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Abstract: This paper focuses on the design, implementation and experimental validation of
a Tube-Based Model Predictive Control (TBMPC) law for the stabilization of the horizontal
dynamics of an Unmanned Aerial Vehicle (UAV) quadrotor. These dynamics are modelled by
a discrete-time linear system subject to additive disturbance and polytopic constraints, which
model is derived through an identification strategy from experimental flight data that is adapted
to the subsequent design of invariant sets. The results obtained from a validation flight with
the TBMPC law are presented to illustrate the robust state and control input constraints
satisfaction.
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1. INTRODUCTION

The diversity of tasks performed by UAVs has signifi-
cantly increased the last decade. Among these we can cite
commercial tasks such as terrain mapping (Tahar et al.
(2011)) and building facade assessment (Choi and Kim
(2015)). The design of controllers for UAVs to perform
autonomously these tasks should take into account safety
and technological constraints, such as distance to obstacles
or actuator limitations. Moreover, UAVs are subject to
disturbances such as ground effect or aerodynamic pertur-
bations when flying close to obstacles (McKinnon (2015)).
The quadrotor UAV used in the experiments presented
here is the Parrot AR.Drone 2.0. This drone is affordable
and is equipped with a suitable software interface (Bris-
teau et al. (2011); Krajník et al. (2011)). Its dynamics
and control have been largely studied (Prayitno et al.
(2014); Santana et al. (2015)). However, these approaches
suffer from the lack of constraints handling. The constraint
handling by the control law can benefit from the time-
domain formulation of Model Predictive Control (MPC)
strategies. Recent results report the use of predictive con-
trol law on UAVs (Alexis et al. (2011); Liu et al. (2012)),
but these works do not consider constraints satisfaction in
the presence of disturbance.
The ability to handle bounded disturbances on the system
dynamics at the control design stage has been extensively
studied in the literature and current MPC strategies al-
low for improved robustness (Scokaert and Mayne (1998);
Langson et al. (2004)). Tube-Based MPC is a strategy
that has been successfully applied for constraint handling
to face disturbances (Mayne et al. (2005)). It consists in

computing a trajectory for a system without disturbance
while maintaining the error between the uncertain and the
disturbance-free system in an invariant set. This method
has been particularly studied in the context of linear
discrete-time systems (Mayne et al. (2006)). The position
stabilization of an AR.Drone 2.0 fits in this framework.
There exist several methods in the literature regarding
the computation of invariant sets for linear discrete-time
systems subject to bounded additive disturbance (Kol-
manovsky and Gilbert (1998); Rakovic̀ et al. (2005); Olaru
et al. (2010)).
In this paper we propose an online implementation of a
TBMPC controller for the stabilization of a commercial
quadrotor UAV. Several results have focused on the design
in simulation of Tube-Based MPC controllers for mini-
UAVs (Hu et al. (2018); Mammarella and Capello (2018);
Köhler et al. (2019)). These papers present the framework
and parameter tuning of the predictive controller without
experimental results. The practical implementation raises
additional issues, such as the evaluation of the disturbance
due to communication delay, model mismatch, and the
presence of external aerodynamic forces. Tube-Based MPC
has already been implemented in other areas of research,
such as mobile robots (González et al. (2011)) and tractor-
trailer systems (Kayacan et al. (2015)). In our knowledge
it has yet to be implemented on an UAV, and this paper
aims at answering this desideratum.
This paper is structured as follow. Section 2 presents the
experimental setup and the modelling of the horizontal
dynamics of the Parrot AR.Drone 2.0. The robust Tube-
Based MPC control law is stated in Section 3. Section 4
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trol law on UAVs (Alexis et al. (2011); Liu et al. (2012)),
but these works do not consider constraints satisfaction in
the presence of disturbance.
The ability to handle bounded disturbances on the system
dynamics at the control design stage has been extensively
studied in the literature and current MPC strategies al-
low for improved robustness (Scokaert and Mayne (1998);
Langson et al. (2004)). Tube-Based MPC is a strategy
that has been successfully applied for constraint handling
to face disturbances (Mayne et al. (2005)). It consists in

