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Abstract: This work focuses on Fault Detection and Isolation (FDI) among sensors of a
surveillance network. A review of the main characteristics of faults in sensor networks and the
associated diagnosis techniques is first proposed. An extensive study has then been performed
on the case study of the persistent monitoring of an area by a sensor network which provides
binary measurements of the occurrence of events to be detected (intrusions). The performance of
a reference FDI method with and without simultaneous intrusions has been quantified through
Monte Carlo simulations. The combination of static and mobile sensors has also been considered
and shows a significant performance improvement for the detection of faults and intrusions in
this context.
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1. INTRODUCTION

Two main applications of sensor networks are usually
considered, namely environmental monitoring (continu-
ous sensing) and event detection (surveillance, target
tracking). The scenario considered in the EuroSWARM ∗

project is the persistent monitoring and surveillance of
a large area in order to protect a high value asset from
intruders in a battlefield context. This paper is thus
dedicated to event detection networks, whose particular
features are the non-persistence of the excitation signals,
limited sensor ranges, and possibly sparse coverage. Coop-
erative FDI can be very useful to avoid sending manned
troops or unmanned vehicles from the military basis for
intrusion confirmation in the case of a faulty event detec-
tion when no intrusion is present or of wrong localisation
in the case of an intrusion. In the first case where no
intrusion is reported, this also helps the maintenance of
the network by replacing faulty nodes without the need
for a systematic strategy. This would entail cost saving
and security improvement.

For reliable sensor fusion and an enhanced possibility of
detecting faults in a cooperative manner, the network
should locally present a high density of (possibly heteroge-
neous) sensors. Otherwise, information gathered on possi-
ble intrusions will only be based on scarce measurements,
and the lack of possibility of comparison with other sources
of information makes it difficult to distinguish between
true events and faults without a human intervention. Het-
erogeneity increases complexity, since it is hard to compare
measurements between sensors of different natures and
this turns out to be possible only with high-level pre-
processed data.

As indicated by Ni et al. (2009), sensor network data is
expected to be correlated in both the spatial domain and
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temporal domain and this is the main assumption at the
basis of FDI methods. In surveillance networks, what is
defined as a fault may also characterize an event under
some conditions. The main difficulty for FDI in event
detection sensor networks is thus the coupling between
an event that should be detected and a fault. There are
two critical situations: (1) No event is present but signals
are produced by some faulty sensors and (2) An event
is present but is not detected by some faulty sensors. To
differentiate between a fault and an event, a training phase
may be utilized to determine a model of a specific inter-
esting event, or this could also be distinguished through
the exploitation of the spatial and temporal correlations
in the measurements.

In this paper, a classification of faults that can affect
sensor networks and a review of the main FDI techniques
are first given in Section 2. In Section 3, the design
and results of extensive simulations of a reference FDI
method (Choi et al. (2009)) applied on the specific case of
the area monitoring scenario are provided. In particular,
the performances of both FDI and intrusion detection are
quantified with a Monte Carlo approach, so as to provide
recommendations for the design of surveillance sensor
networks. A preliminary study has also been conducted
on the combination of a static network and a fleet of
mobile sensors for such a mission, which shows significant
improvement of the overall performance. Conclusions are
discussed in Section 4.

2. LITERATURE REVIEW

2.1 Definition of faults in a sensor network

Classifications of sensor fault types in sensor networks
and of associated FDI methods have been proposed in Ni
et al. (2009); Muhammed and Shaikh (2017); Mahapa-
tro and Khilar (2013); Jurdak et al. (2011); Fang and



