouts
and variable topology.

The packet dropouts (also called “missing measurements”) are known to be one of the most frequently
observed phenomena in networked systems. In networks of large size, the packet dropouts may result
in severe failures, especially when communication are constrained. Since event-triggered approach is
designed to transmit a message when it is absolutely required, loss of part of these information can lead to
unstability of the system. Moreover, agents cannot know if their broadcast messages have been received
when the system is decentralized. As packet dropouts are not predictable, evaluating its effect must rely
on stochastic model of occurrence of such a loss of data. In [25, 95], discrete-time stochastic non-linear
systems with packet dropouts are considerate. The events are built using estimation errors like classical
CTC, but are weighted with stochastic value variables. The number of triggering communication rises to
counterbalance the potential loss information. A stochastic Lyapunov is used to prove the stability and
the convergence of the system.

Another problem is the case of direct communication graphs. Sometime, communication between to
agent can be only in one way, because of material problem like a broken receptor. Thus, the asymmetry of
the communication graph makes it difficult to flock the agents when an agent cannot received information
and only broadcast it. In Pinning method [124, 125], the presence of a virtual leader helps to converge
even with a direct graph and a switching topology.

As CTC is evaluated using local information for distributed control, a change in the connection graph
modifies the expected information sent by the neighboring agents. Event-triggered control schemes with
time-varying topology have been proposed by [57, 66, 56] . Events are modified whenever a change occurs
in the time-varying communication graphs.

1.9.8 Dynamic model and Event-triggered

In event-based centralized [111, 28, 126] or decentralized approaches [24, 31, 132, 23, 29, 34], simple
integrator is the most often used dynamic model. It allows to define or build simple CTCs as in [29,
45, 31, 132, 30, 66, 99, 34, 24, 23, 135] where it is obtained by comparing error between agent state and
its own estimation or between communicated and estimated average of relative positions of neighbors.
In [23, 135, 24, 31], estimates of agents state correspond to the last received information. Time-varying
topology is addressed in [66].

Double integrator model is treated by [94, 59, 60], where triggering conditions are associated with a
state-independent and exponentially decreasing threshold. [49] studies problem of the centralized event-
triggered based on a leader-following second-order consensus. Event condition is evaluated using the
norm of agent error and its neighbor errors. More recently, [57] proposed an asynchronous sampling
distributed event-triggered method in leader-follower formation with switching topology. To guarantee
the tracking convergence, the CTC depends on the error of the estimate of agent position and velocity.
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The impact of the switching topology on Zeno behavior is studied. It shows absence of Zeno behavior is
guaranteed during intervals where topology is fixed, but witching instants can induce trigger of the CTC.
Consequently, the topology switching can lead to a permanent communication if there is no lower bound
on the time between two topology switches. However, the existence of this lower bound is sufficient to
prove that there is not accumulation message in the sequences of inter-event times.

In [136, 37, 38, 35, 34, 39, 110, 41, 20, 43, 50, 79, 95, 120, 126, 128, 107, 106] a general linear model is
considered

wi(t) = F Y ay(yit)—yj), (1.24)
JEN;

as presented in Section 1.7.6. As the proof of convergence of the system becomes more difficult, CTC are
derived from the stability analysis of the global system, guarantying the stability and the convergence of
it.

In [2, 28, 133, 129, 109, 111, 71, 25] nonlinear dynamical systems are represented as

&y = f(t, ;) + g (@) ug (1.25)

where f is supposed to be globally Lipschitz.

In this case, the proof of absence of Zeno behavior is complex due to difficulty in predicting the error
behavior. The assumption of f being globally Lipschitz provides a framework to treat this issue and
demonstrate the global convergence.

In [71], the consensus problem of multi-agent systems is studied using Euler-Lagrange dynamics model.
A centralized event-triggered strategy based on agent’ position and velocity is proposed to limit the num-
ber of messages and to guarantee the global convergence. A non linear system modeled as a Takagi—Sugeno
fuzzy system is presented in [111] using a discrete event-triggered communication method with commu-
nication delay. The estimator consists in a logic zero order holder. Finally, [2, 133] study the problem of
event-triggered pinning control for the synchronization of complex networks of nonlinear dynamical sys-
tems. Conditions on parameters of the control inputs are presented that guarantee the global convergence
of the system with the absence of Zeno behavior and exponential decrease of the norm error.

In most of the works presented in this section, state perturbations are not tackled. In [50, 95, 111, 120,
68], the event-triggered approach is studied in presence of noise in a static sensor networks without control
inputs. These methods introduce in the event a time-varying coefficient which corrects partly the noise
influence. A Kalman filter is used for enhancing the quality of estimation and thus reduce the influence
of perturbations on the number of broadcast messages. However, most of these method are designed for
centralized system. For distributed control methodsthe perturbations are not considered during the design
of the control law and estimator which makes them very sensitive to perturbations. This results usually
in a large increase of the number of broadcast messages. [79, 45, 111] propose an event-triggered method
to mitigate the impact of perturbations in the case of vehicle dynamics described by simple integrator.

Some other issues can also be considered, as, for example, input saturation. [129] proposes a distributed
event-triggered adaptive consensus control for nonlinear MAS subject to input saturation. Input saturation
affects mostly the stability of the system but has not an direct impact on the creation or evaluation of
the CTC.

1.9.9 Event-triggered and formation control

Most event-triggered approaches have been applied so that a MAS can reach a consensus. Recent works
combine event-triggered communication approaches with distance-based or displacement-based formation
control [61, 98, 99]. In these approaches, the dynamics of the agents are described by a simple integrator,
and the control input is assumed constant between two communications. The proposed CTCs are central-
ized, and differ by the threshold formulations. A constant threshold is considered in [98]. [61, 99] define
CTC where the thresholds are time-varying, depending on the relative positions between agents and the
relative discrepancy between actual agent state and estimated state. It allows to reduce the number of
communications when the system converges to the desired formation. A minimal inter-event time is also
defined and no perturbations are considered.
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Logic-Based Communication (LBC) techniques have been introduced in [84, 127, 3, 130] to decrease
the number of communications. They bear common features to event-triggered method, but the triggering
condition is based on formal logic. MAS with decoupled nonlinear agent dynamics are considered in [84, 3].
Agents have to follow parameterized paths, designed in a centralized way. CTC introduced by LBC lead
all agents to follow the paths in a synchronized way to set up a desired formation. Communication delays,
as well as packet losses are considered. Input-to-state stability conditions are established but absence of
Zeno behavior is not analyzed.
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1.10 Thesis outline

The subject of this thesis is the determination of distributed cooperative control of a multi-agent system
with limited communications. The agents are mobile autonomous vehicles moving in an unknown envi-
ronment. They dispose of their own means of measurements to measure their own state values and rely
on communication link to obtain information on the state values or processed data of their neighboring
agents. The communication links are summarized via a connection graph. The objective of this work is
to decrease the amount of information to be transmitted between agents while managing the fleet.

This manuscript is organized in four chapters.

Chapter 1 has been dedicated to present the definitions and tools required in this study. Concepts
of distributed control, graph theory and communication protocol have been presented. State-of-art of
consensus approach, formation control and event-triggered strategy have been described.

Chapter 2 addresses the problem of distributed event-triggered communications for consensus of a
multi-agent system with general linear dynamics and state perturbations. A control law and estimators
of other agent’s states are designed. An event-triggered communication strategy is defined to decrease the
number of broadcast messages while insuring convergence to a stable consensus. Simulations illustrate
performances obtained and comparisons with the reference method [37] of the quality of results on various
cases are presented.

Chapter 3 is dedicated to the problem of formation control in multi-agent systems and presents an
event-triggered strategy to reduce the number of communications between agents. Agents are assumed to
have full-knowledge of the parameters of their dynamic Euler-Lagrange models. A control law and two
estimators of other agent states are proposed. An event-triggered communication strategy is defined to
reduce the number of broadcast messages while converging to a stable formation. State perturbations are
considered. Simulations illustrates the performances obtained with both estimators.

Chapter 4 extends the problem studied in Chapter 3 to formation tracking control. Furthermore,
the parameters of the agent’s dynamical models are now supposed unknown. An adaptive control law is
proposed, guaranteing convergence. The previous estimator structures are re-designed to account for the
uncertainty on the model parameters. An event-triggered communication strategy is defined to decrease
the number of broadcast messages while converging to a stable formation and tracking the reference tra-
jectory.

Chapter 5 extends the results presented in Chapter 4 to tackle the issue of packet dropouts. A new
estimation model is defined, and the event-triggered communication strategy takes in account the expec-
tation of the estimate error due to the loss of messages. A protocol is introduced to solve the problem of
Zeno behavior.

In Chapter 6, communication delays are now considered. A prediction model is introduced to predict
the triggering instant and adapt accordingly the time for broadcasting the message. Two structures of
prediction models are proposed.

The final chapter presents a general conclusion and some perspectives of work. The proofs of the
results presented in Chapters 2 to 6 are presented in the Appendix.
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Chapter 2

Distributed event-triggered
consensus of linear multi-agent
systems with bounded perturbations

2.1 Introduction

This chapter addresses the problem of distributed event-triggered communications for consensus of a
multi-agent system (MAS) with both general linear dynamics and state perturbations. This work extends
results presented in [37, 35] by analyzing the effect of state perturbations on the consensus and on the
communication requirements. Moreover, to reduce communications, this chapter proposes an improved
estimator of the agent states, derives an estimator of the estimation error, and introduces an adapted
communication protocol. By taking into account the control input of the agents, the proposed estimator
allows the MAS to obtain a consensus with much less communications than with the approach in [37, 35].
The proposed technique is thus well-suited to applications where communications should be minimized,
e.g., to improve furtivity, reduce energy consumption, or limit collisions between transmitted data packets.
Application examples with such constraints are exposed in [59, 60] for the case of a fleet of vehicles, or in
[5] where agents aim at merging local feature-based maps.

With this approach, estimates of the states of all the agents (not only neighboring ones) are required
to evaluate all control laws. More estimates are performed, but this reduces the communication frequency.
A convergence analysis is achieved while considering state perturbations composed of two components:
one common to all agents, and one agent-specific. Absence of Zeno behavior is shown. The case of a
time-varying topology is also discussed.

This chapter starts in Section 2.2 with the problem formulation, and in Section 2.2.2, with a detailed
description of the reference method which inspired this work.

The communication triggering condition (CTC), presented in Section 2.3, requires a new state estima-
tor, described in Section 2.4, along with an adapted communication protocol.

A second estimator is exposed in Section 2.4.4 to obtain an implementable distributed event-triggering
strategy presented in Section 2.5.

Section 2.6 compares the performance of the proposed approach to state-of-the-art results from [37, 35].

Finally, Sections 2.7 and 2.8 extend the previous results to non-linear dynamical systems and propose
some solutions to address the case of time-varying topologies.

2.2 Problem formulation and reference solution
The dynamics of the agents of the MAS are first described. They incorporate state perturbation and

control inputs. A CTC condition, which can be evaluated for any form of estimator, is also defined in
Section 2.3 to let the choice of the estimator in Section 2.4.

55
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2.2.1 Dynamical model with state perturbations

As in [37], one considers first a fixed, undirected, and connected communication graph G with adjacency
matrix A.. Time-varying topologies are studied later in Section 2.8.
In this section, the dynamics of a generic agent i is modeled as

wi(t) = aF Y (v -y ). (2.2)
JEN;

In (2.1), z; € R™ is the state of Agent i, u; € R™ is its control input evaluated using y; € R”, the estimate
of the state of Agent j performed by Agent i as described in Section 2.4. A € R"*™ and B € R"*™. One
has ¢; = ¢+ ¢ with ¢ = 1/X\2 (L) and ¢y > 0 a design parameter. F = —BT P where P is a symmetric
positive semi-definite matrix, solution of the Riccati equation

PA+ ATP —2PBBTP 4 2aP <0, (2.3)

with o > 0.

Remark 1. The parameter ¢, and so A\2(L), is related to the communication graph Laplacian matrix L.
Its knowledge is required by each agent to evaluate its control input (2.2). Since the structure of the
communication graph G is fixed, it can be assumed that the communication graph is initially known by
all agents, or that a flooding method like that exposed in Section 2.4.3 can be initiated at t = 0 to deduce
it. Thus, L and ¢ can be computed by each agent and the control input u; can be evaluated in a fully
distributed way.

Contrary to [37], one considers in (2.1) an additive perturbation d; € R™. This perturbation is assumed

to be such that
di (t) =m(t) + s (1), (2.4)

where m (t) € R™ is a bounded time-varying perturbation with ||m (¢) || < Myax identical for all agents
and s; (t) € R™ is a bounded agent-specific perturbation with, for alli = 1,..., N, ||s; (¢) || < Smax, where
Max > 0 and Spax > 0 are known bounds. This two-parts additive perturbation model can be used, e.g.,
to represent the combined effect of a uniform wind field on a fleet of drones and specific attitude-dependent
turbulence affecting differently each drone.

The vector of all state perturbations is then

d(t) =1y ®@m(t) + s(t) (2.5)

with s(t) = |s1 (8) ... sy (t)T} !

Splitting d; (¢) in two parts allows taking into account the effect of two types of perturbations on the
consensus. The perturbation m (t) affects identically all agents, but has no effect on the convergence to
the consensus contrary to the agent-specific perturbation s; (t). Indeed, if one considers the situation
where the states of all agents have converged to the same value, the control inputs (2.2) become equal to
zero. Thus, m (t) affects identically the dynamics (2.1) of all agents. The agents move, but their state
will still be identical. This is not the case with s; (t) which is specific for each agent. Nevertheless, as will
be seen later, both perturbations have an impact on the CTC.

The problem considered here consists in designing a distributed control scheme, robust to perturba-
tions, to drive the agents to a bounded consensus, while limiting the communications between agents.
For that purpose, communication time instants are chosen locally by each agent using an event-triggered
approach introduced in Section 2.3.

In this chapter, as in [37], we suppose that there is no communication delay and agents know perfectly
their own state.

2.2.2 Reference solution

The problem considered in [37], agents are described with the simplified dynamics where d; (t) = 0. The
estimate y! (¢) is obtained as follows

y]z (t) — Ay; (t) s Vit € ] §7k7 t;,k-ﬁ-l [’
i (k) = i (t)



2.2. PROBLEM FORMULATION AND REFERENCE SOLUTION 57

with ¢; ;, the time instant at which the k-th message has been sent by Agent j and t;  the time at which
this message has been received by Agent i. In [37], it is assumed that there is no communication delay
between agents, so t;k = t; for all i € N;. The time of reception by Agent i of the (-th message is t,
whatever the sending agent. The time at which the last message has been sent by agent j is denoted ¢} ;.
and t; ;11 denote the next one.
Let
= [T ] e RN

be the vector gathering the estimates of the states of all agents performed by Agent i. The vector

v=[ )" . @Y7 erV

gathers the estimates performed by each agent of its own state. Similarly, let
T
e=[ ()" . ()] er¥

where e; = yj — x; 1s the estimation error between x; and yf .

It can be noticed that Agent ¢ only uses the estimates y; of the states of its neighbors j € N to
evaluate its control input (2.2). Moreover, since there is no communication delay or losses, (2.6)-(2.7)
guarantee that y; = yf, Vi € N and V¢ € Nj. As a consequence, the estimate of the state of Agent j is
the same for all its neighbors, thus each agent knows the estimates available at its neighbors. However,
the influence of the control input (2.2) is not considered in the estimator (2.6). This induces an estimation
error e; = yf — x; growing with time.

For that purpose, the communication time instants ¢; , are chosen locally by Agent 7 using an event-
triggered approach considering a threshold §; calculated from the state estimation error e;, see Theorem 4.
In addition, the delay between two successive communications (inter-event time) is shown in [37] to be
lower-bounded, ensuring the absence of Zeno behavior.

Let L=L®P,L=LA. +ATL, A.=A+B),A=Iy®A, Bi=c;L® (BF), M = PBBTP and

Amin>0(_z)

= ()

(2.8)

It is proven in [37] that L is semi-definite negative. In the following theorem, the initial states are
considered to be known by all agents.

Theorem 4 ([37], Th. 3). Assume that (A, B) is controllable and that the communication graph is con-
nected and undirected. Then agents which dynamic described by (2.1)-(2.2) and d; = 0 achieve a bounded
asymptotic consensus with

N7
i ) -z )| < —L— .
Jim s (1) = (1) | < 52t (29)
for all (i,7) € N, if the communications are triggered when
where z; = Zil (yj — y;:), 0<o<1,n>0 is some design parameter and
§ = 2(cs—c¢)N;2T PBBT Pe; + [QCNE (1+b;) + CQbf °N;
3
+cN; (N — 1) (bi + b)] eI PBBT Pe; (2.11)
©; = (2¢5 — b;N; (c; — ¢)) PBBTP. (2.12)
Moreover, the inter-event time can be lower-bounded t; 41 — ti 1, > T; where
. 2
ln<(k—2—|—g) —g+1>
= (2.13)

1A]
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ky =

2eNZ (14 b;) + bz 27N, +eN; (N — )(me ;)’ (2.14)

1Max BF °
><|PBBTP||(Z e )

R

_ 2(c2 = ) Nil[All/lleBF || (2.15)
2eNZ (1+b;) + =N, + N, (N — 1) (bﬁ%)’

where Zimay satisfies Yt ||z; () || < Zimaz and || 4] = maxi<i<q, 2?21 ;]

The CTC (2.10) guarantees the stability and the convergence of the global system only if agents used
the estimator dynamics (2.6): the proof presented in [37] does not allow the use of an other estimator.

The CTC (2.10) mainly depends on e}. Thus, a communication is triggered by Agent i when e becomes
large. Since our aim is to reduce the number of communications triggered, keeping d; as small as possible,
so keeping e! small, is a way for improvement. Furthermore, the presence of state perturbations is not
considered in the dynamics (2.1). Such perturbations may be an important source of discrepancy between
the current state x; and the state estimate ;.

Then, in the next part of the chapter, our presentation focuses on the design of a more accurate
estimator, and on the definition of a new CTC adapted to this new estimator. Moreover, the presence of
perturbations is considered and their influence on the stability of the MAS is studied.

2.3 Event-triggered consensus

The introduction of the perturbations modifies the stability of the global system, and the solution pro-
posed in [37] does not apply anymore. Moreover, the event-triggered method developed in [37] is closely
dependent on the estimator (2.6). Our aim is to develop an event-triggered method which can guarantee
the global stability of the MAS system 1) in presence of state perturbation; 2) without a specific condition
on the estimator dynamics. This last point allows one to choose the state estimator in a second time and
to choose the one that reduces the number of broadcast message. We choose here a “deducted” event to
solve our problem.

This section introduces an event-triggered strategy to reduce the number of communications in The-
orem 5. For that purpose, we assume that the estimates y; for all ¢ and j, are perfectly known by all
agents in the network. This imposes strong constraints on the estimators embedded in each agent and
on the communication protocol. These constraints will be relaxed in Section 2.5 to allow a practical
implementation of the proposed technique. In the following theorem, the initial states are considered to
be known by all agents.

Theorem 5. Assume that (A, B) is controllable and that the communication graph is connected and
undirected with a fized topology described by the Laplacian matriz L. Consider some design parameter
n > 0. Agents with dynamics (2.1)-(2.1) achieve a bounded consensus with

N377

= B (P) (2.16)

o . 2
V(ig)  Jim - )
if the bound on the perturbation satisfies

Smax < \/a leaa (L) M] N (2.17)

and if communications are triggered when

6 > pzl ez 4+ (2.18)
with ©; = (2co — biN; (ca —¢)) M, 1 > p > 0 a design parameter and

& = o |(z— MZA”—l—eZTMe+<1+b2>NZ(ATMA)
JEN; JEN;

42 (cy — ¢) Njzl Mel + [20 (N:) 2 (1+b;) + N +¢N; (N -1) (bi + ;)] eI Met (2.19)

7
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and z; = Zje/\ﬁi (yj — y;), A= yf -y, 0<b; < (c—iﬁ if ca > ¢, b; > 0 otherwise.

Note that the variables P, «, ¢o and ¢ are derived from the control definition. N; is the cardinal
number of the set of the neighbors N; of Agent 7 and 3 is defined in (2.8). The decision variables of
Theorem 5 are 1, b; and p.

The proof of Theorem 5 is in Appendix A.1.

From (2.17) and (2.19), one sees that 1 can be used to adjust the trade-off between the bound on the
consensus error and the amount of triggered communications. If = 0 and if there is no perturbation,
the system achieves an asymptotic consensus.

The CTC (2.19) mainly depends on e} and A;;. A communication is triggered by Agent ¢ when the
estimate y! of its own state z; is not satisfying, i.e., when e! becomes large. It is also triggered when the
discrepancy A;; between this estimate and that made by other agents yf with their available information
is large.

The two perturbations have a direct impact on e! and thus on the frequency of communications. The
sufficient condition (2.17) on Syax to have a consensus depends on 7 and on the measure of connectivity
A2 (L) of the graph. Systems with more connected graphs are more robust to perturbations. M., does
neither influence the quality of the consensus, nor its convergence.

To reduce the number of communications triggered, one has to keep 6; as small as possible. This is
done by keeping e! and A;; small, which is achieved by building accurate estimates y! and y/, as described
in Section 2.4. Then, since in a distributed context, the yf s cannot be easily made available to all agents,
the CTC introduced in Theorem 5 is difficult to implement. This issue is addressed in Section 2.4.4.

2.4 Agents state estimation and communication protocol

2.4.1 Agents state estimation

As exposed in the Section 2.2.2, the estimate y; (t) proposed by [37] is evaluated without considering
control input. As already noticed, the absence for estimation of the control input in (2.6) induces a
growing gap of the estimation error ¢! . To reduce the number of messages broadcast by each agent, a new
dynamic is considerate. It represents the agent behaviors by accounting for the control input evaluated
by each agent and its dynamic behavior. It allows to be more accurate and so stay close to the current
state, so keeping e! small. Thus, the estimate yj (t) is evaluated as

gi(t) = Ayi(t)+ B (), i, <t <t (2.20)

@) = aF > (i) -y 1) (2.21)
PEN;

i () = a5 (), (2.22)

where (2.20) takes into account the control input of the agents. Considering all the agents, (2.20)-(2.22)
can be rewritten as

O = Ay (223
yj (tk) = @5 () (2.24)

where A, =A+B; , A=Iy®A,and By = c¢;L ® (BF).

To determine the control inputs applied by Agent j, Agent ¢ needs to perform an estimate of the state
of all the neighbors of Agent j. However, to perform an estimate of the state of an Agent ¢ neighbor of
Agent j, an evaluation of all neighbors of Agent £ is required. As the communication graph is connected,
Agent i will have to evaluate the state of all agents in the network to determine the control inputs applied
by all other agents.

Remark 2. If there is no perturbation, i.e., Mya.x = 0 and Spax = 0, the estimate error eﬁ vanishes.
Moreover, in absence of perturbation, if for some time instant ¢, v (t;) = 37 (t5) for all (i,5) € N, then
y' (t) =y’ (t) for all (4,5) for all t > t;. As a consequence, A;; (t) = 0 and e! (¢) = 0 for all (4, 5) for all
t > t;. No communication will be triggered for ¢t > ty.
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Note in the first works, an estimator where the control input ﬂ; (t) = ﬂ; ( ; k) was constant has been
proposed to avoid to evaluate the state of all agents in the network. However, this estimator obtains

worst performance in terms of CTC compared to (2.7)-(2.6). Thus, this method has been abandon for
(2.20)-(2.22).

2.4.2 Communication protocol: fully-connected graph

In this section, the communication graph is assumed as fully connected. As in [37], the message broadcast
by an Agent ¢ at t;, contains the state x; (¢, ) of Agent i. Agent j € N; = N uses it to update its
estimate g/ according to (2.22).
With a fully connected graph, the information transmitted by some agent is received without delay by
all other agents in the network. As a consequence, one has y! (t) = ¢/ (t) and A;; =0 for all (i, j) € N2
In this case, the CTC in Theorem 5 can be evaluated. Communications are triggered mainly due to
the state perturbations.

2.4.3 Communication protocol: not fully-connected graph

From now, the communication graph is no more fully connected. Assume first that a message broadcast
by Agent i at ¢; , contains only its state x; (t; ). Only neighboring agents receive the message and use
; (t;.1) to update their estimates y?, j € N, according to (2.22).

A relaying is necessary to allow other agents updating yf , j & N;. Two strategies are discussed in
what follows.

Flooding Method

With the first strategy, a message received by an agent is immediately retransmitted to its neighbors.

When an Agent broadcasts a message at ¢; i, this message contains ¢; 5, and the state z; (¢; 1) of Agent i.
When some Agent j, neighbor of Agent i, receives this message, it broadcasts t; , and x; (¢; %) to its own
neighbors if it has not done it previously. This message is further broadcast by the neighbors. This is a
typical flooding strategy [44, 83], which enables all the network receiving the message.

Since there is no communication delay, one has y! (t) = v/ (t) and A;; = 0 for all (i, j) € N? as in
Section 2.4.2.

With this method, each time a communication is triggered for a given agent, the same message is
broadcast up to N times, depending on the topology. This technique is not competitive compared to that
presented in [37].

Delayed flooding method

With the proposed alternative strategy, when a message is received by some agent, this agent waits until
its CTC is satisfied to broadcast its own state as well as updated estimates of the states of all agents
in the network evaluated from information in the messages received from its neighbors. This requires to
store and broadcast a vector containing the time instants at which the communication has been triggered
for each agent.

Thus, when a communication is triggered at ¢;;, Agent i first updates y! (t;x) = x; (t;x). Then,
instead of transmitting only ¢;  and x; (¢; 1), it broadcasts the vector y* and a vector

i
T" = [tl,kla--~»ti—l,ki_l,ti,kati—&-l,k”l tN,kN]

of time instants, where each t;;, represents the time at which the triggering condition of Agent j has
been satisfied.

When some Agent ¢ receives the message from Agent 4, it compares the time instants in T° with those
of its own T*. Each components of y* such that tik > te, t.ce., corresponding to a more recent triggering
instant, are replaced by those of 4*. The vector T* is updated accordingly.

Example 1 illustrates this information diffusion strategy.
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Update ¥2= A Update 4= Y2 Update ¥3=y2
Save 1, Save t,, V=193
? Save t,,

Update yf = yi

Save
(a) CTC satisfied for Agent 1. (b) CTC satisfied for Agent 2.
Update y2 y3
Save 5,

Y= 13
Update y4= y3 Update y5= yl y;>= Y4
yi=y3 Y=k Y=yl
Save ¢, ijll fm Save 1,1, t: atyn
(c) CTC satisfied for Agent 3. (d) CTC satisfied simultaneously for Agents 1
and 4.

Figure 2.1: Delayed flooding protocol

Example 1. In Figure 2.1(a), the CTC is satisfied at 1 ; for Agent 1. It updates its own estimate y1 =
and the first component of T with ¢; ;1. Then it broadcasts 7" and y'. Its neighbors, Agents 2 and 5,
receive this message. Agent 2, since the first component ¢1 ;1 of 7! is more recent than that of 72, updates
y? as y7 = yi. The first component of T2 is now ¢; 1. Agent 5 performs the same updates.

In Figure 2.1(b), the CTC is satisfied for Agent 2 which performed the update y3 = x5 and sets the
second component of T2 to ta1. It broadcasts then 72 and y?. Agent 3, once it receives this message,
using T2, knows that its estimates of the states of Agents 1 and 2 are outdated and performs the updates
yi =y} and y3 = y3. The two first components of T are now #11 and ¢2 1. Agent 1 updates only y3 = y3
and the second component of T to ¢2 1. A similar behavior is observed in Figure 2.1(c). In Figure 2.1(d),
the CTC is satisfied simultaneously for Agents 1 and 4. Since the first components of T is larger than
that of T%i.e., t1 2 > t11, Agent 5 uses y; coming from Agent 1 to update y7. It uses yj coming from
Agent 4 to update y3.

Example 2. An other example of the communication exchanges is proposed in Figure 2.2.

The proposed communication protocol has been designed so that once a message has been sent, (i) the
estimation error e} and discrepancies A;; are reset to zero, and (ii) the CTC in Theorem 5, is no longer
satisfied.
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ty1 =1t

Update y; = y3
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Figure 2.2: Example of delayed flooding protocol with the communication exposed in Figure 2.1.
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Update Vl= 3t V=9 Update v3= 13

V= yl Updatc /U:; S y:)

Update v2= 92

Update v2= 12
P 4 V3= 93

(a) (b) (c)

Figure 2.3: Update estimator v’

2.4.4 Estimation v’ of estimate y* by Agent j

The delayed flooding protocol of Section 2.4.3 allows each Agent i having access to y} for all j € N.

Nevertheless, Agent i is not able to access yf , which is required to evaluate its CTC in Theorem 5.
In a first time, an idea was to introduce an estimation of the discrepancy A;;. Indeed, it can be shown

that the global vector A = [ AT} Al, ... ALy ]T can be expressed as A = exp (Z (t — t1)) A (t1)

where Z € R(Vn)x(N?n) ang tr the time at the last instant where an agent in the network has broadcast
a message. However, as see in Section 2.4 with the update of y}, A (¢) can not be updated at each instant
tr, because an Agent i can only measured discrepancies A;; of its neighbors j € N;. Thus, this method
was abandoned to the following ones.

) ) T
To address this issue, each Agent i evaluates an additional estimates v/ = [U{T v?VT] € RV of

y? for all j € N; U {i}, with the constraint that the estimates v* performed by Agents i and j € N; have
to be identical. For that purpose, the estimate v* performed by Agent i and all its neighbors j € N is
updated only when the CTC is satisfied for Agent i and when it broadcasts a message. The v7s are thus
less frequently updated than the y’s and are less accurate. Both estimators are evaluated simultaneously
by each agent. Introducing v/ does not require any modification of the delayed flooding protocol. Agent 4
uses the v’s to check the CTC and 3’ to evaluate the control inputs.

The dynamics of the additional estimate v* is

B (t) = AVl (t)+ B (t), ), <t<tp, (2.25)

i (t) = aF Y (vi(t)—v)(1) (2.26)
PEN,

o' (tig) = Y (tig) (2.27)

U; (tjix) = yj (tjix), J€N. (2.28)

Considering all the agents, (2.25)-(2.28) can be rewritten as

) = A (1) (2.29)
tir) = Y (tix) (2.30)
tie) = yj(tik), JEN:. (2.31)

7

ol (
(

<

v

<

Example 3. In Figure 2.3(a), the CTC is satisfied at ¢; ; for Agent 1. It updates its own estimate y; = x1,
the first component of T with ¢ 1, and its own additional estimate v! = y'. Then, Agent 1 broadcasts
T! and y'. Its neighbors, Agents 2 and 5, receive this message as seen in Figure 2.3(a). Agent 2, since
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the first component ¢1 1 of T is more recent than that of 72, updates y7 as y? = y{ and updates the
additional estimate of Agent 1 v! = y!. The first component of T? is now t; ;. Agent 5 performs the
same updates. Since there is no communication delay, the additional estimates v!' evaluated by Agent 1,
2, and 5 are identical.

2.5 Distributed event-triggered consensus

Using the additional estimate v? introduced in Section 2.4.4, Theorem 6 in Section 2.5.1 introduces a CTC
that can be evaluated by each agent in a distributed way. Section 2.5.2 introduces then an implementable
distributed event-triggered consensus algorithm.

2.5.1 CTC in distributed context

As in Theorem 5, the initial states are considered to be known by all agents. For practical implementation
as well as in the following illustration examples, this condition can be relaxed by using two possible
methods. The first one consists in making each agent trigger communications at ¢ = 0 using the delayed
flooding method presented in Section 2.4.3 : each agent will receive information from all other agents
and initialize their estimators. The second method consists in making each Agent ¢ initialize the state
estimators for all other agents with its own value of the state, and trigger a communication at time ¢ = 0,
in order to update the estimates of its neighbors. Thus, additional estimators v’ are updated with the
first communication. Moreover, each Agent j which is not a neighbor of Agent i and the estimate y;
of which is not updated by the first communication will have no impact on the control inputs (2.2) and
(2.21) because Vj ¢ N y; —y! = 0. Estimators will then be updated with more accurate values by next
triggered communications.

Theorem 6. Assume that (A, B) is controllable and that the communication graph is connected and
undirected with a fized topology described by the Laplacian matriz L. Consider some design parameter
n > 0. Agents which dynamics is (2.1)-(2.1) achieve a bounded consensus with

N3p

< B (P) (2:32)

V(ig)  Jim [l - g <

if the following condition on the perturbation bound is satisfied:

/\ M

and if communications are triggered when

0 > pzl0z +1 (2.34)

with ©; = (2c2 — b;N; (ca —¢)) M, 1 > p > 0 a design parameter,

_ 1 . , .
b= e g e N i)+ 5 ) )
g JGN
+ (5= Nieh) " MY (o] —y?) 4 Ni ity +2( ) NS [(vi —y’f)TM (v i)
? ) ' [3 k3 2b (3 k3 (3 (3
JEN; JEN;

+ (y; - ’U;')TM (y; - 'U;)H +2(ca—¢) NiziTMeZ:

+ [20 (N)2(1+b) + 2—CN, + eN; (N - 1) <bi + 5’)] eI Me! (2.35)

)

and z; = Zje./\/i (ylz ) M =PBBTP,0<b; < if co > ¢, b; > 0 otherwise.

cc)N
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Note that the variables P, «, ¢ and ¢ are derived from the control definition. N; is the cardinal
number of the set of the neighbors A; of Agent ¢ and 8 is defined in (2.8). The decision variables of
Theorem 6 are 7, b;, bia and p. Note that the value of SA2(L) can be derived from remark 1.

The proof of Theorem 6 is in Appendix A.2 and the proof of absence of Zeno behavior in Appendix A.3.

The difference between Theorems 5 and 6 lies in the evaluation of the CTC. The term &; in (2.18)
has been replaced by d; in (2.34), which mainly depends on the discrepancy between the state estimates
y; and the estimates of these state estimates vj .

When an Agent i broadcasts a message, the estimation error ¢j and the discrepancies y% — v% and

vl —y! are reset according to (2.22), (2.28), and (2.27). As a consequence, the CTC (2.34) in Theorem 6
is no more satisfied.

2.5.2 Summary of the distributed event-triggered consensus algorithm

Results of Section 2.4 to 2.5 describing the proposed distributed event-triggered consensus approach are
summarized in Algorithm 1 for some Agent ¢. This description is generic in the sense that all agents are
controlled and trigger communications in the same way. The main loop of this algorithm is repeated until
it is stopped by some external event (end of the mission, end of simulation time, etc.).

%% Initialization
T =0,.
if 2(0) is known then
y' (0) « z(0)
for j=1..N do
if j € NV, then
07 (0) + x (0)
end if
end for
else
for j=1..N do
; (0) ¢ ; (0)
end for
0" (0) 3 (0)
Broadcast a message
% Message received?
for j=1..N,j+#ido
if a message is received from Agent j then
Update y* and T? as presented in Section 2.4.3,
v (t;k) — yj (t;k)
end if
end for
end if

%% Main loop
% Message received?
for j=1..N,j#ido
if a message is received from Agent j then
Update y* and T" as presented in Section 2.4.3,
vl (t;k) — ) (t;)k).
end if

end for
Algorithm 1: Control algorithm for Agent i
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2.6 Example

Consider a network of N = 5 agents with unstable dynamics taken from [37] described by the following
state and control matrices

048 0.29 -0.3 2 0
A= 013 0.23 0 B=| -15 1
0o -12 -1 0 1

Solving (2.3) with o = 1, one obtains

4.8436 5.4783  —1.1082
P = 5.4783 7.0614  —1.4299
—1.1082 —1.4299 0.3778

The network topology is linear with Laplacian matrix

1 -1 0 0 0
-1 2 -1 0 0
0o -1 2 -1 0
0 0o -1 2 -1
0 0 0 -1 1

L=

with Ao(L) = 0.382.
Each agent is assumed to have access only to its own state. The vector of initial states is

8.5067 17 17367 17 [ —0.0340 17
2(0) = —0.6568 —0.1855 —0.4651
0 0 0
—07768 17 [ —0.6568 1"
—0.3803 1.5076
0 0

The simulation duration is T = 5 s. Euler method is used to integrate agents dynamics over intervals
of the form [kdt, (k+ 1)dt] with a step dt = 0.01 s. As the system has been discretised, the CTC is
evaluated every instant kdt, inducing a minimum period between the transmission of two messages by the
same agent set to dt. The perturbation d (t) is assumed of constant value over each interval of the form
[kdt, (k + 1) dt[. The agent-specific component of d (t) is s;(t) = [0, s;2(¢),0]" where s; 2(¢) is a zero-mean
Gaussian noise with standard deviation o, truncated at Spax = 0y, With [s; 2] = ||si]] < Smax, such as
to satisfy condition (2.34) in Theorem 6. The component of the perturbation common to all the agents
is m (t) = [0,m2 (¢),0]7. Two cases are considered: a constant value ma(t) = Mpax (see, e.g., Figure 2.7
(a)) or a zero-mean Gaussian noise truncated at the standard deviation oy, such that |ms| = ||m|| < Mpax
(Figure 2.7 (b)).

The parameters of the CTC are set as follows n = 0.1, ¢ = %, co = 0.1, b; = 1.36, by; = 1 and
p = 0.5. The value of ¢ is imposed, that of ¢ is taken from [37]. The other values are chosen to reduce
the number of required communications.

The proposed approach is compared to that of [37], evaluating in both cases the total number of
messages broadcast Nyy < Ny = N T/dt. The residual communication ratio

Ny
Rcom = 100? (236)
N

m

of the number of broadcast messages is expressed in %. Rcom indicates the proportions of time slots during
which a communication has been triggered. It should be as small as possible.
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t=0s t=0.87s

Figure 2.4: Convergence of agents to a consensus with control (2.2) and Theorem 6. Corresponding
mapping between agent index and curve color: magenta: 1, green: 2, black: 3, blue: 4, red: 5.
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(a) Error with respect to consensus and time instants of the (b) Error with respect to consensus and time instants
broadcast messages when considering the reference estimator of the broadcast messages when considering the proposed
(2.6) from [37]. estimator(2.20).

Figure 2.5: Comparison between estimator (2.6) and new estimator (2.20) without perturbation. X

% vazl x;. Initial state is known. Corresponding mapping between agent index and curve color: magenta:
1, green: 2, black: 3, blue: 4, red: 5.

2.6.1 Without perturbation

Figure 2.5 compares the performance in terms of consensus error and number of broadcast messages for
each agent, considering both estimators (2.20) and (2.6).

The figures show the time instant when each agent transmits a message. It can be seen that agents
reduce communication and they converge to the same trajectories even in presence of reduce information.

When the initial conditions are perfectly known by all the agents and there is no perturbation, no
communications are required when using the proposed estimator (2.20).

Figure 2.6 shows the results when each agent only knows its own initial state. With the estimator
(2.6) from [37], a first communication is enough to initialize the estimates of all agents, since each agent
only estimates the states of its neighbours. With the proposed estimator (2.20), estimators are initialized
using the second protocol described in Section 2.5. The delayed flooding method allows then an update
of the estimates of all agents. After a short transient period, only few communications are required.

2.6.2 With perturbations

Figure 2.7 shows the evolution of R..,, as a function of Sy,ax for different values of M.y, when m (t) is
constant (Figure 2.7(a)) and when it is described by a truncated Gaussian distribution (Figure 2.7(b)).

As could be expected, all types of perturbations, e.g. identical or agent-specific, increase the number
of communications required. For high level of perturbations, keeping &; small can become impossible,
resulting in the need for a permanent communication between agents.

With the considered parameters, the value of the upper-bound on Sy, introduced in Theorem 2 is
Smax = 16.17. With this value, the sufficient condition (2.34) is satisfied for the following simulations,
and one observes that a consensus is always reached.