computing a trajectory for a system without disturbance
while maintaining the error between the uncertain and the
disturbance-free system in an invariant set. This method
has been particularly studied in the context of linear
discrete-time systems (Mayne et al. (2006)). The position
stabilization of an AR.Drone 2.0 fits in this framework.
There exist several methods in the literature regarding
the computation of invariant sets for linear discrete-time
systems subject to bounded additive disturbance (Kol-
manovsky and Gilbert (1998); Rakovic̀ et al. (2005); Olaru
et al. (2010)).
In this paper we propose an online implementation of a
TBMPC controller for the stabilization of a commercial
quadrotor UAV. Several results have focused on the design
in simulation of Tube-Based MPC controllers for mini-
UAVs (Hu et al. (2018); Mammarella and Capello (2018);
Köhler et al. (2019)). These papers present the framework
and parameter tuning of the predictive controller without
experimental results. The practical implementation raises
additional issues, such as the evaluation of the disturbance
due to communication delay, model mismatch, and the
presence of external aerodynamic forces. Tube-Based MPC
has already been implemented in other areas of research,
such as mobile robots (González et al. (2011)) and tractor-
trailer systems (Kayacan et al. (2015)). In our knowledge
it has yet to be implemented on an UAV, and this paper
aims at answering this desideratum.
This paper is structured as follow. Section 2 presents the
experimental setup and the modelling of the horizontal
dynamics of the Parrot AR.Drone 2.0. The robust Tube-
Based MPC control law is stated in Section 3. Section 4
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1. INTRODUCTION

The diversity of tasks performed by UAVs has signifi-
cantly increased the last decade. Among these we can cite
commercial tasks such as terrain mapping (Tahar et al.
(2011)) and building facade assessment (Choi and Kim
(2015)). The design of controllers for UAVs to perform
autonomously these tasks should take into account safety
and technological constraints, such as distance to obstacles
or actuator limitations. Moreover, UAVs are subject to
disturbances such as ground effect or aerodynamic pertur-
bations when flying close to obstacles (McKinnon (2015)).
The quadrotor UAV used in the experiments presented
here is the Parrot AR.Drone 2.0. This drone is affordable
and is equipped with a suitable software interface (Bris-
teau et al. (2011); Krajník et al. (2011)). Its dynamics
and control have been largely studied (Prayitno et al.
(2014); Santana et al. (2015)). However, these approaches
suffer from the lack of constraints handling. The constraint
handling by the control law can benefit from the time-
domain formulation of Model Predictive Control (MPC)
strategies. Recent results report the use of predictive con-
trol law on UAVs (Alexis et al. (2011); Liu et al. (2012)),
but these works do not consider constraints satisfaction in
the presence of disturbance.
The ability to handle bounded disturbances on the system
dynamics at the control design stage has been extensively
studied in the literature and current MPC strategies al-
low for improved robustness (Scokaert and Mayne (1998);
Langson et al. (2004)). Tube-Based MPC is a strategy
that has been successfully applied for constraint handling
to face disturbances (Mayne et al. (2005)). It consists in

computing a trajectory for a system without disturbance
while maintaining the error between the uncertain and the
disturbance-free system in an invariant set. This method
has been particularly studied in the context of linear
discrete-time systems (Mayne et al. (2006)). The position
stabilization of an AR.Drone 2.0 fits in this framework.
There exist several methods in the literature regarding
the computation of invariant sets for linear discrete-time
systems subject to bounded additive disturbance (Kol-
manovsky and Gilbert (1998); Rakovic̀ et al. (2005); Olaru
et al. (2010)).
In this paper we propose an online implementation of a
TBMPC controller for the stabilization of a commercial
quadrotor UAV. Several results have focused on the design
in simulation of Tube-Based MPC controllers for mini-
UAVs (Hu et al. (2018); Mammarella and Capello (2018);
Köhler et al. (2019)). These papers present the framework
and parameter tuning of the predictive controller without
experimental results. The practical implementation raises
additional issues, such as the evaluation of the disturbance
due to communication delay, model mismatch, and the
presence of external aerodynamic forces. Tube-Based MPC
has already been implemented in other areas of research,
such as mobile robots (González et al. (2011)) and tractor-
trailer systems (Kayacan et al. (2015)). In our knowledge
it has yet to be implemented on an UAV, and this paper
aims at answering this desideratum.
This paper is structured as follow. Section 2 presents the
experimental setup and the modelling of the horizontal
dynamics of the Parrot AR.Drone 2.0. The robust Tube-
Based MPC control law is stated in Section 3. Section 4