Dobson (2013); Rassam et al. (2013). These references
have been analyzed to propose the following synthesis.
A fault is an unpermitted deviation of at least one char-
acteristic property or parameter of the system from ac-
ceptable/usual/standard conditions. A fault may lead to
a failure, which is a permanent interruption of the sys-
tem ability to perform a required function under specified
operating conditions. There are two classical approaches
to define faults in sensor networks, which can be more
or less appropriate depending on the context. Frequently
there may not be a clear explanation on the cause of a
fault (e.g. outliers), and hence it may be easier to describe
some faults by the characteristics of the data behaviour.
This is the data-centric view, which is the most relevant
from the diagnosis point of view. The second system-
centric approach covers physical malfunctions or degraded
operational conditions on sensors and describes what type
of features this could exhibit in the data collected. These
two approaches are therefore complementary: data-centric
faults are usually caused by system issues. Monitoring cer-
tain aspects of the hardware, such as battery life, may thus
help to understand when and why a fault may occur. The
data-centric perspective has been adopted in this work,
i.e. how faults can be detected by investigating the data of
the sensor nodes. It should although be kept in mind that
some major hardware faults that are at the root of these
data faults can sometimes be self-detected by a node itself
(loss of connection to the network, battery end-of-life). In
this case, cooperative FDI is not mandatory and the node
can just be excluded from sensor fusion for event detection
or target tracking.

Data-centric faults:

(1) Outlier: very common fault represented by isolated
samples in the temporal or spatial sense. To model
an outlier, the most common feature to consider is
the distance from other readings.

(2) Spike: a rate of change much greater than expected
over a short period of time (inconsistent gradient). In
some cases, this may represent an event (intrusion)
that should be detected.

(3) Offset (or bias): deviation in sensed data by an
additive constant.

(4) Gain (or scaling): the rate of change of the sensed
data is affected by a scale factor.

(5) Drift: a time-varying signal (linear or not) is added to
the measurements, independently from the measured
phenomenon.

(6) Stuck-at (or locked): some series of data values
present no variation over a given period of time. The
monitoring of gradients and variances is relevant to
detect this kind of fault.

(7) High noise: unusually high noise may be due to
hardware failures, battery issues or environmental
disturbances.

(8) Data loss: sensed data is not received during a signif-
icant time interval.

System-centric faults:

(1) Calibration error: this is the root cause of faulty data
in many cases, leading for example to the presence of
offset, gain and drift.

(2) Connection or hardware failures: this causes hard
faults, with loss of data.

(3) Low battery: may influence sensor readings, creating
outliers, spikes or other signal distortions.

(4) Environment out-of-range: the sensitivity range of the
sensor is exceeded due to current conditions. This
may be due to inappropriate calibration or a wrong
choice of sensor.

(5) Clipping: this saturation phenomenon can be a con-
sequence of environment influence or misuse of the
sensor, and can lead to the stuck-at type of fault.

The faults can be persistent or intermittent, therefore the
history of events should be stored to discard sensor nodes
that repeatedly present an anomalous behaviour.

2.2 Techniques for FDI in sensor networks

Fault detection is the determination of the presence of
faults in a system and of their times of occurrence. It
is generally followed by fault isolation to determine the
type and location of the faults. Fault identification (or
estimation) aims then at determining the magnitude and
time-varying behaviour of the faults. The complete process
is usually called either FDI or fault detection and diagnosis
(FDD), the latter including identification. These tasks gen-
erally involve the generation of residuals, which are fault
indicators based on discrepancies between measurements
and model-based computations. Residuals should remain
small as long as there is no fault, and become sufficiently
large to be noticeable whenever faults occur (Marzat et al.
(2012)). Emphasis will be put on cooperative processing
and detection of faults affecting the collected data. Zhang
et al. (2010) consider specifically detection techniques of
outliers. The following generic remarks are of particular
interest:

• Two variations for outlier identification exist in sen-
sor networks. One is that each node identifies the
anomalous values only depending on its historical
values. The alternative is that in addition to its own
historical readings, each sensor node collects readings
of its neighboring nodes to collaboratively identify the
anomalous values.

• Outlier detection techniques need to make use of data
of neighboring nodes and spatial similarity of the
sensor data. This is based on the fact that the sensor
faults are likely to be spatially unrelated, while event
measurements are likely to be spatially correlated.

FDI techniques can be classified in the following three
main categories.