When the level of perturbation is low, the number of communications triggered by each agent is less
with the proposed estimator (2.20) than with estimator (2.6). When Spax or My are large, the estimator
(2.20) provides equivalent or even worse performance in terms of number of triggered communications
compared to (2.6). This is mainly due to the additional terms introduced in the CTC (2.34).
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Figure 2.6: Comparison between estimator (2.6) and new estimator (2.20) without perturbation. X, =

% vazl x;. Initial state unknown. Corresponding mapping between agent index and curve color: magenta:
1, green: 2, black: 3, blue: 4, red: 5.
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(a) m (t) = Mmax is constant
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(b) m () is truncated Gaussian

Figure 2.7: Evolution of R.om as a function of Sy,.x for different values of My,.x when considering the
reference estimator (2.6) (dashed) and the proposed estimator (2.20) (plain).
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Figure 2.8: Evolution of Reom and max;jen (||z; —x,]|) for different values of 7 =

{01, 05 075 1, 1.25, 15, 175, 2, 2.5 } with the reference estimator (2.6) (dashed) and
the proposed estimator (2.20) (plain) for different values of Spax. Each point is the mean value over 50
simulations.

2.6.3 Choosing 7 in the CTC

The parameter 7 in the CTC allows to reach a trade-off between the disagreement with respect to consensus
and the reduction in the number of triggered communications. Figure 2.8 illustrates this trade-off for

ne{ 01, 05, 075 1, 1.25 1.5, 175, 2, 25}

and different values of Syax for the proposed estimator and that proposed by [37].

It can be seen that the proposed estimator outperforms that proposed by Garcia in terms of number
of communications, while the order of magnitude of the consensus disagreement remains relatively close.
Using the proposed estimator, Rcom can be significantly reduced which is not the case using the reference
estimator of Garcia up to Spax = 1.5, with which Rcom cannot be reduced below the value of 10.

Figure 2.8 provides some guidelines to select the value of 7 when communications constraints or when
some bound on the disagreement with respect to consensus have to be satisfied.

2.7 Extension to linear time-varying systems

In the previous section, the CTC has been developed for multi-agent systems with linear time invariant
(LTI) dynamics. In practice, the dynamics of many systems may not be time-invariant. This is for example
the case when one looks to approximate the dynamics of a nonlinear systems by performing linearizations
or using a T-S fuzzy representation. In this section, we extend results obtained in Theorem 6 to the case
of LTV systems. Proof in Appendices A.1, A.2 and A.3 remain valid without modifications.



2.7. EXTENSION TO LINEAR TIME-VARYING SYSTEMS 71

Assume that the dynamics of an Agent i can be represented by the following LTV system:

i (t) = A(t)z;(t)+ B(t)u;(t) (2.37)
wi(t) = aFt) Y (vit)—y 1) (2.38)
JEN;

Theorem 6 is still valid with the new matrices A (¢) and B () if a constant matrix P (¢) can be found such
as
Vi, PO AW +A@®)"P(t)—2P ) B(t)B(t)" P(t)+2aP (t) <O0.

Estimators y* and v’ are also rewritten using A (t) and B (t). Theorem 6 and proof in Appendix A
are still valid with these matrices A(t) and B(t).

An example of LTV representation can be obtained from the Takagi-Sugeno (T-S) fuzzy-model-based
approach that can be used to represent or approximate nonlinear systems [79] by a T-S fuzzy system of
the form

B =D b (O000) LA () + B (8) (2:39)
m=1
u(t) = afF Z (v; (1) —y; (1))
JEN;

with € N* and where A,,, and B,, are constant known matrices of appropriate dimensions. The weighting
functions g, (0 (t)) depend on variables 0 (t) € RP, p € N*and satisfy the following property for m =
1,2, ...,r

v, pm (0(1))

S 0) = 1

m=1

%
o

This parametric representation allows for example to perform a linearization of nonlinear dynamics at
r different linearization points instead of only one, hence resulting in a wider domain of validity of the
system dynamics approximation.

Let us now define the matrices A(t) and B(t) as

AW) = 3 ma0(0) A (2.40)
m=1

B(t) = 3 o (0(8) B, (2.41)

and rewrite the dynamical system (2.39) as

wi(t) = aF )Y (i) —y;)
JEN;

with F (t) = —B (t)" P (t) and P (t) a symmetric positive semi-definite matrix

P =3 tim (0(1) P (2.42)
m=1

where P,, is the solution of the Riccati equation
vme[l...r], PudAm+ALP, — 2P, B0 BL Py + 2aP, <0

In the same way, estimators y° and v’ are rewritten using A (), B (t) and P (t).
Theorem (6) and proof in Appendix A are still valid with the new matrices (2.40) and (2.41), which
allows to extend results of Theorem 6 to T-S fuzzy system (2.39).
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2.8 Time varying topology

There are many cases where the communication graph G may change with respect to time: communication
links may indeed appear or disappear between agents depending on their inter-distances (limitations of the
communication range) or due to the presence of obstacles or failures of the communication equipments,
etc. The communication topology must therefore be considered as time-varying, and the instants when
the communication graph changes are called topology switches. Thus, the convergence of the global
system should be analyzed when dealing with such time-varying topology. Some works in literature like
[124, 125, 78] have shown that a consensus can be guaranteed if there exists a direct spanning tree in the
communication graph.

Before studying the stability of the global system in presence of time-varying topology for our proposed
method, let us first arise two questions related to time-varying topologies: (i) How a given Agent can detect
that there is a switch in the topology (ii) How a given Agent can inform other agents that it has updated
its list of neighbors ?

2.8.1 Detecting topology switches

Define tj, as the time instant at which the topology switches. A new connection (or new edge) between
two Agents 7 and j is detected by Agent ¢ if it receives a message from Agent j at ¢ > t;, and if Agent j
was not a neighbor of Agent ¢ on the interval ¢,_1 <t <t} (j ¢ N;). Thus, discovering a new neighbor
is pretty easy. However, when Agent ¢ does not receive any message from Agent j, it is more complicated
in event-triggered approaches to distinguish between the case of a non triggered communication (CTC of
Agent j not satisfied) and the case where the communication link between Agents ¢ and j is broken.

To overcome this problem, a simple strategy may consist in making all the agents to broadcast a
message at fixed periodic time instants. If a message from Agent j, neighbor of Agent 4, is missing,
Agent i considers that the communication link is broken and Agent j is not one of its neighbors anymore.
On the opposite, if an Agent k receives a message from Agent j, it adds it to its neighbors. Inconvenient
of this strategy is that it results in adding many communications to the communication protocol defined
in Section 2.5.2, which is contrary to our objective to limit the number of broadcast messages between
agents.

2.8.2 Influence of topology switches on control input

Assume that the problem exposed in the previous paragraph has been solved. Estimators (2.20) and (2.25)
introduced in previous sections assume that for any Agent i of the network N its set N; of neighbors
is known by all the agents. Indeed, the knowledge of the whole network N is required to evaluate
the estimated controls (2.21) and (2.26). Thus, when an agent detects a topology switch, it needs to
inform others agents of its new set of neighbors which cannot systemically detect this modifications
instantaneously. Note that this problem does not exist in methods like the one of [37] since estimators
only require the states of the neighbor agents.

Some methods to solve this problem or design control laws independent of the topology are proposed
in the following paragraphs.

Informing other agents that an agent has updated its list of neighbours

Proposition 1: Flooding delay strategy A first idea is to use the flooding method to transmit
the new set A/ to all agents. With this method, each time a topology switch is detected by a given
agent, a communication is triggered and the same message is broadcast up to N times, depending on
the new topology. This technique is not efficient to reduce the number of broadcast messages. Moreover,
Theorem 6 guarantees system convergence on the interval ¢ € [ty, tn11[. A proof of the system convergence
with discontinuities between intervals due to topology switches has not been obtained.

Proposition 2: Flooding delay strategy and estimated set of neighbors The second idea is to
use the delayed flooding method to make each Agent i to transmit the set N; along with 3’ and 77 like
exposed in Section 2.4.3 each time the agent needs to broadcast a message, i.e. when the CTC is satisfied.
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Let us introduce the vector
Ny = { N @) N (0
where J\A/'J’ (t) is the estimate of Aj performed by Agent i, with N7 (t) = A; (t) and /\Af; (t) = J(/; (t;k)

./\A/f (t) is updated by Agent i at every instant ¢t = ¢, of change detection in the topology. Then, let us
rewrite the control input w; in (2.2), 4; in (2.21) and u; in (2.26) as

wlt) = aF 3 (W) -y 1) (2.43)

JEN

() = aF Y (vt -y 1) (2.44)
pGNj

() = aF Y (vj(t)—uv(1). (2.45)
peN;

Note that these modifications affect the calculation of y* but not v* since Agent i has not broadcast
a message. Thus, this discrepancy leads to satisfy the CTC more quickly and so broadcast a message to
update missing information.

Then, instead of transmitting only 7" and 4, Agent i broadcasts now also the vector N of its estimate
of . When some Agent ¢ receives the message from Agent i and compares the time instants in 77 with
those of its own T*, as described in Section 2.4.3, each components of N such that tig > tog, i.e.,
corresponding to a more recent triggering instant, are replaced by those of N, Inconvenient of this
method is that the discrepancy between estimators y; and v; leads to a communication each time the
topology switches.

The problem of this method is that Theorem 6 and its proof presented in Appendix A do not guarantee
anymore the stability of the global system. Indeed, the matrix B = T (I N ® El) used in the Lyapunov
function has to be rewritten such as B = f ( BF, J\A/'ll7 /\721, ey N]{,V ), where f is a function which
depends on the estimates of the set A" made by all agents. In this more complex case a proof has not
been obtained.

Control input independent of the topology switches

Proposition 3: Control input associated to the fully-connected graph A third idea is to intro-
duce a control with less dependence on the topology. This one consists in using the control input that
would be associated to the “fully-connected graph”, regardless of the current real topology. It can be
expressed as

N
u; (t) = chZ(yZ(t)—y; (t))
ﬂ;(t) = ClFZ y] *yp ))
@ (t) = chZ (vi (t) — vl (1)) .

All estimates of other agents are used to evaluate the control input. In opposite to the previous proposi-
tion 2 (flooding delay strategy and estimated set of neighbors), the stability of the global system with this
control can be shown by following the steps of the proof in Appendix A and using as Lyapunov function
Vy = 27 Lyx, where Ly = NIy — 1y is the Laplacian associate to the fully-connected graph. Then,
the centralized CTC proposed in Theorem 5 with the following expressions for z;, ©; and §; guarantees
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the convergence to a bounded consensus and reduces the number of broadcast messages

N
5 = a (Zz'—NC MZAljﬂ—%elTMe +<1+ ) Z ATMA
j=1

+2(cy — ¢) NjzE Mel + [20]\72 (14b;) + =— °N +eN (N—-1) <b¢ + ;)} el Me; (2.46)

b;
@i = (262 — bN (Cg — C)) M (247)

z; = Z ylfy] (2.48)
j=1

However, these modifications are not adapted for the Theorem 6. Indeed, the evaluation of the CTC
requires an additional estimation v for all agents in the network. Since the additional estimator v’ cannot
be updated by an Agent j if Agent 7 is not one of its neighbors, this method is impossible to implement
in a distributed way, excepted by using the flooding protocol described in Section 2.4.3. However, remind
that this protocol induces a large number of broadcast messages.

Proposition 4: control input associated to the minimum connected subgraph With a similar
idea of reducing the dependence to the topology, another control law is proposed to solve the problem. Let
us first assume that there exists a minimum subgraph Guin (Mmin, Emin) such as all agents are connected,
identical for all time-varying topologies G (¢), V¢t > 0. Then, Agent ¢ control input is evaluated by using the
time-constant set of neighbors My, 4, associated t0 Gin, which is independent of the current topology.
The expressions of the control inputs are given by

w(t) = aF Y. (4t -vi®) (2.49)

JENmin, i

Gt = aF > (4 0-y®) (2.50)
PENmin,j

@Gt = af Y (y0)-v0), (251)
PEMNmin, j

Information received from Agent j, neighbour of Agent 4, such as j € N; (t) and j ¢ Niin,; are still
used to update estimates made by Agent 4 following the delayed flooding protocol, but without being used
in the control inputs defined in (2.49)-(2.51).

Using the Lyapunov function Vi, = 2T Linx where Ly, is the Laplacian matrix associated to the
graph Guin, Theorems 5 and 6 are still valid on the interval [tp, tp1[ with z; = 37,y (i —v2),
©; = (2¢2 — b; Nin,i (¢c2 — ¢)) M, where Ny ; is the cardinal number of Ny ;, and the expression (2.35)
of ; using Nmin,i instead of AV;. Moreover, as Vi, is independent of the time-varying topology, Lyapunov
function Vi, allows also to prove the stability of the global system on all intervals. It has been observed
by simulations that using such a control law considering a fewer number of agents in N; allows to reduce
the number of triggered, as it would be expected, but reduces the speed of convergence.

2.8.3 Time-varying strategy

The approach based on using the minimum connected subgraph proposed in Section 2.8.2 allows to obtain
a MAS consensus in presence of a time-varying topology. Using this method also solves the problem of
detection of topology switches exposed in Section 2.8.1 since the control law (2.49) and the estimated
control inputs (2.50) and (2.51) are independent of variations in the topology. The main issue of this
method is to find a minimum connected subgraph G,,;,, existing for all the time-variations of the topology.

2.9 Conclusion

In this chapter, a distributed event-triggered communication strategy has been proposed to reach consensus
in multi-agent systems with a reduced need for communication compared to state-of-the-art techniques.
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To obtain this result, each agent has to manage simultaneously two estimators of the states of the
other agents of the network. The first provides an accurate agent state estimate of all agents, which does
not necessarily coincide among all agents. The second estimator considers only the neighbors of each
agent and is less accurate but its value is constrained to coincide when two agents are neighbors. Both
estimators are used to trigger communications.

A flooding delay communication protocol has been developed to guarantee the reset of estimation
errors without adding broadcast messages to the initial strategy.

The proposed distributed event-triggered communication technique enables to obtain a reduced num-
ber of communications while enabling the agents to reach a bounded consensus in presence of state
perturbations. Convergence to consensus has been studied and absence of Zeno behavior proved.

Simulations have shown the effectiveness of the proposed estimators in presence of state perturbations
when their level is moderate. A guideline to select some design parameter to obtain a trade-off between
communications constraints and bound on the consensus disagreement has been proposed.

Finally, extensions of this results to time-varying linear systems (including T-S fuzzy representations)
and to the case of a time-varying topology have been presented.

Extensions of this work will focus on the case of influence of packet drops during transmission of
messages, and handling time delays in communications. Using stochastic Lyapunov functions like in
[25, 95] will allow to find an adapted CTC to make the system converge even in presence of packet
dropouts. These methods use an expectation of the estimation error to take into account the lost of
information in the communications.

In case of communication delay, the CTC would need to be satisfied more frequently so as to compensate
the effect of the transmission delay. Moreover, communication delay should be taken into account in the
state estimators managed by the agents as proposed in [38].

Packet dropout will be studied in Chapter 5 and communication delays in Chapter 6, in the case of
formation control.
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Chapter 3

Distributed event-triggered control
for multi-agent formation
stabilization

In chapter 2, the problem of communication reduction in consensus of multi-agents systems with linear
dynamics has been studied and an event-triggered method has been proposed. In this chapter, the
problem considered is formation control of multi-agent systems with Euler-Lagrange dynamics. Reduction
of communications is still considered by proposing an event-triggered strategy.

More precisely, displacement-based formation control where agent dynamics are described by Euler-
Lagrange dynamics including a state perturbation is considered. This work extends results presented in
[82] by introducing an event-triggered strategy, and results of [61, 98, 99] by addressing systems with
more complex dynamics than a simple integrator. This is the first approach to distributed event-triggered
control of multiple Euler-Lagrange systems found in the literature. To obtain distributed control laws,
estimators of other agents’ states are introduced. The proposed distributed CTC involves the relative
discrepancy between the actual and estimated agent states: a communication is triggered when the dis-
crepancy between the actual state of an agent and its estimate reaches some threshold. The impact of state
perturbations on the formation and on the communications is analyzed. A condition for the convergence
of the MAS to a stable formation is also studied.

Hypotheses and some notations are introduced in Section 3.1.

The considered formation parametrization is presented in Section 3.2 and the new decentralized control
law, based on estimates of the agents’ states described Section 3.2.3, is proposed in Section 3.2.2.

The CTC is presented in Section 3.3.

A simulation example is considered in Section 3.4 to illustrate the reduction in communications ob-
tained. Finally, conclusions are drawn in Section 3.5.

3.1 Notations and hypotheses

Let ¢; € R™ be the vector of coordinates of Agent i in some global fixed reference frame R and let

q = [ a & ... 4 ]T € RNV™ be the configuration of the MAS. The dynamics of each agent is
described by the Euler-Lagrange system

M; (¢:) Gi + Ci (gis 4i) i = 70 + d; (3.1)

where 7; € R™ is some control input described in Section 3.2.2, M; (¢;) € R™*"™ is the inertia matrix of
Agent i, C; (¢, ;) € R™™™ is the matrix of the Coriolis and centripetal term on Agent i, and d; is the
additive external state perturbation satisfying ||d;|| < Dmax. The state vector of Agent i is 2] = [q¢f, ¢]].
Assume that the dynamics satisfy the following assumptions:

A1) M;(g;) is symmetric positive and there exists ky; > 0 satisfying Vo, 27 M; (¢;) x < kypoT .

7
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A2) M; (¢;) — 2C; (qi, g;) is skew symmetric or negative definite and there exists ko > 0 satisfying Ve,
2" Ci (4iy 4i) @ < ke ||gal| 2.

A3) For all agent pairs (4,7) € NV, if Agent j knows ¢; and ¢;, it can evaluate M; (¢;) and C; (¢;, G;)-

In what follows, the notations M; and C; are used to replace M; (¢;) and C; (g;, ¢;). In this chapter, one
assumes that each Agent 7 is able to measure without error its own state ;. Moreover, it is assumed that
there is no communication delay between agents.

3.2 Formation control problem

This section aims at designing a decentralized control strategy to drive the MAS to a desired target
formation in some global reference frame R, while reducing as much as possible the communications
between agents. The target formation is first described in Section 3.2.1. The potential energy of the MAS
is introduced to quantify the discrepancy between the target and current formations. The distributed
control introduced in Section 3.2.2 tries to minimize this potential energy. To evaluate the control input
of each agent despite the communications at discrete time instants only, estimators of the coordinate
vectors of all agents are managed by each agent, as presented in Section 3.2.3. A CTC is designed to limit
this discrepancy by updating the estimators as described in Section 3.3.

3.2.1 Formation parametrization

Consider the relative coordinate vector r;; = ¢; — q; between two agents 7 and j and the target relative
coordinate vector 7; for all (i, j) € N'xN. A target formation is defined by the set {rfj, (i, j) e N x N'}.

Consider, without loss of generality, the first agent as a reference agent and introduce the target relative

. T . .
configuration vector r* = [ T o ] . Any target relative configuration vector r}; can be ex-

pressed as r; = ri; —r7;. In this chapter, the target configuration is considered to be time-invariant, i.e.
77; = 0. Extension to time-varying formations will be considered in Chapter 4 along with the tracking of
a reference trajectory.

The potential energy P (g, t) of the formation represents the disagreement between 7;; and 77;and is

defined by .
1
Pg, 1) =53 Y higllrig =i (3.2)

i=1 j=1

where the k;; = kj; are some spring coefficients, which can be positive or null, and k; = 0. P (g, t) has
been introduced for tensegrety formations in [72, 82]. The minimum number of non-zero coefficients k;;
i,7 € N to properly define a target formation is N —1. Indeed, for a given r*, all target relative coordinate
vectors 77; between any pair of agents ¢ and j can be expressed from components of r*. Nevertheless,
a number of non-zero k;; larger than N — 1 introduces robustness in the formation, in particular with
respect to the loss of an agent. The values of the £;;s that make a given r* an equilibrium formation may

be chosen using the method developed in [82]. (Cf. Appendix B.1).

Definition 9. The MAS asymptotically converges to the target formation with a bounded error iff there
exists some €1 > 0 such as
tlinoloP(q, t) < ey (3.3)
A control law designed to reduce the potential energy P (g, t) allows a bounded convergence of the
MAS. To describe the evolution of P (g, t), one introduces as in [82]

AP (g, t .
3 ]:1
N
gi = Zkz’j (7ij —73) (3.5)
j=1
si = Git+kpgi (3.6)
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where g; and §; characterize the evolution of the discrepancy between the current and target formations
and k, is a positive scalar design parameter.

3.2.2 Distributed control

The control law proposed in [82] is defined as 7; = 7;(¢;, ¢;, ¢) and aims at reducing P (g, t), thus making
the MAS converge to the target formation in case of permanent communication. In this approach, each
agent evaluates its control input using the state vectors of its neighbors obtained via permanent com-
munication. Here, in a distributed context with limited communications between agents, agents cannot
have permanent access to q. Thus, one introduces the estimate (jj. of g; performed by Agent ¢ to replace
the missing information in the control law. The MAS configuration estimated by Agent ¢ is denoted as
é=[ar ... @ ]T € RN, The way ¢! is evaluated is described in Section 3.2.3.

In a distributed context with limited communications, with the help of §*, Agent i is able to evaluate

N
9i = Zkij (i —17;) (3.7)
j=1

N

gi = > kij (Fij = i5;) (3.8)
j=1

5i = ¢ +kpgi (3.9)

with 73; = ¢; —d; and Fij = q; —d; Using g;, §; and 5;, Agent i is able to evaluate the following distributed
control input to be used in (3.1)

7i (@iv Giy @' @) = —ks5i — kgGi — kp (M; (¢5) Gi + Ci (@i d) Gi) - (3.10)

for some k, > 0 and ks > 1+ kp, (kar + 1) a design parameter.
Section 3.2.3 introduces the estimator tj§ of ¢; needed in the control 3.10.

3.2.3 Estimator dynamics and control law

In what follows, the time instant at which the k-th message is sent by Agent j is denoted t;. Let
; . be the time at which the k-th message sent by Agent j is received by Agent 7. In this chapter, we
assume that there is no communication delay between agents. Therefore, t; w = tjk foralli € N;. When a
communication is triggered at t; j for Agent i, it broadcasts a message containing ¢; », ¢; (t; 1) and ¢; (. x)-
Once a message is received by neighbors of Agent 4, its content is used to update their estimate of the
state of Agent i as presented in this section.

To get accurate estimates, the dynamics of the estimator are chosen so as to imitate as much as
possible the agents’ dynamics. Following the idea of chapter 2, the estimate (jj of g; evaluated by Agent ¢
is therefore evaluated considering

M;(@5) 45+ Cj (@5, aj) a5 = 7, VEE [th g thgepn [ (3.11)
3 () = ¢ () (3.12)
3 () = a5 (), (3.13)

This estimator (3.11) managed by Agent ¢ requires an estimate %} of 7; evaluated by Agent j. This
estimated control input %;f can be evaluated with one of the two following proposed methods.
Basic control:

S (3.14)

In this case, for all ¢, j such that k;; # 0, Agents ¢ and j must be connected in the communication graph.
The main advantage of this control input is that the estimates of other agent state are not required.
Accurate control:

o= ke = kogi =k (M (4)) 95+ G5 (- 45) 55) (3.15)
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where §% = G + kgt 55 = Sy Ky (75 = 75 )s 9 = Saly ke (Fi — 75¢), and 74, = @ — i This
expression of the control input makes the estimator more accurate than (3.14) and so helps the estimate
cj;'- to remain closer to ¢;. Note that if there is no perturbation, i.e., Diyax = 0, the discrepency between (jé-
and ¢; vanishes. The price to be paid for this method is that every agent needs to maintain an estimator
of the state of all other agents, and a fully-connected communication graph is hence required to update
it.

Errors appear between ¢; and its estimate cjz obtained by an other Agent j due to the presence of
state perturbations and the non-permanent communication. The errors for the estimates performed by
Agent j are expressed as

& = d-gjeN (3.16)
¢ = ¢ —q (3.17)
These errors are used in Section 3.3 to trigger communications when e! and é¢ become too large.
Since one assumed that there is no communication delay, these estimators satisfy (j; = qu:, Y (i,7) € N.
Estimates are used in the evaluation of the agents control law, but are also used in the evaluation of the
CTC presented in what follows.

3.3 Event-triggered communications

Theorem 7 introduces a CTC used to trigger communications to ensure a bounded convergence of the
MAS to the target formation. A message broadcast by an Agent 7 contains the state x;. The initial value
of the state vectors are considered to be known by all agents. In practice, this condition can be satisfied
by triggering a communication from all agents at time ¢ = 0 to initialize the estimates of its neighbors.
Let kpax = max /=1. N (ke¢j) and kmin = min /=1. N (ke £0) , oy = Zévzlkij, Omin =
j=1...N j=1...N
min;—y,. N a; and ay = max,;—i,. . N ;.

Theorem 7. Consider a MAS with agent dynamics given by (3.1) and the control law (3.10). Consider
min{ k 7kp’aminkmin
{Igax{l,klzcvlfﬂfx } and ky = ks —

(14 Fky (kar +1)). In absence of communication delays, the system (3.1) is input-to-state practically
stable (ISpS) and the agents can be driven to some target formation such that

some design parameters n > 0, no > 0, 0 < b; < ﬁ, c3 =
shpTig

1 < .
Jim P (q,t) <& (3.18)
where & satisfies
2N
=—[Dz 3.19
3 kgcg[ max T 11] (3.19)

if the communications are triggered when one of the following conditions is satisfied

ks5] 5; + kpkgg! i +n < oy (ke€l el + kpkarélél)

N

+ gk, || S ki (@] + ) + kobi llds — 711 (3.20)
j=1

gl > |G|+ ne (3:21)

with ke = k2 + gk, + 2.
The proof of Theorem 7 is given in Appendix B.2

Corollary 2. Consider a MAS with agent dynamics given by (3.1) and the control law (3.10). For any
Agent i, let t; ;, and t; 1 be two consecutive communication instants at which the CTC of Theorem 7
have been satisfied. Then ¢; 41 —t; 1 > 0.
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The proof of Corollary 2 is provided in Appendix B.3.
The CTCs proposed in Theorem 7 are analyzed assuming that the estimators of the state of the agents
and the communication protocol is such that V (i, j) € N' x N,

i (t) (3.22)
; (tig) =2 (tik) (3.23)

where (3.22) is called the estimate synchronization condition and (3.23) the estimator reset condition.
Theorem 7 is valid independently of the way the estimate 2! of ; is evaluated provided that (3.22) and
(3.23) are satisfied. Hence, the control law can be estimated using the models described in (3.14) or (3.15)
in Theorem 7.

From (3.18) and (3.20), one sees that ) can be used to adjust the trade-off between the bound ¢ on
the formation error and the amount of triggered communications. If n = 0 and if there is no perturbation,
the system converges asymptotically.

The CTC (3.21) is related to the discrepancy between ¢; and (ﬂ Choosing a small value of 1y may
lead to frequent communications. On the contrary, when 75 is large, (3.20) is more likely to be satisfied.
A value of 73 that corresponds to a trade-off between the two CTCs (3.20) and (3.21) has thus to be found
to minimize the amount of communications.

The CTCs (3.20) and (3.21) mainly depend on e! and é¢!. A communication is triggered by Agent i
when the estimate state 2! of its own state vector z; is not satisfying, i.e., when e and é! becomes large.
To reduce the number of triggered communications, one has to keep e! and ¢! as small as possible. This
may be achieved by increasing the accuracy of the estimator, as proposed in Section 3.2.3, but possibly
at the price of a more complex structure for the estimator.

The perturbations have a direct impact on e! and éf, and, as a consequence, on the frequency of
communications. The bound (3.19) on the potential energy, and hence on formation errors, is also affected
by the perturbation through Dy ax.

Parameters k,, k; and ks in the control law are chosen to ensure stability. They can be tuned to
adjust the speed of convergence. The condition ks > 1+ kj, (kas + 1) has to be verified. In the performed
simulations ks has been chosen close to 1 + kj, (kas + 1) and k,; > k, leading to good performances in
terms of speed of convergence and damping.

The choice of the parameter «y; determines the number of broadcast messages. Taking the spring

coefficients k;; such that ooy = max;—1. n (Z;\Ll kij) < 1 leads to a reduction in the number of triggered

communication since the CTC (3.20) is less frequently verified. Nevertheless choosing small values for k;;
impacts the speed of convergence since these coeflicient appear in the control law. This influence can be

- 1
counter balanced by choosing k, > T (A
The number of broadcast messages is also influenced by the parameter b;. Choosing b; close to ki
g

reduces the influence of the term kyb; ||¢; — ¢ ||? in the CTC, which is not reset when a message is broadcast
and hence have a direct impact on the number of communications.

3.4 Example

Consider a set of N = 6 agents with coordinate vector ¢; € R%. The performance of the proposed algorithm
will be evaluated considering the following two dynamical models, assumed identical for all the agents.
For Model 1, one has

1 0 ) 01 O .
Milz[o 1:|Czl(ql):|: 0 01:||ql||7

01 0
0 0.1

the largest singular value of the matrix M. For Model 2, one considers

o [ 056 —223) o . [ L40 -1767, .
M= [ —2.23  9.28 } Cila) = [ ~1.76 2.9 } Il

with kg =15, k, = 1, kar = || M| = 1, ke =

‘ = 0.1 and ks = 3. The norm || M]|| returns
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1.40 —-1.76

with kg = 15, ky = 0.185, ky = || M2|| = 9.81, ke = H { 176 2.99

} H = 6.33, and ks = 3. The initial

vector state z (0) is such that

- T
(0) = 39817 [-0191" [ 876 17 [ 351 1" [ 175 17 [201]"
~3.01 | 0.83 —0.50 —4.16 —2.42 0.24

and ¢ (0) = 0. The vector of relative configurations representing a hexagon

[T TS L) [T 13T

A stress matrix has been computed using the approach in [82]. Its components are such that k1) =
kiti—1) = 0.3, ki = 0 and k;; = 0.1 for all (4, j) such that |i — j| > 1. One obtains ay; = 0.9.

A full-connected communication graph is considered. The simulation duration is 7" = 2.5 s for Model 1
and T = 6 s for Model 2. Matlab’s ode45 integrator is used with a step size At = 0.01 s. Since time has
been discretized, the minimum period between the transmission of two messages by the same agent is set
to At. The perturbation d (t) is assumed constant over each interval of the form [kA¢, (k + 1) At[, k € N.
The components of d (t) are chosen to be independent realizations of a zero-mean uniformly distributed

noise U (—%, D%/g") and are thus such that ||d||> < Dpax. Let Ny, be the total number of messages
broadcast during a simulation. Performance are evaluated by comparing N, to the maximum number
of messages that can be broadcast N, = NT /At > N,,,. The percentage of residual communications is
defined as Reom = 100%—‘“ and expressed in %. Reom indicates the proportions of time slots during which

m
a communication has been triggered.
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(a) Results for Model 1. (b) Results for Model 2.
Figure 3.1: Evolution of Reom and P(q,t) for different values of  Dpax S

{ 0.1, 0.5, 1, 5, 10, 20, 30 }.”Estimator 1”7 reffers to the estimator with the basic input
(3.14) and “Estimator 2” with accurate input (3.15).

Figure 3.2 shows the trajectories of the agents when the control (3.10) is applied along with the
CTC defined in Theorem 7. It can be seen that agents converge to the desired formation with a limited
number of communications. Figure 3.1 shows the evolution of the communication ratio Rcon and of the
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Figure 3.2: Hexagonal formation with the accurate estimator input (3.15). Dpax = 20. Top: Agent
trajectory to an hexagonal formation. Agents are represented by circles. Bottom: communications time
instant. Corresponding mapping between agent index and curve color: blue: 1, red: 2, green: 3, magenta:
4, light blue: 5, black: 6.

potential energy once the system has converged, for different values of Dy.x. When Dy, is small, the
accurate estimator (3.15) provides better performance in terms of communication reduction than the basic
estimator (3.14). As expected, the potential energy obtained once the system has converged increases for
both estimators with the level of perturbations.

In the case of Model 2, the basic estimator (i.e. estimator with basic input (3.14)) makes the system
converge to a smaller and smaller asymptotic potential energy when perturbations increase from Dy, = 0
t0 Dpax = 20. After this value, the asymptotic potential energy increases with the level of perturbations as
for the accurate estimator. It can be explained by the high number of triggered communications inducing
more frequent resets of the estimators, which allows obtaining more accurate estimates of the state of the
agents, and thus a more accurate formation.

When Dy .y gets large, the performance of both estimators gets closer. In that case, the simplest
estimator should be preferred.

3.5 Conclusion

This chapter presents an event-triggered communication strategy to reach a static target formation for
MAS with perturbed Euler-Lagrange dynamics. Two estimators of different complexity and accuracy have
been considered to provide the missing information required by the control, allowing a trade-off between
computation time and amount of triggered communications. A distributed event-triggered condition have
been proposed to reduce the number of communications while guaranteing a convergence to the target
formation with a bounded error. Convergence to a desired formation and influence of state perturbations
on the convergence and on the amount of required communications have been studied. Moreover, the
time interval between consecutive communications has been shown to be strictly positive. Simulations
have shown the effectiveness of the proposed method in presence of state perturbations when their level
remains moderate. Chapter of this work has been presented in the 2017 IFAC World Congress paper
[108].

In this chapter, the inertia matrix and the matrix of the Coriolis and centripetal term are considered
to be known by the agents, which may not be always the case. Thus, next chapter will present an adaptive
control to overcome problems due to parametric uncertainties on the inertia matrix and the matrix of
the Coriolis and centripetal term. Moreover, the considered problem will be extended to time-varying
formations and reference trajectory tracking.
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Chapter 4

Distributed event-triggered for
multi-agent formation stabilization
and tracking control

This chapter proposes a strategy to reduce the number of communications for displacement-based for-
mation control while following a desired reference trajectory. Agent dynamics are described by Euler-
Lagrange models and include perturbations. Contrary to Chapter 3, the inertia matrix as well as the
Coriolis/centripetal matrix are considered to be unknown by agents. Thus, estimates of these quantities
are introduced to evaluate the control input of each agent. Moreover, to obtain efficient distributed control
laws, each agent uses an estimator of the state of the other agents. As in Chapter 3, the proposed dis-
tributed CTC involves the inter-agent displacements and the relative discrepancy between the actual and
estimated agent states. A single a prior: trajectory has to be evaluated to follow the desired path. The
effect of the state perturbations on the formation and on the communications are analyzed. Conditions
for the Lyapunov stability of the MAS have been introduced and the time interval between consecutive
communications has been shown to be strictly positive.

Some hypotheses are introduced in Section 4.1 and the formation parametrization is described in
Section 4.2. Since the problem considered here is to drive a formation of agents along a desired reference
trajectory, the designed distributed control law consists of two parts. The first part (already studied
in Section 3.2.2) drives the agents to some target formation and maintains the formation, despite the
presence of perturbations. In this chapter, this control is rewritten to become adaptive and robust to
uncertainties in the inertia matrix and in the Coriolis/centripetal matrix. It is also based on estimates
of the states of the agents described Section 4.2.4. The second part (see Section 4.2.3) is dedicated to
the tracking of the desired trajectory. Communication instants are chosen locally by Agent 7 using an
event-triggered approach introduced in Section 4.3.A simulation example is considered in Section 4.5 to
illustrate the reduction of the communications obtained by the proposed approach. Finally, conclusions
are drawn in Section 4.6.

4.1 Notations and hypotheses

Consider a MAS forming a network of N agents. For some vector x = [ 1 Ty ... Tp ]T € R”,

we define |z| = [ |z1| |z2| ... |z, ]T where |z;| is the absolute value of the i-th component of x.
Similarly, the notation x > 0 will be used to indicate that each component z; of x is non negative, i.e.,

Let ¢; € R™ be the vector of coordinates of Agent i in some global fixed reference frame R and let
q = [ ad & ... 4 ]T € RNV™ be the configuration of the MAS. The dynamics of each agent is
described by the Euler-Lagrange model

M; (qi) 4 + Ci (44, 4i) G + G = 13 + d;, (4.1)

85
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where 7; € R™ is some control input described in Section 4.2.3, M; (¢;) € R™*™ is the inertia matrix of
Agent i, C; (¢;,¢;) € R™ ™ is the Coriolis/centripetal matrix of Agent i, G accounts for the acceleration
due to gravity supposed to be known and constant, and d; is a time-varying state perturbation satisfying
|d; (t)]] < Dmax. The state vector of Agent i is 27 = [¢7,¢]]. Assume that the dynamics satisfy the
following assumptions:

A1) M;(g;) is symmetric positive and there exists ks > 0 satisfying Vo, 27 M; (¢;) < kyaTw.

A2) M;(q;) — 2C; (gi,¢:) is skew symmetric or negative definite and there exists ko > 0 satisfying Vz,
e Ci (qis 4i) © < ke || ¢l 2" .

A3) There exists ¢max € R and §max € R} such that |§;| < Gmax and |¢;| < ¢max-
A4) The left-hand side of (4.1) can be linearly parametrized as
M; (qi) 1+ Ci (¢, Gi) v2 = Yi (qis Gis T1, 72) 0; (4.2)

for all vectors a1, o € R™, where Y; (qi, i, 1, x=2) is a regressor matrix with known structure and
0; is a vector of unknown but constant parameters associated with the i-th agent.

A5) For cachi=1,...,N, 0; is such that O,,in; < 0; < Omax,i, with known 6, ; and Opax ;-

Assumptions A1, A2, and A4 have been previously considered, e.g., in [65, 62].
Moreover, one assumes that

A6) each Agent i is able to measure without error its own state x;,
AT) there is no packet losses or communication delay between agents.

In what follows, the notations M; and C; are used to replace M; (¢;) and C; (gi, ¢;)-

4.2 Control problem

This section aims at designing a decentralized control strategy to drive a MAS to a desired target formation
in some global reference frame R, while reducing as much as possible the communications between agents.
The target formation is described in Section 4.2.1. As in Chapter 3, the potential energy P (g, t) of the
MAS is introduced to quantify the discrepancy between the current and target formations. Moreover, the
problem of tracking a desired trajectory is formulated in Section 4.2.2. The proposed adaptive distributed
control, introduced in Section 4.2.3, tries to minimize the potential energy and distance between the
reference trajectory and agents. Estimators of the coordinate vectors of all agents and an estimate of the
matrices M; and C}, are presented in Section 4.2.4. These estimators are used when evaluating the control
input.

4.2.1 Formation parametrization

The parametrization described in Section 3.2.1is briefly recalled. The relative coordinate vector between
two agents i and j is 74 (t) = ¢; (t) — ¢; (t) and the target relative coordinate vector is denoted 77; for all

(i, j) € N. A target formation is defined by the set {r}; (¢), (i, j) € N'} and without loss of generality,
the first agent as a reference. The control law in Section 4.2.3 is designed to reduce the potential energy
P (g, t) of the formation. This potential energy involves the difference between r;; and r;; as follows

Plgt)= 535 ki s (0 =5, O (43)

i=1j=1

where the terms k;; = k;; are some spring coefficients, which can be positive or null.
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4.2.2 Time-varying formation and tracking trajectory

In this section, the MAS has to follow some reference trajectory g¢; (¢), while remaining in a desired
formation. Agent 1, taken as the reference agent, aims at following ¢ (¢). It is assumed that all agents
have access to ¢} (t). Moreover, assume that the target formation can be time-varying and is represented
by the relative configuration vector r* (¢). Therefore the reference trajectory of each agent can be expressed

as q; (t) = qi (t) + 5y ().
To guarantee that individual reference trajectories can be tracked by each agent, it is assumed that
fori=1,...,N,

67| < dmax (4.4)
|67 < dmax- (4.5)

Definition 10. The MAS reaches its tracking objective iff there exists £; > 0 and €5 > 0 such that (3.3)
is satisfied and

Jim gy () — g5 (D] < e, (4.6)

i.e., iff the reference agent asymptotically converges to the reference trajectory, and the MAS asymptoti-
cally converges to the target formation with bounded errors.

