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Abstract

The estimation of disparity maps from stereo pairs has
many applications in robotics and autonomous driving.
Stereo matching has first been solved using model-based
approaches, with real-time considerations for some, but to-
day’s most recent works rely on deep convolutional neural
networks and mainly focus on accuracy at the expense of
computing time. In this paper, we present a new method for
disparity maps estimation getting the best of both worlds:
the accuracy of data-based methods and the speed of fast
model-based ones. The proposed approach fuses prior dis-
parity maps to estimate a refined version. The core of this
fusion pipeline is a convolutional neural network that lever-
ages dilated convolutions for fast context aggregation with-
out spatial resolution loss. The resulting architecture is both
very effective for the task of refining and fusing prior dis-
parity maps and very light, allowing our fusion pipeline
to produce disparity maps at rates up to 125 Hz. We ob-
tain state-of-the-art results in terms of speed and accuracy
on the KITTI benchmarks. Code and pre-trained models
are available on our github: https://github.com/
ferreram/FD-Fusion.

1. Introduction

In mobile robotics and autonomous driving, knowledge
about the 3D structure of the environment is required for
safe navigation. This 3D information has to be inferred
from embedded sensors such as LiDAR, RGB-D cameras
or stereo cameras. Stereo setups offer the great advan-
tage of working both indoors and outdoors, in opposition
to RGB-D cameras which are limited to indoor environ-
ments. Besides, they are cheaper and lighter than LiDAR
systems, making them easier to use and embed on weight-
constrained robots such as unmanned aerial vehicles (UAV).

As the 3D information is used for decision-making in

Figure 1. FD-Fusion pipeline results on a sample image from
SceneFlow. Top row: left stereo image (left), groundtruth disparity
map (middle), SGBM estimate (right). Middle rows: zoom-in on
the disparity maps. Last row: Dil-Net stereo-only estimate (left),
FD-Fusion output (middle), SGBM refined with Dil-Net (right).

autonomous navigation, highly accurate 3D measurements
should be produced at high-rates. Indeed, safety in such
context depends on the accuracy of the 3D measurements
and on the frequency of these measurements, both directly
impacting the pertinence of the given measurements. These
speed constraints have led to the development of several fast
algorithms for disparity maps estimation from stereo im-
ages and, today, hardware-specific systems output disparity
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map at cameras’ acquisition rate (60 Hz for Mynt-Eye cam-
eras1, 90 Hz for Intel RealSense2). However, such maps are
estimated from model-based algorithms and lack the accu-
racy of current state-of-the-art methods relying on Convo-
lutional Neural Networks (CNN).

In this paper, we tackle the challenge of producing accu-
rate disparity maps from stereo images while respecting the
timing constraints required for safe autonomous navigation.
We propose a fusion pipeline that combines disparity maps
produced by model-based and data-based stereo matching
methods, acting as a fast disparity refinement filter. The pro-
posed pipeline is built on-top of a light CNN that leverages
dilated convolutions [25] (also referred to as atrous convo-
lutions) in order to quickly increase the receptive field of the
CNN without giving up on spatial resolution. This allows
to aggregate context information in a fast way to correct the
disparity estimated at each pixel.

The developed CNN architecture is highly versatile as
it can be used for disparity maps prediction from stereo
images only, refine prior disparity maps and fuse model-
based and learning-based stereo matching methods outputs,
highly increasing the accuracy of the inferred maps. It is
also extremely fast as a single-pass through the network
takes an average of 2.5 ms on GPU. This CNN being the
core of the proposed fusion pipeline, we hence propose a
new method able to predict accurate disparity maps with a
minimal computation time.
We list the paper contributions as follows:
• Dil-Net: a light CNN architecture, based on dilated

convolutions, able to combine and refine prior dispar-
ity maps and predict disparity maps from stereo images
• FD-Fusion, for Fast-Disparity-Fusion: a new pipeline

for fusing model-based and data-based disparity maps
and produce a refined result
• We show that combining model-based and data-based

disparity maps largely increase the accuracy of the fi-
nal results, highlighting the fact that complementary
features exist between both kind of approaches

The paper is organized as follow: section 2 presents the
works related to our approach, section 3 details our pipeline
for fast disparity maps refinement and fusion and presents
the detail of Dil-Net’s architecture. Finally, section 4 ex-
poses the implementation details of our method, an abla-
tion study of the main components of the pipeline and com-
pare the proposed approach to state-of-the-art methods on
the KITTI online benchmarks.

