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Swarms of unmanned vehicles (air and ground) can increase the efficiency and effectiveness of 

military and law enforcement operations by enhancing situational awareness and allow the 

persistent monitoring of multiple hostile targets. The key focus in the development of the enabling 

technologies for swarm systems, is the minimisation of uncertainties in situational awareness 

information for surveillance operations supported by a ‘system of systems’ composed by static and 

mobile heterogeneous sensors. The identified critical enabling techniques and technologies for 

adaptive, informative and reconfigurable operations of unmanned swarm systems are: Robust 

Static sensor network design, mobile sensor tasking (including re-allocation), Sensor fusion, 

Information fusion including behaviour monitoring. The work presented in this paper describes 

one of the first attempts to integrate all swarm related technologies into a practical demonstration, 

demonstrating the benefits of swarms of heterogeneous vehicles for defence applications used for 

the persistent monitoring of high value assets such as military installations and camps. The key 

enabling swarm system technologies are analysed and novel algorithms are developed and 

presented, which can be implemented in COTS based unmanned vehicles available today and have 

thus been designed and optimised to require small computational power, be flexible, reconfigurable 

and which can be implemented in a large range of commercially available unmanned vehicles (air 

and ground). 

 

 

I. Introduction 

Advances in microelectronics, UAV development, autonomous systems and guidance, navigation and control systems 

has enabled the development of unmanned vehicles to perform complex missions such as surveillance and persistent 

monitoring tasks. These autonomous systems, mostly operated in single numbers are able to deliver significant 

amounts of data, in real time, however are constrained in the levels of autonomy available and the ability to integrate 

multiple vehicles in swarms. Multiple unmanned vehicles can add not only strength in numbers, but unique capabilities 

in redundancy, mission flexibility and target tracking/monitoring which can enhance mission capabilities for defence 

and law enforcement needs. Asymmetrical warfare and the need to simultaneously detect unidentified targets with 

multiple behaviours is challenging current autonomous systems as a single, yet capable UAV is not necessarily able 

to detect, track and persistently monitor multiple targets. Furthermore, large conventional unmanned vehicles, or 

UAVs do not have advanced levels of autonomy to date, but rather use human in the loop decision making and control 

protocols and resources to operate surveillance and monitoring tasks which can be fully automated. Our paper presents 

the results of a recently completed research project in which a pilot, scaled autonomous swarm of unmanned vehicles 

performs a persistent monitoring mission to protect a high value asset, such as a military installation. A fully integrated, 

autonomous swarm-based framework is developed and simulated, in which sensor fusion, behaviour monitoring, 
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target and resource allocation and guidance/control algorithms can efficiently track hostile targets. A scaled outdoor 

demonstration using 7-10 UAVs and UGVs has shown the feasibility, challenges and benefits of using a swarm of 

unmanned vehicles for defence missions. The paper presents an overview of the mission scenario addressed and the 

swarm system architecture developed. Section 3 details the swarm tracking and control strategy developed, while 

Section 4 details the situational awareness and sensor fusion algorithms developed for implementation on unmanned 

aerial and ground vehicles which have limited computational power. Section 5 describes the guidance laws developed 

for the swarm and Section 6 presents the fully integrated swarm system successfully implemented on multiple 

unmanned vehicles, in an outdoor environment (Cranfield Airport) and used to provide persistent monitoring to a high 

value asset.  

 

II. Swarm System Architecture 

The work presented in this paper is focused on testing and demonstrating that efficient and effective operation of 

unmanned swarm systems can bring a profound impact to the military arena. The key focus in the development of the 

enabling technologies is the minimisation of uncertainties in situational awareness information for surveillance 

operations supported by a swarm system of systems composed by static and mobile heterogeneous sensors. The 

functionalities and capabilities of the main enabling technologies developed can be summarised as (i) Optimal sensor 

network, placing static sensors to sense the environment and potential targets (ii) Mobile tasking, including decision 

making, assigning mobile sensing platforms to the set of tasks, completing the situational awareness information gap 

on the sensor network, improving the searching and monitoring capabilities (iii) Sensor fusion, target detection and 

identification, improving the accuracy of the target tracking performance (iv) Information fusion, behaviour 

monitoring, target assessment, obtaining the intend and threat level of the targets, improving decision making of the 

mobile sensing platforms (v) Cooperative guidance, path planning and following of mobile sensing platforms  

Environments
Optimal 

Sensor Network 

Frequency & 
Bandwidth 
Assignment

Tasking

Mobile Vehicle
Task Allocation

Cooperative 
Guidance

Situational Awareness

Sensing

Sensor Fusion

Behaviour 
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Cooperative FDI
Cooperative Fault 
Reconfiguration

  

Figure 1: An Overview of the Autonomous Swarm Framework Building Blocks  

II.1 Swarm Mission Scenario, Functionalities and Requirements 

A mission scenario is used in the work to be presented in which a specific area of high interest requires persistent 

monitoring/surveillance. It is assumed that the scenario takes place at the battlefield in conflict with a well-armed and 

competent opponent. The high value asset (HVA), a military camp, is located in a rough and partly hilly terrain, and 

that a sophisticated sensor system to support the perimeter surveillance is available. As the terrain limits the visibility 

in the protected area, centralized sensors are ineffective. Instead, ground sensors are distributed in a large area around 

the camp that facilitates early indications on enemy reconnaissance or approaching formations. The ground sensors 

are sensitive for the presence of humans, vehicles and animals and give prompt alarms if potential targets are in the 

vicinity. The ground sensors have limited capability to assess the nature and severity of the threats but are on the other 
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hand robust and persistent and therefore they enable large area coverage for an attractive price of purchase and effort 

of maintenance. To support alarm verification, the network of ground sensors is completed with drones (air and 

ground) that operate autonomously in the sensor system. The drones are only activated for special tasks and missions. 

For instance, on a ground sensor alarm, the drones do a verification that may give the guard high fidelity video and 

other sensor data from the target or target area in real time. The drones are autonomous and can collaborate in pairs, 

groups or swarms to meet thehigh demands on service quality and persistence toward hostile means of deception and 

attacks. 

 
Figure 2: Surveillance of a military high value asset, where a swarm of air/ground drones serve multiple 

purposes like acquisition of completing camera angles and establishing relay chains for effective and secure 

communication. 

 

The key top level functional requirements in the HVA mission scenario are presented in Table 1. 

Table 1 Swarm System Top Level Requirements 

Num. Functional Requirement Vehicles 
Time 

(min) 
Performance Metrics 

1 

Swarm performs persistent 

monitoring in an indoor 

environment 20 x 5 x 3 m 

with 2 targets 

1 UGV 

2 UAV 
20’ 

Position accuracy, speed, situational 

awareness, path planning accuracy, target 

position accuracy, speed, time to track, loss of 

data, link robustness, resilience, bandwidth 
2 

Swarm performs persistent 

monitoring of a 500 x 500 x 

100 m area with multiple 

targets 

2 UGV 

5 UAV 
20-30’ 
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III. Swarm Sensor Tasking and Control 

The task allocation problem is assigning each agent (mobile platform and/or onboard sensor) to a task or a bundle of 

tasks. The strength of autonomous swarm systems of aerospace vehicles hinges on the distributed nature of the 

resources available, making the successful assignment of these resources key to maximise its operational advantages 

and thus minimising uncertainties.   

Efficient cooperation of a swarm of autonomous systems, termed as task allocation, is a vital part for mission success. 