A distributed control law is designed to satisfy this target. Introduce the error terms
Ty = 4 — qf
o= ‘jg —q;-

The terms g;, g;, gg' , 8; and §f , introduced in Chapter 3, are now redefined as follows to address the
trajectory tracking problem

N
I
] =

kij (7"7;]' — T;kj) + ko?’i (47)
j=1
N
7j=1
gf = Z ]{iij (fij - ’I”;kj) + k‘off (49)
7j=1
si = ¢ —4q; +kpgi (4.10)
5 = ¢ —q; +kpgi (4.11)
8 = @ —d +kpd! (4.12)

with 7 = ¢; — ¢} and Fij = Gi — Q; and where kg > 0 is a positive design parameter which may be used
to control the tracking error with respect to the reference trajectory. When no reference trajectory is
considered, kg = 0.

4.2.3 Distributed control with tracking term

The control law proposed in [82] is defined as 7; = (¢, ¢;, ¢) and aims at reducing P (g, t), thus making the
MAS converge to the target formation in case of permanent communication. In this approach, each agent
evaluates its control input using the state vectors of its neighbors obtained via permanent communication.
In Chapter 3, a distributed control with limited communications between agents has been studied, but
the inertia matrix and the Coriolis/centripetal matrix are consider to be known by all agents, which is
difficult in practice. Here, agents cannot have permanent access to ¢ and have no access to the vector 6;.
Thus, one introduces the estimate (j;: of ¢; performed by Agent i to replace the missing information in the
control law, and the estimate 6; of 6; is used with the regressor matrix Y; to replace the unknown matrices
M; and C;. The MAS configuration estimated by Agent 7 is denoted as §* = [ gt ... G }T e RV,
The evaluation of ¢; is described in Section 4.2.4.
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In a distributed context with limited communications, using g; and §;, Agent i is able to evaluate the
following adaptive distributed control input to be used in (4.1)

i (i G, @5 4') = —ksSi — kgGi + G = Yi (a4, di» Dis Pi) Os (4.13)

0, = IiY; (QM Gi, pza p7) Si (4.14)

where p; = k,g; — ¢; and i = kpf]i — ¢ with the design parameters k, > 0, ks > 1+ k, (kas + 1) and Ty
an arbitrary symmetric positive definite matrix.
Section 4.2.4 introduces the estimator §; of ¢; needed in the control (4.13).

4.2.4 Communication protocol and estimator dynamics

In what follows, the time instant at which the k-th message is sent by Agent j is denoted ¢; ;. Let t; . be
the time at which the k-th message sent by Agent j is received by Agent . In this chapter, one assumes
again that there is no communication delay between agents. Therefore, t;k =t; for all i € N;. When
a communication is triggered at ¢; , by Agent i, it broadcasts a message containing ¢; x, ¢; (ti k), ¢i (tik)
and its estimated matrix 6; (ti k). Once a message is received by neighbors of Agent i, its content is used
to update their estimate of the state of Agent i as presented in the next section.

Estimator dynamics

Following the idea of [107, 106], the estimate (jj- of ¢; made by Agent ¢ is evaluated considering

N @)+ G )6+ 0 = 7 e [t (413

B = o6 (119

G () = & (), (4.17)

where Ml (QJ) and C” ((jj, ’) are estimates of M; and C; computed from Y (q;'., (j;, T, y) and éj (t k

using N L _
N )+ 3 @ )y = (8 dia ) B (1)

’L

The estimator (E.34) managed by Agent ¢ requires an estimate 77 of 7; evaluated by Agent j. This

estimate, used by Agent i, is evaluated as

0: = T,Y; (@, b pt) 8 (4.19)
05 (t5x) = 05 (t5%) (4.20)

o Ni ek Ad S0 e a0 s i A N i ) A N e
where pi = kpgi—q5, b = kpgs—a3, 85 = §5—q;+kpdh, 35 = D p_1 Fjn (T}k - rjk),g} =D k=1 Kjk (r;k
7. = q; — dj,, and 07 is the estimate of 6.

Errors appear betvveen q; and its estimate ¢ obtamed by an other Agent j due to the presence of state

perturbations, the non-permanent cmrnmurucatlon7 and the mismatch between 6;, 6;, and 6;. The errors
for the estimates performed by Agent j are expressed as

e = ¢ —q, jeN (4.21)

K3

e = {7 —q (4.22)

These errors are used in Section 4.3 to trigger communications when e! and é¢ become too large. Figure 4.1
summarizes the overall structure of the estimator and of the controller.

Remark 3. The structure of the estimator for 7“ is chosen so as to get an accurate estimate for ¢ in order
to keep the els and éls small. In absence of perturbatlons i.e., when Dy.x = 0 and if 6; is perfectly

known, i.e., 0; = 9l = 0;, the estimation error e} introduced in (E 39) vanishes. The price to be paid for
the use of thls estimator structure for 7 Jl is that every agent needs to maintain an estimator of the state
of all other agents.

. %
_ Tjk)7
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Estimations made by Agent ‘

d Estimate of Agent 1 ‘7{ B ‘75
i

Agent i :
Estimate of Agent j

Control 5 Agent dynamics Control ) ’ Agent dynamics ~ sall 2020
g, §: § 9 2 M o M A ey ol 5 o Pl _ sl 44194
9 9i, 5, Yi, ©; MG+ Cigi+G =1, + d; - —>| 8}, 35, 3.Y,, 0 ———> Mjq; +C/q; =%}
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8 (th) a5 (t6) . 45 (tx) 0u(t]i) i (th)» ai (tl)

Figure 4.1: Formation control system architecture

Communication protocol

When a communication is triggered at ¢; by Agent 4, it broadcasts a message containing ¢; r, ¢; (ti k),
Gi (ti ) and its estimated 0; (ti,r). We assume that this message is received by all other agents, either
directly when the network is fully connected, or after several hops when the network is only connected.
The latter case requires the use of a flooding protocol [44, 83]. Since communications have been assumed
without delay, one has ¢! (t) = ¢/ (¢) for all (i, j) € N?. This simplifies the stability study in Appendix C.1.

4.3 Event-triggered communications

Theorem 8 introduces a CTC used to trigger communications to ensure a bounded asymptotic convergence
of the MAS to the target formation. The initial value of the state vectors are considered to be known by
all agents. In practice, this condition can be satisfied by triggering a communication from all agents at
time ¢ = 0 to initialize the estimates of the state of the neighbors of all agents.
. N
Let kpax = max /=1 N (ke¢j) and kpypin = min /=1 N (kej £0) , oy = ijl kij, Qmin =
j=1...N j=1...N

min;—; . N a; and ay = max;—1, . n ;. Define also for §; € R? and §; = [92»’1, b

max { ’éi,l - emin,i,l 3 éi,l - emax,i,l ‘}
- . (4.23)

max {|0; p — Omin,ip| » |0ip — Omax,ip|}

and Aoz = 0_1' — 01',
Theorem 8. Consider a MAS with agent dynamics given by (4.1) and the control law (4.13). Consider
some design parameters n >0, ne >0, 0 < b; < ﬁ ,
sRp g
min {15 kla kpa kOa 2k0 (Qko —+ amk‘“ikm‘") }
max {1, ky}

and ki = ks — (1 4+ ky (kar +1)). The system (4.1) is input-to-state practically stable (ISpS) and the
agents can be driven to some target formation such that

C3 =

N

. 2 1
, - <
Jim D ol + 3P (ant) < ¢ (4.24)
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with
N

kig83

where Apax = Max;—i.n (supt>0 (A@ZTF;lAH@')), if the communications are triggered when one of the
following conditions is satisfied

&=

[‘Dr2nax + n + CBAmax] (425)

ksgzrgi + kpkggiTgi +n< 04%4 (keeﬁTeﬁ + kpkMé::Té;:)

N
oy 8l S R [0 + ] + ki — i P

j=1
2
bkl {3 (1 il A0l ) + D S (4.26)
(14 15 A0
lgsll > ||| +me (4.27)

- k N
with ke = kekg + k'gkp + ;Tj; and Y; =Y; (in iy Pis p7)
The proof of Theorem 8 is given in Appendix C.1.

Corollary 3. Consider a MAS with agent dynamics given by (4.1) and the control law (4.13). For any
Agent i, let ¢; ;, and t; 41 be two consecutive communication instants at which the CTC of Theorem 8
have been satisfied. Then ¢; 41 —t; 1 > 0.

The proof of Corollary 3 is provided in Appendix C.2
The CTCs proposed in Theorem 8 are analyzed assuming that the estimators of the state of the agents
and the communication protocol is such that V (i,j) € N' x N,

& (t) =27 (1) (4.28)
24 (tig) =} (tig) , (4.29)

where (4.28) is called the estimate synchronization condition and (4.29) the estimator reset condition.
Theorem 8 is valid independently of the way the estimate ¢ of z; is evaluated provided that (4.28) and
(4.29) are satisfied.

From (E.40) and (4.26), one sees that 7 can be used to adjust the trade-off between the bound £ on
the formation and tracking errors and the amount of triggered communications. If 7 = 0, there is no
perturbation and 6; is perfectly known as in Chapter 3, the system converges asymptotically

The CTC (4.27) is related to the discrepancy between ¢; and (jz Choosing a small value of 75 may
lead to frequent communications. On the contrary, when 7, is large, (4.26) is more likely to be satisfied.
A value of 75 that corresponds to a trade-off between the two CTCs (4.26) and (4.27) has thus to be found
to minimize the amount of communications.

The CTCs (4.26) and (4.27) mainly depend on e! and é¢!. A communication is triggered by Agent i
when the state estimate 2! of its own state vector ; is not satisfying, i.e., when e! and é! becomes large.
To reduce the number of triggered communications, one has to keep e} and ¢! as small as possible. This
may be achieved by increasing the accuracy of the estimator, as proposed in Section 4.2.4, but possibly
at the price of a more complex structure for the estimator.

The perturbations have a direct impact on e! and ¢!, and, as a consequence, on the frequency of
communications. (4.25) shows the impact of Dy,ax and 1 on the formation and tracking errors: in presence
of perturbations, the formation and tracking errors cannot reach a value below a minimum value due to
the perturbations. At the cost of a larger formation and tracking errors, n can reduce the number of
triggered communications and so can reduce the influence of perturbations on the CTC (4.26).

The discrepancy between the actual values of M; and C; and of their estimates M} and C? determines
the accuracy of 6;, so Ab; max, and the estimation errors. Even in absence of state perturbations, due
to the linear parametrization, it is likely that M} #+ M;, C’f # C; and Af; max > 0, which leads to the
satisfaction of the CTCs at some time instants. Thus, the CTC (4.26) leads to more communications when
the model of the agent dynamics is not accurate, requiring thus more frequent updates of the estimate of
the states of agents.

Guidelines to choose parameters k,, kg, ks, b; and oy are described in Section 3.3
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4.4 Inter-agent collision avoidance

In this section, an inter-agent collision avoidance mechanism is proposed, inspired from [114, 90].

Let r, be the avoidance distance and r. be the collision distance, with r, > r.. If ||¢; — qj|| < Ty
for some ¢ # j, Agents ¢ and j have to start a collision avoidance procedure, to avoid collision when
llgi — g;ll < e . For that purpose, one introduces a collision avoidance term in (4.13), expressed as

Vi (Fity o in) =ha > sgn (735) (7"_7’)2 2 (7y;) (4.30)

2 7l = 7l

= (Hﬂ]” Ta |||’FUH Tal)
Z(’]"j) 2|||T1]H Ta| ( )

where 7;; = ¢; — qA;- and k, > 0 is some design parameter. Note that r, must be such as V (i, j) r, < Hr;*j H
The agent control input (4.13) and the estimator control inputs (4.18) accounting for the collision avoidance
then become

T = T; + U5 (fila-uﬂ:iN) (432)
# = o (7, fiy) - (4.33)

The terms v; are functions of 7;;, thus of the state estimate (j; The efficiency of v; depends on e!. If et
is too large, it may be difficult to anticipate a collision. Therefore, an additional CTC is introduced in
Theorem 8 to ensure that agents are able to start a collision avoidance mechanism before a collision.

Theorem 9. Consider a MAS with agent dynamics given by (4.1) and the control law (4.32). Consider

some design parametersn >0, £ >0, 12 >0, 0 < b; < ﬁ, and o €10,1]. The agents can be driven
sVp g

to some target formation such that

N
. 2 2
Jim P (q,1) + 2; kg lImil® < € (4.34)
1=
if a communication is triggered when either(4.27), (4.26) or the following inequality

z (||flj|| —71e) < Heﬁ” for some i # j (4.35)
2

are satisfied. Agents will then be able to start a collision avoidance mechanism before collision occurs.

See Appendix C.3 for a proof of the second part of Theorem 9.

4.5 Example

The performance of the proposed algorithm is evaluated considering a set of N = 6 agents. T'wo models
will be considered to describe the dynamics of the agents.

4.5.1 Models of the agent dynamics and estimator
Double integrator (DI)
The first model consists of the dynamical system
M;(q:) G + Ci(gis )4 = Ti+d;
with ¢; € R? and where
.y _ 101 0 .
Jear=] % o el (4.36)
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Then the vectors 6; (0) = 67 (0), i = 1,..., N are obtained using (4.2). In place of the estimator in
Section 4.2.4 a first less accurate estimate of x; made by Agent i, is evaluated as

G; (t) = ¢; (t] 1) (4.37)
d; (1) = d; (t5) - (4.38)

This estimator allows one to better observe the tradeoff between the potential energy of the formation
and the communication requirements.

Finally, choose ks = || M;]| = 1, ke = ||Ci| = 0.1, kp = 1, kg = 15, kg = 1+ ky, (kas + 1), b; = -, and
ko = 2.

Surface ship (SS)

The second model considers surface ships with coordinate vectors ¢; = [ T Yy U ]T €ER3 i=1...N,
in a local earth-fixed frame. For Agent i, (z;,y;) represents its position and 1; its heading angle. The
dynamics of the agents is described by the surface ship dynamical model taken from [55], assumed identical
for all agents, and expressed in the body frame as

My, iV + Cp i (Vi) Vi + Dy ivi = Toi + db i, (4.39)
where v; = [ Ui Vi Ty ]T
perturbation, and

is the velocity vector in the body frame, 7y, ; is the control input, d,; is the

[ 25.8 0 0
M, = 0 33.8 1.0115
i 0 1.0115 2.76
[ 0 0 —33.8v; — 1.01157;
Cb,i (Vz) = 0 0 25.8114
i 33.8v; + 1.01157; —25.8u; 0
[ 0.72 0 0
Dy = 0 0.86 —0.11
0 —-0.11 -0.5

At t = 0, one assumes that Agent ¢ has access to estimates Méz of M, ;, (A?f” of Cy, ;, and ﬁf” of Dy ;
described as

M, = (133 +0.12M) © My,
Cii = (13x3 +0.1E9) @ Gy
D} ;= (13x3 + 0.12P) @ Dy,

where 1343 is the 3 x 3 matrix of ones, E%\/I, =C and E,{j are matrices which components are independent

')
and identically Bernoulli random variables with values in {—1,1}, and ® is the Hadamard product. These
estimates are transmitted at ¢ = 0 to all other agents. As a consequence, the estimates of M}, ; and C,;
made by all agents at ¢t = 0 are all identical.

The model (4.39) is expressed with the coordinate vectors ¢; in the local earth-fixed frame using the

transform

G = Ji (1/%) Vi
cost; —siny; 0O
Ji () = siny; cosy; 0
0 0 1

where J; (1;) is a simple rotation around the z-axis in the earth-fixed coordinate. Define J; © = (Ji_l)T.
Then, (4.39) can be rewritten as

7T My I G+ 7T (G (v) — My J;7 M+ Dy, J7 g = J7 T+ J7 dyy

K3
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and so

M; (@) §i + Ci(qi, i) @ = 7i+d;
where
M; () = JTMyJ 7,
Ci(qis 4) = J; T [Cvi (J7 @) — My i J;7 Vi + Dy ;] T,
and 7; is the control input in earth-fixed coordinates (4.13).
Then the vectors 6; (0) = 67 (0), i = 1,..., N are obtained using (4.2). The estimator described in
Section 4.2.4 is employed.

Finally, choose ky = || M;|| = 33.8, ke = ||C, (1n)|| = 43.96, ky, = 6, kg = 20, ks = 1+ k, (kar + 1),
bi = é, and ]{70 = 1.5.

Simulation parameters

One chooses the components of the initial value x (0) of the state vector as

035 17" 459 17 T[Tam1”
q(0) = —1.11 —4.59 2.42
0 0 | | 0
0647 135377 [ -1261"
1.36 1.56 3.36 ;
0 0 | 0

and ¢ (0) = Onnx1. The vector of relative target configurations corresponds to a hexagon formation

01" 1217 3 17
rto= 0 0 V3
0 0 0
2 1° o 1% 111"
2V/3 2V3 V3
0 0 0

Using the approach developed in [82], the following stress matrix can be computed from r*

0 1.85 0 0.926 0 1.85
1.85 0 1.85 0 0.926 0

0 1.85 0 1.85 0 0.926
0.926 0 1.85 0 1.85 0

0 0.926 0 1.85 0 1.85
1.85 0 0.926 0 1.85 0

K =01

and a; = Zjvzl kij =0.463, for all i =1,..., N and oy = 0.463.

A fully-connected communication graph is considered. The simulation duration is 7" = 2 s. Matlab’s
ode45 integrator is used with a step size At = 0.01 s. Since time has been discretized, the minimum
delay between the transmission of two messages by the same agent is set to At. The perturbation d; (t) is
assumed of constant value over each interval of the form [kAt, (k + 1) At[. The components of d; (t) are

independent realizations of zero-mean uniformly distributed noise U —D%/g", D\‘}“é“

that ||d; ()| < Dmax. Let Ny, be the total number of messages broadcast during a simulation. The
performance of the proposed approach is evaluated comparing Ny, to the maximum number of messages
that can be broadcast N, = N T/At > Np,. The percentage of residual communications is defined as
Reom = 100%. Reom indicates the percentage of time slots during which a communication has been

m

and are thus such

triggered.
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When a tracking has to be performed, one considers the target trajectory of the first agent
4sin (0.4t)
Gy (t) = | 4cos(0.4t) |,
0.4t

the other agents having to remain in formation. Define the tracking error g = ¢1 — ¢j.

t=0.01s t=043s
157 15 ‘
10} 8 10}
s s
= 5 < 5
0 . Or f
0 5 10 15 0 5 10 15
49 49 1
t=0.58s t=0.87s
15 ‘ ‘ ‘ 15 ‘
10} 10}
s o
o 5 = o 5
of [ 0
0 5 10 15 15
9
t=175s
15 ‘ 15
10} 1 10}
s s
o 5 | o 5
of : of
0 5 10 15 0 5 10 15

4

s >

Figure 4.2: Convergence of agents to a formation with tracking control (4.13) and Theorem (8). Agents
are represented by circles. Corresponding mapping between agent index and curve color: magenta: 1,
green: 2, black: 3, blue: 4, red: 5, cyan: 6. Large black line: reference trajectory g

4.5.2 Formation control with DI

Figure 4.3 shows the evolution of the communication ratio R.om, and of the potential energy at t = T.
For all simulations, one has P (¢,T) < & for the different values of Dy.x and 7.
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Figure 4.3: Evolution of Reom and P (g, t) for different values of Dyyax € { 0, 2, 4, 6, 8, 10, 12 },

n e { 0, 1, 3, 5, 7, 9, 11 }, and 72 = 7.5. The DI model (4.36) and the constant estimator (4.37)-
(4.38) are considered.
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In Figure 4.3 (a), the number of communications obtained once the system has converged increases
as the level of perturbations becomes more important, as expected. Increasing 7 in the CTC 4.26 helps
reducing Reom . Nevertheless, increasing 7 also increases the potential energy P (¢,T) of the formation,
as can be seen in Figure 4.3 (b). In Figure 4.3 (b), when n > 3, one observes that the potential energy
starts to decrease with the level of perturbation D,y to increase again when Dy, gets large. To explain
this surprising behavior, Figure 4.3 (c) shows that there exists a threshold Reom = 2.25 below which the
potential energy significantly increases to ensure proper convergence. Therefore n should be chosen such
that R¢om remains above this threshold. Even large values of Dy .« can be tolerated provided that 7 is
chosen large enough to provide a sufficient amount of communications.

4.5.3 Formation control with ship dynamical model

4 4
2 2
s o0
- 0 o
-2 -2
—4 —4
-2 0 2 4 6 -2 0 2 4 6
qi7l ql,l
6F o o o o ] G 6F a—nmoooos 00 0 0O
S5t 1 St
X X
3] o
:‘g 4+ o (] o ] [ O E 4 - - cONNEREC000000 0 0 0 O O o
g 3+ o o o o oA % 3 - CHNEEENREREI000000-0 - O o o
) )
< <
2+ o o o 1 2 | ConmmE R EINO0000000 0 O O -0 - ¢
1+ o o o o A 1 |- CoNNNEEEEEENRNENNI0000000000 O 0 - O (]
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time (s) Time (s)
(a) Accurate estimator (E.34). (b) Constant estimator (4.37).

Figure 4.4: Hexagonal formation with Dy, = 20, 7 = 20 and 1y = 7.5. Agents are represented by circles.
In (a), Reom = 2.61% and P (¢,T) = 0.001. In (b) Reom = 18.25% and P (¢,T) = 0.001.

Figure 4.4 shows the trajectories of the agents when the control (4.13) is applied and the communi-
cations are triggered according to the CTC of Theorem 8. Figure 4.4 (a) illustrates the results obtained
using the accurate estimator (E.34), Figure 4.4(b) illustrates results obtained using the simple estimator
(4.37). The agents converge to the desired formation with a limited number of communications, even in
presence of perturbations.

Figure 4.5 shows the evolution of R.om and of P (¢, T) parametrized by 7 for different values of Dyax.
For all simulations, one has P (q,T) < ¢ for the different values of Dy,.x and 7. As expected and shown
in Section 4.5.2, the potential energy obtained once the system has converged increases with Dy.x. It
can also be observed that increasing 1 reduces the number of messages broadcast, without a significant
impact on P (¢, T), contrary to what was observed with the DI with simple estimator.
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Figure 4.5: Evolution of Reom and P (g, t) for different values of Diax € { 200, 300, ..., 700 },ne
{0, 50, 100, ... 750 } and ny =7.5. Model (4.39) and accurate estimator (E.34) are considerate.

4.5.4 Tracking control with DI

The simulation duration is T'= 3.5 s. Figures 4.6 and 4.7 show the evolution of the communication ratio
Rcom, the potential energy and the tracking error at ¢t = T.

In Figure 4.6 (a), the number of communications obtained once the system has converged decreases
as the level of perturbation becomes more important, especially when 7 is small, which was not excepted.
Such behavior is not observed with the accurate estimator (E.34), where Reoy, increases when the pertur-
bations become more important, as illustrated in Figure 4.10 (a) with the ship model. This behavior can
be explained by the fact that a large Dpay makes ||g;|| and ||5;|| larger, which reduces the number of times
the CTC (4.26) is satisfied, even if the error Hei“ is also affected. Difference with accurate estimator is
the error e} is keeping small by the estimator, so the influence of perturbations is more significant on e}
than on ||g;|| or ||s;]], which leads to a larger number of communications triggered.

Figure 4.6 (a) illustrates that the parameter 7 in the CTC (4.26) can help reducing Reom . It can be
seen that there exists for Reom a threshold (Reom = 7) which Reom cannot reach : we can deduce a minimal
number of communications is required for system converge with the constant estimator (4.37)-(4.38).

Figures 4.6 (b) and (c) show that the potential energy of the formation P (g¢,t) and the tracking
error ¢ increase when the perturbation level increases. The influence of parameter 7 is also illustrated:
Figure 4.6 (b) shows that a larger value of 1 leads to an increase of P (g,t), but reduces 9. Indeed, the
less communications, the more difficult it is for some Agent i to be synchronized with the others agents
to reach the target formation. However, be less synchronized with the other agents allows Agent ¢ to be
more synchronized with its target trajectory ¢; , inducing a small tracking error 9. Thus, a trade off
between the P (¢,t) and €p has to be reached, shown Figure 4.7.
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4.5.5 Tracking with surface ship model

The simulation duration is T' = 2.5 s.

Figures 4.10 and 4.9 show the evolution of the communication ratio Reom, the potential energy and

the tracking error at t =T

In Figure 4.10 (a), the number of communications obtained once the system has converged increases as
the level of perturbations becomes more important. The parameter n in the CTC 4.26 can help to reduce

Rcom .

Figure 4.10 (b) and (c) show that the potential energy of the formation P (¢,t) and the tracking

error £y also increase when the perturbation level increases. Influence of parameter 7 is also illustrated :
Figure 4.10 (c) shows that increasing 7 results in make €¢ decrease when Dy, > 200. Influence of 7 on
P (q,t) is less clearly detectable than in the case of the DI model.

In Figure 4.9, it can be observed that R, cannot be reduced below the value of 1: a minimum

number of communications is indeed required to converge with the accurate estimator (E.34).
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Figure 4.8: Hexagonal formation and tracking problem with Dy, = 50, n = 50, and 7y = 7.5. Circles
represents agents (top figure) and communication events (bottom figure). Reom = 5%, P (¢,T) = 0.001

and |leg]| = 0.1. T =6s.
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4.6 Conclusion

This Part presents an adaptive control and event-triggered communication strategy for formation sta-
bilization and tracking of multi-agent systems with perturbed Euler-Lagrange dynamics. Uncertainties
are considered on the inertia matrix and the matrix of the Coriolis and centripetal term in the agents’
dynamics, so that they cannot be considered known by the agents. An estimator has been proposed to
provide the missing information required by the control laws. Convergence to a desired formation and
influence of state perturbations on the convergence and on the amount of required communications have
been studied. Tracking control to follow a desired trajectory has also been considered and added to the
formation control. A distributed event-triggered condition to converge to the desired formation and follow
the reference trajectory while reducing the number of communications has been proposed. Moreover, the
time interval between consecutive communications has been shown to be strictly positive. Simulations
have shown the effectiveness of the proposed method in presence of state perturbations when their level
remains moderate. Two dynamics models have been considered for the agents: a double integrator mode
to illustrate the main performances, and a surface ship vessel model to illustrate the capacity of the
algorithm to handle more complex nonlinear dynamics.

In the next Parts, the considered problem will be extended to communication delays and package
dropouts.



Chapter 5

Packet dropout in distributed
event-triggered for multi-agent
formation stabilization

This chapter tackles the issue of the influence of packet dropouts for event-triggered formation tracking.
As in Chapter 4, Agent dynamics are described by Euler-Lagrange models including perturbations, and
the inertia matrix and the matrix of the Coriolis/centripetal parameter are considered to be unknown.

Packet dropout is a frequent phenomenon in networked systems and may be a severe cause of failure,
especially in the case of event-triggered communications. Since event-triggered approaches are based on
the idea that a message is transmitted only when required, a loss of information may have a critical
impact on the system and its stability. Moreover, detection of a missing transmission can be very difficult
especially when the system is distributed. Thus, this work adapts the method presented in Chapter 4 to
account for the influence of packet dropouts during transmission of messages.

Model of packet dropouts is exposed in Section 5.1. A centralized CTC is presented in Section 5.2. A
new state estimator is then proposed in Section 5.4.1.

Adaptation to distributed estimation is described in Section 5.4.3. Communication instants are chosen
locally by Agent i as described in Section 5.4.4.

A simulation example is presented in Section 5.5 to illustrate the reduction of the communications
obtained by the proposed approach. Finally, conclusions are drawn in Section 5.6.

5.1 Model of packet dropouts

Due, for example, to the limited communication bandwidth, a message broadcast between two agents
could be subject to packet dropout. To model this phenomenon in the transmission of a message from
Agent j to Agent i, the update of the state estimation of Agent j performed by Agent 7 is described as in
[25] by

@ (1) = &y () + (1= a5,) @ (43) (5.1)

where & ;. is a random variable used to represent a stochastic occurrence of packet dropout in the trans-

mission of the k-th message sent by Agent j to an Agent i. The d;,k’s, k € N, are assumed to be modeled
by a Bernouilli stochastic process with the following probabilities

P(a,=1)=a
P(a,=0)=1-a

with 0 < a < 1. With this model, the k-th message is successfully received by Agent i if d;,k = 1. The

message is lost if d;k = 0. Remark that &;k is always equal to 1 as there is no communication between
Agent j and itself.

103
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Let Q; <t lg (t;k)) be the estimate of g; (t) made by Agent i updated by g; (t;k) Then, since the

broadcast message can be subject to packet dropouts, it can be expressed

4 (55) = &aes () + (1= 65,) 4 (#3)
= G () + (L= 5 [a mad) (6% 1as (Emn)) + (L= ab o) @) (851 (85-0))]

Note that, if Agent i has received the k-th message broadcast by Agent j, one has cjj- (t;ﬁc) = (jg (’%2) .

The above equations are easily extended to the case of (j; (t;ﬁc)which is also part of the broadcast
message.

For the sake of simplicity, the notations (j; (t) are used to replace cj; (t lg; (t;k))

5.2 Centralized event-triggered communications with packet dropouts

In the following sections, we first study the case where the system is centralized and agents have access
to the estimates performed by all the agents. The distributed case will be studied in the Section 5.4.

Consider first the case when the expectations E (e{ (t)) of estimation errors € (t) for all i and j, are

perfectly known by all the agents of the network even though there are packet dropouts. The following
CTC is designed to trigger communications to ensure a bounded asymptotic convergence of the MAS to
a target formation.

Assume that each agent knows the initial state vector of all the other agents (see Section 4.3 of Chap-
ter 4 for more details). Introduce kpyax = max /=1.. N (kej) and kmin = min /=1.. N (kej #0),

j=1...N j=1...N

N . 5 5 5 17
o = Zj:l kija Qmin = M;=1 . N & and Qmax — MaX;=1,.. N Q. Let 92 = [9@1, . 791'4,] € RP and

AB; max be the same as defined in (4.23).

Theorem 10. Consider a MAS with agent dynamics given by (4.1) and the control law (4.18). Consider

: %minFmin
. , ke _ min{L ki kp ko 2ko(2hot2aykmin ) }
some design parameters 1 > 0, ny > 0, 0 < b; < Fh 0 C3 = T,k T and

ki = ks — (1 +k, (kp + 1)), In absence of communication delays, the system (4.1) is input-to-state
practically stable (ISpS) and the agents can be driven to some target formation such that

N
. 2 1
Jim E (2 ko [lri™ + 2P(q7t)> << (5.2)
where & satisfies
N
E=— [Dfnax +n+ C3Amax] (5.3)
k'gC;g

where Apax = Max;—1.nN (supt>0 (AHiTFflAHi)), if the communications are triggered when one of the

following conditions is satisfied
2 2
)+t ()

2 ) 2 . 12
) I+ | + e = 1

J 5]
€ €

N
ko8] 5i + kpkogl gi+n < o | D ki (keE (\
j=1

J
€

N
thok? Y kiyE (]
j=1

2
[[1Yi] A max||

(14 1131 A0 )
(5.4)

N
+k'p ZkijE < 6{

Jj=1

2
) fase (1 119 201l ?) +
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Il > @] + ne (5.5)

with ke = ksk2 + kgky, + IZ—” and Y; = Y; (qi, ¢, Di» Di)-

The proof of Theorem 10 is given in Appendix D.1. Contrary to the case without packet-dropout, as in
Chapter 3 or Chapter 4, a proof of absence of Zeno behavior is more difficult to obtain because E (ez (t)

is not reset to zero at ¢ = t; ;, if the message has been lost. This point will be discussed in Section 5.3.2.
Note that without packet dropout, Theorem 10 becomes equivalent to Theorem 8.

5.3 Communication protocol

5.3.1 Message content

When a communication is triggered at t; , by Agent ¢, it broadcasts a message containing t; x, ; (tix),
0; (t;x) and &' = [237, ... ,:EZ}VT]T. We assume that this message is transmitted to all agents j if k;; # 0.
The message is received directly if Agent ¢ and j are neighbor or after several hops. The latter case
requires the use of a flooding protocol [44, 83]. Due to packet dropout problem, the first method and/or a
fully-connected communication graph is recommended. Remind there is no communication delay in this
chapter.

5.3.2 Strategy to solve Zeno behavior
With the CTC proposed in Theorem 10 the absence of Zeno behavior cannot be proven. Indeed, if the

message has not been received by Agent j, the error €] is not reset to zero at t = t; ; and the CTC (5.4)

is still satisfied after the message has been sent. To address this issue, the following strategy is proposed.
A minimum delay Tin < i k41 — tix is imposed before performing a new evaluation of the CTC

(5.4) once it has been satisfied. Note that 7p,;, hence corresponds to the minimum time between two
communications transmitted by a same agent. Nevertheless, due to the possible error on €], this time
constraint does not guarantee that the CTC will not remain satisfied at each next instants it will be
evaluated.

Consider the case where the CTC (5.4) remains satisfied at the instant ¢ = ¢, ; + Tmin and possibly at
other next instants ¢; xk = t; k—1 + Tmin With K > k. A message is broadcast at each of these instants

where the CTC is still verified. The probability of a successful reception of one of theses messages (no

J
€

2
packet dropout) by neighbor agents of Agent ¢ increases. Thus the expectation E ( ) is decreasing

and the CTC (5.4) is prone to be not satisfied anymore. Moreover, if 7y, is chosen enough small, i.e. such
that the evolution of agents’ states can be neglected over this period of time (z; (t; x4+1) =~ =; (tix)), it can

j 2

Lemma 2. Let define the constant € > 0 chosen such that ¥Vt € Iy ¢ = [ti k, tix + €], 2; (t) ~ z; (i) and
& (t) >~ &; (ti ). Consider that Tyi, is chosen such that 7 < ¢/K with K > 2 . For all ¢ € I}, . and
Ve e [k,...k+ K —1] such t; 441 — ti¢ = Twin, .. the CTC (5.4) triggers every T, since the instant
t = t; 1, one has

l

Thus if 7, is taken enough small, i.e. K be enough large,

e (|

and, as shown in proof of AppendixD.4, the CTC (5.4) will stop to be satisfied at t = ¢; 5 + €.

be assumed that all agents will receive the same information to update their estimators and E (‘

can be expressed as proposed in Lemma 3.

2 \l—k || ~j 2
+(1-a) Gl (tie) — qi (fu)H -

eﬂmwf)~(1uaf*)wﬂmn%uum

. 2
el (t)H ) — 0 when t — ;5 + Tmin K
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Proof of Lemma 3 is proposed in Appendix D.2 and in AppendixD.4.
Note that this protocol guarantees the convergence and the absence of Zeno behavior, but can induce
a large number of triggered communications over the intervals Iy, .

Remark 4. Proof of no Zeno behavior can be obtained by Lemma 3 only for independent Bernoulli-
distributed probabilities. In practice where hardware failures may be more suitably modeled by Markov
processes, messages broadcast after a lost message have a lot of chance to be also lost, and so there is no
guarantee that the CTC would stop to be satisfied.

5.4 Distributed problem

The CTC proposed in Theorem 10 assumes that Agent ¢ knows E (ef (t)) for all j. However, in a

distributed context, the estimation c}f is no longer available to all agents. It is then necessary to define a
new estimator of Agent i’s state as proposed in Section 5.4.1 and introduce an additional estimator. The
first estimator is used to evaluate the control input without problem of packet dropout, and is also the
most optimistic estimation of other agent estimation. The second estimator in Section 5.4.2 considers the
worst case of estimation, where agents never receive information from others agents. Both estimators are

used to evaluate the expected value of the estimation error of E (eg (t))

5.4.1 New estimator

Let first define a new estimator model as

Mi(5) G+ (8. §) G +G = 7, Ve [t
@ (t5,) = ¢ (thx) ifaj,=1
@ () = 4 (the) ifal,=1
where
7= —ky (7 + kpkot't) — kokos + G — Y (4, 45, i, ) 02 (5.9)
05 = ;% (5 45, 1 )" (7 + ko) (5.10)

with 7% = g} — ¢}, and !, = kyko — ¢ if ko > 0, i.e. in the case of a reference trajectory to be tracked,
ﬁzg = 0 else. Remark if ko =0, ¢; = 0.

Remark 5. When the formation converges to the target configuration, it can be observed that g;l = kof;-
and 8% =7} + kpkot.

Contrary to the control laws defined in (4.18) which required estimation of all agent states, the control
(5.9) only requires Agent j information to update g;. This makes it less dependent of the communications

and so limits issues due to packet loss. Moreover, Agent ¢ needs to perform only estimation of its own
state and of those of agents j such that k;; # 0. However, (5.6) is less accurate than (4.18).

When considering packet loss, if there exists an instant ¢t = t;k such that :lj (t;k) = (t;k)

for z; = [qf, qﬂT, ie. @, = 1, then &/ (t) = :fcg (t) vt € {t;jk, t;7k+1{ which corresponds to the

synchronization assumption presented in Chapter 4.

5.4.2 Additional estimator

In Theorem 10, Agent i is assumed to know E ( ez

), i.e. Qg . However, in a distributed context, this

is no longer true. To address this issue, each Agent i evaluates an additional estimates (jg , which is an
estimate of ¢/ made by the Agent 4, for all Agent j such that k;; # 0. The estimate ¢ is updated only

when Agent i receives a message from Agent j, i.e. when t =t} ¢ (t;k) =g (t; k). This guarantees
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that ¢/ (t) = ¢/ (t) for t € [t;k, ikt [, i.e. the time interval during which Agent ¢ doesn’t broadcast a
message. ‘
The dynamics of ¢/ is described as

it () @+ 0 (d. &) il 0 = o (5.11)
@) = @ty (5.12)
@t = @ty (5.13)
where
o=k, (TJ + k,,kor{f) — kgkot + G - Y; (qg, &, mﬂ) 0. (5.14)
0 =1, (ql, &, il mz)T (N +kpkofg’) (5.15)

Wlth’/‘ —ql —q; andm =k kor —q; if ko > 0, m] =0 else.

The estimate #] represents the worst possible estimation of I] because it considers that Agent j never
receives information from Agent i to update its estimation. Slrnllarly, the estimation 2! represents the
most optimistic estimation of :if , because it considers Agent j receives all messages from Agent i.