2. Related Work
Model-based Stereo Matching. In the past decades,

the stereo matching problem has been widely studied and
1https://www.mynteye.com/products/

mynt-eye-stereo-camera
2https://www.intelrealsense.com/

mainly solved using model-based methods [10]. These
methods mainly rely on semi-local [12, 7] or global match-
ing [15] to infer disparity maps based on stereo images, usu-
ally rectified to satisfy epipolar geometry constraints. The
great advantage of these methods is that they have been
developed on-top of photometric and geometric heuristics,
making them quite reliable for most kind of scenes.

Moreover, many have been developed for robotic appli-
cations and are hence computationally quite fast, even on
CPUs. However, as matching texture-less areas is quite
problematic in computer vision, these methods tend to pro-
duce false results in such areas. Fine details, such as small
objects and objects boundaries, are also difficult to recover
with such methods. By using the products from these meth-
ods as an input for our refinement approach, we intend to
benefit from their robustness and computation speed.

CNN-based Stereo Matching. Since [26], the use of
convolutional neural networks has been highly investigated
to solve stereo matching. First works relied on CNNs to
assess the matching of stereo image patches. While giv-
ing more accurate results than model-based methods, the
matching process was highly ineffective in terms of compu-
tational load (67s per image on GPU). The authors of [16]
designed DispNet, the first end-to-end architecture able to
estimate disparity maps from stereo pairs of images. Fol-
lowing this seminal work, [13] proposed an end-to-end ar-
chitecture inspired by the classical stereo matching pipeline.
Many works followed this trend [2, 23, 20, 18, 24, 9, 5] and
completely outmatched previous methods in terms of accu-
racy. However, this gain in accuracy is at the cost of high
computation requirement. For real-time applications such
as robotics or autonomous driving, disparity maps are re-
quired at a higher-rate in order to detect as quickly as possi-
ble potential obstacles or dangers and make decision upon
it.

A few works take this run-time constraint into account
and proposed CNN-based methods able to process stereo
images at high-rate. First, [14] proposed StereoNet, the
first CNN architecture with a high frame-rate suitable for
real-time applications. Following this work, [22] presented
a CNN not only able to produce disparity maps at high-
rate but also able to learn online to refine its predictions.
Nonetheless, there is a trade-off between speed and accu-
racy. With respect to these methods, we intend to lower this
trade-off by keeping a very high frame-rate while increasing
the accuracy.

Disparity Maps Enhancement. Some works also tack-
led the challenge of refining disparity maps. The authors
of [8], proposed to refine the outputs of a given baseline
for dense pixel-wise labelling tasks such as semantic seg-
mentation or disparity maps regression. Focusing on the re-
finement of disparity maps, [1] designed a deep architecture
relying on recurrent neural networks and [3, 4] proposed a
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Figure 2. The FD-Fusion pipeline. The top of the pipeline is composed of a data-based branch and a model-based one, each taking a stereo
pair of images as input and estimating a disparity map from it. The next stage is the fusion pipeline, an instance of Dil-Net, which takes as
inputs the resulting disparity maps as well as the original stereo images to produce a refined disparity map by fusing the prior ones.

spatial propagation network. In opposition to the proposed
approach, these methods rely only on data-based disparity
maps refinement and do not take into account any timing
constraint. Closer to our work, [19] investigated the fusion
of model-based disparity maps produced by different meth-
ods. Their method take as input the disparity hypothesis
of eight different methods and choose the best candidate
for each pixel. In our approach, we also operate a fusion
of multiple disparity maps. However, we use both model-
based and data-based outputs to perform the fusion. Fur-
thermore, their method is only meant for fusing disparity
maps whereas in our approach a refinement of individual
disparity maps is also possible.