Task allocation problems are defined as reward function maximization problems. The main objective of task allocation 

algorithm is to find out the agent and task combinations which maximize the reward function. For the problems with 

small numbers of agents and tasks, it is possible to calculate the reward function values of all the possible agents and 

tasks combinations and select the combination with the maximum reward function value. However, since task 

allocation problem is combinatorial and NP hard, as the numbers of agents and tasks enlarge, computation loads 

dramatically increase. In this report, approximate algorithms are applied for task allocation problems. One advantage 

of approximate algorithms is that the computation load is mathematically calculated. This implies that the required 

computation load for the given task allocation problem and optimization algorithm. The other one is that, although 

approximate algorithms cannot guarantee the actual optimal solution, they provide solutions with mathematically 

guaranteed certain levels of optimality.  

It is evident that the key enabler of the task allocation is allocation with near real time, so that the agents in the swarm 

system should be immediately allocated to appropriate task(s). To this end, this project will develop an approximation. 

Remind that approximation algorithms balance between the optimality and the computational time. Moreover, their 

quality of the solution and polynomial time convergence could be theoretically guaranteed as long as the objective 

function satisfies certain conditions, e.g. submodularity. The first focus will be to design a new task allocation model 

in a manner guaranteeing the submodularity. Note that the objective function of the task allocation problem in the 

project will be the situational awareness information. It is well-known that the information generally holds the 

submodularity. Hence, it will be possible to design the problem to hold the submodularity condition. Once the 

submodularity of the new task allocation model is proven, then implementation of such an approximate algorithm will 

enable resolution of the task allocation problem in an almost optimal manner in real time. A novel task allocation 

algorithm based on the greedily excluding technique was developed and validated for EuroSWARM which was shown 

to be more computationally efficient than current algorithms and can enable the use of existing, low power COTS 

processing technology available in the UAV and microelectronics markets. 

Recently, there have been scientifically interesting developments in approximation algorithms for submodular 

maximisation subject to abstract matroid constraints. In this section a novel decentralised task allocation algorithm 

has been developed for swarms which consist of for Multi Robot Systems (MRS) using approximation guarantees for 

general positive-valued submodular utility functions. Two approximate algorithms are investigated and enhanced for 

swarm control. The well-known greedy algorithm was analysed and enhanced as a greedily excluding algorithm. In 

the newly developed algorithm, unlike other submodular maximization algorithms, at the beginning, all the tasks are 

assigned to each agent. In each step, the new algorithm reward function reduces, by ‘excluding’ all subtasks of each 

task (which are calculated), and then the task with the smallest reward function reduction is then excluded. These 

procedures are repeated until each of all of the tasks is assigned to a single agent. The main purpose of introducing 

greedily excluding algorithm is to relieve the computation load of the task allocation algorithm. The two major criteria 

of performance validation on task allocation algorithms are the level of guaranteed optimality and computation load, 

as mentioned above. The task allocation algorithms are required to be operated in real time for rapidly-changing 

environments, such as those encountered in battlefield scenarios. However, in cases with large numbers of tasks, the 

computation loads dramatically increase. This implies that low computation load is a major requirement for the 

application of task allocation algorithms to rapidly-changing problems with many tasks. In the proposed task allocation 

algorithm, the computation load is reduced using a greedily excluding algorithm. This computation load reduction 

capability is mathematically calculated, and it is shown that the reduction grows as the number of tasks enlarges. The 

optimality of the greedily excluding algorithm is tested and compared with the greedy and exhaustive algorithms 

through simulation. 

 

The Greedy algorithm is one of the most well-known submodular maximization algorithms.  The element which 

provides the largest marginal gain is selected and added to the solution set. The selected element is excluded from the 

ground set. The same procedures are repeatedly conducted while predefined constraints are satisfied. The greedy 

algorithm under cardinality constraint could be expressed as below. 

D
ow

nl
oa

de
d 

by
 I

O
W

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

Ja
nu

ar
y 

10
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

64
 



5 
 

 

Table 2: Greedy Algorithm Definition with Cardinality Constraint 

Where A is the solution set and G is the ground set, k is the cardinality limit of the solution set and f( ) is the reward 

function. As shown in the above table, the algorithm terminates when the number of elements of the solution set 

reaches the cardinality limit. The task allocation algorithm proposed in this section is based on the basic greedy 

algorithm. In each step, the marginal reward function values for all the possible agent and task combinations. The 

agent and task combination with the largest marginal gain is selected and this task is assigned to the solution set of 

that agent. The assigned task is excluded from the ground set of tasks. This algorithm is described in the following 

table. 

 

Table 3: Greedy Algorithm Definition  

Where Ai is the solution set of agent i and N is the number of agents, T is the ground set of tasks. As described in the 

above table, this algorithm assigns one task at each step. After all the tasks are assigned, the algorithm terminates.   

The Greedily excluding algorithm is introduced and used as the swarm task allocation algorithm and builds on the 

previously presented algorithms 1 and 2. In this algorithm, all the elements of the ground set are assigned to the 

solution set. In each step, the element whose exclusion results in the smallest reward function value reduction, is 

excluded, from the solution set. This procedure is repeated until a certain constraint is satisfied. Here, the cardinality 

constraint is implemented as shown in Table 5. 

 

Table 4: Greedy Excluding Algorithm Definition with Cardinality Constraint 
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The proposed task allocation approach using the Greedily excluding algorithm is shown in Table 5. 

 

 

 

Table 5: Greedy Excluding Algorithm Definition 

The reward function consists of two parts. The first part is the function which shows whether the targets are matched 

with the proper sensors. In this reward function, the visibility of the j-th target, j, is assumed to be defined as a simple 

Gaussian distribution with mean and variance. 

 (1) 

The sensing characteristics of i-th sensor,, are also defined as a simple Gaussian distribution: 

 
(2) 

 

Bhattacharyya distance between the probability distribution functions of i-th agent and j-th target is defined as: 

 

(3) 

Using Bhattacharyya distance, the relevancy between i-th agent and j-th target ij is obtained: 

 
(3) 

Where σ is a design parameter. In order to limit the relevancy between agent and task set, the reward function on 

sensor suitability, f1, is developed as shown below: 

 
(4) 

Where δ ∈ [0,1] is a design parameter and T is the ground set of tasks. The second part of the reward function is to 

prevent assigning excessively many tasks to a single or small part of agents. This reward function, f2, for i-th agent is 

defined as follows: 
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(5) 

Where Ai is the set of tasks assigned to i-th agent and T is the ground set of tasks. Note that the sum of f2 for all 

agents diminishes as the tasks are concentrated on a single agent. The total reward function, fTOT, for i-th agent is 

defined as the weighted sum of those two partial reward functions, f1and f2: 

 
(6) 

where 1 and 1 are the weights on each part, and they are defined by the users according to the problem cases. The 

total reward function for the task allocation result is defined as the sum of fTOT for all the agents. 

 
(7) 

 

III.1 Swarm Task Allocation Numerical Simulation 

In order to demonstrate the performance of the proposed task allocation algorithm, a  simulation of a swarm system 

of aerial and ground unmanned vehicles is constructed, which consists of 3 enemy soldiers and 2 enemy vehicles 

which approach a protected high value asset (camp), and the positions and visibility of the targets defined in Table 1 

and Figure 2. 2 UAVs detect the targets in this case. One UAV is equipped with an infrared sensor, and the other UAV 

has an optical sensor. 

 

 

 

Table 6: Swarm Task Allocation Simulation Parameters 

The design parameters for the reward function selected are (, α1, α2) = (1, 0,5, 0,5). 

In the simulation mission scenario, moving targets are approaching a protected asset, and the agents with sensors are 

operated to track and observe the targets. The initial positions of the targets are assumed to be known from external 

sensors, and the task allocation is autonomously. The main objective of the task allocation is to assign targets to the 

agents equipped with IR/optical sensor which fits the characteristics of them most. Also, the tasks should not be 

assigned excessively on a certain agent; they should be assigned as evenly as possible to the agents. Two sorts of 

moving targets are considered in this simulation study. The first group is the enemy soldiers, which emit a heat 

signature. The second group is the enemy ground vehicles, whose purpose differs from their equipment. Two types of 

UAVs are considered to detect mobile targets. Some of the UAVs are equipped with an infrared sensor (IR), which is 

suitable for sensing heat emitted from human bodies. The other UAVs are equipped with optical sensors.  
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Figure 3: Swarm Task Allocation with Multiple UAV Agents and Targets 

The task allocation results for the swarm simulation are obtained using the task allocation formulation of Eq. 1-7 and 

are presented in Table 7. 