5.4.3 Expectation of the estimation error

Since cjf is updated less frequently than (jg , and (j{ =gt if (jg is updated using the last message broadcast

described in this section.

elll can be upper-bounded by the worst case error Héf

by Agent 4,

First, let study the evaluation of e]. Define the instant t’ -, When the h-message is broadcast by the
Agent j and is assumed to be recelved successfully by Agent i. In the following section, let t satisfies
t> tl

= %h

vt e [t;h, tg & [, one has ¢/ (t) = ¢ (t) and so the estimation error can be evaluated as

=@ () —q(t) Vie [Jh, tfk[ (5.16)

At the instant ¢t = ¢; 5, Agent i broadcasts a message. If the message is received, i.e. d{k = 1, one gets

qg' (t) = q! (t) Vt € [tik, tig+1]. Else qu (t) = q“g (t) Yt € [tik, tik+1[. The estimation error becomes
eg (t:k) = [df,kﬁf (tig) + (1 — al,k) (jj (tz_,kﬂ —q; (tig)
= [adpdi () + (1= ad,) d (4)] = @i (ti) (5.17)
and then
el (t) = {dg,kQE (t) + (1 - d{k) b (t)} —q; (t) V€ [tip, min{t;pi1,t) 00}
Since (j{ is updated less frequently than cji let the additional estimation error & ( ) be defined as
W) =q () —aqt) Vtel[t,, tik] (5.18)
A =[al a0+ (1-ad) @ 0] -4 Ve tip il (5.19)

Thus, using previous study of eg and the communication protocol described in Section 5.3.2 for &
instead of & one obtains
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dGUNLY

of ) =aldi - a0l + 0 - a)

.If\ﬁe[]h,ti,k[

— g (t)H2 (5.20)

o Ift >t .,

&0 -0 (5.21)

E(é]

e In the case of Section 5.3.2, if ¢t > t; 1 x where 3K € N, K > 2 and ¢; 1 x —tip <€,

IE( & t)H2> - (1— (1—@)K)
)H2> ZE(

Similar expressions can be obtained for E (

E0-a0| 62

i () —a ()] + (1 - @)

and E ( & (t

H > Proof of (5.20)-(5.21)-(5.22) is presented in Appendix D.3.

o)
)W):m(awW)

ti’k} Ulti ks tik+a], (5.16)-(5.18) and (5.17)-(5.19) lead to E ( el (t
H ) will be used in the Section 5.4.4 to evaluate the pro-

off) was

5.4.4 Distributed event-triggered communications with packet dropout

Remark 6. Vt € [tih,

Evaluation of E (
posed distributed CTC.

Using the additional estimate q“f and the additional estimation error ég introduced in Section 5.4, Theo-
rem 10 of Section 5.2 can be evaluated by each agent in a distributed way as proposed in Theorem 11.

As in Theorem 10, the initial values of the state vectors are considered to be known by all agents. In
practice, this condition can be satisfied by triggering a communication from all agents at time ¢ = 0 to
initialize the estimates of the state of the neighbors of all agents.

Theorem 11. Consider a MAS with agent dynamics given by (4.1) and the control law (4.18). Consider
min{1,k1,ky, ko, 2ko (2ko+ 2pintmin ) }
max{1,kn }
ki = ks — (1 +k, (kp +1)). In absence of communication delays, the system (4.1) is input-to-state

practically stable (ISpS) and the agents can be driven to some target formation such that

some design parameters 1 > 0, 12 > 0, 0 < b; < ﬁ , €3 = and
svp 9

N
. 1
ggE<§wﬂmﬁ+2P@ﬁ>sg (5:23)
where £ satisfies
N
g = [Dr2nax + n + C3Amax] (524)
kgcs

where Apax = Max;—1.nN (supt>0 (AHiTFi_lAGi)), if the communications are triggered when one of the
following conditions is satisfied
2 L2
. )+kpkMIE< & ))

)IMH+% +kgbi g — 7))

N
h§$+%%f@+ﬁéw4§:%(hﬁ<
j=1

N
+hpkd Y kiR (
j=1

2
[[1Yi] A max||

(14 1131 A0 )
(5.25)

iv:k:,-jE <

Jj=1

Y e (14 151 801 ?) +
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lgill = ||di] + e (5.26)
- k .

with ke = ksky + koky + 32, Yi = Y; (ai, dis Dis Pi)-

The proof of Theorem 11 is given in Appendix D.1. Contrary to the case without packet-dropout as in
)
is not reset to zero at t = t; ;, if a message has not been received. A solution has been proposed in the
Section 5.3.2 and 5.4.3, and an optional complementary method is proposed in Section 5.4.5.

The CTCs proposed in Theorem 11 are analyzed assuming that the estimators of the states of the

2
) can be evaluated by

%
€

Chapter 3 or Chapter 4, proof of absence of Zeno behavior is more difficult to obtain because E (‘

<J
€

agents and the communication protocol are such that V (i,5) € N x N, E (

Agent i: other estimators can be proposed for (jg or d{ , provided that this condition is satisfied.

Remark 7. If there is no packet dropout, ¢.e. @ = 1, Theorem 11 becomes equivalent to the Theorem 8.

5.4.5 Optional additional communication protocol

Contrary to Theorem 10 where eg is assumed to be known and so can be reset at ¢; j if message has been
12
&

successfully received, E (‘ ) is not reset to zero in Theorem 11. Protocols introduced in Section 5.3.2

and 5.4.3 guarantee the convergence of the formation and the absence of Zeno behavior, but it can induce
a large number of trigger.

To reduce the number of trigger, an optional method based on a idea similar to message RTS and
CTS used CSMA /CA protocol can be employed. In this strategy, when Agent j received a message from
Agent i, it broadcasts a short frame MR (Message received) to inform Agent 4 that its message has been
received. If Agent i receives the MR frame from Agent j, it can update its additional estimation as

@ (tig) = @i (t; 1) and so reset E ( &

2
> to zero. Else, as the MR frame can also be subject of packet

drop, no conclusion can be settled.

The additional protocol can require in practice a second transmission station embedded on the agent
to send the MR message using another frequency. If an unique frequency is employed to transmit usual
message and RM message, the following improvement can be made : when Agent j needs to broadcast

_ ) . AT
a MR to Agent i, it transmits ¢, g, =, (t; 1), 0; (t; ) and &7 = fc]T, ... ,ijT to update its neighbors
goks g \lj, g \tj, 1 N

112 ; . .
estimates and use the communication. Then, E (Héf > is reset to zero, &} (tix) = x} (tix) and @ is

updated with the current value. The only difference with a classic message is that no RM is asked.

Finally, note this protocol induces an important additional number of communications: it must be
used only when the number of continuous trigger by CTCs is important. Thus, a RM can be asked by
Agent i only when its CTC (5.25) triggers two times in a row, i.e. if ¢; p12 — t; x = 2Tmin.

5.5 Example

Consider the same dynamics, coefficients and simulation parameters that used in Section 4.5 in Chapter
4. No reference trajectory is considered. The simulation duration is 7' = 2.s. Matlab’s ode45 integrator is
used with a step size At = 0.01 s. To implement the communication protocol described in Section 5.3.2, the
minimum delay between the transmission of two messages by the same agent is set to 7, = 0.0025 s, and
Agent states are considered constant over each interval of the form [kAt, (k + 1) At[. Let Ny, be the total
number of messages broadcast during a simulation. The performance of the proposed approach is evaluated
comparing Ny, to the maximum number of messages that can be broadcast Ny, = N T/Tmin > Nm. The
percentage of residual communications is defined as Reom = 10082 . Ry indicates the percentage of

time slots during which a communication has been triggered. Note that as Tmin < At, the number of time
slots in simulations presented in this section is larger than the one in Section 4.5 in Chapter 4.

The CTC (4.26) in Theorem 8 from Chapter 4 and the new CTC (5.25) from Theorem 11 are compared
in presence of packet dropout where @ = 0.5. Remind Theorem 8 has not been studied for case with packet
dropout.
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(a) Convergence with CTC (4.26) from Chapter 4. (b) Convergence with CTC (5.25) and using expectation cal-

culation (5.20)-(5.21)-(5.22).

Figure 5.1: Hexagonal formation with the DI (4.36) and new estimator (5.1) without perturbations. The
CTC (4.26) in Chapter 4 and new CTC (5.25) are compared. & = 0.5, Dyax = 0, 7 = 1 and 7 = 7.5.
Agents are represented by circles. In (a), Reom = 0.5% and P(q) = 0.142. In (b) Reom = 2.15% and
P (q) = 0.00L.

In Figure 5.1 (a), the new estimator (5.1) allows to obtain a reduced number of communication without
perturbations. Compare to estimators proposed in Chapter 4, the reduction of communication is better
than the one of the constant estimator (4.37) but worst than the one of the accurate estimator (4.18).
However, the CTC (4.26) used in Figure 5.1 (a) doesn’t allow to converge with a small potential energy
P (q,T) in presence of packet dropout. In opposite, the CTC (5.25) used in Figure (b) allows to converge
with a small potential energy P (¢,T) even in presence of packet dropout. However, the cost is a larger
number of communications.

In Figure 5.2, performance of CTC (5.25) are compared for the DI model and different value of &. The
number of communications obtained once the system has converged increases as the level of a becomes
more important, as expected. Nevertheless, since there is communication lost, 7.e. @ < 1, increasing &
does not make important modification on the potential energy P (¢,T) of the formation : CTC (5.25)
guarantees the same accuracy on the potential energy at the cost of the communication ratio Reop,. This
one can become very important when the probability of success of message transmission « is low.

As for the case without packet dropout in Section 4.5.2 in Chapter 4, the number of communications
obtained once the system has converged decreases as the level of perturbations becomes more important,
which was not excepted. Again, it can be note this behavior is not observed with the Surface ship, where
Reom increases when perturbations becomes more important, as illustrate in Figure 5.3.

Figure 5.3 shows the evolution of R, and of P (q,T) for different values of Dy, and a. For all
simulations, one has P (q,T) < & for the different values of Dy and a. As expected, the number
of communications increases with @ and Dy.x. Nevertheless, increasing & does not make important
modifications on the potential energy P (¢,T) of the formation, as it was observed with the DI with
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Figure 5.2: Evolution of Reom and P (g,t) for different values of Dpax ={ 0 2 4 6 8 10 },n=0
and 72 = 7.5. Model (4.36) and new estimator (5.1) are considerate.
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Figure 5.3: Evolution of Reom and P(g,t) for different values of  Dyax =

{0 100 200 300 500 700 }, n = 200 and 7o = 7.5. Model (4.39) and new estimator (5.1)
are considerate.
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simple estimator : this one is more sensible to the state perturbations.

5.6 Conclusion

This chapter addresses the problem of packet dropout by adapting methods proposed in the previous
chapter. Influence of packet dropout on the estimators has been studied. Due to the loss information,
estimators cannot be synchronized all the time, making the CTC impossible to be evaluated in a distributed
way. Thus, estimator has been modified and an additional estimator has been introduced to address this
issue. The first estimator is used to evaluate the control input without problem of packet dropout, and is
also the most optimistic estimation of other agent estimation. The second estimator considers the worst
case of estimation, where agents never receive information from others agents. Both estimators are used
to evaluate the expected value of the estimation error, used in a distributed formulation of the CTC to
trigger communications. Convergence to the target formation and reference trajectory has been studied
and absence of Zeno behavior has been solved using a particular communication protocol.

In future work, communication delay will also be considered along with packet dropout. Moreover,
Markov chains will also be considered instead of Bernouilli process to obtain a more realistic model of lost
information during communications.



Chapter 6

Communication delay in distributed
event-triggered for multi-agent
formation stabilization

This chapter proposes a strategy to reduce the number of communications for displacement-based forma-
tion control while following a desired reference trajectory, in presence of bounded communication delays.
As in Chapter 4, agent dynamics are described by Euler-Lagrange models and include perturbations. The
inertia matrix and the Coriolis/centripetal matrix are consider to be unknown by the agents. Packet
losses are not considered here. Work exposed in this chapter is a preliminary study which has to be im-
proved: some conditions in the new CTC has to be precised, and more simulations have to be performed.
Moreover, absence of Zeno behavior has not been shown.

In multi-agent systems, time-varying delays may arise naturally due to the distance between agents,
to the temporary unavailability of the channel, to the time to encode and decode data in the messages
broadcast, to the limited capacity of the channel, which incurs a nonzero transmission duration. This
communication delay has to be taken into account by the agents, to avoid updating their state estimators
with outdated information. The proposed approach takes into account various sources of communication
delays. One assumes that the communication delay may be upper bounded and that this upper bound is
known and is the same for all agents. The CTCs studied in previous chapters guarantee the convergence
of the MAS provided that all state estimators are updated instantaneously after the transmission, which
is also assumed without delay. To account for a bounded delay, communication has to be anticipated
compared to the delay-free case. Moreover, in order to keep all state estimators synchronized, since the
actual communication delays of different agents may differ, the state estimators have to be updated only
once all agents have received the transmitted packet.

The proposed technique is inspired from [84], which describes a logic-based approach for path-following
while holding a formation pattern of a network of robotic vehicles in presence of bounded communication
delays. The CTC proposed in Theorem 12 has been adapted to account for bounded communication
delays. A communication protocol and a prediction of the state of all agents are described to allow a
practical implementation of the proposed technique.

The problems induced by communication delays and their impact in the broadcast packet content is
exposed in Section 6.1. The estimation and prediction of the states of the agents is exposed in Section 6.3.
The adapted CTC, which aims is to mitigate the communication delay, is presented in Section 6.2. A
simulation example is considered in Section 6.4 to illustrate the reduction of the communications obtained
by the proposed approach. Finally, conclusions are drawn in Section 6.5.

Notations exposed in Chapter 4 are used in this chapter.

6.1 Transmission delays and broadcast packet contents

One assumes in what follows that the clock of all agents are perfectly synchronized.
Let 75 = tik — t; 1, be the delay between the time ¢ = ¢; j, at which Agent ¢ has broadcast a message

113
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and the instant ¢ = tZ  at which Agent j has received it. Assume that for all pair of agents (4, j), 7;; can
be upper-bounded by a known constant delay 7.
In Theorems 8 and 11, conditions ensure the convergence and stability of the MAS if a CTC is

satisfied at time ¢; , the estimated state i{ (tzk) is reset at time tjk using x; (tfk) Thus, to satisfy

this condition in presence of communication delay, a message containing x; (t?’k) must be broadcast at
time t = t; 5, < tik — 7ij. Nevertheless, z; (ti k) cannot be known at ¢ = ¢; ;. To address this issue, a
prediction 7! (tz k) of the state x; (tz k) made by Agent ¢ must be evaluated and transmitted.

Let Z! (t + 74) € R™ be the prediction at time ¢ + 74 of the state z; (¢ + 74) made by Agent i at time
t. The prediction model will be studied in Section 6.1.

6.1.1 Communication protocol

When a communication is triggered at ¢; , by Agent 4, it broadcasts a message containing ¢y, ; = t; k + 7a,
(jf (tik + Ta), (jj (tix + 7a) and its prediction é; (tik + 7a), which is the prediction of its estimated 0;.
We assume that this message is received by all other agents, either directly when the network is fully
connected, or after several hops when the network is only connected.

6.1.2 Estimators update and synchronization

In Theorems 8 and 11, agents have also to have synchronized state estimators satisfying 2% (t) = i“f (t)
V(i,5) € N. Since 7;; (t) is unknown, may be time varying, but is such that 7;; (t) < 74, agents have to
update their estimate of x; at time ¢; j, + 74, when all agents have received the message. Thus, using the
value tyup, ; transmitted in Agent 7 message, all state estimators are synchronized at the same instant, see
Figure 6.1. One obtains if &7, =0

# (tup,i) = & (tin+71a) ViEN, (6.1)
; Eh(tik +7a) -

>
—~
~
[=1
T
~
~—
I

The main drawback of this approach lies in the fact that estimators are updated using a prediction of
the state x; and not with its actual value. Since there always exists a discrepancy between the prediction
and the current state value, the estimation error e! (ti + 7a) does not vanish at t =t; ;, + 74 . Using the
prediction model, one should be able to upper-bound the estimation error such as ||e§ (tig + Td)H <e
The absence of Zeno behavior must be proved despite the presence of e.

ei(ti +7a)

/

o thh
ef(tix)

J
Eik

Figure 6.1: Comparison between x; and #! in presence of communication delay
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at t =1ty . Agent 5 Agent 2. for j € N.

Figure 6.2: Communication protocol with communication delay

6.2 Distributed event-triggered strategy with communication de-
lay

As explained in Section 6.1, a message has to be broadcast earlier to account for communication delays.
Ideally, each agent should be able to detect not later than at ¢ if the CTC (6.6) will be satisfied at
time ¢ + 74. A new CTC is defined using the predictions of 5; (t + 7a), g (t + 7a), €} (t + 7a), €} (t + 7a),
G (t+7a), G (t+7a), Pi (t+ 7a), and p; (t + 74).

Theorem 12. Consider a MAS with agent dynamics given by (4.1) and the control input (4.13). Consider
some positive design parameters 1, N2, Be, Be, Bg, Bs, Bg, 0 < b; < m,

min {1,k k. ko, 2k (2o + Sknss) )

B (6.3)
max {1, ks } '

C3 —

and k1 = ks — (1 + ky (kas + 1)), In presence of communication delays, the system (4.1) is input-to-state
practically stable (ISpS) and the agents can be driven to some target formation such that

N

1
. 2
; — < .
Jim 3 kol + 3P (0.0 <& (6.4)
1=

with

N 2

f = r‘ [Dmax +n+ C3Amax] (65)
gC3

where Apax = Max;—1.N (supt>0 (AH?F;lAGi)), if the communications are triggered when one of the
following conditions is satisfied

I

b 135 ¢+ ) |” + Kok 1135 &+ )| + 1 < 03 (e N85 6+ m)lI” + Rk | (24 7))

N

+ a2y |18+ 7)|* S ke ([l ¢+ 7| + o)
j=1

by || (E+7a) — GF (¢ +72)||”

H‘Y;’|A9~i,maxu2

(14 %] A8 )

I

k[ ¢ ) [P oy (1 1Yl A ) +
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lall > | +n (6.7)

with ke - ksk?) +kgkp + %; er = Y; (QZ (t+Td)= Ejz (t+7-d) ) ﬁz (t+Td) ) ﬁz (t+Td)); and

max { |0~:-’1 (t + Td) - emin,il| ) |§Z (t + Td) - gmax,il |}
Aéi,max = ’ (68)
max { |0~§,p (t + Td) - 0min,ip| ) ’é;) (t + Td) - 0max,ip|}

and if Vt > 0 the following conditions are satisfied

I @12 + 6, > |5 0| (69)
lg: (@)1 + 8, > a7 o) (6.10)
léi @ - g @I = 14: (&) — @ @I = 5, (6.11)
lei @) > (e @) - 8 (6.12)

€ @|* = (et o - Be. (6.13)

Proof. If the conditions (6.9)-(6.13) are satisfied for all ¢ > 0, thus the triggering conditions (6.6)-(6.7) are
satisfied when the triggering condition (4.26)-(4.27) of Theorem 8 evaluated at the time ¢+ 7, are satisfied.
Thus, since the communication are triggered at time ¢; ,, using the conditions of Theorem 12, conditions of
Theorem 11 will be satisfied at time ¢; ,+74. Thus, the system is ISpS and the agents can be driven to some

target formation such that lim;_, o Zil ko ||riH2 + %P (q,t) < € with ¢ = ¥ [DQ +n+ CgAmax}. O

]{;g c3 max

The values of ., B¢, By, s, and 3, must be chosen enough small to avoid useless communications due
to the CTC (6.6) while Conditions (6.9)-(6.13) are satisfied. These values mostly depend of the accuracy
of the prediction model evaluating 3¢, g¢, Gis ét, and éz .

The prediction & and é¢ have to take in account the reset of estimator at ¢;  + 74, else the CTC (6.6)
will be continuously triggered over the interval [¢; x, ¢; 1 + 74[. However, absence of Zeno behavior has not
been shown, and conditions f., B¢, B4, Bs has to be precised.

6.3 Prediction model

6.3.1 Prediction via Euler integration

Using a basic Euler integration, one easily obtains a prediction model with the following form y (t + 74) =
y (t) + 74y (t). Let’s study it.

Prediction of w; (t +74), &} (t +7a) Vj # i Yt > 0, and &’ (t +74), Vj € N With Euler integration,
the agent dynamics and their control inputs are not taken into account in the prediction model. Thus,
the prediction of the state of other agents evaluated by Agent i is expressed for all t as

F(t471g) = a; (t) + 24 () T4 (6.14)

Similarly, the prediction of 5:; is expressed as
B (t+71a) =3 (t) + 2% (1) Ta (6.15)

With these basic prediction method, the updates performed on the estimates ﬁ; between time ¢ and
time ¢ + 74 are not known by Agent 4, and thus cannot be taken into account, leading to discrepancies
between the predictions and the actual value of the predicted variable.

Nevertheless, information on the future updates of #¢ are known by Agent i. It may be taken into
account to obtain a more accurate prediction 3232, described in the following section.
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Prediction of a::Z (t+74) Whent > t; )+ 7q , all messages broadcast by Agent ¢ has been received and
estimators for all agents have been synchronized. Thus, the prediction model can be expressed as

THt+Ta) = )+ Ta tE [tig +Tas tigsa] (6.16)
However, the synchronization (6.1)-(6.2) induces that all agents update their estimate of Agent i state

at the time t = t; ;, + 7,4 using the prediction ¢ (¢;  + Td)~, ie.VieN ig (tik +7a) = 2% (ti g + 7a). Thus,
since Agent i will update £} at the instant ¢ = ¢; , + 74,27 (t + 74) can be expressed as

Tt 1h) = 7L (tig +7a) F 2L (tig +7a) (E+7a) — (tig +7a))
=[x (tig) + @i (i) a] + [ (ti) + & (tix) 7a] (¢ — tik) (6.17)
where &; (t; 1) = [qZ (ti,k)T , 05] Thus, prediction of %Z can be rewritten for all ¢ as
Tt +7a) =2 (tig) + i (tig) (Ta+t —tig) + & (tig) Ta (t—tig). (6.18)

Note that #! (t + 74) is only used by Agent i to evaluate its CTCs (6.6) and (6.7), and has not to be
performed by others agents.

ef(th +7a)

ei (tix)

Figure 6.3: Comparison between x;, 2! and 7! in presence of communication delay. Z! is evaluate off-line
at time ¢}, and its processing time 7, must be managed during the time-slot 74 such as 74 > 7, + 75 (t).

Other prediction The predicted quantities é! (t + 74), é: (t + 74), q; (t+7a), q:; (t+7a), 3¢ (t + 7a), and
5L (t 4 74) are then deduced from & (t + 74), &% (t + 74), and a::; (t+ 74)-

The main advantage of this approach is its limited processing requirements. Nevertheless, the maxi-
mum tolerable delay 7, has to be small enough compared to have a prediction ¢ close to the actual state

value z;.
Section 6.3.2 proposes a more accurate predictor and analyzes its advantages and its drawbacks.

6.3.2 Accurate prediction

To stay close to the agent behavior, the dynamic of the prediction state Z! can be expressed as

MIG@) G+ C(a @)@ = Fitds (6.19)
B (tini) = &5 (ting) i # 1, (6.20)
B (tini) = @i (tini) (6.21)
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where #;,; is the time at which the prediction is evaluated, &% = [¢i", Q;T] 7! is the predicted control

input, and d; an prediction of the state perturbation, equal, e.g., to its mean value. As the matrices M;
and C; are unknown by agents, taking M; and C’Z induce a discrepancy between the prediction and the
actual state value.

Focus now on the predicted control input 7! . A simple way to evaluate 7% can be to choose it as
constant: 7i(t) = 7/ (t; ). This predicted control input is easy to implement but leads to a discrepancy
between 7/ and 7!, and so between i and z;.

An alternative way is to choose the predicted control 7¢ as in (5.9) where 7! is replaced by #¢. To

evaluate it, a prediction of §* and sz is required. Consider the prediction of the state estimate %; =
T
[@;T, qJ } evaluated starting from ¢ = ¢;,,; using the dynamical model
NE(8) 4+ €5 (30 1) di = @ (6.22)
B (tini) = 2% (tini) VjEN (6.23)
& (tig + 7a) = & (tik + 7a) (6.24)

where 4;- is the prediction of the estimate control performed using (4.18) where the vector ¢ is replaced by

¢'. Here, (6.24) expresses the fact that 2 #¢ is updated by Agent i at time ¢ = t; y + 74, as in Section 6.3.1.
Then, the predicted control 75 is performed as in (4. 18) Where xj is replaced by Z} and 2°* by £ z
Using the previous predlctlons the predicted errors & and é¢ may be evaluated as

& (t+71a) =4, (t+7a) — G (t+ 74) (6.25)
Et+7a) =@ (t+7a) — G (t+7a)- (6.26)

In the same way, the predicted quantities g, & used in Theorem 12 can be expressed as

N
gi= ki (@ — 4 —rj) (6.27)
i=1
and
§i=a; — q; +Fkpg;- (6.28)
This approach leads to an accurate prediction of x;. The main drawback for this method is that a
prediction of all agents state is needed to evaluate 7% (¢) for all t € ] I tj & +1} which involves significant

processing efforts. Moreover, the processing time 7, must be managed during the time-slot 74 such as
Tq > Tp+7;j (t). This makes such approach more difficult to implement in practice the technique presented
in Section 6.3.1.

6.4 Example with communication delay

Consider the same dynamics, coefficients, simulation parameters, and tracking trajectory than those
considered in Section 4.5. A constant communication delay for all agents as 7,; = 0.03 V (¢, j) and 74 is
taken such 7, = 0.03.

Figure 6.4 shows the trajectories of the agents when the control input (4.13) is applied to obtain a
desired formation and tracking a reference trajectory. The CTCs defined in Theorem 12 and the prediction
model exposed in Section 6.3.1 are used. It can be seen that agents converge to the desired formation
and reference trajectory with a limited number of communications, even in presence of perturbation and
communication delay. The communication ratio R..y is larger in presence of communication delay than
without communication as exposed in Section 4.5. This is due to the CTC defined in Theorem 12 which
is more restrictive than the CTC introduced in Theorem 8. Moreover, the predicted values used in the
CTC induce a larger discrepancy between the estimated and the actual state values, which lead to a a
CTC which is more likely to be satisfied.

Clearly, additional simulations would be required to finish this study.
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Figure 6.4: Hexagonal formation and tracking problem with Dy, = 20, n = 20, n3 = 10 and 74 = 0.03.
Agents are represented by circles. Model (4.39) and estimator (4.18) are considerate. Reom = 7.41%,
P (q) =0.001 and ||go]| = 0.14.

6.5 Conclusion

This chapter presents problem of communication delay, adapted to methods proposed in previous parts.
Influence of communication delay on the message content has been studied. To balance effect of commu-
nication delay, a prediction value of agent state is transmit to others agents to update their estimators
in a synchronized way. The CTC has been adapted to take in account the communication delay and
trigger earlier such that compensate it. Two prediction models of different complexity and accuracy have
been considered have been proposed. Convergence to the target formation and target position has been
studied. However, absence of Zeno behavior have not been shown.

In future work, the considered problem will be extended to problem of time-varying topology and
control saturation. Combine method with packet dropout effect studied in previous chapter is also con-
siderate. Moreover, some conditions in the CTC has to be precised.
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Chapter 7

Conclusions and Perspectives

Conclusions

In this thesis, event-triggered communication techniques have been proposed to decrease the number of
communication to be transmitted in a multi-agent system driven by distributed cooperative control laws.
The agents are mobile autonomous vehicles moving in an unknown environment. They dispose of their
own means of measurements to measure their own state values and rely on communication link to obtain
information on the state values or processed data of their neighboring agents. The communication links
are summarized via a connection graph.

The main contributions of this thesis are twofold:

e First, a distributed event-triggered communication technique to reach consensus with a reduced
number of communication using a general linear dynamic model with state perturbations has been
developed and the results obtained compared with those of other approaches.

e Second, an event-triggered strategy has been developed to manage flocking and trajectory tracking
for a fleet of vehicles modeled with Euler-Lagrange dynamics equations with state perturbation. The
problem complexity is regularly increased to take into account uncertainty on the model dynamics,
communication delay and packet dropout.

The first approach considers agents with general linear dynamic model, state perturbations and a fixed
communication graph without communication delay. The method relies on the simultaneous use of two
estimators of the states of the other agents in the network. The first provides an accurate state estimate
of all agents in the fleet by introducing a dynamical observer of the states including the control inputs.
The second estimator considers only the agents in the neighborhood of each agent and is less accurate
because updated less frequently than the first estimator. However, its value is constrained to coincide
when two agents are neighbors. The output errors of both estimators are used in the expression of the
triggering condition. Flooding delay communication protocol has been developed to guarantee the reset of
estimators error without adding broadcast message to the initial strategy. Conditions between the pertur-
bation level and the consensus error are defined. Convergence to consensus has been studied and absence
of Zeno behavior proved. Simulations have shown the effectiveness of the proposed estimators in presence
of state perturbations with moderate level and enabled comparisons with the results obtained using the
state-of-art method. Influence of the knowledge of the initial conditions has been exposed. A guideline
to select some design parameters to obtain a trade-off between communication constraints and bound on
the consensus disagreement has been proposed. Finally, extensions of this results to time-varying linear
dynamics model and the case of a time-varying topology have been discussed.

The second method is dedicated to the development of an event-triggered communication strategy to reach
a target formation for MAS with Euler-Lagrange dynamics and state perturbations. Two estimators of
different complexity and accuracy, inspired from the previous technique, have been considered to pro-
vide the missing information required by the control, allowing a trade-off between computation time and
amount of triggered communications. A distributed event-triggered condition has been proposed to limit
the number of communication while guaranteeing convergence to the target formation with a bounded
error. Convergence to a desired formation and influence of state perturbations on the convergence and on
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the amount of required communications have been studied. Moreover, the time interval between consec-
utive communications has been shown to be strictly positive. Simulations have shown the effectiveness of
the proposed method in presence of state perturbations when their level remains moderate.

Extension to the initial method to cases with uncertainty on the parameters of the dynamical model has
been developed. On-line identification of the model parameters has been proposed to provide the miss-
ing information required by the control law. Tracking control to follow an reference trajectory has been
considered and added to the formation control input. A distributed event-triggered condition to converge
to a desired formation and follow the reference trajectory while reducing the number of communications
is presented. Simulations illustrated the effectiveness of the proposed method in presence of state per-
turbations. A guideline to select some design parameters to obtain a trade-off between communications
constraints and the bounded error of the target formation and tracking trajectory is proposed. The time
interval between consecutive communications has been shown to be strictly positive.

Communication delay and packet dropouts have also been studied. For the first case, two prediction mod-
els of different complexity and accuracy have been considered. Convergence to the target formation and
target position has been studied. To account for potential packet dropouts, adaptations of the estimator
structure and of the triggering conditions to the stochastic characteristics of the occurrence of loss of
information has been performed by considering the expected value of the estimate error due to loss of in-
formation. To guarantee absence of Zeno behavior, a specific communication protocol has been developed.

Perspectives

Several mid-term and long term directions are proposed below.

Modeling of packet dropout is based on assumption of loss of information to be mutually independent
Bernoulli-distributed, and solutions have been designed using these characteristics. In practice, packet
dropout can also be represented by Markov chain: a lost message can be due to the presence of an obstacle
or a receiver failure, which results in the fact that the events are not independent. Adaptations of trigger-
ing strategies to more realistic loss probabilities could be of interest in order to increase the robustness of
the approach to this issue. Introduction of time delays leads to modification of the communication proto-
cols but some conditions in the CTC need to be relaxed to obtain a less pessimistic updating frequency.
Moreover, accounting for communication delays and packet dropouts in a joint manner would constitue
an important improvement. A potential way of handling both could be to generalize the probabilistic
description of the packet dropout to the time of arrival of a message.

In all event-triggered communication methods proposed in this thesis, it is assumed the CTCs are con-
tinuously evaluated. Since MAS are generally sampled-data systems, event-triggered methods based on
discrete sampling characteristics are more practical. Combining event-triggered techniques and periodic
sampled-data control will allow to be closer to a real system where condition is evaluated at discrete time
instant.

Finally, each agent has been assumed to measure its own state values without error which constitutes
a very unrealistic condition. State observer has to be introduced and impact of a noise measurement
needs to be studied. Modelling the measurement uncertainty using bounded error context could be a way
to integrate this additional perturbation in the global triggering condition but may lead to pessimistic
decisions and increase of the number of trigger. Extension of the works presented in [50, 95, 111, 120, 68],
to the case of dynamical models of agents could proved to be an interesting direction.
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Appendix A

Appendix of Chapter 2

A.1 Consensus convergence
The system gathering the dynamics of all the agents is
i (t) = Az (t)+ By (t) +d (t)
where z = [xlT o x%]T, A= 1Iv®A, B=T (IN ®§1), B, = cqLQBF,y= [leyQT e yNT]T S RN*n
is the vector gathering the estimates of the states of Agents 1,..., N performed by all agents. Define

e=y—x RV, ,
A matrix T € RN"*N"7 ig also defined to extract, from vector ¢, all terms y’,j, k=1...N:

Tj = T[y1T!2T'”yNT]T
= [Ty R
= y.

This matrix can be expressed as T = ((Iy ® 1) o (1§ ® In)) ®1,,, with o the entrywise matrix product.
One may easily show that Ty (1y ® y) = v.

Define the candidate Lyapunov function : V' = acTEx, with L = L ® P. Since the graph is undirected
and P is symmetric, L and L are symmetric and

Vo= 2 (g;TZ (Az + By) + d” (t) Zm) (A.1)

Define V; = 2271 (Zaz + ng). The next section will show that V; is upper bounded by z7Lz. Then
introduce va.: aT L +2d" (t) Lz, where one reminds that [ = LA.+ AT L and A, = A+ B;. An upper
bounds for V5, also evaluated in what follows, is then used to upper bound V.

A.1.1 Upper bound for V;
Let Aj; = y/ —y! and define A (t) = [AT, (t) AL (1) ... AL v (6) ALy (t)]T € RV’ Note first that
J=1ly®y+Aand =1y Qe+ A.
Vi = 227L(Az + By)
= 270 (Az + B(ly @y + A)) (A.2)
Since B=T (In ® B1), By =1L ® (BF), and T (1y ® y) = y, one obtains

B(ly®y) = T(In®B1)(lyn®y)
T (I ® (By))

= Bly
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and
Vi, o= 27T (Zx + Ely) +2:TTBA. (A.3)
Consider
Vi = 20T (Zm + Ely) (A4)
and

The expression of V41 can be found in [37], where it is shown that Vii=2TLa + Zf\il (51' — le@zz,) with

§i = 2(cy—c)NizF PBBT Pel +
Co — C

bi

|:2(3Ni2 (14+b;) + N;

+eN; (N —1) (bi + 5’)} e;" PBB” Pe;. (A.6)
2

Using the expression of B and By, and the fact that e = y — =, Vlg may be rewritten as
. - T
Vie = 2 (L (y — e)) T (Iy ® (1L ® (BF))) A.

Using the property of T,

a1BF 3, (A — Ag)
T(In ® (L ® (BF))A = :

cBF ZkENN (ANN - ANk)

Since A;; =0, L=1L ® P, and F = —BT P one may rewrite V12 as

N
Ve = aY | Y (y;’—y;f)T(—PBBTP) 3 (—Au)

i=1 |[jeN; keN;
-3 (d-e) (-PBBTP) Y. (-Aw) (A7)
JEN; keN;

) \T
One may rewrite Zje/\ﬂ; (yz — yg) as

S ) = S (v (-w)

JEN; JEN;

T T
= 2+ ) Af
JEN;

Inserting this expression in (A.7) and defining M = PBBT P, one gets

N
Vie = a1 |aFM DY A+ D (8)"M D Ay
i=1

keN; JEN: kEN;

—NieﬁTM Z Azk + Z €§TM Z Am . (AS)
kEN; JEN; kEN;
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Using «Ty < g-2"a + beyTy for any b; > 0, one obtains

ST@)TM Y A= > (AT MAy,

JEN; keN; FEN; kEN;
< X5 [ atva, - Batan
JEN; kEN; !
< N; — | AL MA;;
(),
and
SOMY A = Y Y s
jeNi keN; jENikENi
1
30> [%e”MJ+ SALMA]
FEN; kEN;
< >N {e]TM I+ ATMA }
JEN;

Using these upper bounds in (A.8), one gets

N
B 5l [EESHLETE SRR oY E ey
i=1 v

kGM j€N1

XA SMAG; A+ Z N; |:e]TM J+b ATMA ]

b 2b
Choosing arbitrarily b;; = 1, one gets
al N;
’ < A Y 4T
Vie < clz[(zl Nle MZAszrQbe Me
i=1 keN;
+Y N <1 + > ATMA;| . (A.9)
JEN;

Inserting (A.9) in V; and one obtains

N
Vl < {L'TZ-T =+ Z (Sz — O'ZZ-T@Z‘ZZ‘) s
i=1

where
5 = o |(z— MZ( —yz)+%elTM6
JEN;
n <1+ l;’) N> ((yj —yZ)TM (y’ —yf)) + b (A.10)
JEN;

Since L is semi-definite negative, V; < 0 if, for 4,5 = 1... N, the communication events are triggered
when 6i2ng‘r@zi with 0 < p < 1.
Remark 8. With §; > pzl'©2z; and no perturbation, V; (t) converges asymptotically to zero. In order to
reduce the number of broadcast communications, a threshold 7 can be introduced so that 6; > pzl ©z; +1.



134 APPENDIX A. APPENDIX OF CHAPTER 2

A.1.2 Upper bound for V

Assuming that there is no perturbation, one is now interested in bounding ||z; — x;|| when the CTC (2.34)

is satisfied.
First note that 7 Lz > 0, so

2T La < Amax (E) Tz
and that 7Lz < 0, so
—aTLx > Amin>0 (—f) zTx.

Combining these results, one obtains

~ 1 _
JcTinA < 2Ta < e —
)\max (L) )\min>0 (_L)

and thus

where § = AH:DO((E_)L )
max

With the triggering condition defined in Theorem 5, one obtains

N
2T T + Z ((2 - pZZT@iZi)
i—1

< =BV (t)+ Ny

V (t)

IA

from which one deduces that V (t) <V (0) e =5t + % Consequently,

V (t) may be rewritten as

V() = 2'Lx

N

= Z (m?P Z (z; — xk)>
i=1 keN;
N

= Z Z (2] P (z; — )
i=1 keN;
1

= 3 Z 2 (Jc?sz — m?ka)

i=1 kEN;

N
1
Vi) = 3 Z (2] Px; — 2a] Pay + o Pay,)
i=1 keN;
1 N
= 52 (l‘l—.ﬁk) P(xi—xk).
i=1 kEN;

(A.11)

(A.12)

(A.13)

Since the graph is connected, each term (z; — x1)" P (x; — ) appears twice in (A.13). Thus, from

(A.12) and (A.13), one has
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. Nn
fm Vi) < —
al Nny
lim zi — 2k)* A (P) < —*
i3 5 bl () <
. 2 Nn
: - < 20
Vk € N, tlggo lw; — z||” < T (P) (A.14)

The graph is connected, thus for any pair of agents (i,7), there exists a path between them linking
neighboring agents, the indexes of these agents are k1, ko,...,k,, and

i =25l <z = xp |+ llan, — 2|+ + [ln, — 2]

< N — 2. Al
< ke/{;{%Nkllzk | (A.15)

Combining (A.14) and (A.15), one gets

N3n
.. . 2
v(27])€N7 tllg.lo”xlixj“ < B/\min(P)'

The perturbations terms do not appear in ¢; and ©;, but they impact the estimation error and the
communication triggering frequency.
A.1.3 Upper bound for V,

Since L1y = 0 one has
(Lo P)(Iy@m)=((Lly)® (Pm)) =

and one deduces

V2 = 2:7Ld + 27 La
T(LeP)(In®m+s)+a’ La
227 Ls + 2T Lx.

Let Vo = 227 Ls and Vag = 2T Lz. Then, considering a sequence of b; > 0,7 =1,..., N, one has
N
‘/21 =2 Z Z (xi—mj)TPsi
i=1 \jeN;

I
[\}
Mz

b; 1
(2 (x; — xj)T P(z; —xj)+ —— o7 TPSZ>
1 jEN; ¢

IA

>

i=1jeN; v

1
( —z;) p (i —xj) + —Amax (P) andx> . (A.16)
b
eN;
To bound Vas, using the expression of L, one gets
Voo = 2" [L® (PA+A"P)—(LL)® (2c,PBB"P)|x
Since M = PBBT P and L are symmetric semi-define positive matrices, one obtains

T(LeM)z = " (Ivo (B™P) (L®l,) (Iy® (B"P))x
= 27 (Iy® (B"P))" UTAU (Iy ® (B"P)) «



136 APPENDIX A. APPENDIX OF CHAPTER 2

where A is a diagonal matrix with elements A; = X\, (L®I,),i = 1...Nn, and U is the matrix of
corresponding eigenvectors.
Introducing ¢ = U (IN ® (BTP)) x, one obtains

T(LoM)z = q"Aq
Nn
= qu)\,([x@]n)
=1
Nn
1
< S @GN (Lel,)”.