Statistical and model-based These methods represent
spatial or temporal links between data via statistical mod-
els. Different types of parametric probability distributions
can be employed (Gaussian, Poisson, Rayleigh, uniform),
several estimation techniques have been proposed (av-
eraging, median, maximum likelihood, Kalman filtering,
Bayesian inference) and various statistical decision tests
can be applied (three-sigma test, likelihood ratio). There
also exist non-parametric statistical methods using other
distance measures (histograms or kernel functions).
Franco et al. (2006) described a distributed FDI methodol-
ogy based on a bank of Kalman filters and a Bayesian con-



sensus decision scheme. The detection procedure is based
on the analysis of residuals computed as the innovations
of a Kalman filter using a nominal model of the system to
be monitored; once a fault is detected, a multiple model
estimation scheme is called upon to achieve fault isolation.
The distributed algorithm of Ji et al. (2010) computes a
spatial weighted average for each node using its pre-defined
set of neighbors, with a simple decision mechanism using a
fixed threshold (set to zero in the case of binary data). The
weights represent the confidence associated to each sensor,
depending on its prior probability of becoming faulty.

Neighborhood and clustering These methods compute
some measure of distance between data instances of neigh-
bor nodes, on spatial or temporal windows. Neighbors
are defined using criteria of number, distance, connection
or overlapping range. The main underlying assumption is
that neighboring measurements of the same phenomenon
should be correlated and of very similar values. Some basic
statistical quantities (similar to those from the first class
of methods) can be computed using these data, and con-
sensus mechanisms are applied (usually majority voting,
possibly weighted with some prior knowledge) to identify
faulty nodes, most often in a decentralized way. This cat-
egory also includes nearest-neighbor clustering rules and
decision processes.
Choi et al. (2009) proposed a fault detection scheme based
on the comparison of sensor readings between neighbors in
a homogeneous network with deterministic measurements.
An iterative procedure is designed to create clusters and
determine if the node is healthy. The node degree and
matching threshold are adjusted at each iteration until
all the nodes have been classified as healthy or faulty. A
distributed fault detection scheme for sensor networks has
been proposed in Chen et al. (2006). It uses local compar-
isons with a modified majority voting, where each sensor
node makes a decision based on comparisons between its
own sensing data and those of neighbors on successive
time instants, while considering the confidence level of
its neighbors. This requires two successive exchanges of
information between neighboring nodes to obtain a local
consensus. The detection criterion was improved in Jiang
(2009) in the first level of exchange to avoid misclassifying
sensor nodes as faulty.

Classification and learning This set of methods builds
classes from a measurement database either in a supervised
way (i.e. with the help of an expert) or in a semi-
supervised manner (i.e. putting in the same class elements
of the database that are deemed close to one another,
and relying on an expert only to label the classes). A
classifier (Neural Network, SVM, Bayesian Network) is
then trained with respect to these classes to assign the
newly measured variables to classes that represent healthy
or faulty behaviors. This category also includes spectral
approaches such as Principal Component Analysis (PCA),
which builds a learning model by using redundancy in
the process history to predict the values of variables and
generate residuals by comparing predictions to measured
values. Harkat et al. (2006) used PCA to detect sensor
faults and also additionally estimate their magnitude on
a single node by computing the difference between a
measurement of one variable and its reconstruction using
the PCA projection matrix and the measurements of

all the other variables. This technique was applied to
supervise an air quality monitoring network.

2.3 Performance metrics

The following performance metrics are usually employed
to evaluate the FDI methods:

• Detection Accuracy (DA): ratio of correctly detected
faulty nodes in the total number of faulty nodes.

• False Alarm Rate (FAR): ratio of non-faulty nodes
detected as faulty in the total number of fault-free
nodes.

• Delay of detection (mean and variance can be com-
puted on all nodes detected as faulty).

The trade-off between Detection Accuracy and False
Alarm Rate can be represented graphically by a ROC
(receiver operating characteristic) curve (see e.g. Figure 3).