3. The FD-Fusion Pipeline

The proposed pipeline for disparity maps estimation is
presented on Figure 2. It is a two-stage pipeline. First, ini-
tial disparity maps are computed on two parallel branches:
one using a model-based approach, the other using a data
based approach, typically a neural network. Second, the
generated maps are then stacked with the stereo pairs and
given to the fusion module that will merge the input infor-
mation to generate an enhanced disparity map. The general
assumption is that, first both model-based and data-based
estimations are sensible to different features of the input im-
age, and second, their failure cases are also different. In this
case, the objective is for the fusion module to benefit from
both model-based and learned disparity maps while refining
the borders according to the original stereo pair.

3.1. Fusion module

The fusion module (in green in Figure 2) aims at exploit-
ing the input maps and images to produce a disparity map.
In this work, we learn this fusion step using a convolution

neural network.
The proposed method is based on the use of dilated con-

volutions [25] inside a small CNN in order to refine dispar-
ity maps. The idea is to learn how a disparity map estimated
by a given method should be corrected to be closer to real-
ity. By using dilated convolutions, we quickly increase the
receptive field of the deep network without decreasing too
much the input resolutions. This allows the aggregation of
context information around every pixel. This information
will be used as a clue to predict whether a disparity value is
good or not and what value is most likely to be the correct
one given the surrounding of the pixel. Hence, by feed-
ing the network with a stereo pair along with the disparity
map estimated from it, we want to infer a new disparity map
which takes into account the disparity values and the visual
context. By concatenating the inputs along one dimension,
we avoid the need of several input branches in the network
and hence limit the number of parameters and reduce the
processing time.

Disparity maps predicted by learning-based methods are
going to use very different heuristics than model-based
methods. By concatenating the disparity maps estimated
from learning-based and model-based methods, along with
their respective stereo pairs, the network can then learn how
to combine them by analyzing the strength and weakness
of each methods given a visual context. By doing so, the
network can infer refined disparity maps that surpass the
ones that would have been estimated separately (i.e. the
one estimated by refining only the disparity map computed
by method 1 or 2).

The strength of the proposed network is that it can per-
form either of these tasks in an extremely fast way. Indeed,
a single pass through Dil-Net takes an average of 2.5 ms,
making it compatible with real-time requirements such as
in robotics.



Name Layer Settings Output Dimension
Input H ×W ×Nin

CNN
conv 1 k=3, s=1, d=1 H ×W × 64
conv 2 k=3, s=2, d=1 1

2H ×
1
2W × 128

Dilated Part
conv 3 k=3, s=1, d=2 1

2H ×
1
2W × 128

conv 4 k=3, s=1, d=4 1
2H ×

1
2W × 128

conv 5 k=3, s=1, d=8 1
2H ×

1
2W × 128

conv 6 k=3, s=1, d=12 1
2H ×

1
2W × 128

conv 7 k=3, s=1, d=8 1
2H ×

1
2W × 128

conv 8 k=3, s=1, d=4 1
2H ×

1
2W × 128

conv 9 k=3, s=1, d=2 1
2H ×

1
2W × 128

End of Dilated Part

conv 10 k=3, s=2, d=1
H ×W × 128

concat with
conv 1 output

conv 11 k=3, s=1, d=1
H ×W × 128

concat with
input

conv 12 k=3, s=1, d=1 H ×W × 128
conv 13 k=3, s=1, d=1 H ×W × 128
conv 14 k=3, s=1, d=1 H ×W × 64
conv 15 k=3, s=1, d=1 H ×W × 32
conv 16 k=1, s=1, d=1 H ×W ×Nout

Table 1. Architecture of the proposed network: Dil-Net. Symbols
meaning: k is the convolution kernel size, s is the stride factor
(down or up), d is the dilatation rate and Nin/Nout are the dimen-
sions of the input / output (in terms of channels).