Amin>0 (L ® In) i—1

Since Amin>0 (L ® I,) = Amin>0 (L) Amin>o0 (In) = A2 (L), one obtains
1

T(Le M)z < A2
( Jr < w? M
1
< ot (e (BP)) (LL) @ I,,) (In ® (BTP))
2
1
< T(Lye M
< Lot @Enems
and thus
— 2T (LL)@ M)z < =)o (L) 2T (L ® M) x. (A.17)
Injecting (A.17) in Vag, one gets
‘722 = QCTI/$

= 2" [L® (PA+ATP) =2 (LL)® M)«
< 2" [L® (PA+A"P —2c,M)\; (L))«

Reminding that ¢y = c+ ¢y and ¢ = m, one gets

xt [L@ (PA+ATP— 2 (A;(L) +02> M, (L))} T
< 2" [L® (PA+ATP —2M —2c;M Ay (L))] a.

Voo

IN

Using (2.3), one obtains _
Voo < 27 [L ® (—2aP — 2co)g (L) M)

and using (A.13), Voo becomes

ZZ[ i—25)" (=20P = 2025 (L) M) (i — ;) (A.18)

i=1jeN;

Since Vs = Vay + Vag, combining (A.16) and (A.18), one gets

JEN;

N
< S [@i— 2" (= a) P coda (£) M) (s — 2y)]
i=1

N

N

max (P) anax) : (A.19)

One now searches a condition on Spy,.x to ensure that V5 is decreasing. Having Va <0 is equivalent to

Z( Amax max) ZZ[ =) a—bi)P—&—cz)\g(L)M)(xi—xj)]. (A.20)

i=1 i=1jeN;
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Sufficient conditions to satisfy (A.20) are for i =1,..., N

N;

G (P) S € 3 [( = )" (0= b) P+ cada (1) M) (i — )] (A21)

JEN;

Each inequality (A.21) is satisfied if the following condition holds

T (P) S < 3 [ =) (s — ) = b0) P e (1) M
! JEN;

with ||M]| = max;—1., (]\; (M)]). This provides an upper bound for Spax

Z zb [[(a —b;) P+ ca)a (L) M|
max § ||.’£1 A (P) N . (A22)
JEN max [

Using (A.14) in (A.22), one gets

52 < bz ||(O{—bi)P+Cg)\2( )MH NN’I]
max — /\max (P)N

b H(a—b)P+02>\2 M||
)\max mln
Smax < W"Cm M”\/ (A.23)
Hla.X IIIII]

Using (A.23) in (A.19), one finally gets V5 < 0, which leads to V' < 0. The system converges thus to
a bounded consensus.

Smax

IN

Choosing b; = «, one obtains

A.2 Proof of Theorem 6

Starting from (A.9) in Appendix A.1.1, one has

N
. N;
Vig < Clz (2 — "M Z ( *yl) +%€ZTM€
i=1 JEN;
+( >N > (AfMAy) (A.24)
JEN;
Expressing Ajj as Ajj = y/ — v/ + v/ —y! in (A.24), one gets
Via < clz (zz —Nieﬁ) M Z (yi —v{)
i=1 JEN;
+ (zi — Nieﬁ)T M Z (vf — yZ)
JEN;
N zT T
+2b Mel +( )N > (AfMAy; (A.25)

JEN;
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Using zy < ﬁme + b’%yTy, with b;o > 0,

Vie < ¢ Z {2; (Zz - Nief)TM (Z2 - Nieﬁ)
i=1 L7712
L bi2 3 (yJ ,M’)TM 3 (ya 71}])
2 (2 K2 1
JEN; JEN
T T (3 (K (3
+ (2 — Njel)” M Z (Uf —yl) + %ezTMez
JEN;
+ (1 + I;) N Y (AT MA) (A.26)
JEN;
Let
. N . \T , ,
Vi = Z (yf _Uf) M Z <?/f —vf)
i=1jeN; JEN;

N
Viy = > > (AGMAy)
Both terms are upper-bounded in what follows.

Upper-bound for Vs, Using zy < %xTx + %yTy, Vi2q can be upper bounding

. . \NT ) )
Voo < D03 Ni(yl—ol) M (y] —o]) (A.27)
i=1 jeN;
As the communication graph is undirected, one gets
N T
Visa < D> N (v —v}) M (y —vi). (A.28)
i=1jeN;

Upper-bound for Vi, Introducing vf in Viop,

N T
b = 3 (5 () 0 (o)

i=1 \jEN:
. AT . .
+ Y (vf —ylf) M(vi —yi)
JEN;
. NT . .
23 (v —vl) M (v -yi) (A.29)
JEN;

Using again xy < %xTx + %yTy one has

. T . .
2> (vl —vl) M (o] - i)

JEN;

i T i i
< D () My —v))

JEN;

+ 3 (v —yf)TM(vf )

JEN;
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Injecting this expression in (A.29) leads to

N

Vigy < Z 22<y5_vf)TM(yz—uf)

=1\ jeN;
. N\NT . .
+2 ) (vf —z%) M (vf —yé)
JEN;
As the communication graph is undirected, one gets

N

Viy < D2 (wh— o) M (i —0))

i=1 JEN;

S \T S
+2j§a (vf- —yf) M (vi yf) (A-30)

Upper bound for Vi, Finally, combining (A.28) and (A.30) in (A.26), one obtains

N
. 1 , ,
Vio < ; {2@2 (2 — Niei)TM (20 — Niei)
bl 1 X2 (]
+72 Z N; (y] _UJ) M (y] _UJ>
JEN;
+ (- Ne) MY (vjf — y?) NEAE VR
7 iCq ‘ i 1 2bz 7 7
JENi
b; , \T , .
+2 (1 - 2) Ny [(vi —yi) M (vl -y}
]—G./\/’i
+ (g — o))" M (- v)) ]| (A.31)

The upper bound for V; becomes

N
i=1
with 8;, p and ©; as expressed in Theorem 6.

) As a consequence, if, for 7,7 = 1... N, the communications are triggered when 6 > pzl©z;, then
V1 < 0. The rest of the proof is identical to the one of Theorem 6.

A.3 Proof of absence of Zeno behavior

Two cases are considered: Dy.x = 0 and Dyax > 0. Consider first the case with no perturbation
(Dmax = 0). In this case, the estimate error eﬁ vanishes. Moreover, since the initial states are assumed
to be known by all agents, y* (t) = y/ (t) = v’ (t) for all (i,7) and for all ¢ > 0. As a consequence, the
discrepancies y;- — U;- = 0 and v] —y! = 0 for all (i,j) and for all ¢ > 0. No communication will be
triggered, which excludes the possibility of a Zeno behavior.

Consider now the case with Dy, > 0 and let us proove the absence of Zeno behavior. To do so, let
us show that the inter-event time ¢; ;11 — t;  is strictly positive.

As the CTC (2.34) mainly depends on ef, we begin by studying the time derivative of this error. From
the definition of e! and by remarking that u! (t) = @t (¢), it can be expressed as

e = yl—dy
= (Ay! + Bl (t)) — (Azi + Bul +d;)



140 APPENDIX A. APPENDIX OF CHAPTER 2

Then, it can observed that the derivative of He§H satisfies

dy g et

et = i

dt = el

d 1, ;

%HeiH = HBZ:HQT (Aei_di)

d i 1 i||2 i

alel = 1 (Al flet]* + et | D)

d . .

el < Al + Drmas, (A.33)

Solving the differential equation (A.33) leads to

; D
e < b0 Do A
1Al
for t > t; with  a constant. Remind that the error e! is reset to zero when a message is broadcast by
Agent 1, soHe§ (tlk)H = 0. This is used to identify the value of a = thl‘;klllx’ and to obtain then the general

solution of (A.33) for t > ¢; :

lei]| < (e”A”(t*ti,k) _ 1) ﬁ:]" (A.35)

From the CTC (2.34) a new communication will be triggered when 0 = pzl ©z; +n. Introducing
i = 6; — €T Melb,. (A.36)
A new communication is hence triggrered when
bi + €T Melb; = pzl' Oz + 1 (A.37)

and one has

5i"‘V_)\ma,x (M)H€2H261 > PZZTGZz‘f'n
; 1 .
||€§H2 2 N (M) 1 (PZiT@Zi —0i + 77) (A.38)

since Apaz (M) > 0 and b; > 0. Using (A.38) along with (A.35) evaluated at time ¢; 11, where the CTC
is satisfied, allows to obtain

2 /D 2 1 y
AN (ts kr1—ti k) _ 1 max > - Tg i — 0; + . A.39
( ) < 4] ) = D (M) (vite- ") .

Considering the following two assumptions.

Assumption 1: t; ;.1 = t;}, According to (2.22), (2.28), and (2.27), §; = 0 at t = t; 5. As a conse-
quence, the CTC (2.34) in Theorem 6 cannot be satisfied, which contradicts the considered assumption.

Assumption 2: t; ;41 > t;, According to (A.32), for all ¢ € |t; &, t; x+1] one has Heﬁ (t)” > 0. Since
eI Met > Hei” Amin (M) and using the fact thatApi, (M) > 0 since M = PBB” P is symmetric positive,
one deduces that eéTMeﬁ > 0 for all ¢ € |t; k, t; g+1[- This expression and (A.36) imply 51- < 6; and

(pz?@zi — b+ 17) >0 (A.40)
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Then using (A.40) and (el Altr+1=tin) — 1) > 0 in (A.39), one gets

D 1 .

1Al (s o+1—tie) _ max TO,. _ &
e : 1 > — (pz!©z; —6; +1).
( ) 1Al = \/Amax(M)bi (Pz 77)

In presence of perturbations, D.x > 0, thus

2
e F R A AR
Amax (M) biDr2nax
2
ti k41 — tig = L In |1+ \/ ||A||_ (pZZT@ZZ — 51 + 77) . (A41)
||A|| /\max (M) biDrznax

Since (pziT@zi —0; + 77) > 0, from (A.41), one deduces that ¢; y41 — t; 5 > 0, which excludes the

possibility of a Zeno behavior.
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Appendix B

Appendix of Chapter 3

B.1 Calculation of spring coefficients £k;;

In [82], the spring coefficients k;; > 0 are expressed as

Wi .
b 1_61% y if Wij >0
ij — Wi j .
176];'_? , if wij < 0

where 3¢, € (0,1) and §j; € (1,+00) are constants and where w;; are elements of the stress matriz
Q) = [wij] vy associated to the desired formation shape. w;; is positive or negative using analogy
to structures defined using incompressible struts or inextensible cables, with w;; = wj;. In tensegrety

structures, an equilibrium structure is obtained only if for all i € A/

* p—
E wijrij =0.

JEN;

[82] proposes a method to generate a stress matrix {2 such as the associated tensegrity structure
corresponds to a stable formation. Main steps are described in the following paragraph.
The stress matrix € is expressed as

Q = DD
where D is computed as solution of the following equality
N'D = Opmstyx(N—n-1) (B.1)
with D # Ony(n—n—1) and N = [[g} ... q}] 1%] € RV*(n D),

More details on the calculation of D is presented in [82].

B.2 Proof of formation convergence

Considering a given value of Dp,cand 7, one shows first that the MAS converges asymptotically to some
bounded region. Then one evaluates the impact of Dy, and 77 on the size of this region.

B.2.1 Proof of the ISpS of system

Consider the candidate Lyapunov function
1 k
_ Tar . g
V= 5 ;_1 s; M;s; + 1 P(q,t) (B.2)

143



144 APPENDIX B. APPENDIX OF CHAPTER 3

Taking the time derivative of V' leads to
N

. 1 . . k, d
VvV = Z [2siTMisi + s M;s; | + ZgaP (g, 1) (B.3)
i=1

where §; = §; + k,g;. It can be shown that

and since Tji = —Tij
14 N N
Z%P (Qat) = Z (QZ - Q:)T Z kl] (T” ) + kor;
i=1 j=1
N
= > @@-i)'a (B.5)
i=1
Thus
V= Z{s M;s; + s] M3 + kg (6 —q;‘)Tgi] (B.6)
One focuses now on the term M;$; and tries to find an equivalent expression. One may write
M;s; + Cisi = M;[Gi + kpgi] + Ci [¢i + kpgi]
= Ti+kp(Migi + Cigi) + d; (B.7)
Using (3.10), one gets
M;s;+ Cisi = —k8; — kogi — kp (M; (3 — 3i) + Ci (g5 — 94)) + d; (B.8)
Now, introducing (3.4) in (3.6), one may write
N i
si =G —q; +kp Z kij (@i — a5 —735) | - (B.9)
i=1 _

Since ¢} = ¢} — g;, one gets

N -
S = —qz+kp Zkz] q] +6 z])
=1 a
N N .
= —q; +kp Zkij (fij - T?j) + kp Z kije;
i=1 j: 1
J#i

= Si+kpE] (B.10)
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with since k;; =0
Z kijel. (B.11)

In the same way, it can be obtained g; = g; + EJZ One gets
M;s; + Cis; = —ks5; — kggi + ky (M;E} + CiE}) + d;. (B.12)
Let V} = ZZ 1 2kysT (M E’ + C;E}). Using (B.12) in (B.3), one obtains
Vo= i [S-T {1]\'4» - C} si— ko5 — kg (Gi + kpgi) " Gi
i=1 tl2 LA

1.
thodi i + 57 di] + 5V (B.13)

Remind than M C; is skew symmetric or definite negative, so s; [ M; — C; ] s; <0. Forall b >0
and all vectors x and y of similar size, one has

1 1
2Ty < 3 <b:vT:1: + byTy) . (B.14)
<

Using (B.14) with b = 1, one deduces that d?'s;

N
Vo< z[—kss?sz T Gikgky + 55+ 2 Dl

i=1

+hodl (9:— 91)] + 1Vl (B.15)
One notices that r;; = ¢; —q; = ¢; — qJ + ej =7y + e , thus
lsi = sill* = sfsi— 2575+ 55
[ ? 5 — 275 + é?éi
T5 = g kBl + 5oTsi + 557 (B.16)
In the same way, one may obtain g g; = % ‘ H 5 1glg: + 5 + 2g7g;. Define ||E;||i = EJZ‘»TLE;i for any

matrix L. Injecting it and using (B.16) in (B.1 ) leads to

O 3 [ e Bl g ) 55
—2kpkg§g;~rgi — 2k, k, gz gi+D%. + 2kzquE’] + %Vl (B.17)

Using (B.14) with b = b; > 0, one shows that 2¢] (¢; — g;) < (b [Fals + 50 ||E1H ) Using this result in
(B.17) and using k. = kskg + kgky, + IZ—j one gets

. 1 o i 2 .
Vo< 2;[ (ks — 1) T8, — ko575 + ke || B2 + biky [l

i 1.
—kpkggi 9i = kpkqdi Gi + Diax] + 51 (B.18)

Consider now V;. Using (B.14) with b = 1, the fact that M; is symmetric positive definite, and that
2T Mz < kyra™z, one obtains

N
Vi < > ky((kar +1)sTsi+ [k EITEL + EI"CT CE])) (B.19)

i=

—
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N N

> 2kys] (MEL+ CEY) <Y ky () Misi + 5] si + [EJ" ME} + EJ" C]'C;E}])
i=1 i=1
N
< > kp ((kar+1) 87 s + [k BV E) + Ef"CIC,EL]) - (B.20)

=1

Focus on the terms Ei"CI'C;E}

N N N N
S rcras; - z(zkwej) cre (ne)
i=1 i=1 \j=1 (=1
N N N
= D> D kickigel” ||Ci)1 € (B.21)
i=1 j=1/¢=1

Using (B.14) with b = 1, one gets

IN

N
S ki (e (Gl € + el Gl )
=1

M=

N | =

N N
S prorcE < by

i=1 i=1j

N
>0 kuksy (7 1Cil )

1j=1¢=1

N
Y ki ( il e;l) (B.22)

1 =1

I
—

Mz

-
Il

<

Mz

7

Since one has assumed that (3.23) and (3.22) are satisfied, one has (j;- = Qg and e§- = eg. As a consequence,

N N
ZZ j ||e]|| = szm szjl ||€ || (B23)

=1j=1 i=1j=1

and since k;; = kj;

M=

N
S Ererer; <

=1

<.
Il

Jj=1

N
(aMZ [k [l k2 ls | }) (B.24)

(z[ IR ])

M=

—

[

<.

The second CTC (3.21) leads to

N
S ETCICE: < Z (aMkC el Zk” (|@:)) + n2) ) . (B.25)

i=1 j=1

In the same way, one shows that ZZ VETE; < ZZ e H and ZZ 1E’TE’ < 21 Ladeilel
Injecting it in (B.18), one gets

N
. 1 2
V S 52[—(k8 k (]CM+1))5 S; — k S 82+Dmax
o . 2i|[2
—kpkggl gi — kpked! Gi + kgbi |6l + kpkarody || é} ||

oy (I + hyhy + 52 ) e+ ok Skillil+wl  ®20)
Jj=1
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The CTC (3.20)leads to

Vo<

DN =

[ (ks =1 = ky (kar +1)) 87 80 = kghpg gi + Do + ]

i=1

< [_klszrsi - k‘]k‘lpnggl + Drznax + 77}

DN | =

i=1

where k1 = (ks — 1 — k, (ka +1)).
Following the steps given in Appendix B.4.1 from (B.47) to (B.50), one shows that

V< —csV+ % (D2 + 1]
where ¢3 > 0 is a positive constant. Define the function W such that W (0) =V (0) and
W= —c;W + g (D2 + 1] -
Using the initial condition W (0) = V' (0), the solution of (B.30) is
W (8) = exp (—eat) V (0) + (1= exp (—est) 5 [De 1.

Then, using the Comparison Lemma (Lemma 3.4 [53]), one has V (t) < W (¢) and so
N 2
V() < exp(=est) V(0) + (1 — exp(—est)) 5 [Diax + 1]

Since M, is symmetric, there exists a matrix Sy, such that M; = SAT/[i S, . Introduce now

ym = [ (SM151)T (SMisi)T (SMNSN)T }T
zz[y]Tw %P(x,t) }T

Then, V (t) can be rewritten as
1
Vi(z) = §ZTZ'

Using (B.33) in (B.32), one has Vt > 0

I ()11 < exp (—cat) |2 ()| + (1 — exp (—cst)) x

2
a [Dmax + 77}

[z (@) < \/exp (—cat) ||z (0)]* + (1 — exp (—cst)) g [Diax + 1]

[z (@) < \/exp(*%t) 2 (0)11* + \/(1 — exp (—cst)) Al Dl + 1]

—
cs

N
D2 o + 1

2 @)l < exp (=51) 1= Ol +4/ 1

and therefore
2O < Bz O),t) +p

with p = % [D?

max

147

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

+nl, Bz (0)],t) = exp (=%t) |2 (0)]| and B € KL (see definition of class KL

functions in Section 1.4.5). Using Definition 2.1 from [48], (B.35) implies that the system is input-to-state

practically stable (ISpS).
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B.2.2 Convergence of V'
From (B.35), we know that the system is ISpS. Moreover, from (B.29), one has

. N
V< —eV+ o (D2, + 1] (B.36)
Then, if initially
N
—c3V (0) + 5 [Di.x+n] <0 (B.37)

one has V < 0 and V is decreasing. Then, one has from (B.32)

lim V(1) < 2 [D2 +1]

Pargl = 263 max
1 k N
lim — Tas) + 2P (q,t) < — [D?
tggoQizl(sl 5)+4 (%)—263[ maern}
N
. 2 . T
tl—l>I£lo —gP(q7t) < 73 [Dmax + 77] - tli)rg) — (si M'LSZ)
2N
lim P (q,t) < [D2,. + 1] (B.38)
— 00 kg 3
Asymptotically, the formation and tracking error are bounded.
B.3 Proof of ti,k:—i—l — t@]{; >0
From the CTC (7), a communication is triggered at ¢t = ¢, when
kesT s+ hipkygT g+ = adp (ke led]|” + kpkear |é1]]%)
2o 2
7 A7 -2
+ aMk%kp Hel|| Z kji [H(]JH + 772} + kgbz ||q1|| (B?)g)

Jj=1

with k. = (k:sk:f7 + kgk, + %) Then, the estimation errors e} and ¢! are reset and one has e! (t;”k> =0

and é! (t;”k) = 0. As a consequence, the CTC (3.20) in Theorem 7 is not satisfied at ¢ = t;‘k iff

ks5T5; + kgl g +n > kobillgi — d7]1% - (B.40)
To prove t; 11 > ti k, one has to show that (B.40) is satisfied.
Using the property 27y > —% (bigl'TLU + éyTy) for some b;5 > 0, one deduces that
_T — _T — -2 -T .
5.5 = k2gi gi + | @ill” + 2kpgl @

T k .02
> (1 - tyba) a7+ (1 52 ) . (B.41)

Using (B.41), a sufficient condition for (B.40) to be satisfied is
_T_ k ) I _
ks (k2 = kpbi2) G gi + ks (1 - b’;) I Gill” + kpkoG?l Gi +n > kobi |l @il
o\ . .
ks ( - b:;) 1dl|” + [kpky + ks (k2 — kpbi2)] G7 i + 1 > kgbs [|ds|”
kgl gi +n > k2 llgi|® (B.42)
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where k| = [k‘pkg + ks (kf) — k‘pbig)] and ky = [k‘gbi — (1 — —)} To ensure that the inequality (B.42)
is satisfied independently of the values of g; and ¢;, it is sufficient to find b; and b;o such that k; > 0 and
ko < 0. Consider first k.

kpkg + ks (k2 — kpbiz) >0

kg
k75>( k‘ +b12)

g > bio. (B43)

Focus now on ks

bi2
kgbi kp
1-— 22
ks < sz
1 1 kqb;
— < —(1-=2). B.44
bio k:p ( ks > ( )

Remind that b;s > 0, which implies 9 L < 1 that is b; < . Therefore one gets

Finally, one has to find a condition on b; such that (B.43) and (B.44) can be satisfied simultaneously

kokp + kg ok

> big > ——LF B.45
ks 27 ke — kyb; (B45)
One may find such a b;y if
k2k
kg — kob; > —=F2
g ksky + kg
1 K2k
— ks — s S BN b;
kg ( kskp + kg)
k
by < —5 (B.46)
ksk, + kg

which also ensures that b; < ’,:— Thus, once b; < ﬁ, there exists some b;o such that (B.45) is
Vg svp g

satisfied. As a consequence t; ;41 — t; > 0.

B.4 Complementary proof elements

B.4.1 Differential equation of V/
From (B.27), one gets
1 N
52 (s7 i — kg9 9i) + Do + 1) (B.47)

where &y, = min {k1,%,}. Using (B.57) from Appendix B.4.2, one may write

amlnkmln
Zgz gi > Sminfmin p (g 4 (B.48)

max
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Define kg = Qminkmin - Then

kmax

N
' 1 kak N
V< -5 E (kms!'s;) — %P( t) + 5 (Diax +1)

: 2
i=1
1 1 ksk N
_ - T, 3hg N EsY
< [ o)+ 5| 4 (P
ke [1 & k N
— T, g W 2
< — - lz ;:1 (k:MsZ sz) + 1 P(q,t)| + (Dmax ) (B.49)

with k%, = 1if by < 1 andk}, = kas else, and kg = min (ky, k3). Let ¢3 = ,f—:l and one gets

1 k N
y T g 2
1% S —C3 51:2181 Misi + ZP(qvt) + 5 [Dmax—i_n}
N o
V< —cV+— [Dmax n] (B.50)
The evaluation of c3 is described in Section B.4.3.
B.4.2 Upper-bound on >, ¢7g;
From (3.4), one has
2
N N || N
ZgiTgi = Z Zklj (rlj rl]) (B51)
i=1 i=1||j=1

One may write

N N N .
- Z > Z kickij (rij —135) " (rie = 7i2) (B.52)

Using the fact that, for any vectors a and b, 2a7b = aa + b7b — (a — b)” (a — b), one deduces

N
Zk rlj l-

Jj=1

N
i=1

2 N 1 N N )
=> izzmzkij [Hm—r;;H + llrie = rll = || (rig = 7)) = (rie — M

i=1 (=1 j=1

(B.53)
We remark that (rij — rfj) —(rig = 1}) = (rij — 1ie) — (rfj — 7";'}) = rgj—ry;. Injecting it into (B.53) yields

il = s - rmﬂ]

N

§ , Tw i

) | -5 [ St -
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with kp.x = max /=1 N (Fej)
j=1...N

ol

[rie —ripl* = ||re;

N~ N
Emax Z Z kij (rij —735) Z Z iekijko; [Hh‘j

[\v]
vV
-MZ
—
DN =

i=1||j=1 i=1 =1 j=1
N || N 2 1 N N N , 1 N N N
kmax Zkij (Tz'j *T;}) > §Z;Zki€kijk€j Hﬁj *?";‘jH Jriz;z ekzﬂ% |7’ze zeHQ
i=1||j=1 i=1 =1 j=1 i=1¢=1 j=1
1 N N N )
_ 5 Z Z Z kigkijkzj HT’M — 'f’zj H
i=1¢=1 j=1
N || N 2 1 N N N , 1 N N N )
kmax Z Z kij (7"1] 7“”) > 5 Z Z Z kilkijkEj Hﬁ'j - 7”2}- || + 5 Z Z Z kiek‘ijkej ||7“ij - T;}-H
i=1||j=1 i=1¢=1 j=1 i=1¢=1 j=1
1 N N N )
—3 Z > Z Kickijhe ||ri; — 75 |
i=1 (=1 j=1
N || N 2 1 N N N )
Fmax D (| kg (rig —r55) || = 520D kiekighes |[rij — (B.54)
i=1 ||j=1 i=1¢=1 j=1
Let kpi, = min /=1 N (kej #0) and ain = min;—q, y o; with o; = Zjvzl k;j. One may write
=1...N
N N N ) N N N §
SN ik ||rig — || = ZZ Z kijkes |73 — 73]
i=1 (=1 j=1 =1 {=1 j=1
N N
> ZZ zikmmzkz] H""z] ZJ|
]_V _ 2
Z Z (673 mmzkz] Hrlj —’I":}H
> Clen min Z Z kzg ||T’Lj ”
i=1 j=1
> 2auminkmin P (Qa t) (B55)
Injecting (B.55) in (B.54) to get
N || N 2
kjmax Z Z kz] (’rz] - Tz*]) > aminkminp (Q7t)
i=1||j=
ol al i aminkmin
> kij (rig—ry)|| = — P (a1) (B.56)
i=1 ||i=1 max

and, using (B.51), one obtains:

amlnkmln
Zgz gi > =P (g,1) (B.57)

m
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B.4.3 Evaluation of c3

Let evaluate cs:

= B
_ min (ky, k3)
n max{l,kM}

min {Inin {k1,kp}, amkniknn}

max

max {1, ks }
min {kh k,p’ QminKmin }

max

max {1, ks }

€3

where k1 = ks — 1 — kp (kpr + 1), Qmin = min—1,_ N @; , kmax = max

min (=1, N (kej #0) .
j=1...N

(=1...
j=1...

N
N

(kgj) and kmin =



Appendix C

Appendix of Chapter 4

C.1 Proof of Theorem 8

Consider a given value of Dy, and 7, one shows first that the MAS is input-to-state practically stable.
One then evaluates the influence of Dy, and n on the behavior of the MAS.

C.1.1 Proof of the input-to-state practical stability of the MAS

Consider the continuous positive-definite candidate Lyapunov function

N N
_ 1 T Tpr—1 kg 1 w12
V = 3 ; (51' M;s; + A0; 1'; A@,;) + > §P (g, t) + ;ko g — qF || (C.1)
where Af; = 0; — §; . The time derivative of V is
1 -1k, d |1 ol
YA Trf o Tar s Tr—17. Rg ¢ 11 w2
Vo= ; {2& Mis; + s M;3; + A0] T; 91} +5 2 5P @D+ ;ko i — a7 ] (C.2)

where, from (4.10), one has $; = §; — ¢ + kpg;. Injecting (4.14) in (C.2) one obtains

. 1 . . Lo\ -
vV = E [281-TM1‘8¢+8¢TML'81‘+A9¢TY1‘ (4, qzwpupi)Si}
i=1
N
ky d [1 )
= — =P t kollg: — qf . .
5 7 |af (@ )Jr;:1 ollgi — g II] (C.3)

153
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The last term in (C.3) may be written as

1d
S 5 +Zk0”% g |I”
1d N N
= gaggkijﬂw il +2dtzkollqz ol
N _1 N . .,
= 2 §Zkij (rig —755) " (rig —75;) + ko (4 — )" (@ — 47)
i=1 ] j=1
N _1 N . ;
= 2|52k {(q’z‘—(ﬁ) (rig = ri3) = (4 — 45) (Tij—rfj)}
i=1 | 7 j=1

i=1 |~ j=1
ko (G — df) 7] (C4)
Since 7j; = —r;;, one gets
1411 N N N
2 |Zp TN — — —
2 dt ) (Qa t) + ZZZ; kO qu q?, H ‘| ; ql ZZ: TU + korl
N
i=1
Combining (C.3) and (C.5), one obtains
. 1 . .
V=>" {252Misi + 57 Misi + AOTY; (qi, dis iy Pi) i+ kg (0 — @) i - (C.6)
i=1
One focuses now on the term M;$;. Using again (4.10), one may write
M;$;i + Cisi = M; (G — §; + kpgi) + Ci (4 — G + kpgi) (C.7)
Using (4.1), one gets
M;s; +Css; = 7+d; — G+ M; (kpgl — q;k) + C; (/Cpgi — q;k) R (CS)
where one used (4.1). Now, introducing (4.13), one gets
M;si+ Cisi = —ksSi — koGi — i (qiy Gi, kpgi — 7 kpgi — @) 0;
+M; (kpgi — §;) + Ci (kpgi — d;) + di (C.9)
In what follows, one uses Y; in place of Y; (qi, G, kpéi — 4 kpgi — ) to lighten notations. Since
AO; = 0; — 0;, one obtains
s; Mis; = —kys] 85— kgs] gi — 5] Cisi + 5] (M; (kpgi — ;) + Ci (kpgi — G7))
—s1Y; (0; + A0;) + sTd;. (C.10)

Using (4.2) in (C.10) leads to
—s; Vi (0: + A0;) = —s]YiN0; — s] (M; (kpgi — @) + Ci (kpgi — 7)) - (C.11)
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Considering (4.2) and (C.10) in (C.6), one gets

N
. 1 ... » o
V= Z gng si — kss; 5 — kgs] i — 5] Cisi + 5] (M; (kpgi — ;) + Ci (kpgs — G;))

— 57 (M; (kpgi — @) + Ci (kpgi — 7)) — s} YiN0; + 5] Y;A0;
ko (6 — @) g+ sTdi]. (C.12)

Now, introduce (4.7) in (4.10) to get

N
$i =qi — qG; +kyp Zkij (¢ — g ) + kor; (C.13)
i=1
Since e;- = cjé — q;, one gets
N
s = —q +kp Z qj—i—e -j)—&—k‘ori
N
— —q; +kp Z ’I"U +k07’1 Z km ¥
p iZh
J#Fi
= Si+kyE), (C.14)
with since k; =0
Z kijet. (C.15)
Using similar derivations, one may show that
9i = gi + Ej. (C.16)
Replacing (C.14) and (C.16) in (C.12), one gets
N 1.
Z {SzT [2Mi - Ci] si — kst 5 — kg (4 — 47 + kpgi)" i
i=1
thps! (MiEL + CiBY) + ky BT YiN0; + kg (4 — )" g5 + s?di] : (C.17)
Let
N . .
Vi=Y2kps! (M;E} + CiE})
i=1
and

N
Vo = 2k, Z ETY;A0;.

i=1

Since 1 M C; is skew symmetric or definite negative, s} [ M, —C; ;] si < 0. For all b> 0 and all vectors
T and y of similar size, one has

1
<b:1:Ta: + byTy) . (C.18)
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Using (C.18) with b = 1, one deduces that d]'s; < 3 (D2, + s s;) and that

max

N

IEDS [T~ by 55T+ 5 DR
g (e — @) (91— 90)] + 5 (Vi + ) (c.19)
One notices that r;; = ¢; —q; = ¢; — (j;» + eé =T+ eé-, thus

Isi — &> = sTs; —2s75; + 51 5;

[k EL|* = sf 2575 + g,Tgi
s[5 = ||k Ei* + s si + ;s;féz (C.20)

In the same way, from (C.20), one shows that

o7 :f%HE;H2+%giTg¢+%§iT§i. (C.21)

Injecting (C.21) in (C.19),

N -
vy |E (kzllE’H — 85— 5 s)+k’f (||E§||279?gw§?§¢)+ls sz+2Dfm

=1 = .
N r 2
ke —1 ks ksk> + ko k ; 1 T
S ( . )SiTsi, . 1Tsz+pf”||EjH — hoky (gfgi+gfgz)+2Dfnax
=1 L
hy (s — 05)" (9~ )] + 5 (Vi + 7). (C.22)

Using (C.18) with b = b; > 0, one shows that 2¢7 (g; — g;) < (b s + 4 HE1H ) Using this result in
(C.22), one gets

N
; 1 3 7 .k
VoS 22[ (ks = 1) 57 55 = keSS (kk2+kk+ )HEH + bikg ll4: — df |
1
~kpkg (9 9i + 80 5) + Did + 5 (Vi +12). (C.23)

Consider now Vi. Using (C.18) with b = 1, the fact that M; is symmetric positive definite, and that
2T M;x < kyaTx, one obtains

M=

N
> 2k,s] (MiE] + C,E}) <

i=1

1

.
Il

Mz

< kp (kar + 1) s si + [k EITEL + ESTCTCiE]) - (C.24)

1

-
Il

Focus now on the terms E{"Cl'C;E}

N N

N N
S ErcraE; = 30 ke CiT C; (Z ’W?>

i=1 i=1 \j=1 =1

N N
sziékij 1C5|J € e} (C.25)

i=1 j=1 (=1

Mz
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Using (C.18) with b = 1, one gets

IN

N N N N
> ECICE; SO kicki; il (e£F el + e e})

i=1 i=1j=1 /(=

N N
> DD kickiy |Gl (¢ €))

1j=1¢=1

N
ai Y ki |Cill* (ef7et) . (C.26)

1 j=1

DN | =
—

Mz

.
Il

<

Mz

7

Since one has assumed that (4.29) and (4.28) are satisfied, one has (j} = cj?, eé» = e?:. As a consequence,

Z Z kji | e} || (C.27)

N
=1 i=1j=1

N N ‘ N
sziﬂ' HG;H :szm
=

i=1 j=1 i

and since k;; = kj;,

M=

N
> Bl <

i=1

N
one 3 [hs il mynﬂ)
Jj=1

|

-
s

Jj=1

1

.
Il

M=

b [lel]|” k2 IIQjIQ}) : (C.28)

i=1

Then, the second CTC (4.27) leads to

N
Y Brclon; < Z(awccue Sk Hq]||+n2))~ (€20

i=1 j=1

Similarly, one shows that
N N

> BB < 3okl

=1 i=1

N N
Do BTE <Y ake
i=1 i=1

and

Consider now V5

N
Vo =2k, Y E"Y;A0;
=1

— j=1

N N T
=2k, > | Y kel | YiAg, (C.30)

Since et = ¢’ one gets

J J’

2

T
N
V, = Qkpz (Z k”e,) Y;Af;
Jj=

Z ]Ze Y]AGJ

i=1

—

Mz i

2k,

Il
-

J

‘MZ

2k, Y el Zkﬂy Ab;. (C.31)
Jj=1

i=1
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Let 0, = [0, ... 0]" € R™ be the all-zero vector. If ¢! = 0,,, one has 2k,ei” Zjvzl kj;Y;A0; = 0. Consid-
ering now the case et # 0,,. Using (C.18) with b = b;» > 0, one obtains

N
Vo =2k, Y E"Y;A; (C.32)
1=1
ol 1
7 7 2
< kpz (bi?EjTEj R |V A0, ) : (C.33)

Since Zf;l E;TE; < Zf;l o ||e§||2, one gets
) al 2 i 2 1 9
Va <D kp (afibiz leill” + 5 Vil 1A
i=1 0

N
. 1
<k, (amg edl + 5 v Aai,maxu?) , (C.34)

where Af; max is given by (4.23).
L4 I1Y5 AGi max [I”

N 2 i 2
1+ [||Yi] A8; max]| il|? ex|| 1Yil Ab; max|
Vs = ;kp 0‘%4 ( HeiH > ||61H + (H H .

1+ Y] A

Since e! # 0,,, choosing by = , one obtains Vy < V3 with

(&

|||YZ‘ Agi,maxu2
L 1] A )

(C.35)

N
= >k et | ok (14 13 A mael®) +
(
Injecting (C.24), (C.29), and (C.35) in (C.23), one gets
N
D [= (ks = 1= ky (kar +1)) s]'si — kes] 5 + D}

i=1

—kpkogl gi — kpkodl Gi + kb ldi — 4711 + kpkarady [|é1]]

| =

1.
o, (k - >He 12 + asekob?, S ks [ + ) F 1 (©30)
j=1

The CTC (4.26) leads to

[ (ks — 1 — kp (kas + 1)) 7 — kghyg? g; + D2y + 1]

N —
.MZ

V<
1

-
Il

V S [_klsgsi - kgkpg?gl + Drznax ] (037)

[N
.MZ

i=1

with k1 = ks — 1 —kp (kp + 1).
Following the steps given in Appendix C.1.3 from (C.53) to (C.57), one shows that

N
V < *03V+ - [D2

max

N
C —
] + 53 > (20T A0, (C.38)

=1

where ¢3 > 0 is a positive constant. Introducing A.x = max;—1.y (Supt>0 (AHiTFflAQi)), one has

N
V< -3V + 5 [esAmax + Doy + 1] - (C.39)
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Define the function W such that W (0) = V (0) and

. N
W = —csW + — [D2 . + 1+ 30 max] - (C.40)

2 max

Using the initial condition W (0) = V (0), the solution of (C.40) is

W (t) = exp (—cst) V (0) 4+ (1 — exp (—est)) 2—](\; [Dfnax +n+ CgAmaX} . (C.41)

Then, using the Lemma 3.4 in [53] (Comparison lemma), one has V (t) < W (¢) and so

V() < exp (—cst) V (0) + (1 — exp (—cst)) 2N

73 [Drzna,x +n+ C3Amax] (042)

Since M; and I'; are symmetric, there exists matrices Sy, and St, such that M; = SﬁiSMi and
I, = SIZ; Sr,. Introduce now

r T
= Sas)” o Sws)” o (Sasn)” | (C.43)
r T
ur=| (Seta0)” L (seae)” L (Sotaoy)” | (C.44)
r T
o= @-a)" o @-a) . av—a) | (C.45)
r T
2= yl, oyl \/kgkoy:{ %"P(x, t) ] (C.46)
Then, V (t) can be rewritten as
Vi(z)= %ZTZ. (C.A47)

Using (C.47) in (C.42), one has Vt > 0

N
12 @)1 < exp (—cst) ||z ()| + (1 — exp (—cat)) . [Diax + 1+ €3 max]
2 N
=@ < \/exp (=est) ll2 (O + (1 = exp (—e5t)) - [Diax + 71+ €38max]

12 ()] < /exp (—est) |2 (0)]| + \/(1 — exp (—cst)) a

g [D?nax +n+ C3Amax]

IOl < exp (=) 12 O+ ) 2 102,047+ s (C.49)
and so
=@l < Bz 0),t)+p (C.49)

with p = \/% [D2. + 1+ c3Amax], Bz (0)]],t) = exp (=<t) |2 (0)], and B € KL (see Section 1.4.5).