discusses the identification of the linearized model and the
disturbance estimation from experimental data. Section 5
presents the experimental results of the practical imple-
mentation of the TBMPC law. Finally, Section 6 draws
conclusions and perspectives for further researches.
Notation: For a matrix A ∈ Rn×n, denote A� its trans-
pose. For a positive definite matrix Q ∈ Rn×n and a
vector x ∈ Rn, denote ||h||Q = h�Qh. For a matrix
A ∈ Rn×n and a set X ⊂ Rn, define the set AX =
{y ∈ Rn | y = Ax, x ∈ X }. We denote Rm×n

+ the set of ma-
trices of dimension m×n with positive elements. Given two
sets A ⊂ Rn, B ⊂ Rn, then A ⊕ B = {a + b | a ∈ A, b ∈ B}
(set addition) and A � B = {x | {x} ⊕ B ⊆ A} (set sub-
straction). A polytope is a closed and bounded intersection
of a finite number of closed half-spaces.

2. EXPERIMENTAL SETUP AND SYSTEM
MODELLING

This section briefly describes the experimental setup and
presents a model for the horizontal position control of a
Parrot AR.Drone 2.0.

2.1 Experimental Setup

The AR.Drone 2.0 is a low-cost quadrotor UAV with em-
bedded control laws allowing to regulate roll angle, pitch
angle, yaw rate and vertical speed. We denote the reference
values, the inputs to the UAV, by

[
θr φr ψ̇r vzr

]�
. Each

component of this vector has values within [−1, 1] that
can be interpreted as percentages of maximal configured
values.
The measurements of the UAV position ([x y z]), velocity
([vx vy vz]) and roll, pitch and yaw angles ([θ ψ φ]) with
respect to an inertial reference frame are obtained from a
motion capture system with OptiTrack cameras.
We use CVXGEN to generate the code for QP-representable
convex optimization problems (Mattingley and Boyd
(2012)). The obtained QP corresponds to an MPC tube-
based strategy that computes the reference values θr, φr

to be transmitted to the drone for horizontal control, as
described in the next section.
A ground PC station running ROS is used to compute the
control values by the TBMPC algorithm. These values are
sent by WiFi to the UAV, hence inducing delays in the
transmission of the control signal.

2.2 Model for horizontal position regulation

In this section we present a model for the horizontal
position control. We assume that the yaw angle and
vertical speed are zero. Moreover, assuming small pitch
and roll angles, the dynamics in the directions x and y
of the horizontal movement can be considered as identical
and decoupled.
Below we focus on a model for the position x. Thanks to
the internal regulation, we can assume that the pitch angle
dynamics can be described as a first order system (Krajník
et al. (2011))

φ̇ = −C(φ − φr) + δ,

where C > 0 and δ represents external disturbance and
errors in the model. The force generated by the rotors in
the horizontal direction x is considered to be linear on the
pitch angle, yielding an acceleration which is linear on φ,
as mv̇x = Fφ + f where f is a disturbance corresponding
to the error in the model and exogenous disturbance (such
as aerodynamical forces) and F is the magnitude of the
force generated by the four propellers.
From the above considerations we propose the following
continuous-time linear system

Ẋ = AcX + BcU + ∆x, (1)