2.4 Main trends and remarks

Main trends Most of the methods are based on statistical
assumptions and data comparison in a neighborhood of
sensor nodes, which can be easily decentralized. Decen-
tralized approaches are either explicitly hierarchical with
specific gateways and pre-defined cells in the network, or
on the contrary implicitly self-organizing where each node
exploits the knowledge from its neighbors without rank.
The second design choice is more generic and adaptable
to failures. Statistical models are very often employed, in
either centralized or neighbor-based approaches. This is
quite natural, regarding the usual assumptions on the spa-
tial and temporal distributions of sensor measurements.
Majority voting is probably the most employed consensus
mechanism. It has the potential to enhance the detection
performance from both detection accuracy and false alarm
rate perspectives. It should however be noted that the
performances of these techniques are worst affected by low
average node degree, i.e., these techniques are topology
dependent. Learning techniques are cumbersome, due to
the need for a large database of data samples to train
the algorithms and high computation complexity for the
training step. The most used technique is to rely on a single
healthy class and to detect outliers. However this strategy
does not allow the identification of the type of fault.

Limitations of existing studies The majority of existing
works does not take into account multivariate data and as-
sumes the sensor data is univariate. Many of the neighbor
coordination approaches only consider the spatio-temporal
correlations between sensor data of neighboring nodes and
ignore the dependencies among the attributes of the sensor
node itself. Many of the approaches adopt a predefined
threshold to detect faults. However, an optimal threshold
is not always easy to determine. Rigorous analyses can
be obtained under statistical assumptions. Little work
has been done on diagnosing intermittent and transient
faults. Most often, persistent failures are assumed. This
is an important issue in practice. Little work has been
done on distinguishing between events and faults. Many
of existing techniques simply regard outliers as errors.
Since a commonly accepted notion is that errors should be
removed from the data set, important information about
hidden events may be lost.



Remarks Combining static and mobile sensors for event
detection is still an open issue that has not been exten-
sively studied in the literature (a few existing references
are Datta et al. (2006); Wang et al. (2007); Mohamed et al.
(2013)), and collaborative fault detection in this context
is all the more challenging. A simple way to address the
problem would be to add (when they are available) the
mobile sensor measurements along with their localization
information to the static ones and use the same fusion and
fault detection algorithms. Even if the dynamics of the
vehicles would not be fully exploited in this framework,
this would still add important information to excite the
system for fault detection purposes. This is the approach
evaluated in Section 3.5. The security of sensor networks
(in particular robustness to attacks) is beyond the scope
of this study. Some elements can be found in Chen et al.
(2009), where physical protection, software and network
security or secure location and data aggregation are ad-
dressed.

3. FDI IN A SURVEILLANCE SENSOR NETWORK:
A CASE STUDY

In this section, the application of a FDI technique from the
literature to a sensor network representative of a persistent
surveillance task is analyzed through simulation results.

3.1 Scenario and simulation conditions

The simulations consider the surveillance of a sub-area of
a larger protected zone. The considered dimensions are
20 m × 20 m, this metric unit is just an example, since
the obtained results are not sensitive to this value and
remain valid if all parameters are modified with the same
scale. The sensor network is composed of a large number
of cheap omnidirectional sensors with limited ranges (3 m
and 4 m have been considered), which are representative
of seismic sensors or magnetometers (listed as relevant for
the application considered). Several measurement models
of increasing complexity can be considered:

• Binary measurements (as in e.g. Arora et al. (2004))
on the full sensor range, which corresponds to a local
detection by each sensor using its own information.
This is a representative model for imprecise sensors
(such as the seismometers and magnetometers con-
sidered).
• Position of the intruder in the sensor field of view,

with possibly an associated uncertainty (which can
be very large for cheap sensors). This might lead
to slightly better performance than binary measure-
ments (but this is not guaranteed).
• Spatial field mapping of the probability of presence

defined at each position. This can be easily built from
position measurements.

In this case study, the first measurement model has been
considered for evaluating the methods. This is a repre-
sentative situation in practice, and this was deemed suffi-
cient to assess FDI performance. The surveillance mission
considers intrusion detection with no prior knowledge: in
the nominal case without any intruder present, a sensor
should return the value 0, while it should measure 1 if
an intruder is present in its field of view. No particular

Table 1. Average numbers of neighbors de-
pending on number of nodes and sensor ranges

Number of nodes 15 20 25 30 40

Sensor range 3 m 2.43 3.50 4.57 5.64 7.79

Sensor range 4 m 4.24 5.97 7.69 9.41 12.86

assumption is made on any sensor fusion algorithm for
more advanced high-level recognition or combination of
sensor information. The FDI algorithm will thus try to
detect faulty nodes by comparing the measurements of
the nodes. For this purpose, a redundancy in spatial and
temporal coverage between nodes is mandatory, since this
is the main assumption at the basis of all cooperative
FDI approaches for sensor networks. Various percentages
of faults in the network have been considered, from 0 to
50% of the nodes (randomly chosen in the simulations).