Using Definition 2.1 from [48], (C.49) implies that the MAS is input-to-state practically stable.

C.1.2 Convergence of V'
From (C.49), we know the system is ISpS. Moreover, from (C.38), one has

N
. N c _
V< —esV ot o [Dh 0] + 5 ) (80T A0) (C.50)

max
i=1

Then, if initially

N c a _
~sV (0) + 5 [Dhae 1] + 53 ; (AG;T71AG;) <0 (C.51)
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one has V < 0 and V is decreasing. Then, one has from (C.42)

N
lim V (t) < % [D2.x + 10+ c3Amax]
c

t—o0

N
. Lk N
Jim = ?1 (s Misi + 80, T 1 A7) + 2 (} 1: ko |lril* + P(q, )) < 5o [Diax + 1+ €3 Amax]

N
lim — (Z ko ||’I"Z|| + P(q» )> < T [Dr211ax +77+C3AmaX]

{00
1 T Tp—1
~ Jim 5; (sTM;si + AT AG;)
hm i k i 2
o il + 5P (a,0) < ey [P 1 e38mas]
(C.52)
Asymptotically, the formation and tracking error are bounded.
C.1.3 Complementary proof elements
Differential equation satisfied by V'
From (C.37), one gets
1 N
<3 Z (st 51 = kg9i 9i) + Dipax +11] (C.53)
where kn, = min {k;, k,}. Using (C.64), one may write
ST YR+ (2 + Cabun ) g
i=1 i=1 max
N , , 1
ko <§ kg [lml|” + §P (‘Jvt)) (C.54)
where
. {2 (2k0 + %) if (Zko + a) <1
1 else.
Then

N N 1
ZgiTgi > ko (Z kg |lrsll* + 2P(q7t>>
i=1 i=1
a 1
2
k3 <§ ko [|rill” + 2P(q7t)> (C.55)

where ks = kokg if kg < 1, k3 = 1 else. Then

1  ksk N
: 3
V§_§ — (k S 31 (Zko |rl|| + P(qa )) +7(Dr2nax 77)
1 [1E kg 1 N
2
< [ o) 25 (St ) |+ (@R
by (1 ky [ 1 N
< [2; (knisf i) + 5 (;korzﬂ +5P )) 5 (Dhax 1) (C.56)
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with k5, = 1if kyr < 1 and k3, = ks else, and ks = min (ky, k3). Let ¢5 = ]f:‘

N
- 1 Tph—1
V<—c 521:[3 M;s; + A0, TT7AG;] <§ ko |lrill* + P(q, ))]
N
N 03 _
D? = E AG;TT A0,
2 [ max 2 — 0 7

C3

V < _C3V + E [Dfnax } + E (Ae%TP;lAgl) .

M=

7

C\D’_‘

The evaluation of ¢3 is described in Appendix C.1.

Upper-bound on Zf\il 97 g;

From (4.7), one may write

N N [~
nggi = Z Z kij (rij — Tfj) + kory Zk” rij — i) + kor;
i=1 i=1 |j=1
i 2
N N N
= Z Z kij (’I"ij — Tfj) + ||l<:01"i||2 + 2 (kori)T Z kij (7’1;]- — r;‘j)
i=1 | ||j=1 =1
Let
N N
= el [ D ki (rig—5))
i=1 j=1

Since ri; — 1}, = ¢ — qj — (qF — q]) =r; —rj,

=)

H MZ Il MZ

(b
»t

(rlry—rlr;).
Using the fact that 2a7b = aTa + b7b — (a — b)" (a — b), one gets

N N
2 1 2 2 2
P=>"Yky (||m|| =5 (Il + i1l = firi = w51 )>

i=1 j=1

3 _— .. J— . — ot — *
Since k;; = kj; and r; — 1 =1y 5

ZZ/% Ir)” —fZZkﬂunu +2 sz” s —

i=1 j=1 i= 1] 1 i=1 j=1
1N .1 ,
) TS 3) 3 Y L LR
i=1 j=1 i=1 j=1
= P(q,t
Injecting P; in (C.58), one gets

2

ZgiTgi = Z Zkij (rij —ri;)|| + [kori||* | + 2koP (g, t)

i=1 i=1 | ||j=1

161

(C.57)

(C.58)

(C.59)

(C.60)

(C.61)

(C.62)

(C.63)
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and using (C.70), one gets

kmax

N N

aminkmin
S e = S Bl + (zko n ) P g1 (C.64)
=1

N N NIE
Upper-bound on )", ‘ijl kij (rij — rij)

One may write
T
N N
Z kv] Tij — 7'1' i <Z kz/ T?@ >
=1 J=1

N N N .
=D > D ek (rig —riy) " (rie — i) (C.65)

14=1j=1

N
Zk Tij —

j=1

>

i=1

i
Using the fact 2a”b = aTa +b7b — (a — b)" (a — b)

N ||~ 2 N[ NN
Z Zk Tij — = Z {2ZZ’W’% [HTU - Tfe||2 - Hrij — iy — (rie — H }
i=1 ||j=1 i=1 r=1j=1

(C.66)
One has

(rig —ri;) = (rie = ry) = (rig — rie) — (r3; = 7i)
=T — r;j

Injecting this result in (C.66) leads to

XN: XN:’% (rig =) =D [

N =

i=1||j=1 i=1 =1 j=1

& % 112 * (12 % |2
DD kicki; [Hw =15l lrie = 75l = [Jrey — 7i; | ] (C.67)

with kpax = max /=1 N (kej)
j=1...N

N N 2 N 1 N N ) )
b || Ky (reg = ri) || 2 D0 | 5 D0 D kaehughe [ = rig* = lirse = vl = ey = %57

i=1||j=1 i=1 5:1 j=1

N N 2 1 N N N ) 1 N N N
Fmax Z Z kij (rij —ri5)|| > 3 Z Z Zkiékijkéj [rij —ri5|” + 3 Z Z Z Kickijhey |[rie — 3|l

i=1 ||j=1 i=1 f=1 j=1 i=1 ¢=1 j=1

1 o 2
=520 > hackighe; ||re; — |
i=1 j=1
2

N

N N ) 1 N N N )

DD Kickighe [[rig = |7+ 5 DD 0D Kiekigheg [[ri; — v
i=1 =1 j=1 i=1 (=1 j=1

N

N

N 2
Z kickijkej ||ri; — 5|

N
Z kickijkej ||rij — 73 ||2 . (C.68)
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Let kpi, = min /=1 N (kej #0) and apin = min;—q, .y «;. One may write

=1...N

N N N , L N 2
Zzzkwkmk@!’ﬁj—rfjﬂ :ZZ Zkijklj [7i5 =l

i=1 (=1 j=1 i=1

N N
EZZ wkmmzkm HTU w|
10=1 Jj=1
ST W

=1

> amln min E E klj HT’LJ

=1 j=1
> 20minkmin P (q; t) (069)

=

Injecting (C.69) in (C.68) one gets

N N
kmax Z Z kzg Tij — i > aminkminP (qa t)
=1

a Ominkmi
> kij (rig =) || = EEERP(g,1). (C.70)

1 kmax

=1 ||j=

Evaluation of c3

One has

ky
ks
min (i, ks)
max {1, kar}
min {min {k4, k,} , min {koko, 1}}
max {1, kar}
min {klv kpa 13 kaO}
max{l,k‘M}
sty i o+ o) 1)
max {1, ky}
min {kh kpa 3 kO, 2]{70 (2k0 —+ %) }

- max {1, ks } (©.1)

where k1 = ks — 1 — kp (kpr + 1), Qmin = minj—1, N &; , kmax = max (kej) and kmin =

{f=1...N
j=1...N
min

t=1.. N (ke #0).
—1...N
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C.2 Proof of ti,k+1 — ti,k’ > 0

From the CTC (4.26), a communication is triggered at t = ik when
T _r_ 112 112
ko8] 50+ kpkogl i +n = o (k’e led||” + kpkar €3]] )

N
+ anikBhy [led[* D" ki (151 + ma])” + kb llds — 6z
j=1

1[Yi] A8 max |
(1 + H|Y:L| Aei,maxnz)

et { o (1 + 11¥] A0 ma?) + (©.12)

with k. = (ksk‘f) + kgkp + ’Z—g) Then, the estimation errors e} and ¢! are reset and one has ! (t:rk) =0
and é! (tjk) = 0. As a consequence, the CTC (4.26) in Theorem 8 is not satisfied at ¢ = t:k iff
ko518 + kpkoGl i +n > kb lldi — @71 - (C.73)

To prove that ¢; +1 > t; 1, one has to show that (C.73) is satisfied.
Using the property 27y > —1 (bmxTx + éyTy) for some bjp > 0, one deduces that

515 =kagl gi + ldi — a;11* + 2kpg! (45 — d7)
2@}%@@#@+(Lwé)m—%w. (C.74)
(2

Using (C.74), a sufficient condition for (C.73) to be satisfied is

o k L 7o L
b 0 = ) a7+ o (1= 32 ) s = 17+ K34 1> B s = 71
k L o L
ks (1 - b:;) g — G5 11* + [koky + ks (K = kpbi2)] 97 i + 1 > kgbi lld: — 471
kgl g+ > ke lldi — ;) (C.75)
where ky = [kpkg + kg (kf, _ kpbﬂ)] and ky = [kgb,; — ks (1 — %)] To ensure that the inequality (C.75)
is satisfied independently of the values of g; and ¢;, it is sufficient to find b; and b;5 such that k; > 0 and

ko < 0. Consider first k.

kpkg + ks (k2 — kpbiz) > 0
g
ks

> (—kp + bi2)
L‘k* 5o > b, (C.76)
Focus now on ks
kyb; — kg (1—;; <0
<k (8 o



C.3. POSSIBILITY TO START A COLLISION AVOIDANCE MECHANISM BEFORE COLLISION165
Since b;s > 0, one has k,z—b < 1and so b; < ,]:—g Then

ok,
———— < bjo. .
o — kgbi < 02 (C 78)

Finally, one has to find a condition on b; such that (C.76) and (C.77) can be satisfied simultaneously

%jkg bia k]“_]“é[) (C.79)
One may find b;o if
2
ks — kyb; > klfpkp -
1 E2k
(o wn)
by < kkf+kg (C.80)

which also ensures that b; < ks

7=. Thus, once b; < ﬁ, there exists some b;o such that (C.79) is
g sivp g
satisfied. As a consequence t; 41 — t; > 0.

C.3 Possibility to start a collision avoidance mechanism before
collision

The CTC 4.35 ensures that V (i,7) € N/

AT
Tij

N i
T T

5 U5l =re) > el
3 (7] =re) + 3 il =) > e + | ©s1

Since there is no communication delay, the estimator (E.34)-(E.38) guarantees 7;; = ffj One gets

7

7551 = e > llei]) +
= lletll = ||t = 7 > 0

i i J
Tij — € + €;

j
€j

Al
|n-j

—7.>0

V(i,j) €N lrigll >re. (C.82)

The CTC allows thus agents, which are close to collide, to update their state estimates. This update is
performed before a collision has actually occured.

The candidate Lyapunov function V' introduced in (C.1) with the new control input (4.32). Following
the same steps from (C.1) to (C.10), one gets

i M;s; = —kys] 5i — kgs] i — 5] Cisi + 5] (M; (kpgi — G ) + Ci (kpgs — G;))

Using the property z7y < % (xTx + yTy) , one deduces that v} s; < % (17?171» + sZTsi) . Then

N

. 1.

V< E {SzT |:2Mi - Ci:| si —kssi 8i — kg (4 — 47 + kpgi)T Ji
i=1

. ) 1
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Following similar steps from (C.17) to (C.37), one gets

N
.1 .
V< B Z {— (ks —2 —ky (kas + 1)) s7si — 2kgkpgl g + D2 + 1+ igiT{,i
i=1

When a collision avoidance mechanism is started, the derivative of the Lyapunov function may be tem-
porarily positive due to the term %ﬁiT@i. In absence of such mechanism, v; = 0. This is in particular
the case when 7;; is close to r;. The convergence of the MAS may be thus only temporarily affected by
collision avoidance mechanisms.



Appendix D

Appendix of Chapter 5

D.1 Proof of convergence with packet dropout

Inspired by the proof developed in [25, 95], consider the continuous positive-definite candidate Lyapunov
function

N
_r(l TaLs + AOTT1AG,) 4+ Fo
V-E(QZ;(SZ» Mis; + A0 T AG) + 5

1 N
§P(q7 t)+;ko Il —qZ‘IIQD (D.1)

where AHZ = él — 91
Let define t; is the first message sent in the network, whatever the sending agent. If ¢ € [0, ¢1[, one
may write

N
Vit EZ (sFM;s; + AOTTIA0;) +
=1

[\)

N
t)+ Zko lgi — q;ﬁ] (D.2)
i=1

and the time derivative of V exists and can be evaluated as

1 N
~P(q, t)+ Y ko ||qi—q§‘||21~
=1

y - 1 T 1 kg d

=1

where, from (4.10), one has $; = G; — ¢ + kpJi-

Considering now the case ¢t > t;. Let o?fc be the random variable used to represent a stochastic
occurrence of packet dropout linked to the reception of the k-th message by Agent i, whatever the sending
agent. Since d};. is assumed to be modeled by a Bernoulli stochastic process, independent of time and
agents’ state, one may write

1 N K
=3 > g (sT Misi + ATT T AG)
21:1k=1
kg [1 o o e -
Ty 522 (|7’ij*7"ij|| Jr]€0||f]z‘*qi||)
i=1 k=1
1 N K
5. 1) (s Misi + A6 T AG)
z:lk:l
Ak Y& e .
+5 32 (1-a) (H”’J_Tin +k0||Qi_qi||) :
=1 k=1

where K € N is the number of all messages broadcast in the network at the instant ¢ since ¢t = 0. Thus,

167
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the time derivative of V exists and can be evaluated as
N K

: 1
Vi)=Y a [5 M;s; + st M + ATT; 19}
=1 k=

1
kg d [1 Q8 & ;
+5 [QZZ H“J il ko llai — g ”2)1
N K 1
+Y > (1-aj) [25 M;s; + 57 Mys; + AOTT; 19]

1
kg d [1Qa & .
4 Ega [222 (1 —d;c) (H'f'ij —T;ijz'FkO llqi _Q;||2)‘|

which is equal to

1 i1 ke d (1, al
E (Z LSZTMZ‘& + 8T M;s; + A@?Filei] 7‘7(7 ~P(q t)+ Z ko llgi — q;k||2 > (D.3)
=t i=1
Injecting (4.14) in (D.3) one obtains
N1
Vo= EZ {QS?MiSi + 5] M;si + A0]Yi (i dis Dis i) Ez]
i=1
kg d 1
£ ko lli D.4
<2dt (g, t JFZ ollai — %”]) (D.4)
In (D.4),
N
1d |1
s |2t e +> kollgi — gl ]
i=1
1g X
= qa 2l Q@Zko las — ;12
N _1 N .
- Z 527431]'(7"” ) (rij ) +ko (¢ — ;)" (4 —a;)
=1 L j=1
N _1 N .
= Z 5 Z kl] |:(QZ —q; ) (7'1_] 7’1]) (QJ q]) (7’@] TL]):|
=1 L j=1
o G — )" (@~ a7)
N _1 N
T T
- Z Zk‘” {(q ;)" (rig =) — (@ — ;)" (rji rﬂ)]
i=1 | % j=1
+ho (¢ — ;)" n} : (D.5)
Since r;; = —r;;, one gets
1d |1 N N N
*(12 T
2.dt ip @0+ Zko Iz =41 ‘| B Z (¢ —d;) Zkij (Tw TZJ) + kor;
=1 i=1 j=1
N
= > @G-d) g (D.6)
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Combining (D.4) and (D.6), one obtains

N
i=1

One focuses now on the term M;$;. Using again (4.10), one may write
M;$i + Cisi = M; (Gi — G; + kpgi) + Ci (4 — G + kpgi)
and by using (4.1), one gets
M;s;+ Cisy = 7i+di — G+ M; (kpgs — G;) + Ci (kpgi — 45 ), (D.8)
Now, introducing (4.13), one gets

M;s;+Cisi = —ksSi — kogi — Yi (@i, Gis kpgi — @7 kpgi — d7) 0,
+M; (kpgi — ;) + Ci (kpgi — 47) + di (D.9)

In what follows, one uses Y; to represent Y; (qi7 qgi, kpéi — G, kpgi — q;“) Since AY; = 6, — 0;, one
obtains

s Misi = —kss] 5i—kgs] gi — 5] Cisi + 5] (M; (kpgi — G) + Ci (kpgi — d7))
—sTY; (0; + A0;) + s1 d; (D.10)

Using (4.2) leads to
STV (0 A0) = —sTYiA0: — 5T (M (kyds — @7) + Ci (s — @) (D.11)

Considering (4.2) and (D.10) in (D.7), one gets

N
V=E (Z [QSiTMiSi — kysi 8 — kgsi Gi — 5; Cisi + 57 (M (kpgi — i) + Ci (kpgi — G7))

=1
— 51 (M; (kpgs — @) + Ci (kpGs — 47)) — 5] YilA6; + 5] Y, A0,
+hg (G — 67)" gi+ sdeiD : (D.12)

Now, introduce (4.7) in (4.10) to get

si=¢qi—q; +kp Zkij (¢ —aqj —75;) +kori | - (D.13)

Since €} = ¢} — g;, one gets

N -
si = ¢i—q; +kp Zkij (¢ — @ + €5 — 7)) + kori
i=1 ]
N N
- ql - C];< + k’p Z k‘ij (’I:ij - T';'kj) + k’o’l‘i + k‘p Z kije;
i=1 S
7=1
JFi
= 5+ kE (D.14)
with since k;; =0
Ei =" kijel. (D.15)
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Using similar derivations, one may show that
9 = gi + Ei. (D.16)

Replacing (D.14) and (D.16) in (D.12), one gets

N

<Xﬂs{' } — kosT5i — kg (6 — 6 + o) G

=1

thypsT (MBS + CiE}) + ky BT A0, + ky (d —q'f)Tgi—&-sZTdiD. (D.17)

Let V; = Z 1 2kps; (M E’ + C;E? ) and V = 2k ZZ 1EZTYA0 Remind than 1M C; is skew

symmetric or deﬁmte negative, so s? [2M; — C;] s; < 0. For all b > 0 and all vectors z and y of similar
size, one has

1 1
Ty < 3 (ba:Tx + byTy> . (D.18)
Using (D.18) with b = 1, one deduces that df's; < 5 (D2, + s! s;) and that

N
. _ 1 1
V < E < g {kssiTsi — k:gkpgiTgi 25 S + 2D12nax

i=1

+@@@F@igﬂ+;GA+%ﬁ (D.19)

One notices that r; = ¢; — ¢; = ¢; — (j} + 6; = Tij + 62'7 thus

||SZ — 51”2 = S;-TSZ' — QSzwgl =+ g;Tgl
ss = Hk ElH + s s+ 2575, (D.20)

2 7

In the same way, from (D.20), one shows that gl g; = -5 HEZH + zgl gi + %gfgi. Injecting it in (D.19)

N
vV o< E(Z[ (/#H [ -—ssz)+kk (HE’H g?m—@?@)ﬁs sz+2D3nax
i=1

o= 00 (0= 9] + 5 (G4 72))

N
ks —1 ks _+_ ks k +k‘ kp
< (3 |-Gt B M g i) + 100,
=1
1 . .
+@@—@F@—mﬂ+gm+wﬂ. (D.21)

Using (D.18) with b = b; > 0, one shows that 2¢7 (g; — g;) < (b (Fals + 50 HEZH ) Using this result in
(D.21), one gets

1 k )
< 22[ (ks — 1)E (s7s;) — k,E (57 )+<ksk12,+kgkp+bf)E(HE}HQ)+bik:gE(||q'i—qj||2)

1 . .
—kpkgE (97 9i + 9 51) + Dinax] + 5E (Vi + V2) (D.22)
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Consider now V. Using (D.18) with b = 1, the fact that M; is symmetric positive definite, and that
2T Mz < kyraz, one obtains
N
> 2kys] (MiE] + C,E}) <
i=1

ky (sf Misi + s] s; + [E;TMzE; + E;TCZTCzEﬂ)

-

@
Il
s

< kp ((kar +1) st 's; + [k EXPEL + EX'CICiEL]) - (D.23)

-

=1

Focus now on the terms E{"C/'C;E}

M=

N
1T ~T 7 _
Y E'CICE, =

i=1 i

1 \j=1 (=1

N N

N

2 3 3
Z Kacks; ||Ci||* € el (D.24)
17=1¢

Mz

\ I
-

.
Il

Using (D.18) with b = 1, one gets

N
T ~T i
> ETCICE;

i=1

N N
> DD kickiy | Cill* (¢ ¢ + e el)

j=1 b=

N N
SN kiki 11C:)1? (e27eh)

1j=1¢=1

N
> ai > ki G (e e)) (D.25)

Jj=

IN
N | =
11

—_

Mz

3

Mz

N
Il
—
—

Since k;; = kj;, one gets

N N N N 9
ZZ UHBJ| Z kji ||e; :szij e/ (D.26)
i=1j=1 i=1 j=1 i=1j=1
and so
N _ N N
Y EICICGE, < Y |au), {kw ||c [ ]
i=1 i=1 j=1
N N 9
< D |emd] [ku el k2 '-2} - (D.27)
i=1 j=1
Then, the second CTC (5.26) leads to
N
> EB'clCiEl < Z aMkCZk” (||q]||+n2) : (D.28)

i=1

i N it i o 5N N i|?
7 7 e
ef|| and > i, B E; < dim1 OM Ej:l kij ||€;

Similarly, one shows that Zivzl ETEL < Zivzl an Z;VZI k
Consider now E (Vg)

N
E (V2) = 2k,E <Z E;ZTYZ»A@)
i=1
T
N N
=2k,E [ > kijeh | Yido; | . (D.29)
1

i=1 \j=
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Let 0, = [0, ... 0]" € R™ be the all-zero vector. If e = 0p,, one has /7 Y;Af; = 0. Considering now the
case € # 0,. Using (D.18) with b = bz > 0, one obtains

N
E (V2) = 2k,E (Z EjT}QAGi> (D.30)
=1
a 1
1T i 2
< k,E (2 (biQEj E; + e (| Y A0, )) : (D.31)

12
el ), one gets

Since Y511, B (55715) < 1L o S b

) N N 2 1
(%) <k, Y (o 3o (el ) + oo i o
i=1 j=1 *

2 1 )
) + g 19 A (D.32)
12

N N
< kpz biQQlekijE (
i= j=

1+H D/'ilAa'i.max”2

where Af; nayx is given by (4.23). Since 35 € N €% # 0,,, choose by = and one obtains
| ’ VL kam ()

ij

E (‘/2) <E (Vg) where

\/ZJ g (el ) 1l 261

(14 13 A )

B(5) =k, 3 fan 1+“'Y'Mm“ S () +

i=1 =1
(i) )

N 2
|||Y|A9i deH

=@ZJZM@(H H) aM(1+H|Y|AeZmaX||) (1+|]m|A7e;max||2) (D.33)

i=1

Injecting (D.23), (D.28), and (D.33) in (D.22), one gets

N
. 1 7
V< 52 kep (kar + 1) E (s7's:) — ksE (57'5;) + D2,

i=1
2)

N
kB (97 03) = iph B (57 5i) + g (1l — a7 17) + ks > anehig B ( ¢!
j=1
2 .. 1.
Al) U +ml? | + 57

N
(k k2 + kgky + ) ZaMkUE < ) +kpk Y kijonE (
j=1

(D.34)
The CTC (5.4) or (5.25) lead to
o1
V<5 D [ (ke 1= hy (kar + 1) 5T 51 = kgl g0+ D 471
i=1
L
V<5 E[—huslsi— kghpgl gi + Diax + 1] (D.35)

1

~

with k1 = kg — 1 — &y (kas + 1).
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Following the steps given in Appendix D.1.1 from (D.53) to (D.57), one shows that

. N c3 o _
V< eVt o [Dia ) + 53 > E(A6,"T; A, (D.36)

max
i=1
where ¢3 > 0 is a positive constant. Introducing A,,.x = max;—1.n (supt>0 (AGiTFi_lAG,;)), one has

. N
V<-aV+o [esAmax + Doy + 1] - (D.37)
Define the function W such that W (0) = V (0) and
. N 9
W = —C3W + 5 [Dmax + n —+ CgAmaX} . (D38)
Using the initial condition W (0) = V (0), the solution of (D.38) is
N 12
W (t) = exp (—c3t) V (0) 4+ (1 — exp (—est)) 2o [Dmax +n+ c;»,Amax} . (D.39)
3

Then, using the Lemma 3.4 in [53] (Comparison lemma), one has V (t) < W (¢) and so

V(1) < exp(=e3t) V(0) + (1 — exp (—e3t)) % [Disax + 1+ €38 max] (D.40)

Since M; and I'; are symmetric, there exists matrices Sy, and Sr, such that M; = SﬁiS M, and
Iy = S{ Sr,. Introduce now

=] Sas)” o Sws)” L (Sasn)” ]T (D.41)
= (Setae)” L (Seae)” L (Sotaoy)” ]T (D.42)
Yg = [ (@ —a)" o (@—a)" o (v —an)” }T (D.43)
z= [ vir uF VEekoy; \/ 3P (1) }T (D.44)

Viz)= %E (z72). (D.45)

Using (D.45) in (D.40), one has V¢ > 0

E (=017 < exp (~est) E (I (0)1F) + (1~ exp (~est)) - [Dd+0+ 5B . (D.46)
3

Since the variance is always definite semi-positive, i.e. 0 < Var (||z (¢)]|), one has

Var (|2 () <E (12 ®1°) - E (= @)1)*
0<E (Il @I°) ~E(l= 1))’
E(l @) <E (I 0)7). (DAT)
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Using (D.47) and E (Hz 0)]| ) |2 (0)||* in (D.46), one gets

2 (J2(0)17) < exp (~cst) B ([ O)) + (1~ exp (~cat) - (Dt 1+ com]

E (2 (0))* < exp (~est) E (I12 (0)]1*) + (1 — exp (—eat)) — v (D 1+ 58mas]

B (12 (0) < yfexp (~est) B (12 0)17) + (1 — exp (—est) x = (DR + 14 3]

(1= (O) < | fosp (-est)E (12 O)I) + /1~ exp (-est) & B (Dl 1+ 1

E(lz (1)) < exp (~5t) l12 (0)]] + \/ D200t 3] (D.48)
and so

E(ll=@1) < B lz ). 1) +p (D.49)

with p = \/ (D2, + 1+ c3Amax], B (12 (0)]| ;1) = exp (—$t) ||z (0)]], and B € KL. Using Definition 2.1
from [48], (D.49) implies that the MAS is input-to-state practically stable.

Convergence of V

From (D.49), we know the system is ISpS. Moreover, from (D.36), one has

. N c a _
V<=V + 5 [Dh 0] + 53 ;]E (A6, 7T 1AG;) (D.50)
Then, if initially
N c al _
~e3V (0) + 5 [Dfas +1] + 53 ;E (A6,7T;1A6;) < 0 (D.51)

one has V < 0 and V is decreasing. Then, one has from (D.40)

N
lim V (t) < T [D?nax +n+ CBAmax]
C

t—o0

N
Jim E <2 ;:1: (50 Misi + A6 T A0) + > ko llril* + Pt ] )< % [Diax + 1+ €3 Amax]
E

ky 1 N
tlggo? (; ko [rill” + 2P((Iat)> < 2%, [Dmax+77+03Amax]
| N
— lim = ]E(s Msl—i—AHTF 1A9)
t—oo 2
=1
a 1 N
. ) 2 - v 2
Jlim E (; ko |lrill” + 2P<q,t>> < cs (Do + 1+ €3 Amax] -
(D.52)

Asymptotically, the formation and tracking error are bounded.

D.1.1 Complementary proof elements
Differential equation satisfied by V'
From (D.35), one gets
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N
V<S> B [~k (878 — kggl 1) + Dipase + 1] (D.53)

i=1

where kn, = min {kq, k,}. Using (C.64), one may write

S gl > SR Il + <2k:o n M) P g1
=1 )

= kmax
a 1
2
ko <§_; kg lIrill” + 5 P (qJ)) (D.54)
where
o = {2 (o 2] 3 (k4 o) <
2 = max Emax
1 else.
Then

N N 1
> ot > in (sl + )
=1 i=1
al 1
2
3 (; ko [Imi|” + 2P(q7t)> (D.55)

where ks = kokg if kg < 1, k3 = 1 else. Then

N
V§E<;Z mS 51 k3 (ZkO ”n” + P(Q? )) +E(D?nahx 77))

1 [1 ¢ . Fakg 1
3 2
S]E(— o [2 z:Elk‘m kns? S (E ko ”TZH —|—2P(q, )) + (Dmax ))
k 1 N 1 N
<E[-—2|:= 29 ill”+ 5P — (D2 D.
< ( b l2§ (kisT'si) + 5 (? 1:k:o||r I+ 5P (g, )) + 5 (Dinax + )) (D.56)

with k%, = 1if by < 1 and k3, = ks else, and ky = min (kp,, k3). Let c3 = ,f:‘ and one gets
M

N
: 1 T T—1 k
V<E <—63 l2 Eﬁ { Misi + A0 T A o g ko ||r: || + P(q7 t)

N [Dfnax Z AG;TT A, )
=1
N c al
V< —eaV o+ 5 [Di +0] + 53 STE(A6TTIAG) . (D.57)

i=1

The evaluation of ¢3 is described in Appendix C.1.3.

D.2 Proof of Lemma 3

Let define the set {¢; k, ti g1, - .-, tik+r } where V0 € [k... k+ K], t; p+1—ti0 = Tmin and t; gy x—tip < €.
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At t; 42, one has
e} (tipyz) = & k+2q2 (tikt2) + (1 - df,kJrg) ql (ti,k+2|(jg (t;k;_i,_Q)) — qi (tikr2)

= ( a; k+2) [ﬁf (ti,k+2|@g (t;k+2)> -G (ti,k+2)]
- (1-

& een) [[Ena] ol as tonen) + (1= ) @l (tinral @ (tinrn)) | = s i)
(D.58)

. If the message is received, i.e. dg,k+2 = 1, one gets (jg (t) = ¢ (t) Vt € [tik+1, tiksa[ Thus, using
! (t1qi (tik+1)) = @ (t @i (i k+1)), one has

el (tinia) = (1 - dz,k+2) [@f,kﬂfiﬁ (tik+2l @i (tikt1)) + (1 —q; k+1> q (ti,k+2| gl (ti,k+1))
—qi (tik+2)] (D.59)

Studying (jg (ti7k+2| (jg (ti7k_1)>, one has

el (tinre) = (1= 6 1ss) [0 a@ (tinsal @ (tigsn) + (1= 64 ) 6000 (sl s (1))
+ (1 - &Z,k> a (ti,k+2| s (ti,k))} —q (ti,k+2)} (D.60)

and by using qu (tlqi (tik+1)) = ! (t| gi (tig41)), one gets

el (tinre) = (1= ) [0 1@ (ol (tisn) + (1= 6L 4n) [ 0000 (ol @ (1)
)] (D.61)

o
(1 —ay k) ql ( ik+2| @ qZ )] — qi (Lik+2

For all Vt € [LLU?, tigx + 6], T (t) ~ x; (ti,k) and i‘z (t) ~ f?i (ti,k)- In particular : ¢; (ti,k+2) ~ q; (ti,k+1)
and ¢! (tik+2) ~ ¢ (tig+1) =~ ¢ (tix). Thus, it can be written

el (tiny2) ~ (1 - dik”) [dg,k-i-l(ﬁ (tik+2] @i (tin+2)) + (1 - 5‘5,%1) {df,k(ﬁ (tikr2| g (tik+2))
+ (1 - dfk> 7 (ti,k+2| g’ (ti,k—&-Z))} — ¢ (ti,k+2)}
= (1 - dimz) [ df,kﬂ + df,k (1 - @g,kﬂﬂ G; (tigs2) + (1 - dg,k+1) (1 - dg,k) @l (tik)
—qi (tik+2)] (D.62)
Thus, for any t; j4 x

k+K—1 k+K—1 k+K-1

el (tigrx) ~ (1 - dg,kJrK) >oal, 11 (1 - 0732) @ (i) + [ (1 - d{’z) G (tigrx) — @ (tiprxc)
=k t=p i1 =k
(D.63)

Using (D.63) and Vt € [t; 1, tix + €|, zi (t) =~ 2 (tig) and &7 () =~ 27 (t; 1), one gets

e (]

Since variables dg , are independent Bernoulli-distributed, one gets

4 2 K
E <‘ ¢l (ti,HK)H ) ~ (Za(l _ a)p> 6 (tix) — @ tix) ||+ (1 — @)%

2

] 2 k+K—1 , k+ K , k+K
€ (tz‘,k+K)H ) ~E >, al, 11 (1—@3,15) g (tix) + H (1—a ) @l (tix) — i (tik)
p=k

l=p+1
(D.64)

¢ (tix) —ai (ti,k)HQ (D.65)
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Since @} (ti,x) = i (ti,k), one has

il

Since @ < 1, (D.66) is decreasing when K grows and converges to zero if K — oo. The proof Appendix D.4

. 2
el (ti’kH{)H ) =0, so the CTC is no more satisfied.

al (tix) — a (ti,k)HZ (D.66)

A i) ) = (1= 0"

shows absence of Zeno behavior if E (

D.3 Evaluation of additional expectation using the Lemma 3

Let study the following three cases for the expression of ég , depending on the considered time interval:

Case(5.20) If Vi e [t;h, tik [, one has

l

%
€

D=e(lew-aol)

&0 -a0 (D.67)

Case(5.21) If Vt € [t; k, t; x+1], one has

2 , , o ,
B () =2 (allai -l + (1 - L)

—allg—a|*+0-a

oj <7 .
€; q; — 4

)
i 2
@ — g (D.68)

Case(5.22) If t > t; 4k where 3K € NJK > 2 and ¢ p+x — tir < €, similarly to the proof of
Appendix D.2, it can be obtained

) k+K  k+K . k+K ) )
e (tinrr) = | D al, ] (1 - @?,e) a (tiner) + [ [ (1 - 073,[) q (tigsx) = i (tigks )
p=Fk {=p+1 =k
which can be upper-bounded by
‘ k+K  k+K 4 k+K , ,
&)~ [ D> al, ] (1 - 07?,@) a (i) + [ (1 - d?,e) @ (tikrr) = @i (tikyr) -
p=k

t=p+1 o=k

One finally gets

il

D.4 Absence of Zeno behavior

& (tik) — qi (fi.,k)HQ (D.69)

ég (tz‘,k+K)H2) = (1 - (1= a)K) H‘ff (tig) — @ (ti,k)HQ +(1- a)K
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From the CTC (5.26), a communication is triggered at ¢ = ¢, when

) enn ()

2 24 2 . k12
) [+ ]| + kb ldi = 671

J -7
€ €

N
kos] 50+ kokogl g+ 1= ont | ki <k:eE (
j=1

J
€

N
k2 | el Zkijﬂi(
j=1

+ kpikijﬂ*: (HeZH2> am (1 + [IYil |A0i,max|“2) + Y3 1A
=1

2
(14 1Y 180, )
2
with k. = (kjékg + kgky, + ﬁ—j) Then, the expectation E ( ) and E <

(D.70)
communication protocol described Section 5.3.2. As a consequence, the CTC (6.6) in Theorem 11 is not
satisfied at ¢t = t:k iff

J 2 J
€ €

2
) converges to zero since

ks5L5; + kpkoal G +n > kobi |l — a7 (D.71)

)

Similarly to Appendix C.2, the absence of Zeno behavior can be proven.

12 .
Similar proof can be make by replacing E ( el ) is replaced by E ( el




Appendix E

Résumé francais

E.1 Introduction

Les systemes multi-agents (MAS) ont fait ’objet d’importantes recherches ces derniéres décennies, avec des
domaines d’application divers tels les véhicules autonomes aériens (UAVs), les véhicules autonomes sous-
marins (AUVs), satellites. Ces systeémes sont utilisés pour différentes applications telles que I'exploration,
la surveillance, ou la maintenance dans les zones difficiles d’acces. La coopération entre agents ne peut
cependant avoir lieu que si les agents peuvent collecter ou recevoir des informations sur les autres membres
de la flotte. Ces informations peuvent étre obtenues a partir de mesures provenant de capteurs embarqués
mais, de ce fait, sont limitées essentiellement a des informations de positions ou d’orientation relatives.
L’échange d’informations ayant un contenu plus diversifié est envisagé par le biais de communications inter-
agents. Cependant cet échange doit s’effectuer en évitant dans la mesure du possible la saturation du
réseau. De plus, les performances attendues doivent étre obtenues en présence de délais de communication
et de perte de messages. Réduire du nombre de communications devient donc une nécessité afin de mieux
gérer celles-ci. Néanmoins, réduire le nombre d’informations échangées entre agents implique que les
lois de commandes, les estimateurs et les protocoles utilisés par les agents utilisés soient adaptés a la
diminution .

Ces derniere décennies, de nombreux chercheurs ont développé des méthodes avec communication ré-
duite permettant de réaliser un consensus multi-agents, et plus récemment une formation. Pour obtenir
un consensus, [77, 113, 13, 37, 36], 'état des agents doit converger vers une méme valeur (par exemple
pour un ensemble de véhicules, méme vitesse, méme position...). L’obtention d’une formation consiste a
diriger et maintenir une flotte de véhicules suivant une configuration désirée. De nombreuses approches
ont été proposées a cet effet dans la littérature, voir [112, 87, 82, 72, 26, 14, 15].

L’obtention d’un consensus et la réalisation d’un vol en formation sont desproblémes nécessitant
d’ordinaire un nombre important d’échanges d’informations sur ’état des agents voisins, afin d’évaluer
de fagon distribuée les lois de commande des agents. Certains auteurs s’appuient sur une communication
supposée disponible en permanence [77] ou une publication périodique des informations nécessaires [36] .
D’autres méthodes ont été proposées qui permettent de réduire de maniere plus importantes le nombre
de communications nécessaires, en utilisant par exemple les communications par intermittence [117], ou
encore les communications déclenchées par évenement , dites ” event-triggered ”.

Dans ce type d’approches, une communication est transmise lorsque une condition est remplie. Cette
condition se traduit en général par la comparaison d’une expression incluant différentes composantes de
I’état des agents avec un seuil. La principale difficulté réside dans la détermination de la condition de
déclenchement des communication (CTC), permettant & la fois d’obtenir un nombre réduit de communi-
cation tout en assurant la convergence du systeme vers le consensus ou la formation désirée.

Dans le cas des commandes distribuées, chaque agent estime 1’état de ses voisins pour évaluer sa propre
commande [39]. Chaque agent fait également une estimation de son propre état basée sur les informations
accessibles aux voisins. Cette estimation permet a ’agent de connaitre ’estimation de son état tel qu’il
est calculé par ses voisins. Pour déclencher une communication, la condition s’effectue sur la comparaison
entre l'erreur d’estimation de I’étatde ’agent et un seuil. Cette approche est considérée dans de nombreux
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travaux pour le probléme de consensus, e.g. [136, 35, 94, 39, 107, 23, 106]. Ceux-ci different par la
complexité du modele dynamique des agents [136, 35, 94], la structure des estimateurs [23, 39, 107, 106],
et la détermination du seuil de déclenchement de la CTC [94, 106].