 

Table 7: Swarm Task Allocation Simulation Results 

The task allocation in results, Table 7, show that the computation loads of the newly developed task allocation 

approximate algorithms are significantly less than exhaustive search case while achieving the same level of optimality. 

The computation load of the newly developed greedily excluding algorithm is smaller than that of greedy algorithm 

by 40% (number of fTOT calculations). Despite the differences in computation effort, all three of the task allocation 

algorithms compared show the same task allocation performance output, having assigned all the soldiers to the infrared 

camera-equipped UAV and all the vehicles to the optical camera. 

The task allocation algorithms using approximate submodular maximization and compared for swarm type of 

scenarios have been selected due to their ability to handle multiple agents. In order to decrease the computation load 

of the well-known greedy algorithm, a greedily excluding algorithm was developed. Through simulation and using 

different mission scenarios (number of agents/targets), it is shown that the computation load of the newly developed 

greedily excluding algorithm is smaller than that of greedy algorithm, and the difference increases as the number of 

tasks gets larger. The task allocation problem for target detection was set up and simulated using the greedy and 

greedily excluding algorithms. The results are compared with the actual optimal solution, which requires much larger 
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computation load. The simulation results show that the computation loads are smaller in the greedily excluding 

algorithm, but the task allocation results are the same with the optimal solution. The proposed task allocation algorithm 

will thus enable the use of existing, low power COTS processing technology available in the UAV and 

microelectronics markets for use on swarm scenarios for defence applications which use multiple unmanned vehicles 

and targets. 

IV. Situational Awareness 

Compared to traditional traffic surveillance sensors such as loop detectors and video cameras positioned at fixed 

locations, UAV aerial sensing can provide better coverage with the capability to survey large areas at a high speed 

without being confined to prescribed ground navigation routes. Therefore, this airborne monitoring capability enables 

suspicious or unusual behaviour in road traffic or on the battlefield to be identified and investigated promptly so that 

operator’s situational awareness is increased in support of border patrol, law enforcement and protecting infrastructure. 

Typical behaviour monitoring or abnormal detection approach requires domain experts to analyse the obtained data 

to detect the potentially suspicious behaviours. This approach is cumbersome and unsustainable under a deluge of data 

and information which could result from complex scenes. Therefore, there is a strong need to develop high‐level 

analysis algorithms to process target information and detect anomalous behaviours, to reduce the human operator’s 

workload. Behaviour monitoring, or more generally detecting anomalous behaviours, usually can be classified into 

two routes: the first approach codifies the behaviours using experience and domain knowledge of experts and the 

behaviours are learned from data in the second approach. A general framework for autonomous behaviour has been 

developed for the monitoring of ground vehicles/targets using airborne surveillance to notify the human commander 

about the potentially dangerous vehicles.  

IV.1 Mathematical Model of Target Monitoring 

The proposed approach consists of a trajectory analysis tool and an abnormal driving mode classifier based on Ref [ 

]. The trajectory analysis tool extracts the driving (target) modes, defined by specific alpha‐numeric strings, from the 

filtered target trajectories using speed and curvature analysis. The driving mode classifier provides potential threat 

alerts by means of a learning‐based string‐matching approach. With reference to the pattern matching process, a 

neural‐network based regular expression dictionary (RD) algorithm is introduced to match commonly observed target 

behaviours. The advantage of utilising the RD, instead of simple string matching, lies in its flexibility and generality 

in handling the minor differences between two patterns that perform almost the same behaviours of interest. Simulation 

results are performed to demonstrate the effectiveness of the proposed framework. 

The proposed monitoring method utilises a regular expression dictionary (RD) to match commonly observed target 

behaviours. The RD contains several bins with each bin representing a set of regular expressions of behaviours that 

have same regularity level. The advantage of utilising the regular expression, instead of simple string matching, lies 

in its flexibility and generality in handling the minor differences between two patterns that perform almost the same 

behaviours of interest. Compared to typical learning‐ based approaches, especially neural network, the proposed RD 

approach can be easily adapted to different scenarios without significant changes. This can be done by simply moving 

one string from one bin to another bin or simply adding one specific string to one bin, depending on the application 

scenarios. Another promising advantage of the proposed RD approach is that it can significantly reduce the 

computational time by a top‐to‐down search, compared to purely neural network assessment. The behind reason of 

this aspect is that most targets are normal and therefore their corresponding behaviours can be readily matched by the 

top bins. 

The simplest and most intuitive way to implement the pattern matching for abnormal detection is to define a reference 

RD pattern and match the extracted driving modes with the reference patterns to find particular threat. The advantage 

of this approach is that it can precisely identify particular behaviours of interest. However, it is clear that this approach 

requires domain experts to define the reference patterns for specific scenarios and therefore is case‐by‐case solution, 

which is not in a cost‐effective manner. To tackle this issue and provide the possibility to detect general unexpected 

target behaviours that significantly differ from the regular manoeuvres exhibited by the vehicles. In this section, a new 

learning‐based pattern matching approach is used for behaviour monitoring by a swarm of agents/unmanned vehicles. 

The proposed approach defines a driving mode mk at each time instant k. The driving mode characterises the moving 

behaviour of the monitored target vehicle during the considered time‐window. These modes can then be leveraged for 

defining classes of complex behaviours that could draw the attention on the monitored target. This is achieved by 
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comparing the driving modes, extracted from the filtered vehicle trajectories, with particular pre‐defined behaviour 

strings by the means of pattern/string matching. Considering, for example, the case where the monitoring UAV is 

interested in detecting a ‘deceleration + stop/slowly moving’ manoeuvre performed by a vehicle near a protected 

military base. An example of pattern to look for could be ‘444000’, meaning that the vehicle decelerates for achieving 

a velocity that is close to zero or keeping stationary to monitor the military base. Obviously, lots of similar strings 

could be recognised as this peculiar behaviour, e.g., ‘944000’, and ‘994400’. Therefore, using simple exact string 

matching might be an excessively strict policy to pattern recognition and cannot account for minor differences in the 

compared strings. This means that the exact string matching might consider a potentially threat as a normal vehicle. 

Although one can use thresholding to account for the minor difference between the referenced patterns and extracted 

driving mode strings, the tuning of the threshold is often a complex process, requiring deep insight into the considered 

scenario. These observations motivate the investigation of a new and flexible approach to define the reference patterns. 

In order to overcome the shortcomings of simple string matching, this report suggests a more flexible way to define 

the reference patterns by the means of RD. This allows defining a fixed binding structure for the behavioural patterns 

of interest, specifying mandatory and optional terms. 