A relevant operational scenario is to consider that some
faulty sensors are stuck to 1, which means an undesired
false detection of the presence of a target. The two cases
of such a fault occurring in absence or in presence of a true
event (intrusion) are considered.

(1) Persistent faults (sensor stuck to 1) in the case of no
intrusion in the area.

(2) Persistent faults (sensor stuck to 1) in the case of
a simultaneous intrusion in the area. Distinguishing
faults from true events is known to be a difficult issue
in FDI for sensor networks (Zhang et al. (2010)).

The placement of the nodes in the area has been carried
out by Latin Hypercube Sampling (LHS). This method
generates a near-random space-filling design of N points
by dividing each axis of the space in intervals of equal
length, and then by sampling randomly with a uniform
distribution in only one square per line and per column.
This provides a better distribution of samples in the
space than grid sampling or pure direct random methods
(McKay et al. (1979)), especially in high dimensional
spaces. This placement does not provide the optimal
coverage but still ensures a good spreading in the area
with a limited computational cost (see e.g. Balesdent and
Piet-Lahanier (2015) for more advanced considerations).
Two sensor nodes are defined as neighbors if their fields
of view intersect. Several numbers of nodes in the area
have been considered so as to obtain more or less large
and dense networks (see Table 1). This yields a collection
of average numbers of neighbors for each node, which
is one of the main parameters with a strong impact on
FDI performance and reliable intrusion detection. All the
results presented have been obtained via extensive Monte-
Carlo simulations (1000 for each result data point) on
the network sampling so as to compute metrics that are
independent of the particular disposition of the network.
All the cases from Table 1 have been processed in this
context. The intruder has been modelled as a random walk
on a duration of 200 time steps, where each subsequent
step is chosen using a zero-mean Gaussian distribution
with standard deviation 0.5 m. The initial position has
been randomly chosen with a uniform distribution in a
rectangle centered in the middle of the area and of side
equal to half the length of the space.



3.2 FDI method for performance evaluation

The method described in Choi et al. (2009) has been
selected for performance evaluation on the described in-
trusion detection scenario, since it is representative of
the decentralized methods based on neighborhood and
clustering that have been extensively studied and which
reported the best diagnosis performances in the literature.

This approach uses an iterative procedure to create clus-
ters and determine if the node is healthy. The node degree
and matching threshold are adjusted at each iteration until
all the nodes have been classified as healthy or faulty.
The method is a good summary of the main features
of cooperative FDI techniques: it is decentralized (each
node computes its own status using only its neighbors),
spatial correlation in data is exploited, a consensus is
performed between neighbors and propagated inside the
network, and temporal aspects are also taken into account
by modifying iteratively the table of neighbors and the
detection thresholds. The detailed algorithm is as follows.

For each node i, to determine its status Fi (0: good, 1:
faulty, 2: undetermined) do

(1) Create the Neighbor Table (NT ) and set Fi to 2
(undetermined)

(2) Gather measurements of the neighbors of i
(3) Determine ki the number of matching neighbors

(same measured value in the binary case)
(4) If ki > θi then set Fi to 0
(5) Repeat l times for undetermined nodes:

If one of its matching neighbors is determined to be
healthy, then set Fi to 0

(6) The remaining undetermined nodes are considered to
be faulty (Fi ← 1)

(7) Update NT (remove faulty sensors)
(8) Compute threshold θi for the next time step

The threshold θi chosen as θi = max
(
δ, di

2

)
where di is the

number of neighbors of node i and δ the minimum number
of neighbors required to make a decision. Following the
recommendations of Choi et al. (2009), the value of l has
been fixed to 1 and the value of δ to 2.