X =
[

x
vx

φ

]
, Ac =




0 1 0
0 0 F

m
0 0 −C


 , Bc =

[ 0
0
C

]
, ∆x =




0
f

m
δ


 ,

with U = φr. A similar model can be obtained for the
dynamics in the direction y. The theoretical developments
of this paper will be presented for the direction x. The
TBMPC is validated in flight for both directions (x, y).
A discretized model of (1) is considered for the design of
the TBMPC law,

Xk+1 = AXk + BUk + Wk, (2)
where Xk = X(kτ) is the state, Uk = U(kτ) is the
control input, Wk ∈ R3 is the additive disturbance, and
τ > 0 is a chosen sampling period. The disturbance Wk is
the discrete-time representation of ∆x, the discretization
error, the measurement error from the Motion Capture,
and the error induced by the communication delay.
We assume that the disturbance Wk is bounded by a set
W ⊂ R3. The identification of A ∈ R3×3 and B ∈ R3×1

with the structural constraints inherited from (1) and the
determination of W are discussed in Section 4.
The system is subject to physical constraints, such as
presence of obstacles or actuators saturation, and to con-
straints related to the mission requirements, such as speed
or angle limitations. These constraints are represented by

Xk ∈ X ⊂ R3, Uk ∈ U . (3)
This model is used for the design of a TBMPC law for the
stabilization of the horizontal position around successive
waypoints, or references, Xr = [xr 0 0]� , Yr = [yr 0 0]�.

3. TUBE-BASED MODEL PREDICTIVE CONTROL

This section recalls the principle of TBMPC as presented
in Mayne et al. (2006) for the stabilization around the
origin of a linear discrete-time system subject to bounded
additive disturbance. The results presented in this section
are obtained under the following assumption.
Assumption 1. The sets X , U and W are polytopes con-
taining the origin in their interior.

Let us consider the disturbance-free system from (2),
X̄k+1 = AX̄k + BŪk, (4)

which we refer to as the nominal system. Assume that
a control sequence

{
Ūk|k, ..., Ūk+N |k

}
, N ∈ N, has been

computed. The associated predicted trajectory of the
nominal system is given by

X̄k+i+1|k = AX̄k+i|k + BŪk+i|k, i = {0, .., N}. (5)
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discusses the identification of the linearized model and the
disturbance estimation from experimental data. Section 5
presents the experimental results of the practical imple-
mentation of the TBMPC law. Finally, Section 6 draws
conclusions and perspectives for further researches.
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pose. For a positive definite matrix Q ∈ Rn×n and a
vector x ∈ Rn, denote ||h||Q = h�Qh. For a matrix
A ∈ Rn×n and a set X ⊂ Rn, define the set AX =
{y ∈ Rn | y = Ax, x ∈ X }. We denote Rm×n

+ the set of ma-
trices of dimension m×n with positive elements. Given two
sets A ⊂ Rn, B ⊂ Rn, then A ⊕ B = {a + b | a ∈ A, b ∈ B}
(set addition) and A � B = {x | {x} ⊕ B ⊆ A} (set sub-
straction). A polytope is a closed and bounded intersection
of a finite number of closed half-spaces.

2. EXPERIMENTAL SETUP AND SYSTEM
MODELLING

This section briefly describes the experimental setup and
presents a model for the horizontal position control of a
Parrot AR.Drone 2.0.

2.1 Experimental Setup

The AR.Drone 2.0 is a low-cost quadrotor UAV with em-
bedded control laws allowing to regulate roll angle, pitch
angle, yaw rate and vertical speed. We denote the reference
values, the inputs to the UAV, by

[
θr φr ψ̇r vzr

]�
. Each

component of this vector has values within [−1, 1] that
can be interpreted as percentages of maximal configured
values.
The measurements of the UAV position ([x y z]), velocity
([vx vy vz]) and roll, pitch and yaw angles ([θ ψ φ]) with
respect to an inertial reference frame are obtained from a
motion capture system with OptiTrack cameras.
We use CVXGEN to generate the code for QP-representable
convex optimization problems (Mattingley and Boyd
(2012)). The obtained QP corresponds to an MPC tube-
based strategy that computes the reference values θr, φr

to be transmitted to the drone for horizontal control, as
described in the next section.
A ground PC station running ROS is used to compute the
control values by the TBMPC algorithm. These values are
sent by WiFi to the UAV, hence inducing delays in the
transmission of the control signal.