Network Description The network structure, referred to
as Dil-Net, is presented in table 1. First the input is pre-
processed through two convolutional layers for extracting
low-level features. The second layer also reduces the res-
olution of the input by a factor of 2 to start increasing the
receptive field of the network. Then the feature maps are
processed through a total of seven convolution layers com-
posed of filters with first increasing and then decreasing di-
latation rates. This dilated part acts has a context aggrega-
tion pipeline with a bigger and bigger receptive field. The
output of this section is then up-sampled and concatenated
to its input feature maps by means of a skip-connection. In
the next layer, we further add the input of the network to
the current features map. The following four layers are then
used for merging step by step the feature maps into a 32-D
feature maps which is finally used to infer a disparity value
for each pixel through a convolution kernel of size 1.

3.2. Model-based branch

The model-based branch (in blue in Figure 2) produce
disparity image using classical handcrafted stereo match-
ing algorithms. We have experimented three different algo-
rithms: SGBM [12], SGM [11] and ELAS [7].

The first kind of method tested is SGBM / SGM which
are semi-global approaches that compute a matching score
for each disparity hypotheses (computed on a single pixel

for SGM and on a patch for SGBM). This score is aggre-
gated to compute cost that considers the cost of neighboring
points (approximating this using a finite set of directions)
and disparities. One main issue with SGBM is that the block
matching is not possible on the extreme side of the image
leaving a band where the disparity is not computed.

The second method considered is ELAS. It is a semi-
local approach that performs a two-stage estimation. First,
it generates a prior disparity map by computing a robust
disparity over a sparse grid and next extend the disparity to
the whole image by using a triangulation over this set of
support points. Then a bayesian inference scheme is used
to fuse this prior and image similarity score and to compute
final disparity map.

3.3. Data-based branch

The data-based branch (in yellow in Figure 2) uses a
learning algorithm to infer a disparity map from a stereo im-
age. The major difference with the model-based approach is
that these models are trained using supervised learning, i.e.
giving the stereo image and the groundtruth disparity map
during training phase. Once the network have been trained,
it can be used to infer disparity maps from new stereo im-
ages.

3.4. Training

The loss used to train the network is a `1-loss:

r(x) =
1

N

N∑
n

|xn − yn| (1)

where r(x) is the residual, N is the number of samples,
yn is the groundtruth and xn is the output of the network.

This architecture is based on only 16 layers and simply
relies on 3×3 convolution kernels (except for the last layer),
making it extremely efficient in terms of computation.

The FD-Fusion pipeline is a multi-stage structure. How-
ever, the training of the CNN-based parts of the pipeline is
not done end-to-end. First the data-based branch is trained
for its own task, i.e. stereo-only predictions, and then the
fusion module is trained in a second step.

3.5. Modularity of the Pipeline

Despite the speed and lightness of Dil-Net, the proposed
network is highly versatile in its use and can be used to per-
form the following tasks:
• Predict disparity maps from stereo images only
• Refine single disparity map
• Combine multiple disparity maps to produce a refined

result
Furthermore, the proposed FD-Fusion pipeline is very

modular in that it can take any method for the data-based
and model-based branches. The number of branches can



even be adjusted as needed, by adding more model-based
methods and removing the data-based branch for example.
The final stage of the pipeline, an instance of Dil-Net, is
then responsible of fusing all the prior disparity maps.

In this paper, as we focus on fast disparity map estima-
tions, we stick to the Dil-Net architecture for the data-based
branch of the pipeline and to model-based methods rely-
ing on local matching. In the following, when we refer to
FD-Fusion, we are assuming that a stereo-only instance of
Dil-Net is used as the data-based module.

4. Experiments
We have evaluated the proposed pipeline on three stereo

datasets: SceneFlow [16], KITTI 2012 [6] and KITTI 2015
[17]. We first describe the datasets used and the implemen-
tation details of our method. An ablation study is presented
on SceneFlow and KITTI 2015 and then follow the evalu-
ation of our best combinations on the official KITTI 2012
and 2015 benchmarks.