3.3 Persistent detection of some sensor nodes with no
intrusion

In this case, all the nodes should normally return the
measurement 0 to indicate that no intrusion is currently
in process. Therefore, faulty nodes that return 1 should
be identified with the proposed method. The results of
the Monte-Carlo simulations are presented in Figure 3,
for all variations of parameters (sensor range, number
of nodes, and percentage of faulty nodes). The perfect
performance is represented by a DA indicator equal to 1
and a FAR equal to 0. It clearly appears that the most
important parameter impacting FDI performance is the
average number of neighbors, which is a consequence of the
relation between the total number of nodes and the sensor
range. Of course, for the same number of nodes there are
more neighbors per node in the case of a larger range.
The results show that a good FDI detection performance
(DA > 0.95 and FAR < 0.05) can be obtained for a
percentage of faulty nodes up to 25% only if the average

Fig. 1. Example of good FDI in a sensor network (20 nodes,
10% faults, no intrusion)

Fig. 2. Example of false alarm due to a lack of neighboring
nodes (15 nodes, 25% faults, no intrusion)

number of neighbors (also known as the node degree) is
larger than 4 (as a reminder, see Table 1 for the relations
between those parameters). These results and the level of
performance reached are consistent with those obtained
in the literature with similar parameters (but not for
intrusion detection scenarios, see Paradis and Han (2007);
Chen et al. (2006); Ji et al. (2010)). This shows that such
a method is well qualified in the targeted application, if
a sufficient number of nodes can be deployed to satisfy
the condition on the number of neighbors per node. For
very cheap sensors, this should be possible. Moreover, the
percentage of simultaneous faults should not reach very
high levels since sensors can be deactivated or replaced as
soon as they are detected as faulty. Figures 1 and 2 display
a few examples of fault detection and identification results
for different network parameters.

3.4 Persistent detection of some sensor nodes in presence
of intrusion

When the same type of faults (sensor measurement per-
sistently stuck at value 1) is considered in the presence of
an intrusion, the situation is more complex and there are
several possible consequences. The sensor fault can trigger
false alarms in locations where there is no actual presence
of an intruder and therefore result in a false detection of
multiple intrusions on the overall area, which can lead to a
bad use of military resources and this should be detected
beforehand. If the persistent sensor fault appears where
the intruder is located, it does not degrade performance
of detection, but only healthy nodes can be reliably taken
into account for an intrusion to be confirmed. Finally, an-
other well-known issue with faults in sensor networks that
should detect this kind of event is the difficulty to distin-
guish faults from intrusions, especially if there is a limited
number of neighbors for each node. The simulations in
the case of an intrusion provide interesting information on



Fig. 3. Performance of FDI method with various sensor
ranges and network configurations (case without in-
trusion, sensor ranges of 3 m (up) and 4 m (down))

all these situations. Results presented in Figure 5 show
that the simultaneous occurrence of faulty nodes and in-
truders degrade the overall performance of FDI. Detection
Accuracy slightly decreases and False Alarms are more
frequent because sometimes the event is treated as a fault
by the consensus mechanism, especially when there are
very few neighbors per node. It is however interesting
to note that the network is more robust to this kind of
confusion between events and faults when the sensor range
is larger, even for comparable node degrees. This is because
the intrusion can be better captured by multiple neighbor-
ing nodes since their overlapping area has more chances
to be larger. The FDI performance remains acceptable
(DA > 0.85, FAR < 0.15), as long as there is still more
than 4 neighbors per node.

So far, only the performance of the FDI algorithm when
there are at the same time faults and actual intrusion
has been discussed. However, another important opera-
tional consideration in this scenario is whether the correct
detection of the intrusion can still be achieved even in
the presence of such faults. The intrusion is determined
to be correctly identified if a healthy node, i.e. one that
has not been classified as faulty by the FDI algorithm,
detects the target at least once during the time interval
studied. The rates of correct intrusion detection for the
same simulations have been computed and are reported
in Figure 6. In the simulation conditions considered, a
meaningful result is that the rate of correct intrusion
detection increases with the percentage of faults. This is
again mainly because in the case of only a few faults and a
reduced number of nodes, events are sometimes treated as

Fig. 4. Illustration of FDI results in presence of intrusion
(30 nodes with 5% faulty, intruder trajectory in red)

Fig. 5. Performance of FDI method with various sensor
ranges and network configurations (with intrusion)

faults (in the specific case of the stuck-at fault considered
here) and if the percentage of faults increases then some
nodes are not detected as faulty and can contribute to
detecting the event. When the number of nodes increases
(and thus the number of neighbors), the performance of
both fault detection and correct intrusion detection is
significantly improved. More than 7 neighbors per node
are thus required here to guarantee a sufficient level of
correct intrusion detection (at least 0.8 to 0.9).