2.2 Model for horizontal position regulation

In this section we present a model for the horizontal
position control. We assume that the yaw angle and
vertical speed are zero. Moreover, assuming small pitch
and roll angles, the dynamics in the directions x and y
of the horizontal movement can be considered as identical
and decoupled.
Below we focus on a model for the position x. Thanks to
the internal regulation, we can assume that the pitch angle
dynamics can be described as a first order system (Krajník
et al. (2011))

φ̇ = −C(φ − φr) + δ,

where C > 0 and δ represents external disturbance and
errors in the model. The force generated by the rotors in
the horizontal direction x is considered to be linear on the
pitch angle, yielding an acceleration which is linear on φ,
as mv̇x = Fφ + f where f is a disturbance corresponding
to the error in the model and exogenous disturbance (such
as aerodynamical forces) and F is the magnitude of the
force generated by the four propellers.
From the above considerations we propose the following
continuous-time linear system

Ẋ = AcX + BcU + ∆x, (1)

X =
[

x
vx

φ

]
, Ac =




0 1 0
0 0 F

m
0 0 −C


 , Bc =

[ 0
0
C

]
, ∆x =




0
f

m
δ


 ,

with U = φr. A similar model can be obtained for the
dynamics in the direction y. The theoretical developments
of this paper will be presented for the direction x. The
TBMPC is validated in flight for both directions (x, y).
A discretized model of (1) is considered for the design of
the TBMPC law,

Xk+1 = AXk + BUk + Wk, (2)
where Xk = X(kτ) is the state, Uk = U(kτ) is the
control input, Wk ∈ R3 is the additive disturbance, and
τ > 0 is a chosen sampling period. The disturbance Wk is
the discrete-time representation of ∆x, the discretization
error, the measurement error from the Motion Capture,
and the error induced by the communication delay.
We assume that the disturbance Wk is bounded by a set
W ⊂ R3. The identification of A ∈ R3×3 and B ∈ R3×1

with the structural constraints inherited from (1) and the
determination of W are discussed in Section 4.
The system is subject to physical constraints, such as
presence of obstacles or actuators saturation, and to con-
straints related to the mission requirements, such as speed
or angle limitations. These constraints are represented by

Xk ∈ X ⊂ R3, Uk ∈ U . (3)
This model is used for the design of a TBMPC law for the
stabilization of the horizontal position around successive
waypoints, or references, Xr = [xr 0 0]� , Yr = [yr 0 0]�.

3. TUBE-BASED MODEL PREDICTIVE CONTROL

This section recalls the principle of TBMPC as presented
in Mayne et al. (2006) for the stabilization around the
origin of a linear discrete-time system subject to bounded
additive disturbance. The results presented in this section
are obtained under the following assumption.
Assumption 1. The sets X , U and W are polytopes con-
taining the origin in their interior.

Let us consider the disturbance-free system from (2),
X̄k+1 = AX̄k + BŪk, (4)

which we refer to as the nominal system. Assume that
a control sequence

{
Ūk|k, ..., Ūk+N |k

}
, N ∈ N, has been

computed. The associated predicted trajectory of the
nominal system is given by

X̄k+i+1|k = AX̄k+i|k + BŪk+i|k, i = {0, .., N}. (5)
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Clearly, the trajectory of the system (2) differs due to the
presence of disturbance. The following control action is
chosen to counteract its impact,

Uk+i = Ūk+i + K(Xk+i − X̄k+i), (6)
with K computed such that AK = A + BK is Schur. The
error dynamics is