The objects of the proposed learning process are patterns of driving modes, which are sequences of alphanumerical 

characters with no ordinal meaning. Given this characterisation, the most suitable learning approach appears to be the 

use of a neural network. This tool, if properly trained, can accept a sequence of driving modes of fixed length as input 

and produce a single value denoting to what extent the pattern can be assumed as normal or abnormal. After properly 

training the neural network, it can be utilised to assess the vehicle trajectories. However, the issues here are the 

assessment tends to suffer from a high computational burden for real‐time applications when considering complex 

scenarios and the neural network needs to be re‐trained when adding some ‘assumed normal/abnormal’ behaviours to 

the neural network for some specific scenarios. For example, the ‘deceleration + stop/slowly moving’ pattern is a 

normal behaviour when we consider public traffic monitoring but is becomes abnormal when a vehicle is loitering a 

high value asset such as a military base. In order to accommodate these issues, a RD dictionary algorithm is created 

by summarising the observed manoeuvre patterns provided by the neural network. This can be done by providing a 

new dataset, called RD‐training set, as an input dataset to the neural network and follows the same procedure used for 

the NN‐training set. Since the output of the neural network lies in [0,1], the RD‐training driving patterns can be divided 

into several bins based on their associated neural network output as: 

 

(8) 

where net () denotes the neural network operator; pi is i-th pattern of the RD‐training set; γ is the threshold on the 

neural network output for the pattern to be considered; Nb represents the number of bins of the RD dictionary; and bj 

stands for the j-th bin. After splitting the RD‐training patterns into different bins, a set of regular expressions is then 

generated for each bin to represent the level of regularity. As we stated earlier, by utilising the regular expressions, 

one can accommodate the minor difference between two different but almost same patterns. Given a RD dictionary, 

the assessment can then be performed by searching the dictionary from the top to find the regular expression that 

matches with the input pattern. Note that most of the driving patterns in a real‐world scenario are normal. Therefore, 

searching from the top bin can save the computational power. Assume that the querying result of a generic input 

pattern is q, then, the normal level of this pattern is given by: 

 

(9) 

As stated earlier, the advantage of the RD dictionary, compared with the neural network, is that it can be easily updated 

in a real time. This can be done by adding a new pattern into one bin or moving one pattern from one bin to another 

bin. For example, ‘44000’ is a normal behaviour pattern when applying to public traffic/driving behaviour monitoring 

of targets, but it might be a suspicious pattern when considering a high value asset/military base monitoring scenario. 

Therefore, when the scenario changes to a military base monitoring, one needs to move the regular expression that 

represents ‘44000’ pattern to a bin with the output close to 0. By doing so, the proposed approach can quickly adapt 

to different scenarios without changing the assessment architecture and thus reducing complexity and computational 

effort. 
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IV.2 Numerical Simulation of Target Monitoring Algorithm 

This section validates the proposed approach through numerical simulations. In order to train the neural 

network, the dataset with positive labels are manually created by the means Markov Chain. By means of the Markov 

Chain, plausible patterns are generated as the positive data to train the neural network. As for the negative dataset, the 

pattern is generated as a random sequence of driving modes where a sub‐sequence is added that represent a known 

abnormal behaviour. The following datasets have been produced when applying the proposed algorithm: (i) NN-

training set: 20000 patterns, including 75% positive and 25% negative data, used to train the neural network; (ii) RD-

training set: 20000 patterns, including 75% positive and 25% negative data, used to query the trained network and 

create the RD dictionary. A simplified military scenario using the high value asset (military base) baseline shown in 

Figure 2 is used, to showcase the performance benefits of the proposed behaviour recognition algorithm as shown in 

Fig. 4. In the considered scenario, there are six different roads, as shown in Fig. 4, and the routes or roads of interests 

are 2, 3, 4, 5 as they are around the military base. 

 

Figure 4: Simulation Scenario for Monitoring a High Value Asset (Military Base) 

 

Figure 5: (a) Results for RD dictionary against neural network (b) Results for RD dictionary against neural 

network with 100 bins   

With regards to the accuracy of the generated RD dictionary, as it is generated by the trained neural network, it is 

reasonable to see to what extent the RD dictionary query output matches with that of the neural network for various 

test patterns. To assess the accuracy of the algorithm, a test set with 2000 randomly generate patterns is used, for this 

comparison. The simulation results are shown in Figs. 6a and b. The correct matching in the results means that the 

difference of the outcomes of these two methods lies within a given error threshold. The numeric results indicate that 

D
ow

nl
oa

de
d 

by
 I

O
W

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

Ja
nu

ar
y 

10
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
11

64
 



12 
 

the proposed dictionary query approach has been able to reproduce the NN outputs for a fair portion of the test patterns 

accounting for approximately 85% of correct matching assuming an error threshold of 20%. 

  

Figure 6: (a) Assessment for the normal vehicle (b) Assessment for the abnormal vehicle 

Two vehicles, normal and abnormal, with different trajectories are considered. For the abnormal vehicle, it starts from 

Road 1, loitering the military base through Roads 2, 3, 4, 5, and performs a ‘deceleration + stop/slowly moving’ 

manoeuvre at time 145s at Road 5. For the normal vehicle, it starts from Road 1, regularly pass the military base 

through Roads 2, 3, and ends at Road 6. The trajectories of these two vehicles are presented in Figure 6a and the road 

histories are shown in Figure 6b. The assessment results, using neural network and RD dictionary query, of these two 

vehicles are provided in Figure 7a and 7b, where Figure 7a is for the normal vehicle and Figure 7b is for the abnormal 

one. It is clear that the regularity level, provided by both neural network and RD dictionary, of the normal vehicle is 

very close to 1. This means that the proposed approach considers this car behaves regularly. From Figure 7b, it can be 

observed that the proposed assessment method successfully identifies the potential threat at around 145s which is 

indicated by the output regularity level is close to 0. The recorded running time shows that the RD dictionary query 

saves approximate 50% time than that of the neural network method. This clearly verifies the proposed new RD 

method can reduce the computational time.   

 

Figure 7: (a) Assessment for the normal vehicle (b) Assessment for the abnormal vehicle 

For improved situational awareness of swarms of unmanned aerospace vehicles, a novel behaviour recognition 

algorithm was developed based on regular dictionary techniques (RD) to detect target behaviours. Simulations using 
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multiple agents in a swarm have shown that the novel RD dictionary algorithm saves approximate 50% time than that 

of neural network methods when used in a swarm to detect multiple targets thus reduce the computational time needed.   

V. Sensor Fusion 

Sensor fusion is synonymous with technology to support the commander’s situational awareness. Automatic target 

detection and tracking are fundamental sensor fusion tasks upon which both situational awareness and other support 

functions like anomaly detection rely. An efficient system will detect targets early and produce reliable target 

coordinates, regardless environmental factors and hostile attempts to mislead or disrupt the system. Target tracking is 

not only concerned with the progress of target coordinates, but also the coordinates of mobile or UAV borne sensors 

that provide target input. A challenge in systems that rely on sensors swarms is indeed to and a (cost) effective solution 

that produce the sensor positions and orientation, collectively termed their pose. To that end, tracking also relies on 

sensor calibration, that is, the sensor data need to be interpreted in accurate real-world geometrical terms. Techniques 

for sensor positioning include satellite positioning systems (GNSS), inertial measurement units, ultra-wideband 

transceivers, simultaneous localization and mapping, and so on. These techniques will however not be reviewed here. 

Instead the focus will be on the relation between pose error and tracking feasibility and accuracy in scenarios relevant 

for the swarm mission scenario shown in Figure 2. The algorithm developed for tracking follows a decentralized 

architecture such as the one depicted in Figure 8. In contrast to distributed variants, detections are collected at a 

possibly local fusion node, where exclusively the target state in terms of real-world coordinates is estimated. To be 

mentioned, today's research and development however strive toward distributed tracking algorithms with an aim to 

increase fault tolerance while simultaneously meeting bandwidth restrictions. 

 

Figure 8:   Break down of the target tracking components. Sensors are used with sensor attached detectors 

that propagate target detections in terms of coordinates to a local fusion node. 