Plusieurs travaux présentent les méthodes de commande pour créer une formation en utilisant des
communication par événement déclenchant [61, 98, 99]. Dans ces travaux, la dynamique des agents est
principalement décrite par un simple intégrateur, avec une commande constante entre chaque communi-
cation. Les CTCs dépendent de variables en provenance de tous les agents, avec différents choix de seuils
de déclenchement. Un seuil constant est défini dans [98]. [61, 99] consideérent un seuil variable avec le
temps, ou la CTC dépend également des positions relatives entre agents et de 'erreur effectuée par les
estimateurs. Ces CTCs permettent ainsi de réduire le nombre de communication de maniere variable en
fonction de la précision exigée par le systeme, afin de converger vers la formation désirée. Les perturba-
tions d’état ne sont pas considérées.

L’objectif de cette thése est de développer des lois de commande et des estimateurs distribués pour un
systeme multi-agents capables d’assurer la convergence vers un consensus ou une formation de structure
donnée tout en limitant le nombre de communications. Les communications effectuées entre agents sont
déclenchées par des évenements. Les modeles d’évolution incluent des perturbations d’état.

La Partie 1 décrit les notions et outils de bases utilisées dans ce document, ainsi que 1’état de ’art sur
les méthodes de consensus, le vol en formation et les méthodes d’évenement déclenchant.

La Partie 2 aborde le probleme du consensus. Un méthode event-triggered pour obtenir un consensus
borné avec un nombre d’information réduit, tout en prenant en compte la présence de perturbations.
La CTC se basant sur l'erreur entre I’état réel et I’état estimé, un nouvel estimateur a été élaboré afin
de réduire de maniere efficace cette erreur. Un protocole de communication et un deuxieme estimateur
sont également présentés afin de permettre la mise en oeuvre pratique de la méthode de fagon distribuée.
L’analyse de la convergence est effectuée. Des extensions de ces approches sont finalement discutées.

La partie 3 traite le probleme de formation et de poursuite de trajectoire pour un systeme dynamique
Euler-Lagrange. On y définit une méthode event-triggered pour obtenir une formation, respectant des
bornes sur les erreurs en présence de perturbations. Une structure de loi de commande adaptative est pro-
posée afin de compenser les composantes inconnues de la dynamique du systeme. Un estimateur de struc-
ture similaire de la dynamique du systeme est également développé afin de réduire l'erreur d’estimation du
systeme. Une CTC est proposée, basée sur 'erreur d’estimation et la distance inter agents. La flotte est
supposée suivre une unique trajectoire de référence. L’étude de la stabilité du systeme et de la convergence
vers la formation désirée ainsi que la poursuite a été effectuée.

La Partie 4 étend les résultats obtenus dans la Partie 3 aux problemes de pertes de données. L’estimateur
est adapté pour tenir compte de I'influence des pertes de communications. Une nouvelle CTC est intro-
duite, basée sur 'espérance de l'erreur faite par les agents voisins. Un protocole de communication est
développé afin de garantir I’absence de paradoxe de Zeno. Les conditions et la preuve de la convergence
du systeme ont été établies.

La Partie 5 propose également une extension des résultats obtenus dans la Partie 3 en considérant les
délais de communications. Afin d’éviter I’envoi d’informations obsoletes, le contenu du message envoyé est
modifié afin de transmettre une prédiction de I’état de I’agent permettant de mettre & jour les estimateurs
des voisins. De plus, I'agent met a jour sa propre estimation en utilisant le contenu du message afin de
garantir la synchronisation des estimateurs. La CTC est modifiée en utilisant les états prédits, afin de tenir
compte des délais de transmission. Deux modeles de prédiction sont proposés, proposant un compromis
entre la précision de la prédiction et la complexité de calcul.

La derniere partie est constituée d'une conclusion générale sur les travaux présentés dans cette these
et d’une description des perspectives de travaux futurs.

E.1.1 Systéme coopératif

Les recherches sur la collaboration entre agents se sont initialement inspirés des comportements bi-
ologiques, tel que le vol des oiseaux ou les essaims d’abeilles. Les premieres méthodes se basent sur des
régles individuelles permettant de définir un comportement global [89, 103]. Dans les systémes multi-agents
(MAS), la coopération entre agents permet de réaliser des missions tel que la surveillance, 'exploration ou
manoeuvre dans les zones a risque pour des opérateurs humains. L’utilisation d’un MAS n’est justifié que



E.1. INTRODUCTION 181

si Defficacité globale du systeme est supérieure a la somme des efficacités individuelles. Un autre avantage
lié au MAS est la robustesse du systéme en cas de perte d'un de ses membres. Cependant, la coopération
s’appuie en général sur des besoins d’échange. Il est de ce fait nécessaire de résoudre les problémes liés
aux communication entre agents.

E.1.2 Controle centralisé, décentralisé et distribué

Les lois de commande d’un MAS peuvent étre congues pour étre centralisées, décentralisées ou distribuées.
Dans les commandes centralisées, les informations des agents sont transmises & une unité centrale, qui
évalue la commande pour tous les agents avant de leur renvoyer. Les agents ne communiquent pas entre
eux. Bien que faisant 'objet de nombreuses études[97, 127, 75, 110], cette méthode posséde I'inconvénient
que les agents dépendent étroitement de I'unité centrale, et sont incapables d’effectuer des décisions seuls.
La commande décentralisée permet a chaque agent de calculer sa propre loi de maniére indépendante.
Aucune communication entre les agents n’est effectuée a cet effet, ce qui peut limiter les performances
de la mission a accomplir. Finalement, la commande distribuée permet a chaque agent d’évaluer sa
commande de maniere indépendante, tout en permettant aux agents d’échanger des informations entre
eux. L’envoi des messages est décidé par les agents eux-méme. Ces avantages en font des méthodes tres
prisées dans les probleme d’obtention de consensus [77, 10, 13], le vol en formation [82, 72, 105, 99] ou le
flocking [89, 103, 91, 7].

E.1.3 Notions de théorie des graphe

Une communication entre deux agents est nommée une liaison. Une liaison peut étre a double sens ou
a sens unique (ex : cas d’un émetteur/récepteur défaillant chez un agent). L’ensemble des agents d'un
systeme et des liaisons entre eux est nommé graphe de liaison. Deux agents directement liés via un graphe
de liaison sont dit "voisins”, et on note N; ’ensemble des voisins de I’Agent 7. Un graphe possédant
uniquement des liaisons bidirectionnelles est dit non-orienté. Autrement, il est dit orienté. Un graphe
dont les liaisons ne changent pas avec le temps est dit & topologie fixe. Par opposition, un graphe dont les
liaisons changent avec le temps est dit & topologie variable (des liaisons peuvent apparaitre/disparaitre en
fonction de I’éloignement ou le rapprochement des agents entre eux, suivant la portée de leur récepteur
par exemple). On dit qu'un graphe est entierement connecté quand tous les agents sont directement liés
les uns aux autres. Plusieurs formes de graphe particulieres sont présentées en Figure E.1.

On définit la matrice d’adjacence A (t) la matrice dont les éléments a;; sont différents de zéro, a;; # 0,
s’ll existe une liaison entre I’Agent ¢ et I’Agent j, soit une communication possible, et a;; = 0 sinon.
On définit également la matrice des degrés sortant Do,y = diag (Aly) et la matrice des degrés entrant
Dy, = diag (ATl N), ou N est le nombre d’agents et 1 le vecteur de dimension N dont les composantes
sont toutes égales a 1. Enfin, on définit la matrice de Laplace L telle que L = Dy, — A. Ces matrices
permettent de modéliser le graphe de liaison, et seront utilisées dans la suite de ce document. On définit
® comme étant le produit de Kronecker, ainsi que Apax (M) et Apin (M) les valeurs propres maximale et
minimale de la matrice M.

RO

Figure E.1: Formes de graphe particulieres. De gauche a droite, arbre, arbre orienté, chaine, anneau
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E.1.4 Stabilité au sens de Lyapunov

La stabilité au sens de Lyapunov, et plus précisément la seconde méthode de Lyapunov, vise a caractériser
la stabilité des systéemes autonomes autour d’un point d’équilibre, sans connaitre les trajectoires du systeme
autour des points. Pour cela, on définit avant tout une fonction de Lyapunov candidate.

Définition 11. Une fonction de Lyapunov candidate V est une fonction deX C R™ — R™T telle que V et
ses dérivées partielles soient continues, et V' est définie positive (i.e. V>0 Vo # 0 et V (0) = 0).

Le théoreme suivant donne des conditions suffisantes pour la stabilité des systémes autonomes.

Théoréme 13. Définissons un ensemble X C R™ qui contient l'origine et V : X — RY une fonction
Lyapunov candidate

1. 8iV (x) <0 Va € X, alors l'origine est localement stable.
2. 8V () <0Vx e X, x #0, alors Uorigine est localement asymptotiquement stable.

ot V est la dérivée temporelle de V.

E.1.5 Protocole de communication

Un protocole de communication est un systeme de regles permettant a deux entités de communication
de transmettre des informations. Ces regles définissent la syntaxe des messages, la synchronisation des
communications, la détection des collisions entre messages, ’assignation des bandes passantes, des instants
de communication ...

Initialement congus pour les réseaux filaires, les protocoles de communication ont été repensés avec les
radio fréquences. Une seule bande de fréquence est généralement utilisée pour envoyer tous les messages
au lieu d’en assigner une a chacun. Cependant, cette bande de fréquence unique peut étre sujette a
des collisions entre les données échangées par les agents au méme instant. Des protocoles ont donc été
développés pour gérer ces problémes et assurer une communication efficace.

Protocole ALOHAnet

Dans la premiere version du protocole, nommé Pure ALOHA, une station émet un message quand elle en
a besoin. Si, durant la transmission, la station recoit des données provenant d’une autre station, il y a
collision. La station finit d’envoyer son message et définit un temps aléatoire d’attente. Le message est
retransmis une nouvelle fois a la fin de ce temps. Le protocole est répété jusqu’a ce que le message est été
envoyé avec succes. Afin d’améliorer le débit, une deuxieme version nommée le Slotted ALOHA introduit
des créneaux horaire a intervalles fixes : un agent ne peut communiquer qu’au début d’un créneau, limitant
ainsi les collisions en assurant qu’aucune ne peut apparaitre durant la transmission du message.

On notera que la liste des messages en attente peut devenir importante du fait d'un grand nombre de
stations, pouvant conduire a une saturation du réseau. De plus, on remarque que les stations ne cherchent
pas a détecter si un message est en cours de transmission avant d’envoyer un message, ce qui a motivé
I’élaboration du protocole CSMA, présenté dans la section suivante.

CSMA

Basé sur les travaux de ’ALOHAnet, le CSMA (Carrier Cense Multiple Access) est un protocole d’acces
aléatoire "écoute avant envoie”, ou les stations vérifient ’absence de communication sur le canal avant
de tenter de transmettre un message. Si une transmission est détectée, la station attend la fin de la
transmission avant de tenter de transmettre a nouveau, permettant d’éviter un grand nombre de collisions.
La premiere implémentation du CSMA fut I’Ethernet. On remarquera que "’écoute avant 1’envoi” est
également un point faible du CSMA, car les stations sont obligées d’atteindre qu’une transmission soit
terminée pour pouvoir envoyer un message a son tour. Plusieurs variations du CSMA existent.

Dans le CSMA/CD, les transmissions sont interrompues dés qu’une collision est détectée, réduisant le
temps requis avant de retenter une communication. Dans le CSMA/CA, une station est définie comme
coordinateur et autorise ou non la communication quand un agent la demande. Enfin, le CSMA/CR
autorise les stations a transmettre simultanément tant que le message transmis est identique pour les
deux stations.
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E.1.6 Commande pour le consensus

Le consensus est un probleme treés étudié dans le domaine de la commande coopérative, [77, 113, 13, 37, 36].
Dans le probleme de consensus, plusieurs agents doivent se synchroniser en une valeur commune. Dans
le cas des systemes multi-agents, cette valeur commune peut étre une mesure de plusieurs capteurs, une
vitesse de synchronisation pour éviter les collisions entre agents, ou un objectif a atteindre au méme
instant.

Définition

Un consensus peut étre asymptotique ou borné. Un consensus est défini comme asymptotique si I’état de
tous les agents convergent vers la méme valeur. De méme, un consensus est considéré comme borné si
I’écart d’état entre les agents peut étre borné par une constante quand le systeme global converge.

Définition 12. Un réseau d’agents atteint un consensus asymptotique ssi

Jim [l () — i (£)]* = 0. (1)

pour toutes les paires d’agents (7, j) dans le réseau. Un réseau d’agents atteint un consensus borné ssi il
existe une constante € > 0 telle que

Jim [l (1) —; (1) | < 2 (E2)
pour toutes les paires d’agents (4, j) dans le réseau.

Cependant, plusieurs conditions sur le graphe de communication doivent étre respectées pour obtenir
un consensus. Il est montré dans [46] qu'un consensus ne peut étre atteint que si 'union des graphe
de communication dans le temps est connecté suffisamment souvent tant que le systéme évolue. Afin
d’étendre les résultats précédents [70] montre qu'un consensus en présence d’une topologie variable peut
étre atteint asymptotiquement si 'union des graphes orientés forme suffisamment souvent un arbre orienté.
L’étude du probléeme de consensus avec un graphe orienté présenté par [78, 76] montre qu'un graphe
fortement connecté est nécessaire pour atteindre le consensus. Quelques solutions existent pour satisfaire
ces conditions, notamment l'introduction d’'un agent virtuel pour garantir un graphe connecté, comme
dans les méthodes de pinning [124, 125].

Commande de consensus

Comme décrit dans [77, 113, 74, 76], un systéme de consensus peut étre modélisé sous la forme

di (t) =~ ) mij (8) (@i (8) — 5 (t) (E.3)

JEN;

ot NV; est 'ensemble des voisins de PAgent i, m;; (t) est une pondération entre les valeurs i et j. Cette
pondération m;; (t) est souvent choisie égale & a; (t), élément de la matrice d’adjacence A (t) associé au
graphe de communication G (t). Cependant, [63, 102, 96, 42] proposent d’autres valeurs pour m;; afin
d’optimiser la rapidité de convergence du systeme et s’assurer du rassemblement des agents en un groupe
unique. De maniére générale, on notera que plus le nombre de voisins d’un agent est important, plus la
convergence vers le consensus sera rapide.

E.1.7 Commande pour la formation de flottes

Le controle de formation consiste a faire converger et maintenir les agents d’un flotte vers une formation
désirée, possiblement variable dans le temps. Plusieurs approches ont été proposées dans la littérature
regrouper en méthodes comportementales, nommée “behavior-based flocking” [89, 103, 75, 91, 7], ou
méthode de suivi de formation, nommée “formation tracking” [26, 15, 6, 65, 87].
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Méthodes comportementales (behavior-based flocking)

Fortement inspirées des comportements biologiques tel que les oiseaux ou les bactéries, les méthodes
comportementales [89, 103, 75, 91, 7] imposent plusieurs régles de comportement (attraction, répulsion,
imitation) pour chaque agent. Leur combinaison conduit le systétme MAS & suivre un comportement
désiré. Ces approches requierent que chaque agent puisse observer 1’état de ses voisins, via des capteurs
ou communication faite entre agents. Dans tous les cas, ces observations sont supposées accessibles de
maniere permanente. De plus, les méthodes comportementales ne peuvent aboutir & une configuration
précise entre les agents.

Suivi de formation (formation tracking)

Différentes méthodes de suivi de formation peuvent étre considérées. Dans les méthodes meneur-suiveurs,
nommeée "leader-follower” [26, 15, 6, 65], une trajectoire est définie pour un agent leader afin de remplir une
mission. Les autres agents (followers) suivent le leader et tentent de maintenir une formation autour de ce
leader de référence. On note que ces méthodes sont dépendantes du leader, dont la moindre panne peut
suffire & mettre en péril toute la formation. Aussi, un leader virtuel peut étre considéré [14, 15, 90] afin
d’obtenir un systéme plus robuste aux défaillances. Les structures virtuelles, introduites dans [87, 112, 75],
ne nécessitent pas la présence d'un leader en imposant des contraintes directement entre agents. Ces
méthodes peuvent étre divisées en contraintes imposant une position, une distance, ou un vecteur entre
agents. Enfin, une dernieére catégorie de méthodes consiste a imposer a chaque agent une trajectoire
prédéfinie, conduisant & la formation souhaitée, comme dans [97, 3].
On notera que dans la plupart de ces méthodes, une communication permanente est exigée.

E.1.8 Gestion des communications a ’aide d’événements déclenchant (event-
triggered)

L’utilisation d’évenements déclenchant sont a 1’origine d’approches prometteuses quand le nombre de com-
munications est restreint ou pour limiter le nombre de collisions au sein d’un réseau. Dans ces méthodes,
un message est envoyé quand une condition, nommée CTC (Communication Triggering Condition) ou
condition d’évenement, est remplie. Elles permettent ainsi de ne communiquer qu’en cas de besoin. La
plus grande difficulté de ces méthodes résident dans le fait de trouver une condition assurant la stabilité
du systeme, la réussite de la mission et une réduction efficace du nombre de communication.

Dans les systemes distribués, les états des autres agents n’étant pas accessibles en permanence, chaque
agent maintient des estimateurs des états de ses voisins pour évaluer sa commande [39]. Cependant,
en 'absence de communication permanente, la qualité de ces estimateurs, en terme de précision de la
reconstruction, est difficile & évaluer. Aussi, chaque agent maintient également une estimation de son
propre état, effectué a partir des informations partagées avec les autres agents. Des que l'erreur entre
cette estimation et ’état actuel de I'agent dépasse un certain seuil, une communication est effectuée (ou
"déclenchée”) pour mettre a jour 'estimateur des voisins.

Paradoxe de Zeno et Minimum intervalle de temps

Le paradoxe de Zeno décrit le phénomene correspondant & une infinité de déclenchement de la condition
d’évenement durant un intervalle de temps fini, créant ainsi une communication permanente. Pour établir
labsence de paradoxe de Zeno, de nombreux chercheurs, e.g. [20, 24, 23, 29, 31, 37, 38, 35, 34, 39, 60,
98, 30, 136, 133, 49], démontrent systématiquement l’existence d’intervalle de temps minimum entre deux
communications.

Event-triggered et consensus

La plupart des méthodes event-triggered ont été développées afin de limiter le nombre de communication au
sein d’un consensus. Dans [23], la dynamique des agents est modélisée par un simple intégrateur. Un seuil
décroissant avec le temps est utilisé, ce qui implique une augmentation de la fréquence de communication
avec le temps. Dans [94], le modele dynamique est un double intégrateur et la condition de déclenchement
de communication CTC dépend d’un seuil exponentiellement décroissant avec le temps, indépendant de
I’état des agents. Un terme constant est également considéré afin de maintenir un seuil minimum. Un
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modele de dynamique linéaire généralisé est considéré dans [136, 37, 35] avec des seuils variables en fonction
de I'état des agents, assurant la convergence du systeme. La présence de perturbations a été partiellement
étudiée par [45, 19], qui proposent une méthode event-triggered réduisant 'impact des perturbations dans
le cas de simples intégrateurs.
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Figure E.2: Comparaison entre la méthode de Seyboth et une communication périodique classique.

Event-triggered et formation

Quelques travaux récents combinent les approches event-triggered avec des méthodes de formation [61,
98, 99]. Dans ces travaux, la dynamique des agents est décrite par un simple intégrateur, et la commande
est considérée comme constante entre deux communications. Ces CTCs nécessitent des informations
en provenance de tous les agents, avec cependant différents types de seuils de déclenchement: un seuil
constant est utilisé dans [98], et des seuils variables avec le temps dans [61, 99]. Les CTC dépendent
également des positions relatives entre agents et des erreurs d’estimation. Ainsi, les CTC permettent
de réduire le nombre de communication quand le systéme converge vers la forme désirée. On note que
I’absence de paradoxe de Zeno a été démontrée, et que les systemes ne considerent pas de perturbations
d’état.

Les Logic-Based Communications (LBC), introduites dans [84, 127, 3, 130], semblent également étre
des approches intéressantes pour réduire les communications. Utilisant également une condition pour gérer
les communications, le probleme d’un systeme multi-agent non-linéaire est étudié. Dans ces méthodes,
chaque agent suit un chemin paramétré prédéfini, calculé de maniere centralisé. La CTC introduite permet
aux agents de suivre leurs trajectoires de maniere synchronisée, menant & la formation désirée. Les délais
de communication et pertes de données sont considérées. Cependant, I’absence de paradoxe de Zeno n’a
pas été analysée.

Perte de données, topologie variable et perturbations

Si la plupart des recherches sur les event-triggered se basent principalement sur ’étude de la dynamique
des agents et de leur commande, d’autres contraintes doivent étre considérées. Dans [25, 95], un sys-
teme dynamique avec des pertes de données est considéré. La CTC est construite a ’aide d’un variable
stochastique conduisant a des déclenchements supplémentaires afin de compenser les éventuelles pertes de
données. Les méthodes proposées par [57, 66, 56] permettent d’adapter leurs conditions avec des topolo-
gies variables. Elles exigent cependant que I’ensemble des agents émettent une communication a chaque
nouvelle configuration.

La présence de perturbations est également & prendre en compte : certaines méthodes telles [50, 95, 111,
120, 68] proposent des CTCs couplées & des filtre de Kalman et des coefficients variables pour atténuer
I'influence des bruits de mesures. Ces méthodes nécessitent cependant de centraliser les informations.
[79, 45, 111] étudient le probleme de commande distribuée pour simple intégrateur avec des perturbations
d’état.
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E.2 Nouveaux estimateurs et protocole de communication pour
event-triggered consensus appliqués a un systeme linéaire
avec perturbations d’état bornées

Dans cette partie, on se propose de reprendre la méthode event-triggered développée par [37] pour obtenir
un consensus borné avec un nombre d’informations réduit, tout en prenant en compte la présence de
perturbations. On introduit pour cela un nouvel estimateur dans le but de réduire de maniére plus
efficace le nombre de communications échangées. Un protocole de communication est également présenté
afin de permettre la mise en oeuvre pratique de la méthode. Avec cette approche, une estimation de
Pétat de tous les agents (et pas seulement des voisins) est requis pour évaluer toutes les commandes des
estimateurs. Les estimations réalisées possedent donc un niveau de complexité plus élevé, mais ceci permet
de réduire la fréquence de communication. L’analyse de la convergence est effectuée en considérant des
perturbations d’état séparées en deux composantes aléatoires : 1'un commune a tous les agents, l'autre
spécifique pour chacun.

En utilisant les notions introduites dans la Section E.1, on introduit la formulation du probleme
dans la Section E.2.1. La CTC, présentée dans la Section E.2.4, requis le nouvel estimateur décrit en
Section E.2.2 couplé au protocole de communication présenté Section E.2.2. Un deuxieme estimateur est
également exposé en Section E.2.3 afin d’obtenir une implémentation décentralisée de la CTC.

E.2.1 Formulation du probleme

Comme dans [37], le réseau est composé de N agents, avec un graphe de communication G non-orienté et
une topologie fixe, donc une matrice d’adjacence A constante. On considere la dynamique et la commande
distribuée suivante :

wi(t) = aF Y (yt)—yi). (E.5)
JEN;

ou x; € R™ est 'état de I’Agent 1, y; Iestimation de 1’état de I’Agent j par I’Agent i décrite dans la
Section E.2.2, et u; € R™ est la commande, i = 1,...,N. A € R""™ et B € R"™™, ¢; = ¢+ ¢y avec
c=1/X2(L) et ca > 0 sont des parametres de réglage. F = —BTP olt P est une matrice semi-définie
symétrique, solution de ’équation de Riccati

PA+ ATP —2PBBTP +2aP <0, (E.6)

avec o > 0. L’estimation de I’état y; est décrite dans la section suivante.

Contrairement & [37], on ajoute des perturbations & la dynamique de 'agent définie par I’équation
(E.4):

di (t) = m(t) +si (t), (E.7)
d(t) =1y @m(t) +s(t) (E.8)
T 7 . : i
avec s(t) = [s1 ()" ... sy (1) ] , m(t) € R™ la composante variant avec le temps mais considérée iden-

tique pour tous les agents et bornée par ||m (¢) | < Mmax, et s; (t) € R™ la composante spécifique a chaque
agent, également bornée par ||s; (¢) || < Smax Vt, ¢ =1,..., N. Les deux composantes de d (t) permettent
de représenter 'effet combiné d’un vent uniforme sur une flotte d’agents et les turbulences affectant de
maniere différente chacun d’entre eux.

Le probleme considéré ici consiste a créer une commande distribuée, robuste aux perturbations, per-
mettant d’obtenir un consensus borné tout en limitant le nombre d’informations échangées. Pour cela, les
instants de communications sont choisis localement par chaque agent, suivant la méthode d’event-triggered
introduite dans la Section E.2.4.

Dans cette étude, on considerera qu’il n’y a pas de délai de communication et que les agents connaissent
parfaitement leur propre état.
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E.2.2 Modele d’estimation et protocole de communication
Modele d’estimation

On définit I'estimation y; (t) de I’état de ’Agent j par ’Agent i. On peut définir ainsi I'erreur d’estimation
ez- = y; — z;. Dans le Théoréeme 14 de la Section E.2.4, une communication étant déclenchée quand e!
dépasse un certain seuil. Aussi, le modele de notre estimateur a été créé afin de représenter au mieux la
dynamique réelle des agent et minimiser e!. Chaque agent évalue sa propre estimation des états de tous
les autres agents. L’évolution de yj- (t) est modélisée par :

g(t) = Ay (t)+ B (t), Vt e |t) . th | (E.9)

i) = aF Y (Vi) -y, 1) (E.10)
pEN;

y§ ( 31«) = % (t;k) ) (E.11)

avec t; & le temps a l'instant oti le k-ieme message envoyé par I’Agent j a été requ par I’Agent ¢. Le temps
ol le k-ieme message a été envoyé par ’Agent j est noté t; et t; 1 définit le temps ot le(k + 1)-ieme
message sera envoyé. On note y = [yiT, yslo .. y}VT]T avec y* € RN™ le vecteur des estimations de 1’état
de tous les agents par I’Agent i.

Protocole de communication

Dans [37], un message envoyé par I’Agent ¢ & t = ¢, j, contient son état z; (¢; ). Cette valeur est utilisée
par ses voisins j € N pour mettre & jour yi . Cela n’est cependant pas possible si j ¢ N;. Afin de
contourner ce probleme, un protocole de communication nommé “delayed flooding method” a été élaboré.

Quand il s’avere nécessaire qu’un agent envoie des informations, il transmet un message contenant le

vecteur 7’ , ainsi que la liste
i
T" = [t1 ks s bimt ks biks bt Lkisy - - - EN )

olt chaque t;;, représente le temps a l'instant ol la condition d’évenement I’Agent j a été satisfaite.
Quand un Agent £ recoit le message venant de I’Agent i, il compare sa propre liste de temps T avec T".
Pour chaque composant de y¢ tel que tik > tog, i.c., 'élément de y® a été mis A jour le plus récemment,
celui-ci est remplacé par celui de y°. Le vecteur T est également mis & jour en conséquence.

Cette méthode permet de mettre a jour les estimateurs en relayant les informations d'un agent a un
autre uniquement quand celui-ci doit communiquer.

E.2.3 Estimation v’ de ’état estimé 3’ par ’Agent j

Le delayed flooding protocol présenté dans la Section E.2.2 permet a chaque Agent ¢ d’avoir acces a yj-,

pour tout j € N. Cependant, I’Agent i ne peut avoir acces a yf , connu uniquement de ’Agent j, et requis
pour I’évaluation de la CTC présentée dans le Théoreme 14.
, , T

Pour résoudre ce probleme, chaque Agent i possede un estimateur additionnel v/ = [U{T e vg\ﬂ €
RYN™ de 3/ pour tout j € N; U {i}, avec pour contrainte que les estimations v’ réalisées par les Agents i
et j € N; soient identiques. v’ est réalisé par ’Agent i et tous ses voisins j € NV;, et mis & jour seulement
quand la CTC est satisfaite par ’Agent i. Les v7s sont donc mis & jour moins fréquemment que les y's et
sont donc moins précis. Les deux estimateurs sont évalués simultanément par chaque agent. Introduire
vJ ne requit aucune modification pour le delayed flooding protocol.

La dynamique de 'estimateur additionnel v* est exprimée sous la forme

B (t) = AVl (t)+ B (t), ), <t<tpy, (E.12)

i (t) = aF Y (vi(t)—uv)(1) (E.13)
PEN,

v (tix) = Y (tix) (E.14)

tik) = vl(tix), JEN. (E.15)

J
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E.2.4 Meéthode event-triggered

Dans le Théoreme 14, I’état initial de tous les agents est supposé connu par tous les agents. Dans la partie
expérimentale, cette condition sera relaxée : Agent 7 initialisera I’état des estimateurs de tous les autres
agents avec la valeur de son propre état. Une communication est déclenchée a ¢ = 0 pour mettre a jour
les estimateurs des voisins de I’Agent i. Tous les autres agents agissent de méme.

Introduisons L = L®P, L LA + AT L A.=A+B, ,A=Iy®A, B, =c,L®(BF), M = PBBTP

et = %((E)L) Il est prouvé dans [37] que L est semi-définie positive.

Théoreme 14. Supposons que (A, B) est contrélable et le graphe de communication est non-orienté et
connecté avec une topologie fixe, décrite par la matrice de Laplace L. On considére le paramétre de réglage
1 >0 . Les agents dont la dynamique est décrite par (E.4) achéve un consensus borné

N377

= B (P) (E.16)

.. . 2
V(i) Jim - o

st la condition suivante sur les perturbations est satisfaite

Stnax < \/a lezra (£ M”\/ (E.17)

et si une communication est déclenchée quand la condition suivante est satisfaite

0 > pzl0z +1 (E.18)

avec ©; = (2co — biN; (ca — ¢)) M, 1 > p > 0 un paramétre de réglage

3 1 i\ T i i
51‘ = (1 |:2sz (Zz —Niei) M (Zz Z N M (yj —Uj)
JEN
_ S N; b N S
+ (2~ Niel) " M Z (vf —yé) + %eZTMe +2( + 2) N; Z [(vf —yi) M (vi —yi)
JEN; JEN;

=) M () >H +2(e2 =) Nizl Me]

+ [20 (N)2(1+b;) + 2—5N, +eN; (N — 1) <bi + 3)] e’ Me! (E.19)

b;

7

et 2 =3 cn, (yi — y;), M = PBBTP,0<b; < (Cf%;w st cg > ¢, by > 0 sinon.

La preuve du Théoreme 14 se trouve en Annexe A.2 et la preuve de ’absence de paradoxe de Zeno
dans I’Annexe A.3.

En observant (E.17) et (E.16), on remarque que 7 peut étre utilisé pour obtenir un compromis entre
la valeur de l'erreur bornée du consensus et le nombre de communications. Si n = 0 et s’il n’y a pas de
perturbation, le systeme acheve un consensus asymptotique. .

La CTC (E.18) dépend majoritairement de ej, de 'écart y% —v} et de écart v} —y;. Une communication
est donc envoyée par ’Agent i quand 'erreur d’estimation de y! ou v! devient trop importante. Les deux
perturbations ont un impact direct sur e?, et donc sur la fréquence de communications. On remarque
également que My, ne possede une influence que sur la qualité du consensus mais non sur sa convergence.

E.2.5 Extension aux systemes linéaires variables dans le temps

Dans les sections précédentes, la CTC a été développée pour des systémes a dynamique linéaire con-
stante dans le temps. En pratique, la plupart des systemes ne sont pas de structure invariante avec
le temps. C’est par exemple le cas des approximations de systeme non-linéaire, ou des modeles Fuzzy
Takagi-Sugeno (T-S) [79].
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On peut ainsi définir les matrices A (t) et B (t) telles que

B () = A1)+ B () (1) (8.20)
wi(t) = aF Y (v ) —v;®) (E.21)
JEN;

Le Théoreme (14) et la preuve dans I’Annexe A restent valides avec les nouvelles matrices A (t) et B (),
permettant d’élargir les résultats obtenus par le Théoreme 14 aux systemes linéaires variables au cours
du temps. La matrice P est réévaluée au cours du temps en fonction des valeurs de A (t) et B (t).

E.2.6 Topologie variable avec le temps

Le graphe de communication G peut changer au cours du temps. En effet, des liens peuvent ap-
paraitre/disparaitre & cause d’interférences ou de la distance entre agents. Il faut donc garantir que la
convergence du systéeme est toujours assurée méme en présence de changement de topologie. Quelques
travaux de la littérature comme [124, 125, 78] montrent qu'un consensus peut étre atteint s’il existe un
sous-graphe en arbre dans le graphe de communication. Etudions ce probleme dans le cadre de notre
méthode.

Détection du changement de topologie La premiere difficulté est de pouvoir détecter quand un
changement de topologie a lieu. Si 'apparition d’une nouvelle connexion entre agents est facile a détecter
(réception d’un message venant d’'un agent non-voisin jusqu’a présent), la détection de la disparition
d’une connexion est bien plus ardue dans un systéme a communication réduite. En effet, il est difficile
de savoir si 'on ne recoit plus de communication venant d’un voisin parce que celui-ci n’a pas émis de
message ou parce que le lien entre les deux agents a disparu. Un méthode de détection pourrait étre
d’émettre systématiquement un message a intervalle fixe : la non réception de ce message indiquerait que
la communication est brisée. Cela implique cependant un plus grand nombre de communications dans le
systeme.

Adaptation de la commande a la topologie variable En supposant que le probleme précédent ait
été résolu, il s’agit par la suite d’avertir le reste de la flotte du changement de topologie. La connaissance
de celle-ci est en effet nécessaire au calcul de la commande et des estimateurs des agents. Une méthode
alternative est de rendre I’évaluation de la commande partiellement indépendante de la topologie. Pour
cela, on définit un sous-graphe de communication minimum Gmin (Mnin, Emin) que 'on suppose toujours
existant dans toutes les topologies rencontrées. On réécrit la commande de I’Agent ¢ en utilisant I’ensemble
des voisins minimum Npin i, tel que u; (t) = c1F' 35 cn. (i (t) — v (t)), de méme pour @ () et u} (t).

Les informations regues par ’Agent ¢ provenant de 'Agent j tel que j € N; (¢) et j ¢ Npin,; sont
utilisées pour I'estimation des états des agents, mais pas pour 1’élaboration de la commande.

En utilisant la fonction de Lyapunov Vi, = 2T Linin® ol Liin est la matrice de Laplace associée &
Gumin, le Théoreme 14 est valide, quelque soit la topologie en utilisant z; = >\, (v —vyl), © =

(2¢2 — biNin i (c2 — ¢)) M, et rééerivant 8; en utilisant MNmin,i & la place de ;.

E.2.7 Conclusion

Ce chapitre présente une méthode de communication event-triggered distribuée pour systeme multi-agents
avec une réduction du nombre de communications comparé a 1’état de l'art.

Pour obtenir ces résultats, chaque agent évalue simultanément deux estimateurs de 1’état des agents
dans le réseau.

Le premier fournit une estimation précise de I’état de tous les agents, mais dont la valeur des estimations
differe entre les agents. Le deuxieme estimateur est moins précis, mais est construit de maniere a fournir des
valeurs identiques entre voisins. Les deux estimateurs sont utilisés pour déterminer les communications.

Un protocole de communication par relais a été développé pour garantir la mise a jour des estimateurs
sans ajouter de communications supplémentaires a la stratégie initiale.
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Une communication par event-triggered distribuée permettant d’obtenir un nombre réduit de com-
munications tout en atteignant un consensus borné a été développée en tenant compte de perturbations
d’état. La convergence du consensus a été étudiée et I'absence de paradoxe de Zeno a été prouvée.

Des simulations montrent 'efficacité des estimateurs proposés en présence de perturbations, quand
celles-ci sont d’un niveau modéré. Quelques lignes directrices ont été données afin de choisir un compromis
entre 'erreur de consensus et le nombre de communications.

Enfin, des extensions des résultats obtenus pour les dynamiques non-linéaires T-S fuzzy et le cas des
topologies variables ont été proposées. Les prochains travaux sur cette étude devront se focaliser sur
I'influence des pertes de données durant les transmissions, ainsi que sur les délais de communications.

E.3 Déplacement en formation avec poursuite d’un objectif pour
un systeme multi-agent par méthode event-triggered dis-
tribuée

Cette partie propose une stratégie de commande distribuée permettant la réduction du nombre de com-
munications au sein d'un systeme multi-agents devant évoluer en formation tout en poursuivant une
trajectoire de référence. La dynamique des agents est décrite par un systeme de type Euler-Lagrange
incluant des perturbations sur I’état. La matrice d’inertie et la matrice regroupant les effets centripetes
et Coriolis sont supposées inconnues par les agents. Une loi de commande adaptative est proposée en
se basant sur une estimation de ces parametres ainsi que sur une estimation des états des agents voisins
(non disponibles de maniére continue). Une CTC distribuée basée sur 'erreur d’estimation d’état et les
distances inter-agents garantit la réduction du nombre de communications. L’effet des perturbations sur
la convergence du systeme est analysé, et I’absence de paradoxe de Zeno est démontrée.

Les notations et hypotheses utilisées sont introduites dans la Section E.3.1. La définition du probleme
de déplacement en formation est faite en Section E.3.2 et le probleme de poursuite d’une trajectoire de
référence est introduit dans la Section E.3.2. Une commande adaptative est définie en Section E.3.2 afin
de conduire la flotte vers la formation désirée tout en suivant la trajectoire choisie. La communication est
gérée via la méthode event-triggered introduite dans la Section E.3.4.

E.3.1 Notations et hypotheses

On considere le systéme composé de N agents, dont la topologie est décrite par un graphe non-orienté
G = (WN,E). L’ensemble des voisins de 'Agent i est N; = {j € N|(i,5) € €, @ # j}. N; est le
nombre d’élément de N;. Pour un vecteur quelconque z = [ T Xo ... Tp ] € R™, on définit
| = [ |o1| @2 ... |an ]T ou |x;| est la valeur absolue de la i-itme composante de z. De la méme
maniere, la notation x > 0 est utilisée pour indiquer que chaque composante de z est positive ou nulle,
ie.Vie{l...n} x; > 0.

On définit ¢; € R™ le vecteur des coordonnées de I’Agent ¢ dans un repere global quelconque R et
q= [ a & ... 4 ]T € RN™ la configuration du MAS. La dynamique de chaque agent est décrite
par un systeme Euler-Lagrange tel que

M; (¢:) Gi + Ci (qiy ¢i) 4 + G =1 + d; (1), (E.22)

ou 7; € R™ est la commande, M; (¢;) € R"™™ est la matrice d’inertie de "Agent i, C; (¢, ¢;) € R™*"
est la matrice des termes de Coriolis et centripetes de ’Agent i, G contient les effets de 'accélération
gravitationnelle, supposés connus, et d; (¢) est le vecteur perturbation vérifiant ||d; (t)|| < Dmax- Le
vecteur d’état de I'Agent i est 7 = [qf , qZT] On suppose que les hypotheses suivantes sont respectées :

A1) M; (g;) est définie symétrique positive et il existe kys > 0 satisfaisant Vo, 27 M; (¢;) 2< kot z,

A2)M; (¢;) — 2C; (¢i, 4;) est une matrice antisymétrique ou définie négative, et il existe ko > 0 satisfaisant
VfE, xTCi (qzvql) x g kC ||Qz|| xT‘rv

A3) Il existe ¢max € R} et fmax € R} tels que |G| < Gmax €t [Gi] < dmax-
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A4) Le terme gauche de (E.22) peut étre représenté sous une forme linéaire en le vecteur ; des parametres
inconnus mais constants associés a I’Agent 17 :

M; (gi) 1 + Ci (gis 4i) v2 = Yi (i, Gis w1, 22) 0; (E.23)
pour tous vecteurs x1, x5 € R™, et ou Y; (qi, ¢i, 1, x2) est la matrice de régression.
A5) Les composantes du vecteur 6; sont bornées :0yin i < 6; < Omax.i-

Dans la suite du texte, les notations M; et C; sont utilisées pour remplacer M; (g;) et C; (¢, q;). Dans
cette étude, on suppose que chaque Agent i est capable de mesurer sans erreur son propre état x;. De
plus, on considere qu’il n’y a pas de délai de communication.