Zk+1 = Xk+1 − X̄k+1 = AKZk + Wk, Wk ∈ W. (7)
Since AK is Schur, and the set W is bounded, Zk is
bounded. This bound can be characterized by an invariant
set Z (Blanchini (1999)).
Definition 1. (Mayne et al. (2005)) The set Z is said
Robustly Positively Invariant (RPI) for the system (7) if
for all Zk ∈ Z and all Wk ∈ W, Zk+1 ∈ Z.
Proposition 1. (Mayne et al. (2005)) Let Z be an RPI set
for the error system (7), and let X0 − X̄0 ∈ Z. Then, the
trajectory of (2) with the control action (6) is such that
Xk ∈ {X̄k} ⊕ Z, ∀k ∈ N for any possible realization of the
disturbance Wk ∈ W.

The trajectory of the uncertain system lies in a neighbor-
hood, or tube, of the predicted trajectory of the nominal
system (5). Moreover, if the nominal system state and
control input are such that X̄k ∈ X̄ = X � Z, Ūk ∈
Ū = U � KZ, ∀k ∈ N, then Xk ∈ X , Uk ∈ U , ∀k ∈ N.
By introducing a tighter set of constraints on the nominal
system (4), it is possible to enforce the satisfaction of the
constraints (3).
A key property that the pair (K, Z) has to satisfy is that
the sets X̄ and Ū have to be non-empty, which means,
following the definition of X̄ and Ū , the set constraint

Z ⊆ X , KZ ⊆ U (8)
has to hold. The larger the set Z, the smaller the nominal
system constraints X̄ and Ū are. Indeed, the set Z bounds
the difference between the nominal system state and the
uncertain system state. Therefore, the control law benefits
from having a set Z as small as possible. For given
(A, B, K, W), the minimal RPI (mRPI) set in terms of
set inclusion is given by (Mayne et al. (2005))

Z∞(A, B, K, W) =
∞⊕

i=0
(A + BK)iW. (9)

An MPC strategy is chosen to control the nominal system
to enforce nominal constraints satisfaction. For a given
nominal state X̄k, we consider the following optimization
problem

PN (X̄k) = (10)

minimize
Ū0,...,ŪN−1

N−1∑
i=0

(||X̄i||Q + ||Ūi||R) + ||X̄N ||P ,

subject to X̄i+1 = AX̄i + BŪi, i = {0, ..., N − 1},

X̄i ∈ X̄ , i = {1, ..., N − 1},

Ūi ∈ Ū , i = {0, ..., N − 1},

X̄0 = X̄k, X̄N ∈ X̄f .

The weight matrices Q and R are definite positive. The
terminal weight matrix P and set X̄f are chosen to ensure
the stability of the MPC (Mayne et al. (2005)). Their
choice is discussed in Section 5.

We denote Ū∗
0 (X̄k) the first element of the solution of

PN (X̄k). The control law (6) leads to
Uk = Ū∗

0 (X̄k) + K(Xk − X̄k).
This control law ensures recursive feasibility of (10) and
recursive satisfaction of the constraints (3). Note that
the nominal control action Ū∗

0 (X̄k) is independent of the
current uncertain state Xk. The disturbance realizations
Wk do not impact the evolution of the nominal system (4).
Similar results are obtained for the stabilization around
a reference (Xr, Ur) such that Xr = AXr + BUr, Xr ∈
X̄ , Ur ∈ Ū by considering the translated state and control
input X̃ = X − Xr, Ũ = U − Ur, and constraints sets
X̃ = X � {Xr}, Ũ = U � {Ur}. Note that the computation
of the terminal set for a reference is more complex than
a translation of the terminal set for the origin. Its design
and computation are discussed in Section 5.
Our goal is to experimentally validate a TBMPC law
for the stabilization of the horizontal dynamics of the
AR.Drone 2.0. The critical aspect of the implementation
and validation of this control law is the design of an RPI
set Z satisfying (8) as detailed next.