 

The sensor fusion algorithm used for the swarm mission analysed in this work is broken down in the four steps. First 

an abstract idea on how the targets and sensors shall move is formulated using concrete matrices with sampled object 

coordinates and sensor detections. A motion planning program uses a script that indicates the object speed along the 

associated spline, and between station points. For each station point, the script determines the speed, or maximum 

speed, to be aimed for to the next station point, and if the object shall pause, or if there is a rendezvous with another 

object, and so on. The motion planning program samples the object coordinates at desired sampling frequency, for 

instance 10 Hz, and also generates soft transitions by imposing continuity requirements on the acceleration. A six-

state tracking filter is used to track all agents and targets.  Figure 9a shows the targets and sensor allocations from the 
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airborne UAV-sensor field of view, while Figure 9b shows the full view of three UAVs flying over a single ground 

target and performing the required monitoring task with sensor fusion from three UAV sensors. 

 

 

Figure 9: (a) Screen shot of simulated target and sensor motions, where the sensor is a UAV-borne camera 

trained at the (red) person in the center. 

The evaluation of the sensor fusion algorithm is based on Monte-Carlo simulations given a scenario with three UAV-

born sensors over a single ground target, as shown in Figure 9b. To evaluate the robustness against navigation errors, 

the true sensor position and orientation are perturbed by band limited Gaussian processes. The bandwidth of the 

perturbation is selected to 1/100 Hz. Regarding the orientation, the major perturbation is on the yaw angle, while the 

pitch and yaw receive only a tenth of the variation. This reflects the assumption, that the yaw is more difficult to 

determine than the vertical axis, which can be given by a rather simple inclinometer or g-sensor. An ordinary magnetic 

compass, on the other hand, would be susceptible for spurious magnetic fields from power lines and iron masses and 

would also depend on local magnetic declination. Regarding the position, the perturbations for the east, north, and up 

components are independent and equally distributed. In the simulation, the ground target is moving at different speeds 

3-8 km/h and is occasionally standing still at the station points. Three air borne sensors are trained at the ground target, 

of which two exhibit an (almost) perpendicular linear motion, and the third a circular motion. The sensor levels are 

25-30 m above ground. The sensors continuously travel back and forth along their preferred trajectories with speed 

up to 10 km/h. No occlusion occurs in this scenario. However, the knowledge (certainty) of sensor positions and/or 

orientations is assumed to be limited. The simulation time is 185 s and the sampling frequency is 10 Hz. The primary 

evaluation criterion is the tracking root mean square error distance, RMSE. 

 

 

 

Figure 10: Simulated Swarm Navigation Errors from UAV Sensors 
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Figure 11: Simulation of target tracking, the 

continuous curve (blue) is the true track, and the 

dashed curve (red) the EKF estimate. The 

corresponding tracking RMSE is 1.2 m. 

Figure 12: Simulation of as in Fig. 11 but with 

implementation of collaborative positioning 

algorithm. The corresponding tracking is 

significantly reduced to <0.5 m. 

 

 
 

Figure 13: Tracking RMSE resulting from Monte 

Carlo simulation. 

Figure 14: Tracking RMSE using collaborative 

positioning algorithm. The corresponding tracking is 

significantly reduced by up to 50% 

Figures 11-14 show a single realization with and without collaborative positioning. Here, only the sensor orientation 

is perturbed with the realization illustrated in Figure 10, that is, yaw = 4° (standard deviation). The target tracking 

simulation outcome is presented in Figure 11 (without collaborative positioning) and in Figure 12 (with collaborative 

positioning.) Without collaborative positioning, to start with, the tracking error is on average RMSE-j = 1.2 m, but 

can apparently exceed 5 m, occasionally. Indeed, with collaborative positioning the error is significantly reduced, 

RMSE-j = 0.5 m, and the estimate follows the ground truth curve. For clarity it should be mentioned, that the RMSE 

is computed in three dimensions, while the vertical error is transparent in the Figures 13, 14. The results from the 

Monte-Carlo simulations are presented in Figure 13 and 14. Collaborative positioning with yaw compensation allows 

larger orientation errors, but it has not always positive effect in the presence of position errors. Target tracking from 
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a swarm of UAVs and UGVs requires that the platforms are fitted with suitable and well-calibrated sensors and that 

they have navigation ability to determine the position and orientation of the sensors with some accuracy. The tracking 

performance deteriorates quickly with increased navigation error. In the example scenario with three UAVs and a 

single ground target, the average yaw error must not exceed 4.5° and the average position error must fall below 0.4 m 

to meet an example requirement on tracking RMSE < 1 m. If the navigation units carry inertial measurement units, it 

can be assumed that the navigation error varies slowly, compared to platform and target movements. Then, techniques 

for collaborative positioning can be used to mitigate the effects of navigation errors, which in turn can reduce overall 

cost and weight on navigation solutions. In the example scenario it was demonstrated that collaborative positioning in 

the form of yaw error compensation reduced the susceptibility for orientation error by almost 50%. It was also 

observed that yaw compensation alone can increase the sensitivity for position error, so future investigations of 

combined yaw and position error compensation are indeed warranted. In the swarm demonstration phase, practical 

test results with real time swarm-based tracking, based on the algorithm presented in this section will be presented, 

using real data from a swarm of unmanned aerial and ground vehicles. 

VI. Guidance for Swarm System Control 
The mission of interest is the persistent monitoring mission described in Section 1. A static network of Ng sensor is 

assumed to be deployed on the ground and provide information regarding to possible intruders inside an area of interest 

around a protected asset. In addition to the ground static sensors, N mobile vehicles equipped with onboard sensors 

are assumed to be available. They may consist in ground mobile robots and / or aerial vehicles (UAVs). To define the 

objectives of the cooperative guidance and reconfiguration algorithms to be designed the following requirements are 

introduced and will be used:  

• R1: enabling cooperation among the vehicles of the swarm to safely perform the monitoring task 

• R2: ensuring complementarity between mobile vehicles of the swarm and the ground static sensor network 

• R3: compensating by mobile vehicles for possible faults in the static sensor network. 

From the mobile vehicles’ point of view, the mission consists in reaching assigned targets while contributing to 

improve the monitoring of the area of interest along the performed trajectories.  The targets are assumed to be assigned 

by the “Mobile Vehicle Task Allocation” building block (see Figure 2) and defined as way points. They can 

correspond for example to locations of intruders detected by the ground sensors, to locations of areas over which 

complementary information is required to improve situational awareness or to locations of faulty ground sensors. It is 

assumed that a target is assigned to each vehicle of the swarm, with the possibility to assign multiple vehicles at the 

same location.  In this section a reactive and distributed cooperative guidance law is designed as in Gorecki1[4] for 

the mobile vehicles involved in the analysed monitoring mission. A common criterion reflecting the mission and safety 

objectives is defined and evaluated according to each vehicle action and result, taking also into account the interaction 

between vehicles. Interactions between the vehicles and the static sensor network can also be handled by this criterion 

to ensure complementarity and reconfiguration in the monitoring mission. Guidance laws can be thus derived by 

optimization of this criterion, relying on approaches such as model predictive control (MPC). 