4.1. Datasets description

The stereo datasets used for the evaluation are:
1. Scene Flow: a large synthetic dataset providing
stereo RGB pairs along with their dense disparity map
groundtruth. The dataset contains 35454 training and 4370
testing images of size 960× 540.
2. KITTI 2015: a real-world dataset focusing on au-
tonomous driving for cars. It provides stereo RGB pairs as
well as their associated disparity map in the form of a sparse
groundtruth extracted from an embedded LiDAR. The train-
ing and testing split are of 200 images each with an average
size of 1240 × 376. The groundtruth is only available for
the training split. In order to validate our models, we have
further divided the training split into a training set of 160
images (80%) and a validation set of 40 images (20%).
3. KITTI 2012: another dataset focusing on autonomous
driving for cars, similar to KITTI 2015.

4.2. Implementation Details

The architecture details of Dil-Net are given in Table 1,
that is the size of the convolution layers, the dilatation rate,
the activation policy and the resolution of the features map.

The network has been implemented using Pytorch. The
different Dil-Net instances tested are the following: a
stereo-only model, a refinement model (not using the data-
based branch) per model-based method and fusion mod-
els that combine model-based outputs with the stereo-only
Dil-Net predictions. Moreover, we have trained Dil-Net in-
stances taking as input the model-based methods estima-
tions altogether. All these models have been trained using
the Adam optimizer (β1 = 0.9, β2 = 0.999). The RGB im-
ages provided as inputs are normalized by dividing them by

255. The prior disparity maps and the groundtruth maps are
converted into approximate z-scores maps (disp = disp−µ

σ )
— taking µ and σ as the mean and standard deviation of the
datasets disparity maps groundtruth. The inputs fed to the
network are resized to 512 × 256. The outputs of the net-
work are also of size 512 × 256 and are hence up-sampled
afterwards through bilinear interpolation to match the orig-
inal image size before computing the error metrics.

All the models are first trained on SceneFlow for 30
epochs, halving the learning rate every 5 epochs on the first
20 epochs and then every 2 epochs. The pre-trained models
are then separately fine-tuned on each one of the KITTI set
for 500 epochs, halving the learning rate every 50 epochs.
On an NVIDIA GTX 1080-Ti, the training of one model on
SceneFlow takes an average of 30 hours and around 3 hours
on each KITTI sets. The inference time is around 2.5 ms
for a one-pass through the network and around 4.5 ms when
we combine two instances of this network (when using one
instance to predict a disparity map given a stereo pair of im-
ages and another instance to fuse this output with the output
of a model-based method for example).

When training on SceneFlow, for the models trained for
the tasks of disparity map prediction from stereo images
and of model-based disparity maps refinement, the starting
learning rate is 0.001. For the ones used for model-based
and data-based outputs fusion, the starting learning rate is
0.002. When finetuning the different models on the KITTI
sets, the starting learning rates are respectively divided by
2 given the ones used on SceneFlow. In all the different
trainings, the batch size is set by the maximum size allowed
by the GPU (typically between 4 and 6 depending on the
models on a GTX 1080-Ti).

On every dataset, the inputs are randomly flipped hori-
zontally and, on the KITTI sets, the input RGB images are
further modified by randomly modifying the level of bright-
ness, contrast, hue and saturation.

The tested model-based methods are the following:
SGBM [12], ELAS [7] and a CUDA-version of SGM
[11] (referred to as Cuda-SGM). For SGBM, we use the
OpenCV implementation of the algorithm3. For ELAS, we
use the python wrapper of the algorithm4. For Cuda-SGM,
we use the code available on their github5. The different
methods’ parameters used in this work are detailed on our
github repository.

4.3. Ablation Study

The objective of this section is to motivate each block of
the proposed pipeline and to validate the efficiency of Dil-
Net. Results are presented in table 2 and table 5.