4. SYSTEM IDENTIFICATION AND INVARIANT
SET DESIGN

The computation of an invariant set Z depends on the
matrices A, B, and K, and the disturbance set W.
The linear state feedback gain K has to stabilize the
quadrotor. Indeed, once the nominal state X̄k has con-
verged toward the reference, the control law (6) is equiva-
lent to U(X) = K(X − Xr). We have tuned and validated
in flight tests a linear state feedback gain K leading to
satisfying behavior of the quadrotor in the flight zone for
stationary flights around chosen waypoints.

4.1 Disturbance evaluation and model structure

The disturbance set is defined from flight tests, where the
states and control inputs are measured over L + 1 points,

{Xm
k , Um

k } , k = {1..., L + 1}.

For a given pair of matrices (A, B), the disturbance real-
izations are defined as the mismatch between the one-step
state prediction of model (2) and the measured system
state and control input,

W m
k = Xm

k+1 − AXm
k − BUm

k , k = {1, ..., L}. (11)
The disturbance set W is then chosen as the convex-hull of
this disturbance sequence, W = conv {W m

k , k = {1, ..., L}} .
Hence, the identification of the matrices A and B fully
determines the disturbance set W.
We impose the following model structure to have ma-
trices A and B in relationship with the continuous-time
model (1),

A =
[1 axv axφ

0 av avφ

0 0 aφ

]
∈ R3×3

+ , B =
[

bx

bv

bφ

]
∈ R3×1

+ .

The diagonal terms av and aφ allow additional degrees of
freedom with regards to the external forces and torques not
taken into account in the modelling. The other coefficients
are chosen positive to ensure that the model is physically
realistic.

4.2 System identification and invariant set design

Some results have been established in the literature on
the design of a control law, for a given pair (A, B),
leading to invariant sets with remarkable properties, such
as constraints satisfaction (Rakovic̀ et al. (2005)).
Instead, we are interested here in the slightly different
problem of the design of the matrices A and B for a given
gain K leading to invariant sets with similar remarkable
properties.
Recall that for given A, B, K, W, the mRPI set is given by

Z∞(A, B, K, W) =
∞⊕

i=0
(A + BK)iW.

In general it is not possible to have an explicit characteri-
zation of this set.
The mRPI depends on (A + BK)i, i ∈ N and the dis-
turbance set W. The identification method proposed here
consists in identifying matrices A and B that minimize the
disturbance affecting our system while constraining the
eigenvalues of the matrix A + BK. The choice of such a
criterion is motivated by the fact that both the disturbance
realizations {W m

k } and the eigenvalues of A + BK depend
linearly on the elements of A and B.
The studied system is similar to a triple integrator, with
real eigenvalues that are close to 1. We force the eigenval-
ues of A to be smaller than arbitrary values to limit the
eigenvalues of A + BK for the chosen K. Meanwhile, we
minimize the quadratic norm of the disturbance sequence
to decrease the influence of the set W. The resulting
optimization problem can be written as

(A, B) = arg minimize
A,B

L∑
k=0

||W m
k ||22, (12)

subject to W m
k = Xm

k+1 − AXm
k − BUm

k ,

A =
[1 axv axφ

0 av avφ

0 0 aφ

]
, B =

[
bx

bv

bφ

]
,

axv, axφ, avφ, bx, bv, bφ ≥ 0,

0 ≤ av ≤ α, 0 ≤ aφ ≤ β.

where α and β are parameters to be tuned. The choice of
α and β leads to an identification of A and B from (12), to
a set W from (11), and to an mRPI set Z∞(A, B, K, W)
from (9). The tuning of α and β consists in the comparison
of the associated mRPI sets, and thus requires the compu-
tation of RPI outer approximations. These approximations
are obtained using the method presented in Rakovic̀ et al.
(2005). This method relies on the computation of partial
sums Z(A, B, K, i) =

⊕i
j=0(A+BK)jW. For each partial

sum, it is possible to compute a scaling factor µi ≥ 0
such that the set µiZ(A, B, K, i) is an RPI set. Each
iteration further approximates the mRPI at the expense
of increasing its complexity, hence computational efforts.