VI.1 UAV Swarm Guidance Algorithm 

MPC has been widely used for the guidance of UAVs in various contexts, for example UAV flocking and formation 

flight have been discussed in [1]. In distributed MPC [5][6][7][8], each vehicle computes its control inputs at each 

timestep as a solution of an optimization problem over the future predicted trajectory. For tractability reasons, finite 

prediction and control horizon lengths, respectively denoted as 𝐻𝑝 and 𝐻𝑐  are used. The future control inputs and the 

resulting state trajectories of a vehicle 𝑖 are written as:  

𝑈𝑖 = {𝑢𝑖(𝑡), 𝑢𝑖(𝑡 + 1), … , 𝑢𝑖(𝑡 + 𝐻𝑐 − 1)} 

𝑋𝑖 = {𝜉(𝑡 + 1), 𝜉𝑖(𝑡 + 2), … , 𝜉𝑖(𝑡 + 𝐻𝑝)} 
(9) 

 

If 𝐻𝑐  <  𝐻𝑝, the control input is set to 0 after 𝐻𝑐  steps. Once the optimal input sequence 𝑈𝑖
∗ has been computed, each 

vehicle communicates its predicted trajectory to the rest of the fleet and applies the first sample of the computed 

optimal control sequence 𝑢𝑖
∗(𝑡). The optimization problems at time 𝑡 takes the following form: 

                                                           
1 T. Gorecki, H. Piet-Lahanier, J. Marzat, and M. Balesdent, “Cooperative guidance of UAVs for area exploration 
with final target allocation,” in Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace, 
Würzburg, Germany, 2013. 
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minimize 𝐽𝑖(𝑈𝑖 , 𝑋𝑖)  

over 𝑈𝑖 ∈ 𝐔𝑖
𝐻𝑐       

 subject to ∀𝑘 ∈ [𝑡 + 1; 𝑡 + 𝐻𝑝], 𝜉𝑖(𝑘) ∈ 𝐗𝑖  

(10) 

Where 𝐽𝑖 is the cost function associated to vehicle 𝑖. The constraints coupling the dynamics of the vehicles, such as 

collision avoidance, are taken into account by means of a penalty factor in the cost function. At the next timestep, each 

vehicle searches for its solution of the optimization problem. The cost function 𝐽𝑖 is composed of a weighted sum of 

terms reflecting the objectives of the mission. These terms are detailed in the following sections. Each cost function 

or its subcomponents are defined such that their norm is less or equal to 1 and weighted with a coefficient 𝑤• to give 

priority to some of the objectives with respect to the others. Each vehicle defines its own trajectory online to achieve 

the mission objectives and constraints: (i) Head towards its assigned waypoint (ii) Maximize the cumulated area 

covered, in cooperation with the ground static sensors and the other mobile vehicles (iii) Avoid collisions between 

vehicles (iv) Minimize energy consumption to increase the monitoring capability. The associated global cost function 

is given as: 

𝐽𝑖 = 𝐽𝑖
𝑛𝑎𝑣 + 𝐽𝑖

𝑐𝑜𝑣 + 𝐽𝑖
𝑠𝑎𝑓𝑒

+ 𝐽𝑖
𝑢 (11) 

 

The instant of time at which all these computations are carried out is 𝑡. The cost  𝐽𝑖
𝑛𝑎𝑣 to guide the vehicle i towards 

its assigned waypoint 𝑝𝑖
𝑝
 has the following expression: 

𝐽𝑖
𝑛𝑎𝑣 =

1

2𝐻𝑝𝑣𝑚𝑎𝑥

∑ 𝑤𝑝‖𝑝𝑖(𝑛) − 𝑝̂𝑖(𝑛)‖ + 𝑤𝑓𝐷 (𝑝𝑖(𝑡 + 𝐻𝑝) − 𝐵
𝑖

𝑡+𝐻𝑝)

𝑡+𝐻𝑝

𝑛=𝑡

 (12) 

 

The first part penalises the distance of the predicted trajectory 𝑝𝑖  over the horizon 𝐻𝑝 to a virtual best-case trajectory 

𝑝̂𝑖  which is a straight line towards the waypoint 𝑝𝑖
𝑝
 at nominal speed 𝑣𝑛𝑜𝑚. The second part encourages the vehicle to 

get closer to the waypoint at the end of the predicted trajectory by penalising the distance to a reference ball 𝐵𝑖  around 

the waypoint as illustrated in Figure 15. 

 

 
Figure 15: Definition of virtual trajectory and ball for navigation cost 

The cost 𝐽𝑖
𝑠𝑎𝑓𝑒

 to avoid collisions between the vehicles is defined as: 

𝐽𝑖
𝑠𝑎𝑓𝑒

= 𝑤𝑠𝑎𝑓𝑒 ⋅
2

𝐻𝑝

 ∑ ∑
1

2
[1 + tanh ((𝑑𝑖𝑗(𝑛) − 𝛽). 𝛼)] 

𝑁

𝑗=1
𝑗≠𝑖

𝑡+𝐻𝑝

𝑛=𝑡+1

 (13) 

 

where 𝑑𝑖𝑗(𝑛) = ‖𝑝𝑖(𝑛) − 𝑝𝑗(𝑛)‖ denotes the distance between vehicles i and j, and 𝑝𝑖  =  [𝑥𝑖 , 𝑦𝑖]𝑇 .  

The coefficients α and β respectively parameterize the width of the interval of fast variation of the hyperbolic tangent 

and its inflexion point. Two distances are defined: 𝑑𝑑𝑒𝑠   is the activation distance of the collision avoidance mechanism 
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and 𝑑𝑠𝑎𝑓𝑒  is the mandatory safety distance between vehicles. They are related to α and β by 𝛼 =
6

(𝑑𝑑𝑒𝑠−𝑑𝑠𝑎𝑓𝑒)
 and 𝛽 =

1

2
(𝑑𝑑𝑒𝑠 + 𝑑𝑠𝑎𝑓𝑒). 

With this choice, the cost variation is less than 5% of its maximal value in the range [𝑑𝑑𝑒𝑠 , +∞]. For implementation, 

the penalty function is set to 0 for 𝑑𝑖𝑗  >  𝑑𝑑𝑒𝑠, i.e. the vehicles do not consider each other above this distance. The 

cost 𝐽𝑖
𝑢 to limit the energy spent by the vehicles is: 

𝐽𝑖
𝑢 =

1

𝐻𝑝

∑
𝑤𝑣

𝑣𝑚𝑎𝑥

(𝑣𝑖(𝑛) − 𝑣𝑛𝑜𝑚)2 +
𝑤𝜔

𝜔𝑚𝑎𝑥

𝜔𝑖
2(𝑛)

𝑡 +𝐻𝑝

𝑛=𝑡

 

 

(14) 

It penalizes the difference between the actual speed and the desired speed 𝑣𝑛𝑜𝑚 and favors straight lines over curved 

trajectories. The cost function 𝐽𝑖
𝑐𝑜𝑣 should reflect the gain in terms of map coverage for a potential trajectory. Each 

vehicle is assumed to have an attached sensor (of range 𝑟𝑠𝑒𝑛𝑠𝑜𝑟), described by a function 𝑓𝑐𝑜𝑣 of the relative position 

between the observed point and the vehicle. The cooperatively covered area at time t is: 

Ω =  ⋃ 𝐷𝑖
𝑛

𝑛=1,…,𝑡
𝑖=1,…,𝑁+𝑁𝑔

 
(15) 

where  𝐷𝑖
𝑛 is the sensing footprint of vehicle i at timestep n. Since this representation is impractical, the mission field 

is approximated as a grid of resolution  𝑑𝑔𝑟𝑖𝑑. A matrix 𝐺 stores the level of exploration of each cell of the grid. Each 

element 𝐺𝑙,𝑚 (where (𝑙, 𝑚) are the integer coordinates of the cell of the grid) ranges between 0 when no vehicle has 

covered this location on a reference period and 1 when it has been entirely observed. Each vehicle stores a copy of 

this exploration map and updates it with the information from the rest of the fleet and the ground sensors (if their 

status is healthy). The precision of the representation only depends on the parameter 𝑑𝑔𝑟𝑖𝑑. When a vehicle comes at 

a distance d from the center of cell (l,m), the exploration level is updated: 

𝐺𝑙,𝑚
+ = max(𝐺𝑙,𝑚, 𝑓𝑐𝑜𝑣(𝑑)) (16) 

The exploration index is increased only if the vehicle is close enough. The function 𝑓𝑐𝑜𝑣 is chosen to be continuous 

and identically 0 for 𝑑 >  𝑟𝑠𝑒𝑛𝑠𝑜𝑟  as: 

𝑓𝑐𝑜𝑣(𝑑) = {

0  𝑖𝑓 𝑑 ≥ 𝑟𝑠𝑒𝑛𝑠𝑜𝑟

1

2
(1 + cos (

𝜋𝑑

𝑟𝑠𝑒𝑛𝑠𝑜𝑟

))  𝑖𝑓 𝑑 < 𝑟𝑠𝑒𝑛𝑠𝑜𝑟
 (17) 

The coverage matrix also takes into account the information from the ground sensor: the sensor footprint of each 

ground sensor whose status is known to be healthy is incorporated in 𝐺, hence ensuring complementarity between 

static and mobile sensors. In case of failure detection in a static sensor, the corresponding footprint is changed back 

to “not covered” in the map. This allows the mobile vehicles to take into account this new information in the 

computation of their next control input and naturally reconfigure the coverage mission of the swarm. The coverage 

cost function is thus defined to reward trajectories that cooperatively increase the global level of exploration of the 

map. Note that it takes negative values since the overall cost function is minimized, while the objective is to maximize 

the coverage. 