3https://docs.opencv.org/3.4.2/d2/d85/classcv_
1_1StereoSGBM.html

4https://github.com/jlowenz/pyELAS
5https://github.com/dhernandez0/sgm
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Methods No refinement Refinement FD-Fusion
Cuda-SGM [11] 7.56 px 2.09 px 1.57 px

ELAS [7] 4.41 px 2.37 px 1.54 px
SGBM [12] 3.04 px 1.92 px 1.51 px

Multi-models - 1.63 px 1.37 px
Dil-Net 2.83 px - -

Table 2. Absolute mean error (End-Point-Error) on the SceneFlow
test set.

4.3.1 Results on SceneFlow

We now compare the performance of each module of the
proposed FD-Fusion pipeline. We first evaluate on the
SceneFlow test set. Following [13, 2], we do not take into
account pixels with disparity value higher that 192 when
computing the loss at training time and when computing the
error metrics at testing time. The metric used for evaluation
is the End-Point-Error (EPE), that is the mean of the abso-
lute error at each pixel. The results obtained are listed in
Table 2. We give the results of the raw model-based meth-
ods and of Dil-Net trained with stereo images only in the
no refinement column. Then we compare the accuracy ob-
tained after refinement of each model-based methods taken
individually and taken altogether (Multi-models raw in the
table). We finally compare the final results obtained with
our FD-Fusion scheme, using the output of the stereo-only
Dil-Net as the data-based module. First, the refinement col-
umn results assess the refining abilities of the Dil-Net ar-
chitecture, increasing the accuracy of all the methods by
a large rate (72.5 % with Cuda-SGM, 42 % with ELAS,
37 % with SGBM). We also note that, while the results of
stereo-only Dil-Net are finer on this dataset than the ones
of the model-based methods, we get more accurate results
after refinement of the prior disparity maps. Besides, the
network produces even better results when taking the mul-
tiple models outputs as inputs, highlighting its efficiency in
fusing disparity maps estimated by different means. Sec-
ondly, when evaluating the full FD-Fusion pipeline outputs
we see an even bigger gain in terms of accuracy (80 % with
Cuda-SGM, 62 % with ELAS, 50 % with SGBM and 16 %
over the fused and refined multi-models). Given these last
results, we demonstrate that data-based produced disparity
maps and model-based ones have complementary features
that can be efficiently combined to produce more accurate
results. We also assess the efficiency of the Dil-Net archi-
tecture for this task in that it fully leverages all the given
inputs to estimate a refined results (see Figure 1).

4.3.2 Results on KITTI

We further compare the performance of the proposed
pipeline on the KITTI split, created by taking 160 images
for training and 40 for testing from the training split of
the KITTI 2015 official set. The metric used for evalu-
ation on this set is the percentage of pixels misclassified

Methods No refinement Refinement FD-Fusion
Cuda-SGM [11] 8.11 % 4.13 % 3.07 %

ELAS [7] 10.28 % 5.84 % 3.96 %
SGBM [12] 5.15 % 4.58 % 3.19 %

Multi-models - 3.84 % 3.03 %
Dil-Net 8.69 % - -

Table 3. Percentage of pixels misclassified (error > 3 px) on the
KITTI 2015 validation set (40 images).

(error > 3 px). The evaluation of each method is done af-
ter finetuning the different instances of Dil-Net pre-trained
on SceneFlow. The obtained results are listed in Table 3.
First, we can note that on this dataset the stereo-only Dil-
Net is outperformed by all the model-based methods but
Cuda-SGM. Second, we see that the pattern of the results
follows the one obtained on the SceneFlow dataset. The re-
finement of each model-based outputs largely surpasses the
prior estimations (49 % with Cuda-SGM, 43 % with ELAS,
11 % with SGBM). Once again, the results obtained with
the model-based estimations taken altogether are better than
their indivual refinement. Furthermore, we see that the FD-
Fusion scheme also produces finer results (62 % with Cuda-
SGM, 61 % with ELAS, 38 % with SGBM and 21 % over
the fused and refined multi-models). Given the poorer accu-
racy of the stereo-only Dil-Net estimations on this dataset,
we highlight the fact that data-based on model-based out-
puts contain very different features that can be reliably ex-
tracted and combined by CNN architectures. Qualitative
results are given in Figure 3.