3.5 Network of static and mobile sensors

Another possible improvement to the network is to con-
sider a fleet of mobile vehicles, equipped with the same
small-range sensors (4 m range) than the static network,
which follows a predefined trajectory covering the en-
tire monitored area. These sensors communicate with the
static ones (no loss or delay assumed) and can thus help
to detect faults and events on the monitored area. We
consider the case of a small fleet of 6 sensors, which are



Fig. 6. Performance of intrusion detection in presence of
faults

Fig. 7. Collaboration between the static sensor network (in
green) and a swarm of vehicles (in black) following a
reference trajectory (in blue)

non-faulty for the entire duration of the mission but which
could be detected as faulty by the FDI algorithm. Figure 7
presents successive screenshots of the mission. Note that
in the result figures, the number of nodes is the one of the
static network.

FDI performances with simultaneous intrusion are pre-
sented in Figure 8 and Figure 9. The detection accuracy
remains at a similar level than the original static network,
but false alarms have been drastically reduced thanks
to the mobile fleet. Regarding intrusion detection, the
performance of the combined mobile and static network
is excellent. The impact of employing fleets of mobile
sensors together with static sensors is thus beneficial in
terms of intrusion detection even in the presence of faulty
sensors. What is even more interesting is that high level of
performances are reached with a smaller number of static
nodes (15 are sufficient here, in spite of the corresponding
small static node degree). The addition of mobile sensors is
thus an efficient way to increase dynamically the network
node degree.

Fig. 8. FDI results in the sensor network with the help of
a fleet of mobile sensors (with intrusion)

Fig. 9. Network combining static and mobile sensors -
Performances of intrusion detection (to be compared
with Figure 6)

4. CONCLUSIONS

This paper has presented a summary of the state of the
art on cooperative fault detection and isolation (FDI) in
sensor networks and original numerical evaluations. The
performances of a reference method have been quantified
on a simplified surveillance scenario. Extensive simulations
have been conducted to assess the reachable performances
of both FDI and intrusion detection in many different
cases: static sensors with different node degrees (number of
neighbors for each node) and a combination of mobile and
static sensors. These analyses yield the following global
remarks.

To implement cooperative FDI, there is a need for redun-
dancy in the sensor network: at least 2 to 3 neighbors are
required for voting schemes and much more to be able to
distinguish between faults and events (i.e. the intrusion
that should be detected). It has been shown that a good
level of performance (high detection accuracy and few false
alarms) can be attained with more than 4 neighbors per
node, without simultaneous intrusion in the monitored
area. Existing methods are efficient if the percentage of
faulty nodes in the network is limited (less than 25%).
This is a reasonable assumption since confirmed faulty



nodes can be deactivated or replaced through systematic
maintenance.

To obtain a good performance of correct intrusion detec-
tion, with simultaneous faults, there should be more than
7 neighbors per node. Otherwise, if there are a lot of faults
in the network, they will be detected but a true intrusion
could also be classified as a fault. It should be noted
that these results have been obtained without considering
advanced sensor fusion techniques, which might improve
fault and event detection performances and thus reduce
the necessary minimum node degree. Performances of both
FDI and correct intrusion detection are improved by con-
sidering both static and mobile sensors in the process, this
type of architecture should thus be further investigated.

This study has obtained progress beyond the state of the
art by applying a reference method for FDI in a sensor
network to the specific case of intrusion detection in a
surveillance mission, and by analyzing simultaneously the
performance of these two distinct capabilities. Moreover,
this has been extended by combining the static network
with a fleet of mobile vehicles and evaluating the resulting
increased performance.
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