𝐽𝑖
𝑐𝑜𝑣 = −𝑤𝑐𝑜𝑣 ∑ 𝐺𝑙,𝑚(𝑡 + 𝐻𝑝) − 𝐺𝑙,𝑚(𝑡)

𝑙,𝑚

= −𝑤𝑐𝑜𝑣𝟏𝑇 (𝐺(𝑡 + 𝐻𝑝) − 𝐺(𝑡)) 𝟏 (18) 

 

where 𝐺(𝑡 + 𝐻𝑝) is the predicted exploration map associated to the vehicle trajectory and 1 is the vector of appropriate 

dimension whose components are all 1. This cost function represents the total increase of the global coverage level 

resulting from a predicted trajectory. Since the vehicles share information, flying in already covered zones (by mobile 

or static sensors) is therefore penalized and this also allows covering the area leaved free by a faulty sensor. 

VI.2 MPC Optimization and Cost Function Online Computation 

The MPC optimization problem is a constrained nonlinear program, the solution of which cannot be found analytically. 

Numerical optimization must hence be used to approximate the solution. Global optimization procedures based, for 
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example, on interval analysis [9] or genetic algorithms [10] can be used, but may in practice be computationally 

prohibitive for real-time implementation. Numerical optimization methods, such as Sequential Quadratic 

Programming (SQP), Active Set or Interior Point methods are thus generally preferred [11]. Other methods suitable 

for MPC problems have also been developed [12]. Nevertheless, a global solution can be hard to find because of 

potential local minima. The computational time required for a MPC approach strongly depends on the 

parameterization of the control sequence. Low dimensional parameterizations have, for example, enabled successful 

applications to control systems with fast dynamics [13]. Another solution consists in considering a finite set of 

predefined feasible control sequences, from which the one minimizing the cost function will be selected [13]. This 

last solution is used in this paper for implementation of the MPC strategy, based on [8]. This systematic search strategy 

has several main advantages over a traditional optimization procedure. Firstly, the computation load necessary to find 

a control sequence is constant in all situations leading to a constant computation delay. The second advantage is that 

the systematic search strategy can be less sensitive to local minima problems, since the entire control space is explored. 

Finally, the systematic search requires no initialization of the optimization procedure. The studied search procedure 

consists in defining, prior to the mission, a set S of candidate control sequences that satisfy control constraints. At 

each timestep, the control problem is solved using the proposed search procedure, as follows: 

1. Using a model of the vehicle dynamics, predict the effect of each control sequence of the set of candidates 

S on the state of the vehicle; 

2. Remove from S all of the candidate control sequences that lead to a violation of constraints on the state of 

the vehicle; 

3. Compute the cost 𝐽𝑖 corresponding to each remaining candidate control sequence; 

4. Select the control sequence that entails the smallest cost. 

Since all of the feasible candidates in the set S will be evaluated, the computation load of associated predictions should 

be as limited as possible. A simple parameterization of the control sequence is therefore adopted, by considering a 

control input constant over the control horizon 𝐻𝑐  and then null over the remainder of the prediction horizon 𝐻𝑝. In 

addition, the distribution of the candidate control sequences is chosen so as to limit their number, while providing a 

good coverage of the control space. 

The following three rules have been chosen: 

1) The set S of candidates includes the extreme control inputs, to exploit the full potential of the vehicles; 

2) The set S of candidates includes the null control input, to allow the same angular and linear accelerations to 

be continued with; 

3) Candidates are distributed over the entire control space, with an increased density around the null control 

input. 

VI.3 Swarm Guidance Algorithm Numerical Simulation 

This section presents the evaluation and performance analysis of the proposed swarm guidance algorithm. Different 

simulation scenarios are considered to illustrate the compliance with the three requirements listed in Section 6.1 and 

influence of simulation parameters. The parameters of the swarm simulation scenarios performed are shown in Table 

8.  

Parameter Value 

(𝑣𝑚𝑖𝑛𝑣𝑚𝑎𝑥𝑣𝑛𝑜𝑚) (0.3, 1, 0.7) ms-1 

(𝜔𝑚𝑖𝑛𝜔𝑚𝑎𝑥Δ𝜔𝑚𝑎𝑥) (-0.2, 0.2, 0.05) rads-1 

(Δ𝑣𝑚𝑎𝑥) 0.1 ms-1 

(𝑑𝑑𝑒𝑠𝑑𝑠𝑎𝑓𝑒𝑑𝑔𝑟𝑖𝑑) (9, 3, 2.5) m 

(𝑤𝑝𝑤𝑣𝑤𝑐𝑜𝑣) 1, 0.5. 2 

𝑤𝑓𝑤𝜔𝑤𝑠𝑎𝑓𝑒  4, 0.5, 10 

𝑟𝑠𝑒𝑛𝑠𝑜𝑟  5 m 

(𝐻𝑝𝐻𝑐) 21, 3 

 Table 8: Swarm Guidance Simulation Parameters 

Five mobile vehicles represented by arrows are considered in Figures 16-18. The circle around each vehicle represents 

its sensor footprint. Five mobile vehicles are available. Two targets are assigned to two groups of two vehicles. A fifth 

target is assigned to the remaining vehicle.  A fifth target is assigned to the remaining vehicle. A target way point 

(colored dot) is assigned to each vehicle. The area covered by the sensor footprint of each vehicle during the mission 

is represented in grey levels corresponding to the exploration value (Eq. 15). Footprints of ground static sensors are 
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represented by blue circles inside which the area is assumed to be covered. All vehicles successfully reach the assigned 

targets, starting from randomly chosen initial conditions in terms of position, orientation and velocities. While arriving 

close to their targets, the vehicles start to perform trajectories to improve monitoring while staying as close as possible 

to the targets. This results in a quasi-circular trajectory for the green vehicle and local cooperative trajectories ensuring 

collision avoidance and complementarity in the monitoring for the three others. The ground static sensor network is 

assumed to be composed of: 

• Four high range sensors (rg
sensor = 10 m) located at the center of the area and with overlapping footprints (e.g. 

sensors monitoring a protected asset), 

• Four middle range sensors (rg
sensor = 5 m) and twelve low range sensors (rg

sensor = 1.5 m) located all around 

the center of the area as an “early warning frontier”. 

Illustration of fulfillment of the reconfiguration requirement (R3) is addressed through three simulation scenarios: 

• a “nominal scenario” with no failure among the static sensors, 

• a “reconfiguration scenario 1” with failure of two high range and one low range sensors during the execution 

of the mission, 

• a “reconfiguration scenario 2” with failure of one middle range sensor and one low range sensor during the 

execution of the mission.  

Faulty sensors are represented by red circles.  

 
Figure 16: Monitoring mission - nominal scenario.  Figure 17: Monitoring mission - faulty scenario 1 (faulty 

sensors in red). 