4.3.3 Results Analysis

Given all these results, we show that the proposed ap-
proach offers a big boost in terms of accuracy with respect
to its processing time (2.5 ms for a single-pass through
one instance of Dil-Net). We compare the run-time per-
formance of the different methods in Table 4 on their re-
spective hardware implementations. As it can be seen, the
main bottleneck of the FD-Fusion pipeline in terms of speed
comes from the on-top branches (data-based and model-
based modules). If we take Cuda-SGM as the model-based
module and an instance of Dil-Net as the data-based one,
we can reach rates of around 125 Hz for the estimation of
refined disparity maps (3.5 ms for the prior estimation of a
disparity map with Cuda-SGM and 4.5 ms for the inference
of a disparity map from stereo images with Dil-Net and the
fusion and refinement of both through another instance of
Dil-Net). Note that, this calculus is done by taking the dif-
ferent step sequentially. However, one could assume that
the model-based and data-based outputs are computed in
parallel and then concatenated and fed to the fusion mod-
ule, in which case we could reach rates of approximately
165 Hz (3.5 ms + 2.5 ms per disparity maps).

We also stress out the fact that while we have only used



Figure 3. Result samples from our KITTI 2015 validation set. (a) Left stereo image, (b) groundtruth disparity, outputs of (c) stereo-only
Dil-Net, (d) Cuda-SGM, (e) Cuda-SGM refined , (f) FD-Fusion with Cuda-SGM, (g) ELAS, (h) ELAS refined, (i) FD-Fusion with ELAS,
(j) SGBM, (k) SGBM refined, (l) FD-Fusion with SGBM, (m) the multi-models refined, (n) FD-Fusion with the multi-models.



Methods SGBM ELAS Cuda-SGM Dil-Net (single-pass) Dil-Net (two-passes)
Hardware Intel Xeon 3.0GHz Intel Xeon 3.0GHz GTX-1070 / GTX 1080-Ti GTX 1070 / GTX 1080-Ti GTX 1070 / GTX 1080-Ti
Runtime 310 ms 210 ms 7.5 / 3.5 ms 2.5 / 2.5 ms 4.5 / 4.5 ms

Table 4. Run-time analysis of the different stereo matching methods given the tested harware. Dil-Net two-passes denotes the total pro-
cessing time when loading two instances of Dil-Net and feeding the second one with the ouput of the first one.

KITTI Stereo 2015 KITTI Stereo 2012 (< 2 px / < 3 px)
Method D1-bg D1-fg D1-all Out-Noc Out-All Avg-Noc Avg-All Runtime

Precision-oriented methods
M2S CSPN [4] 1.51 % 2.88 % 1.74 % 1.79 / 1.19 % 2.27 / 1.53 % 0.4 px 0.5 px 500 ms

AMNet [5] 1.53 % 3.43 % 1.84 % 2.12 / 1.32 % 2.71 / 1.73 % 0.5 px 0.5 px 900 ms
MS CSPN [4] 1.56 % 3.78 % 1.93 % - - - - 500 ms
GANet-15 [27] 1.55 % 3.82 % 1.93 % 2.18 / 1.36 % 2.79 / 1.80 % 0.5 px 0.5 px 360 ms

HD3-Stereo [24] 1.70 % 3.63 % 2.02 % 2.00 / 1.40 % 2.56 / 1.80 % 0.5 px 0.5 px 140 ms
EdgeStereo-V2 [21] 1.84 % 3.30 % 2.08 % 2.32 / 1.46 % 2.88 / 1.83 % 0.4 px 0.5 px 320 ms