E.3.2 Définition de la commande

Le but de cette section est de définir une loi de commande distribuée permettant de conduire un MAS vers
une formation désirée dans le repére global R, tout en suivant une trajectoire de référence et en réduisant
autant que possible le nombre de communications entre les agents. La formation a atteindre est décrite
dans la Section E.3.2 et la paramétrisation du probleme de poursuite d’une trajectoire de référence est
définie dans la Section E.3.2.

Paramétrisation du déplacement en formation

On consideére le vecteur de coordonnés relatives r;; = ¢; — ¢; entre deux agents ¢ et j, ainsi que le vecteur
de coordonnées relatives désirées r7; pour tout (i, j) € N. La formation désirée est définie par 1’ensemble
{r;kj, (i,j) eN } On considéere, sans perdre de généralité, que le premier agent est I’agent de référence

et on introduit le vecteur de configuration relatif désiré r* = [ i ... ri% | . Chaque vecteur relatif

désiré r; peut ainsi étre exprimé comme 7; = r{; — 77;.
On définit I’énergie potentiel P (¢, t) de la formation tel qu’introduit dans [72, 82],

. A o
(g, t) = 3 szm ||ri; — Tij” (E.24)
i1 =1

ou les k;; = kj;; sont des coeflicients de pondération, pouvant étre positifs ou nuls, avec k;; = 0.

Définition 13. Le MAS converge asymptotiquement vers la formation désirée avec une erreur bornée ssi
il existe €1 > 0 tel que
lim P(q,t) <eq. E.2
Jm P (g, 1) < e (E.25)
Afin d’obtenir une convergence bornée pour le MAS, on cherchera a construire une loi de commande
permettant de réduire P (¢, t) au cours du temps.

Formation variable avec le temps et trajectoire de référence

Dans cette section, le systeme multi-agent doit suivre une trajectoire de référence ¢i (¢), tout en maintenant
la formation désirée. L’Agent 1 est toujours considéré comme 'agent de référence cherchant a suivre gf (¢).
Cette trajectoire de référence gf (t) est la seule devant étre définie et on supposera qu’elle est connue de
tous les agents. De méme, on suppose que le vecteur r* (¢) peut évoluer au cours du temps afin de faire
évoluer la formation désirée. On peut ainsi définir la trajectoire individuelle de chaque Agent i telle que
qf (t) = g5 (t) + 7 (t). Pour garantir que la trajectoire individuelle peut étre suivie par chaque agent, on
impose que |¢f| < ¢ et |§| < Gmax-

Définition 14. Le MAS atteint sa trajectoire de référence ssi il existe 1 > 0 et e > 0 tels que (E.25)
est satisfait et

Tim gy () — g (O] < e, (E.26)

i.e., ssi 'agent de référence a convergé sur la trajectoire de référence et que le MAS a convergé vers sa
formation désirée avec une erreur bornée.
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Afin de pouvoir créer une commande distribuée permettant d’atteindre I'objectif souhaité, on introduit
les erreurs de trajectoire r; = q; — ¢ et 7] = ¢ — ¢

Ainsi, une commande cherchant & réduire ’énergie potentielle P (g, t) et l'erreur de trajectoire r;
permet d’obtenir une convergence bornée du MAS. Pour décrire I’évolution de P (g, t) et r;, on redéfinit
les termes suivant

N
0P (q, t X
gi = 8(;]. ) +kori =) ki (rij —13;) + kors (E.27)
(2 ]:1
N
gi = Y ki (Fig — 1) + ko (E.28)
j=1
si = ¢ —q +kpgi (E.29)

ou g; et g; caractérisent I’évolution de I’écart entre la formation actuelle et la formation désirée, k), > 0 est
un parametre de réglage. Le parametre de réglage ky > 0 peut étre choisi nul s’il n’y a pas de trajectoire
a suivre.

Commande distribuée

La commande proposée par [82] permet de réduire P (g, t) pour converger vers la formation désirée dans
le cas d’'une communication permanente, supposant donc un acces continu de chaque agent a I’état de ses
voisins. Dans notre cas, les agents n’ont pas acces aux informations de leurs voisins en permanence : on
introduit donc une estimation q;i de g; réalisée par I’Agent ¢ pour remplacer les informations manquantes
dans la commande. On note ainsi §* = [ gt ..o g ]T € RN le vecteur des coordonnées estimées
par "Agent i. L’évolution de q; est décrite dans la Section E.3.3. De plus, les agents n’ayant pas acces
au vecteur #;, une estimation 6; de 6; est donc également implémentée pour pouvoir définir la loi de
commande.
Dans le contexte d’'une communication distribuée et limitée, chaque Agent i peut évaluer les termes

N
j=1
5 = ¢ —q; +kpg (E.31)

avec 7; = q; — d;- et r;ij =q; — (j; A partir de ces termes, on peut ensuite évaluer la loi de commande de
I’Agent ¢ définie par

7 (i G, @5 4') = —ks8i — kggi + G =i (a4, di» Dis Pi) 0 (E.32)
0; = T.Yi(a, i pi, ﬁi)T Si (E.33)

ol p; = kpgi — 4, Di = kpgi — G5, kg > 0, ks > 1+ k, (ka + 1) est un parametre de réglage et T'; une
matrice positive choisie arbitrairement.

La Section E.3.3 introduit I'estimateur q; de g; nécessaire a la définition de cette loi de commande
(E.3.2).

E.3.3 Protocole de communication et estimateurs d’état

Dans la suite, on notera ¢; ; I'instant ol le k-ieme message est envoyé par ’Agent j. On note également tj &
Iinstant ou le k-ieme message, envoyé par I’Agent j est regu par I’Agent 7. Quand une communication est
déclenchée a t; 5, par ’Agent 4, celui-ci envoie un message contenant g; (¢; %), ¢; (t; ) et son vecteur 0; (tik)-
Quand le message est regu par d’autres agents, son contenu est utilisé pour mettre a jour I'estimation de
I’état de I’Agent i comme présenté dans la section suivante. On supposera que le message est regu par tous
les agents, voisins ou non de ’Agent 7, qu’il soit transmis directement, comme dans le cas d’un graphe
entierement connecté, ou par plusieurs transmissions successives. Dans ce dernier cas, le protocole de
flooding [44, 83] est utilisé. Comme il n’y a pas de délai de communication, on en déduit que ¢! (t) = ¢/ (t)
pour tout (i, j) € N2.
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Dynamique des estimateurs

Suivant I'idée présentée dans la Partie 2, 'estimation cj; de g; réalisée par I’Agent 7 est évalue en considérant

M (@5) G5+ Ci (a5, @) @5+ G = 3, Ve [t [ (E.34)
25 (Gx) = w5 (Ga) (E.35)
avec i; = [d;T, @;T] ou MJZ ((j;) et C’; (cj;, (j;) sont des estimations de M; et C; réalisées a partir des

éléments de éj (t;k> par la relation

M@z +Ci(dh @)y =Y (4, 45 @, y) 0 () -

L’estimateur (E.34) réalisé par ’Agent i requiert une estimation f'; de la commande 7; employée par
I’Agent j. Cette estimation est évaluée par

o= ke kg + G Y (45, 4. By 95) 65 (E.36)
i = T;Y;(d ¢ B ) 8 (E.37)
05 (t5%) = 0;(t5x) (E.38)

- _ . - k) . Al i ad A N i A N 24 .
ou p; = kpgi — 4i, pi = kpgi — G;', 85 = 4 + kp3;, 95 = > k=1 Kk (T;‘k - r;k)a g; = Dok—1 Kijk (T;‘k - T;k)v
Y R hi et : J.
P = 45 — dj» et 0} est estimation de 6;. .
Il existe une erreur entre ¢; et son estimation ¢ réalisée par ’Agent j & cause de la présence de

perturbations et de la communication non permanente, mais également de la différence entre 6;, 0;, et 6;.
Les erreurs d’estimation réalisées par I’Agent j peuvent sont définies par

e = ¢ —q, jeN (E.39)

Ces erreurs sont utilisées dans la Section E.3.4 pour déclencher les communications quand e! et é! devi-
ennent trop importantes.

E.3.4 Communication par Event-triggered

Le Théoreme 15 introduit une condition de déclenchement des communications de maniére a assurer une

convergence asymptotique vers la formation désirée et la trajectoire de référence. La valeur initiale de

I’état de tous les agents est supposée connue par tous. Cette condition peut étre satisfaite en effectuant

une premiere communication a ¢ = 0. On définit «; = ijl kij et an = max;—1,.. N ;. On définit aussi
~ ~ ~ T

pour 6; = [92»’17 . ,Oi’p]

max {[0;,1 — Omin,i1| + [6i1 — Omax.i1|}

Aei,max =

) |9i,p - 9max,ip|}

Théoréme 15. Considérons un MAS dont la dynamique des agents est décrite par (E.22) et de loi de
commande (E.32). On considére les paramétres n >0, 1o >0, 0 < b; < ﬁ ,
svp g

max {}ai,p - amin,ip

min {17 kh kpa k07 2k0 (2k0 —+ %’Cn“)}
max {1, ks }

C3 —

et kv = ks — (L4 kp (kar +1)). En Uabsence de délai de communication, les agents convergent vers la
formation et la trajectoire désirées en vérifiant

N

. 2 1
, - <
Jim D ol + 3P () < ¢ (E.40)
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avec £ = kivc;, [Dfnax +n+ c;;AmaX] 0l Apax = MaxX;—1.N (supt>0 (AHZ-TFZ-_lAGi)), st les communications

sont déclenchées quand l'une des conditions suivantes est respectée

N
ko875 + kpkygl G+ < a3y (keciTel + kykarelTél) + andkdhy i3 kyi [||@E]) + n2)”

j=1
. ok i sz Aez}max 2
higbi lldi — 6711 + Ky [[€d]] aﬁw(1+||m|A9i,max||2)+ ¥l A8 ma| - (E.41)
(14 151 A0
@l > ||ai|| +mne (E.42)

avec ke = kk2 + kgky, + IZJ et Y = Y; (i, Gi Di» Di)-

La CTC proposée dans le Théoreme 15 a été construite en supposant que les estimateurs de 1’état des
agents et que le protocole de communication garantissent que V (i,7) € N' x N,

& (t) =27 (1) (E.43)

Bt ) = (tig) - (E.44)

Le Théoreme 15 est valide indépendamment de la fagon dont les estimateurs ¢ de z; respectent (E.43)
et (E.44).

De (E.40) et (E.41), on peut observer que n permet un compromis entre la borne £ de l'erreur de
formation et de poursuite, et le nombre de communications.

On note qu’une petite valeur de 7o amene & un grand nombre de déclenchements de (E.42), et, a
Popposé, une grande valeur ameéne & un grand nombre de déclenchements de (E.41). Le réglage de ce
parametre 72 permet donc d’obtenir un compromis.

Les CTCs (E.41) et (E.42) dépendant principalement de e! et é{, une communication est déclenchée
quand les erreurs d’estimation deviennent trop importantes. Garder e! et ¢! petits via un estimateur
précis est donc recommandé afin de diminuer le nombre de communications.

Les erreurs d’estimation e! et é! sont dues aux perturbations et a la différence entre M; et C; et
leur estimations respectives M; et C’f, déterminée par la précision de 0. Ainsi, méme en absence de
perturbation, ces différences font que les CTCs seront toujours satisfaites au bout d’un certain temps.

Le choix des parametres awm, kg, kp et b; déterminent aussi le nombre de communications réalisées.
Choisir k;; tel que o est petit permet de réduire le nombre de déclenchements de (E.41). La contre partie
d’un «; petit est la diminution de la robustesse aux perturbations. Ces effets peuvent étre tempérés par
les choix de k, et kg4, qui ne doivent cependant pas étre choisis trop grands pour limiter le nombre de
déclenchements de (E.41).

E.3.5 Conclusion

Dans cette Section, une commande adaptative et une stratégie de communication de type event-triggered
ont été élaborées pour systéme multi-agents, afin d’atteindre une formation désirée et de suivre une tra-
jectoire de référence. La dynamique considéré pour les agents est de type Euler-Lagrange et prend en
compte une perturbation sur I’état. Les matrices d’inertie et de forces de Coriolis étant supposées incon-
nues, des estimateurs des parametres inconnus et des états des agents ont été proposés pour remplacer
les informations manquantes. Une condition distribuée de déclenchement des communications a été pro-
posée permettant la convergence du systeéme vers la formation désirée et la trajectoire de référence tout
en réduisant le nombre de communications. L’absence de paradoxe de Zeno a été démontrée.

Dans les sections suivantes, les résultats obtenus seront étendus au probleme de pertes de donnée et
aux délais de communications.

E.4 Déplacement en formation d’un systeme multi-agents avec
pertes de données dans les communications

Cette partie porte sur le probleme de pertes de données durant les transmissions de messages. Comme dans
la partie précédente, on considere un systeme multi-agents avec une dynamique Euler Lagrange soumise
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a des perturbations, et I’'on désire obtenir une formation prédéfinie tout en poursuivant une trajectoire de
référence.

Les pertes de données sont des phénomenes courant dans les réseaux et sont la cause de nombreuses
pannes, en particulier dans les systemes ou les communications sont gérées par des méthodes de type
event-triggered. En effet, la réduction des communications fait que 'information contenue dans chaque
message est d’autant plus importante pour assurer la convergence du systéeme. De plus, la détection d’une
perte de donnée est difficile a réaliser quand le systeme est distribué.

Les hypotheses sont formulées dans la Section E.3.1 sont conservées. Les problemes liés aux pertes de
données sont exposés dans la Section E.4.1. Un nouvel estimateur adapté a ces problemes est décrit dans
la Section E.4.2. Le calcul de I'espérance de l'erreur d’estimation, nécessaire a I’évaluation de la nouvelle
CTC décrite dans la Section E.4.3, est abordé dans la Section E.4.4 en utilisant un estimateur additionnel
introduit en Section E.4.4.

Le probleme des pertes de données est étudié dans la Section E.5. Le nouveau contenu des messages est
décris dans la Section E.5.1 : il s’agit d’une prédiction de I’état des agents, définie en Section E.5.3. Une
CTC, se déclenchant plus tot afin de compenser les problemes de pertes de communications, est proposée
en Section E.4.3.

E.4.1 Probleme des pertes de données

Du fait de la limitation des bandes passantes et des perturbations extérieurs (vagues, interférence, présence
d’obstacles...), les messages envoyés peuvent étre sujet a des pertes de données. Une modélisation de ce
phénomene peut étre faite au niveau de la mise a jour des estimateurs par la relation

@) (1) = & () + (1= a5,) @ (43.) (E.45)

ol ozj © st un processus stochastique traduisant la perte d’information quand le message k envoyé par
I’Agent j est transmis a I’Agent i. Cette variables peut prendre la valeur de 1 ou 0 selon une distribution

de Bernoulli suivant la probabilité P (aj,k = 1) =aet P ( k= 0) =1—aavec 0 < a<1. Le k-itme
message est regu avec succes par ’Agent i si o?}k = 1. On remarque que dik est toujours égal a 1.

On définit cj;» (t, q; (t;k)> I'estimation de g; (t) effectuée par I’Agent ¢ en utilisant la valeur g; (t;k)
comme derniere valeur de mise a jour. Par défaut, (jé (t) = cjj (t q; (t;k)> On note que si ’Agent @
regoit le k-ieme message envoyé par ’Agent j, q;'. ( ) qj ( ) :

Dans le Théoreéme 16, ’Agent j a besoin de la valeur de €], donc de ¢ q Cependant, qu est inconnu par
I’Agent 7. Du fait des pertes de données, on ne peut étre assuré de la synchronisation de qu et ¢! comme
c’était le cas avec I'estimateur (E.46), car on ne peut pas savoir si les Agents i et j ont acceés aux mémes
informations.

La Section E.4.2 proposera donc un nouveau modele d’estimateur de 4! ne requérant pas les estimations
des états des autres agents (j; De plus, un estimateur additionnel est introduit dans la Section E.4.4 afin

de permettre d’évaluer ef dans la Section E.4.4.

E.4.2 Nouvel estimateur

On définit le nouveau modele d’estimation tel que

M; (@) 45+ C; (35, 45) 45 + G = 7, VEe [t t; | (E.46)
x; ( ;',k) = zj ( j,k) if & ozj,k =1 (E.A47)
avec
P= k(P4 kpkott) — kgkoft + G — Y (qF, g, ik, i) 62 (E.48)
hi i oad AT ra i
05 =LY (45, 45, . 1) (75 + kpkot) (E.49)
ou 75 = ¢4 — qj, et Mm% = kykots — ¢7si ko > 0, ) = 0 sinon. Note que si ko = 0, ¢§ = 0.
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Remarque 9. Quand la formation converge vers la formation désirée, on observe que g5 = ko et &) =
f; + kpkofé.

Le modele d’estimation (E.46) et la commande (E.48) sont évalués en utilisant uniquement les infor-
mations de I’Agent ¢, permettant d’éviter une partie des problemes de pertes d’informations. Ainsi, on
n’a besoin d’effectuer uniquement une estimation de I'état des agents j tel que k;; # 0 et de soi-méme.
On note que la commande E.48 est moins précise que E.36.

De méme, s’il existe un instant ¢ = t;k tel que &’ (t;k) =2z (t;)k), i.e dé,k =1, alors 2% (t) = i; (t)
Vit e {t;ﬁk, et [ et €} (t) = e} (t).

Le probleme pour évaluer ¢ () quand & ;, = 0 est décrit dans la Section E.4.4.

E.4.3 Condition de déclenchement en présence de pertes de données

L’étude d’une nouvelle CTC prenant en compte les pertes de données a conduit a montrer que celle-ci était

dépendante de el J

<. Cependant, I’Agent ¢ ne peut avoir acces a e; sans une communication permanente.
Aussi, un estimateur additionnel ¢/ a été introduit dans la Section E.4.4 afin d’obtenir I'erreur additionnelle

. 12 12
¢! telle que ‘ el H < Heg H . Cette erreur est utilisée dans le Théoréme 16.

Comme dans le Théoreme 15, la valeur initiale des vecteurs d’état est considérée comme connue par
tous les agents. En pratique, cette condition peut étre satisfaite en effectuant une premiere communication
par tous les agents a 'instant t = 0 permettant d’initialiser les estimateurs.

Théoréme 16. On considere le MAS avec des agents respectant la dynamique (E.22) et la commande (E.36).
min{1,k1,kp,ko,2ko (2ko+ 2ainmin )}

On considere les parametres de réglagesm > 0,12 > 0,0 < b; < kklzﬁ , C3 = (T, Ear T Lo

et ky = ks — (1 + k, (kpr + 1)). Les agents peuvent converger vers la formation désirée en vérifiant

N
. 2 2
; < .
Jim P (g, 1) + _Eil kg llrill” < € (E.50)
avec £ = k]\;3 [Dfnax +n+ 03Amax] 0l Apax = MaX;—1:N (supt>0 (AOiTF;lAHi)), st les communications

sont déclenchées quand l'une des conditions suivantes est satisfaite

N 2 2
koST S0+ kphogl g +1 < ang | ki (k]E< & ‘ ) + kpkMIE( & ))
j=1
N 9 5
o] )y . k12
+kpk%2kijE( ¢l ) U511+ m2] ™| + Kgbillds — 6 |
j=1
o 12 VAVN I
+kkaij]E< ég] ) au (1+|||Yi|A9i7max||2)+ Y] A0: - (E.51)
= (14 13 A )
lgel = \@i]| +me (E.52)

avec ke = kok2 + kghy + 52, Y = Vi (05, i, Bir 1) -

Le probleme du paradoxe de Zeno est décrit dans la Section E.4.4.
Les CTCs proposées dans le Théoréme 16 sont analysées en supposant que les estimateurs et le pro-
tocole de communication garantissent que V (,7) € N’ x N, €] ou &/ peuvent étre évalués par I’Agent i.

2) ‘AQ ‘

J
€

plus, si les estimateurs sont synchronisés de maniére & obtenir e] = eZ, le Théoréme 16 devient équivalent

au Théoreme 15.

il
€

i
€

. De

Remarque 10. S’il n’y a pas de pertes de données, i.e. @ = 1, on obtient E (
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E.4.4 Estimateur additionnel et erreur d’estimation

Protocole de communication

Quand une communication est déclenchée & t; ,, par ’Agent 4, il transmet un message contenant ¢; j,
= i i 1T N S
zi (tig), 0i (tig) et 2° = [#57,..., 5] . On suppose que le message est transmis & tous les voisins j € N
si les parametres k;; sont choisis tel que k;; = 0 si Vj ¢ N;. Sinon, on suppose que le message est regu par
tous les agents j si k;; # 0, que cela soit de maniere directe quand le graphe est entierement connecté, ou
apres plusieurs sauts si le graphe est connecté.

Paradoxe de Zeno

En présence de pertes de données, il n’est pas garanti que les estimations ¢/ soient mises & jour quand
I’Agent i envoie un message a t = ¢; 1, et donc que les erreurs eg et ég soient remises a zéro. Aussi, la
CTC E.51 dans la Section E.4.4 peut étre toujours satisfaite méme apres qu’une communication ait été
déclenchée. Pour résoudre ce probleme, on impose un délai minimum apres satisfaction d'une CTC E.51
avant de ’évaluer & nouveau, et on définit le Lemme 3.

Lemme 3. On définit la constante € > 0 telle que Vt € Iy = [tik, tig + €|, i (£) = x; (tig), T4 (t) =~
& (tig) et & (t) ~ &; (ti k). On considere que Ty est choisi tel que Tin K < eott K € Net K > 2.
Vt € Iye et V0 € [k,...k+ K] tels que t; p+1 — tig = Twin, i.€ la CTC (E.51) est satisfaite tous les Tyin
depuis l'instant ¢t = ¢; 1., on a

£

Ainsi, si T, est choisi suffisamment petit, i.e.choisi K suffisamment grand,

{|2 +(1-a)

. 2
@ (t0) — a (t0)|

el (ti,e)]f) ~ (1= (1= @) ) [ld! (ti) = i (ti0)

-k ’

2
E (Hei (t)H >t — 0 quand t = ¢ + Tmin K

et la CTC (E.51) ne sera plus satisfaite quand ¢t = ¢; , + €.

La preuve du Lemme 3 est décrite dans I’Annexe D.2. L’existence de Ty, et du Lemme 3 garantissent
I’absence de paradoxe de Zeno. Néanmoins, on peut obtenir un grand nombre de communication durant
I'intervalle Iy, ..

Estimateur additionnel

Durant 1’étude du Théoreme 16, ’Agent j avait initialement besoin de e?-, donc de cj; Cependant,
I’Agent j ne peut avoir acces a (j;'- tout le temps & cause des pertes de données. Pour résoudre ce probleme,
on a défini I'estimateur additionnel ¢}, estimation de g} réalisée par I’Agent j. Chaque Agent j évalue ¢},
une estimation de (j} pour tous les Agent ¢ tels que kj; # 0. (j;» est mis a jour quand I’Agent j recoit un

(2

message de ’Agent i, i.e. quand t = tj.:k, (j;- (tfk) = Q; (tik> On garantit ainsi que cjé- (t) = qu- (t) pour

te [tflk, i k1 {, i.e tant que I’Agent j n’envoie pas de message.

La dynamique de (jj est exprimée par

V(@) 6+ G (. 8) 6+ G = F e [t | (E.53)
#(He) = @ (He) irad, =1 (E.54)

avec

(o

D6 (E.55)

C

Ss.

P= ki (P 4 kpkot)) — kgkots + G = Y5 (i, @&, b, m

05 = T3, (@, &, . i) (75 + kyko') (E.56)

jo Y
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ol 7*" = q“j q*et ’/ﬁi =k koﬁi — q;si ko > 0, ﬁzi = 0 sinon.
L estimation I represente la pire estlmatlon possible de 1: , car elle considere que I’ Agent i n’a regu
aucune mforrnatlon venant de I’Agent j pour se mettre & jour. De la méme maniere, x représente

"’L

Iestimation la plus optimiste de &%, dans le cas ou I’Agent i a regu tous les messages provenant de

I’Agent j.
Espérance de ’erreur d’estimation

j . . ~j G A Af - .
Comme ¢; est mis a jour moins fréquemment que §;, et §; = ¢} si ¢; est mis a jour en utilisant le dernier

message envoyé par I’Agent ¢, erreur erreur

En étudiant eg et en utilisant le protocole de communication décrit Section E.4.4, on obtient 1’évaluation

2 2
suivante deE( el (t)H ) EE( el t)” )
e SiVte [jh’ th{
OSit>tiyketti7k tik—1> €

E<q H)zamuo—%wW+u—@

o (t)H2 (E.57)

(1)~ a: 0] (E.58)

e Sit>t; etEIKeN*telquetlk i K<€ i
g 2
( : ” > (1-a- "N a®-a®]+0-a""||d 0 -au) (E.59)

o ) = (| o).

Cette section a abordé le probleme des pertes de données lors des communications entre agents. Les
méthodes introduites précédemment ont été adaptées dans cette section pour traiter cette problématique.
L’influence des pertes de données sur les estimateurs a été étudiée : celles-ci empéchent notamment les
estimateurs de se synchroniser, imposant de créer une nouvelle CTC. Les estimateurs ont été modifiés afin
d’étre moins sensibles aux pertes d’informations, et un estimateur additionnel, représentant le pire cas ou
aucun message n'a été recu, a été introduit. Ces deux estimateurs permettent une évaluation distribuée
de la nouvelle CTC. La convergence du systeme vers la formation désirée et la trajectoire de référence a
été étudiée. De plus, un protocole de communication a été mis en place pour résoudre les problemes de
paradoxe de Zeno.

Les perspectives sont d’étendre la méthode proposée aux problemes de délais de communications.
De plus, une modélisation des pertes de données par une chaine de Markov, plus réaliste, pourra étre
considérée.

La preuve de (E.57)-(E.58)-(E.59) est décrite dans I’Annexe D.3.

Remarque 11. Sur U'intervalle Vt € {t;}h, t,-JC] U ltik, tigs1[,ona ( el

E.4.5 Conclusion

E.5 Probleme des délais de communication

Dans cette section, le probleme des délais de communication bornés entre les agents est étudié et les
résultats de la Section E.3 sont adaptés pour pouvoir le résoudre. Notamment, la condition du Théoreme 15
a été adaptée, en s’inspirant de [84]. Le protocole de communication et des modeles de prédiction de I'état
des agents sont décrits afin de permettre 'implémentation pratique de la méthode.

Le probleme des délais de communications et leur influence sur la définition du contenu des messages
a adopter sont décrits en Section E.5.1. Ces messages contiennent désormais une prédiction de 1’état des
agents, calculée en Section E.5.3. Une nouvelle CTC, déclenchant en avance pour contre-balancer les
problemes de délais, est proposée en Section E.5.2. Enfin, les conclusions sont présentés en Section E.5.4.
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E.5.1 Contenu du message

On définit 7;; = t{ i —tik le délai de communication entre I'instant ot I’Agent ¢ émet un message et I'instant
ot ’Agent j le regoit. On suppose que 7;; peut étre majoré par une constant 7' > 7;; (t) pour tout couple
(¢,7). Considérons l'influence des délais de communications : dans le Théoréme 15, la condition (E.41)

garantit la stabilité et la convergence du systeme global si a I'instant t{ > estimation :%f (tf k) est mise
a jour avec la valeur x; (tf k) Ainsi, pour garantir la condition tout en prenant en compte les délais
de communications, le message contenant x; (tz k) doit étre envoyé a t = t;; < tz « — Tij- Cependant,

T; (tfk) ne peut étre connu a t = t; . Une prédiction a?; (tzk) de z; (tfk> doit donc étre effectuée.

Pour tout vecteur y € R™, on définit §! (t +T) € R" la prédiction de I'état y; (t + T effectuée par
I’Agent ¢ . Le modele de prédiction sera étudié dans la Section E.5.1.

Dans le Théoreme 16, les agents ont besoin que les estimateurs soient synchronisés de maniére & assurer
que 2% (t) = 21 (t) V(i,j) € N. Tant que 7;; () est inconnu par les agents et que 7;; (t) < T, les agents
mettront & jour leur estimation de x; a l'instant ¢; ;, + 7', quand tous les agents auront recu le message
envoyé par I’Agent i. Ainsi, les valeurs estimées sont synchronisées.

B (tin+T) = Fi(tin+T) YjeEN;,
T(tix+T) = T(tix+T).

L’inconvénient de cette méthode est que les estimateurs sont mis & jour en utilisant une prédiction de
z; et non la véritable valeur, donc lerreur e (¢, +T) n’est pas remise completement & zéro. De fait,
I’absence de paradoxe de Zeno ne peut étre prouvée.

Le probleme de la synchronisation des estimateurs ayant été résolu, la prochaine section se concentrera
sur la nouvelle CTC.

E.5.2 Condition de déclenchement en présence de délais de communication

Comme expliqué dans la section précédente, le message doit étre envoyé en avance pour compenser le
délai de communication. On cherche donc a savoir a l'instant ¢ si la condition sera satisfaite a I'instant
t+T en utilisant les prédictions &; (t +T),g: (t +T), e (t +T), & (t +T), ¢ (t+T), @ (t+T), pi (t + T)
et pi (t+T).

Théoreme 17. On considére un MAS avec la dynamique (E.22) et la commande (E.32). On considére
les parameétres de réglage m, &, 12, Be, Be, Bg, Bs, Bg et 0 < by < m En présence de délai de

communications T;; < T, les agents peuvent converger vers la formation désirée en vérifiant

N
. 200, 112
Jim P (q,0)+ 3 K3 [lml® < € (E.60)

i=1
si les communications sont déclenchées quand ['une de ces conditions est satisfaite
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et si les conditions suivantes sont respectées

Is: O + 8. > || o) (E.63)
lg: ()1 + 8, > a7 o) (.64
i ) — a0 = lgs (&) ;) — 6, (.65)
les @ = [lei @)]* - 8. (E-66)

lE @I = e @l - se. (E67)

Les valeurs de ¢, B¢, B4, Bs, B4 doivent étre choisies suffisamment petite pour éviter des déclenchements
inutiles de la condition (E.61) tout en respectant les conditions (E.63)-(E.67).

E.5.3 Modele de prédiction

Modélee de prédiction simple par discrétisation d’Euler

En utilisant la méthode d’Euler, on obtient un modele de prédiction de la forme y (¢t + T) = y (¢) + Ty (1).

Prédiction de z; (t +T) et @ (t + T), Vj #4 ¥t >0 Dans cette méthode, la dynamique des agents et
leur commande ne sont pas prises en compte. Ainsi, la prédiction de I’état de I’Agent ¢ peut s’exprimer
vVt > 0 par

On remarque que les futures mise a jour de i; ne peuvent étre connues par I’Agent 4, créant une différence
avec la véritable valeur. Cependant, I’Agent i connait les futures mises a jour de 2%, permettant d’obtenir
une prédiction plus précise.

Prédiction de %2 (t+T) Quandt>t;,+T, tous les messages envoyés par ’Agent ¢ ont été recus par
les autres agents et leurs estimateurs ont été synchronisés. Le modele de prédiction peut donc étre écrit
sous la forme ¢ (t +T) = x; (t) + @; (t) T. Cependant, quand t € [t; x, t; x + T[, I’Agent i mettra & jour
2% a linstant t = t;, + T en utilisant la prédiction ! (t; x + T réalisée a Vinstant ¢, . Ainsi, 2% (t + T)
peut étre exprimé par Vi > 0

Tt AHT) =2 (tig) + i (tig) (T +t —tig) + & (tig) T (t—tig)

Autres prédictions En utilisant les prédictions # (t + T), 2% (t + T) et :%; (t 4+ T), on peut évaluer les

termes & (t+7), & (t+T), ¢ (t+T), ¢ (t+T), gl (t+T) et 5L (t+T) .
L’avantage de cette méthode est sa simplicité et son faible temps de calcul. Cependant, le délai T" doit
étre suffisamment petit pour garantir que la prédiction #} soit suffisamment proche de la valeur réelle x;.

Modeéle de prédiction précis

Afin d’essayer d’étre plus proche du comportement réel des agents, la dynamique de la prédiction de !
peut étre modélisée par

M(@) G +Cl(d. d)d = 7i+d;
5 (tik) &5 (tig) sij#1,
T (tik) = wiltik) (E.68)
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N . N PR T p N i 1T < T
Oll tin; est I'instant out la prédiction est évaluée, 25 = [gi", ¢i"]", 7} est la prédiction de la commande,

et d; une prédiction des perturbations si cela est possible (on choisira généralement d; = IE (d;)). On note
que la différence entre (M;, C;) et (Mf, C’f) induit une erreur de prédiction.

On s’intéresse maintenant & la commande 7! . On peut choisir?! (t) = 77 (#;.1), sous la forme (E.48)
ou 2! est remplacé par Z¢. Si l'on souhaite faire une prédiction de la commande (E.36), une prédiction
des estimés §; est également nécessaire. On utilise alors le modele

(@) d+ G (E ) d =1
3% (tini) = 5 (tini) Vi €N
Bt +T) =% (tin +T) (E.69)
oﬁ? et 71 sont les prédictions de la commande (E.36) et oi1 ¢ est remplacé par ¢*. (E.69) exprime la mise
a jour de #¢ & linstant ¢t = tik + T comme dans la Section E.5.3.
En utilisant les prédictions &} (t + T, &} (t + T) et 2% (t + T), on peut évaluer les termes & (t + T),

Et+T), ¢ (t+T),q: (t+7T), §i(t+T) et & (t+T) . Cette approche permet une meilleure prédiction
de x;, mais son principal inconvénient est son cout en temps de calcul 7,, qui doit respecter la contrainte

T > 7, + 7 (t). Cela en fait une méthode beaucoup plus difficilement implémentable que celle proposée
dans E.5.3.

E.5.4 Conclusion

Cette section présente une adaptation de la méthode initialement proposée en Section E.3 pour le dé-
placement en formation et le suivi d’une trajectoire de référence, en présence de délais de communication.
L’influence des délais sur le contenu des messages a été étudiée. Pour contre-balancer les effets des délais
de communications, une prédiction de la valeur de I'état est transmise aux autres agents afin de mettre
a jour leurs estimateurs de maniere synchronisée. La CTC a été adaptée pour prendre en compte les
délais de communications et est déclenchée en avance afin de les compenser. Deux modeles de prédiction
de différentes complexités et précisions ont été proposés. La convergence du systeme vers la formation
désirée et la trajectoire de référence a été étudiée, ainsi que ’absence de paradoxe de Zeno.

Dans de futurs travaux, le probléme considéré sera étendu & ceux de topologie variable et de satura-
tion de la commande. La combinaison des délais de communications avec les pertes d’informations sera
également traitée.

E.6 Conclusions et perspectives

Conclusion

Dans cette these, des techniques de communication de type event-triggered et des lois de commandes
distribuées ont été proposées, pour réduire le nombre de communications transmises au sein d’un systeme
multi-agent coopératif. Les principales contributions de cette these sont les suivantes :

e Premierement, une méthode de réduction de communications par event-triggered distribuée a été
proposée pour le probleme d’obtention d’un consensus entre agents possédant une dynamique linéaire
généralisé, incluant des perturbations sur I’état. Les résultats obtenus ont été comparés avec d’autres
approches.

e Deuxiemement, une stratégie event-triggered distribuée a été développée pour le probleme de dé-
placement en formation et de suivi d’une trajectoire de référence par un systeme multi-agents. La
dynamique considérée pour les agents est de type Euler-Lagrange et inclue également une pertur-
bation sur 1’état. Des extensions ont été proposées dans les cas avec incertitudes sur le modele
dynamique, présence de délais de communications et pertes de données.

Dans la premiere approche, le graphe communications et considéré comme fixe et les communications et
sans délais. La méthode utilise simultanément deux estimateurs de 1’état des agents : le premier permet
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une mesure précise de 1'état de tous les agents de la flotte en prenant en compte une estimation de la
dynamique et de la commande des agents. Le second considere seulement les voisins de chaque agent
et est moins précis car mis a jour moins fréquemment que le premier. Cependant, sa valeur coincide
entre deux voisins. L’erreur d’estimation des deux estimateurs est utilisée pour évaluer la condition de
déclenchement. Un protocole de communication nommé Flooding delay a été développé afin de mettre
a jour les estimateurs sans ajouter de communication supplémentaire. Le lien entre les perturbations et
lerreur de consensus a été mis en évidence, et la convergence vers le consensus et ’absence de paradoxe
de Zeno a été prouvé. Enfin, des extensions de ces résultats aux modeles linéaires variables dans le temps
et au cas de topologies variables ont été discutées.

Dans la seconde approche, des incertitudes sur le modele dynamique étant considérées : une estimation
de ces parametres ainsi que des états des agents de la flotte a été introduite pour remplacer les informations
manquantes. Ces estimations sont utilisées afin d’obtenir une loi de commande distribuée. Une CTC
distribuée, basée sur les erreurs d’estimation, a été définie pour réduire le nombre de communications
tout en garantissant la convergence du systeme vers la formation et la trajectoire voulues avec une erreur
bornée. L’absence de paradoxe de Zeno a également été prouvée.

Les délais de communication ainsi que les pertes de données ont aussi été étudiés. Dans le premier
cas, deux modeles de prédictions de différente complexité et précision ont été considéré. La convergence
vers la formation et la trajectoire de référence choisie a été étudiée et I’absence de paradoxe de Zeno a
été prouvée. Pour prendre en compte les délais de communications, un estimateur additionnel et une
CTC basée sur des parametres stochastiques ont été développés en considérant l’espérance de 'erreur
Iestimation due aux pertes d’informations. Pour garantir I’absence de paradoxe de Zeno, un protocole de
communication spécifique a été proposé.

Perspectives

Plusieurs objectifs & moyen et long termes sont proposés ci-dessous.

Les pertes de données modélisées dans cette étude sont considérées comme mutuellement indépendantes
avec une distribution de Bernoulli, et les solutions proposées sont basées sur ces caractéristiques. En
pratique, les pertes de données peuvent ne pas étre indépendantes (présence d’obstacle masquant des
agents, matériel défectueux), et étre représentées par une chaine de Markov. L’adaptation des stratégies
proposées a ces nouvelles contraintes serait une amélioration intéressante pour augmenter la robustesse
du systeme global. Les délais de communication ont été introduits, mais les conditions sur la CTC
ont besoin d’étre relaxées afin d’obtenir une communication moins importante car trop pessimiste. De
plus, considérer de maniere simultanée les problemes de délais de communication et de pertes de données
constituerait une amélioration importante.

Dans les méthodes event-triggered étudiées dans cette these, il est supposé que les CTCs sont évaluées
en permanence. Sachant que les MAS sont des systemes généralement discrétisés, évaluer les CTCs de
maniere périodique permettrait une implémentation plus pratique et plus proche d’un systéme réel.

Enfin, chaque agent est supposé mesurer son propose état sans erreur, ce qui constitue une con-
dition peu réaliste. Un observateur d’état doit étre introduit et 'impact d’un bruit de mesure doit
alors étre étudié. Modéliser 'incertitude de mesure en utilisant une erreur bornée pourrait étre une
maniere d’intégrer ces erreurs de mesures dans la CTC, mais conduirait a une prise de décision plus pes-
simiste et donc une augmentation du nombre de déclenchements. L’extension aux travaux présentés dans
[50, 95, 111, 120, 68] pourrait étre une direction intéressante.
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