 
Figure 18: Monitoring mission - faulty scenario 2 (faulty sensors in red). 

 

In the nominal scenario shown in Figure 18, cooperation between the vehicles enables to improve monitoring in a 

cooperative way to the static sensor network while minimizing overlaps as much as possible.  As already mentioned, 
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when the vehicles get close to their assigned targets they keep moving close to the targets and improving coverage in 

this area. In the faulty scenario 1 presented in Figure 18, the trajectory of one of the vehicle is modified online to cope 

with failure of two high-range sensors. Some information is therefore collected by opportunity over the areas not 

covered anymore by the static sensors. A failure has also been simulated for a small range sensor located on the top 

part of the area. Vehicles close to this sensor also start to modify their trajectories, because of the event. Online 

reconfiguration is also performed in the faulty scenario 2 shown in Figure 19, where trajectories of the vehicles are 

adapted online to compensate for missing information from the faulty sensors. Note that if one would like to 

“permanently” compensate for faulty sensors by ensuring a full or persistent coverage of the area not monitored 

anymore, a new target should be assigned to some vehicle(s) in this/these location(s). Hence the vehicle(s) would 

perform “circular”-like motions over the area(s) compensating for the faulty sensor(s). 

 

In summary, a reactive and distributed cooperative FDIR/guidance algorithm has been designed for mobile vehicles 

enabling cooperation and reconfiguration has been proposed for a persistent monitoring mission. The algorithm is 

based on Model Predictive Control and is designed in a distributed way, enabling each vehicle to compute its own 

control input, resulting in more robustness with respect to failure of one of the mobile vehicles. The algorithm enables 

to ensure monitoring complementarity among the vehicles in combination with a ground static sensor network. It also 

addresses safety issues by avoiding collisions between the vehicles in case of conflicting trajectories. The algorithm 

is validated via simulation and online reconfiguration is shown to cope with possible failures among the ground 

sensors. 

VII. Practical Swarm Demonstration 

All swarm technologies presented in earlier sections are combined, simulated and then validated via a practical 

demonstration in a scaled outdoor environment. Due to the time and budget constraints the testing areas was limited 

in size and the unmanned platforms used to form a swarm of robots where based on COTS systems available in the 

market. The main objectives of the practical demonstration were to set up the demonstration environment, 

communications network and test the swarm functionalities for a persistent monitoring scenario as shown in Figure 2. 

For the outdoor demonstration 8 air and ground unmanned vehicles/agents where used in combination with static and 

mobile (ground) targets. All agents are targets and are connected to a WIFI network or used radio telemetry.  The 

navigation information of each agent and targets are shared via ROS based protocols. The task allocation system also 

is connected to ROS and the results of task allocation are also shared in ROS. Each agent is using the allocated mission 

information which is shared by the task allocation algorithm. Multiple combinations of agents, type of vehicles and 

number of targets where implemented, thus assessing homogeneous (same type of vehicle/sensors) and heterogeneous 

vehicles (optical/IR sensors, fixed wing/quadrotor UAVs). The unmanned systems used, and their physical 

Specifications of agents are summarised in Table 9. 

Parameter Parrot Bebop 2 Parrot Disco Erle Copter Erle Hexacopter Erle-Rover 

 

   
 

 

Width 330 mm 1150 mm 360 mm 590 mm 325 mm 

Length 330 mm 580 mm 360 mm 515 mm 465 mm 

Height 89 mm 120 mm 95 mm 95 mm 145 mm 

Weight 500 g 750 g 1300 g 1700 g 2100 g 

Endurance ~30 min 

Max Speed 40 km/hr  40 km/hr  30 km/hr  30 km/hr  5 km/hr 

Table 9 Physical specification of agents 
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The targets consist of two types: static targets (Type 1) and moving vehicles (Type 2), both using the Erle-Rover 

UGV. The outdoor demonstration took place at the Cranfield University Airport on February 8, 2018. Considering the 

proposed mission scenario, resource availability, project time limitations and costs/vehicle compatibility, the 

following demonstration parameters are used: 4 quadrotors, 1 fixed wing micro drone and 3 unmanned ground vehicle 

(UGV), operating in a 100 x 100 x 30m volume using GPS-optical guidance/navigation. 

 Model Type Units 

Agent Bebop UAV 3 

Agent Erle-copter UAV 1 

Agent Rover UGV 1 

Agent Disco Fixed wing UAV 1 

Target Rover UGV 2 

Target Stationary target Stationary target 5 

GCS PC GCS 1 

Table 10 Unmanned Vehicles for Swarm outdoor demonstration 

Figure 19a shows the guidance, navigation and control structure for the first outdoor demonstration. An Erle-copter 

and a rover are integrated as agents newly and they are operated with own navigation and control system in on-board 

system. The navigation systems are based on the GNSS and INS integrated navigation system. A fixed wing UAV 

(Disco) is operated as a top-layer observer. 

 

Figure 19: Swarm Structure for (a) Guidance, navigation, and control system (b) Network 

Figure 19b shows the network structure for the swarm outdoor demonstration. All agents are targets are connected to 

ROS through WIFI network.  The results of the target behaviour monitoring algorithm, target detection algorithm, and 

sensor fusion algorithm are shared in ROS. The target information which is getting from these algorithms also can be 

utilized in task allocation algorithm through ROS. An example of one of the outdoor demonstration/trials is presented 

in Figure 22a, which took place at Cranfield University Airport on February 9, 2018. The swarm system consisted 

with four agents and three moving targets with the mission trajectory shown in Figure 22a, where the dotted lines 

represent moving target’s trajectories, the square markers are the stationary targets and the solid lines are trajectories 

of each UAV. Figure 22b shows the target detection probability which indicates the probability of detection of all the 

targets. If the probability becomes 1, it means all the targets are detected. The results show that the maximum 

probabilities of detection converge to 1 in the heterogeneous swarm case.   
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Figure 20: (a) Mission trajectory for EuroSWARM Outdoor Experiment (b) Time History of Target 

Detection Probability 

  

VIII. Conclusion 

A swarm of unmanned vehicles, mostly composed of micro UAVs has been studied for use in the defence 

sector, for the protection of high value assets such as military bases or installations. By testing and 

demonstrating an autonomous swarm of heterogenous vehicles, it has been shown that efficient and effective 

operation of unmanned swarm systems can bring a profound impact to the military arena. The key focus in the 

development of the enabling technologies has been the minimisation of uncertainties in situational awareness 

information for surveillance operations supported by a swarm ‘system of systems’ composed by static and 

mobile heterogeneous sensors. Critical enabling techniques and technologies for adaptive, informative and 

reconfigurable operations of unmanned swarm systems were developed in the work presented via the use of 

computationally efficient algorithms for, mobile sensor tasking (including re-allocation), sensor fusion, 

information fusion including behaviour monitoring. Simulation and practical results, described in the paper, 

from a demonstration using a swarm of 10 micro UAVs and UGVs has demonstrated the benefits of swarms 

of heterogeneous vehicles for defence applications such as for the persistent monitoring of high value assets. 

Novel guidance, sensor fusion and task allocation algorithms which form the basic technologies for swarm 

systems have been matured in this work, through the development of algorithms which can be implemented in 

COTS based unmanned vehicles available today. The described algorithms have been integrated in a fully 

autonomous swarm system of a small scale, and were designed and optimised to require small computational 

power, be flexible, reconfigurable and with the ability to be implemented in a large range of commercially 

available unmanned vehicles (air and ground). A realistic, persistent surveillance and monitoring scenario was 

implemented showing that efficient and effective operation of unmanned swarm systems can allow the swarm 

system end user in the battlefield to obtain real-time, relevant situational awareness information and help 

commanders make time efficient and effective decisions, while reducing risk/mission costs and human 

exposure to threats. 
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