ECMUA [18] 1.66 % 4.27 % 2.09 % 2.02 / 1.26 % 2.56 / 1.64 % 0.4 px 0.5 px 900 ms
GwcNet-g [9] 1.74 % 3.93 % 2.11 % 2.16 / 1.32 % 2.71 / 1.70 % 0.5 px 0.5 px 320 ms

EdgeStereo [20] 1.87 % 3.61 % 2.16 % - - - - 700 ms
SegStereo [23] 1.88 % 4.07 % 2.25 % 2.66 / 1.68 % 3.19 / 2.03 % 0.5 px 0.6 px 600 ms

PSMNet [2] 1.86 % 4.62 % 2.32 % 2.44 / 1.49 % 3.01 / 1.89 % 0.5 px 0.6 px 410 ms

Running time oriented methods
DispNetC [16] 4.32 % 4.41 % 4.34 % 7.38 / 4.11 % 8.11 / 4.65 % 0.9 px 1.0 px 60 ms
MADnet [22] 3.75 % 9.20 % 4.66 % - - - - 20 ms
StereoNet [14] 4.30 % 7.45 % 4.83 % 4.91 / - % 6.02 / - % 0.8 px 0.9 px 15 ms

FD-Fusion with Cuda-SGM 3.22 % 7.44 % 3.92 % 4.8 / 3.16 % 5.73 / 3.85 % 0.7 px 0.8 px 8 ms
Table 5. KITTI Stereo 2015 - 2012 - Official benchmark results.

Dil-Net as the data-based module in these experiments to
fulfill the run-time constraints of real-time applications, any
other method could be used as a replacement. One should
note that we do not process images at full resolution to
speed-up the inference time here. Hence, adding a very
accurate method as the data-based module might require to
adapt the fusion module in order to see improvements as the
Dil-Net architecture has been designed for low-resolution
inputs. These considerations are left for future work.

4.4. KITTI Stereo 2015 / 2012

We evaluate our pipeline against state-of-the-art methods
on the KITTI Stereo 2012 and 2015 official benchmarks.
On the KITTI Stereo 2015 benchmark, the evaluation met-
ric is the percentage of misclassified pixels (error > 3 px)
and is given for the foreground (D1-fg) and background
(D1-bg) part of the images as well as for the whole image
(D1-all). On the KITTI Stereo 2012 benchmark, the evalua-
tion metrics are the percentage of misclassified pixels given
different threshold (we give the results for error > 2 and
> 3 px here) and the average disparity error. Furthermore,
these results are computed for the non-occluded part of the
images and the whole images (Noc / All).

The disparity maps submitted to the online platform are
the ones resulting from the use of Cuda-SGM as the model-
based module within the FD-Fusion pipeline, i.e. the fastest
combination. The obtained results are given in Table 5. We
give both the results of precision-oriented and run-time-
oriented methods in this table to give a good overview of

the current state-of-the-art methods in terms of speed and
accuracy on the KITTI Stereo benchmarks. In the category
of fast methods we find – ranked by speed – DispNet [16],
MADnet [22] and StereoNet [14]. Compared to these meth-
ods, our proposed pipeline is the fastest, being almost two
times faster than StereoNet. Besides, we also obtain the
best performance in terms of accuracy, surpassing all the
three methods on every metric but the one considering the
foreground part of the image in the KITTI 2015 benchmark,
on which only DispNet performs better.

5. Conclusion

In this paper we have presented FD-Fusion, a new
pipeline for fast disparity maps refinement through the fu-
sion of model-based and data-based outputs. The core of
this pipeline is Dil-Net, a CNN based on dilated convolu-
tions that is able to predict, refine and fuse disparity maps to
produce accurate results at very high rates. The full pipeline
can be used to produce state-of-the-art disparity maps at
rates up to 125 Hz. We have shown that one of the strength
of the proposed pipeline lies in the fusion of data-based and
model-based methods which exhibits complementary fea-
tures. Future works will include investigating the use of dif-
ferent data-based methods at the top of the pipeline. We will
also investigate the potential effectiveness of the proposed
pipeline for other dense regression tasks such as monocular
depth estimation or dense optical flow.
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