4.3 Identification flights and experimental results

In the results presented below, we fix K = − [0.5 0.4 1] ,
and τ = 0.05s.

Fig. 1. Disturbance set W identified and further used
for the TBMPC design, and disturbance realizations
during the validation flight regarding both directions
x and y in the state-space position-speed-angle.

Fig. 2. Invariant set Z and the trajectory of the system
error for the directions x and y during the validation
flight in the state-space position-speed-angle.

The experimental validation of the TBMPC law requires
that the disturbance realizations encountered in flight
are contained in the disturbance set used for the design
of its invariant set. However, the set W has to be as
small as possible to have an invariant set Z with reduced
influence. Therefore, the identification requires a large
set of experimental data from identification flights with
similar flight conditions, in particular the control law.
First, we performed identification flights with the linear
control law U(X) = K(X−Xr) and waypoints as shown in
Figure 3, leading to an initial identification of (A, B, W).
Then, we refined the identification of (A, B, W) by per-
forming identification flights with TBMPC laws until one
of these control laws was validated in flight, as presented
in the next section.
Regarding the tuning of (α, β), we computed and com-
pared the 100th mRPI outer approximation using the
method discussed above for a range of parameters (α, β)
as in (12). We chose the invariant set whose projection on
the first state (i.e. the position) is minimal. This leads to
α = β = 0.97,

A =
[1 0.049 0.0524

0 0.97 0.4294
0 0 0.9389

]
, B =

[ 0.005
0.01

0.0695

]
,

the disturbance set W presented in Figure 1, and the
invariant set Z presented in Figure 2. This identification
method used data from the directions x and y and thus
applies for both directions.
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4.2 System identification and invariant set design

Some results have been established in the literature on
the design of a control law, for a given pair (A, B),
leading to invariant sets with remarkable properties, such
as constraints satisfaction (Rakovic̀ et al. (2005)).
Instead, we are interested here in the slightly different
problem of the design of the matrices A and B for a given
gain K leading to invariant sets with similar remarkable
properties.
Recall that for given A, B, K, W, the mRPI set is given by

Z∞(A, B, K, W) =
∞⊕

i=0
(A + BK)iW.

In general it is not possible to have an explicit characteri-
zation of this set.
The mRPI depends on (A + BK)i, i ∈ N and the dis-
turbance set W. The identification method proposed here
consists in identifying matrices A and B that minimize the
disturbance affecting our system while constraining the
eigenvalues of the matrix A + BK. The choice of such a
criterion is motivated by the fact that both the disturbance
realizations {W m

k } and the eigenvalues of A + BK depend
linearly on the elements of A and B.
The studied system is similar to a triple integrator, with
real eigenvalues that are close to 1. We force the eigenval-
ues of A to be smaller than arbitrary values to limit the
eigenvalues of A + BK for the chosen K. Meanwhile, we
minimize the quadratic norm of the disturbance sequence
to decrease the influence of the set W. The resulting
optimization problem can be written as

(A, B) = arg minimize
A,B

L∑
k=0

||W m
k ||22, (12)

subject to W m
k = Xm

k+1 − AXm
k − BUm

k ,

A =
[1 axv axφ

0 av avφ

0 0 aφ

]
, B =

[
bx

bv

bφ

]
,

axv, axφ, avφ, bx, bv, bφ ≥ 0,

0 ≤ av ≤ α, 0 ≤ aφ ≤ β.

where α and β are parameters to be tuned. The choice of
α and β leads to an identification of A and B from (12), to
a set W from (11), and to an mRPI set Z∞(A, B, K, W)
from (9). The tuning of α and β consists in the comparison
of the associated mRPI sets, and thus requires the compu-
tation of RPI outer approximations. These approximations
are obtained using the method presented in Rakovic̀ et al.
(2005). This method relies on the computation of partial
sums Z(A, B, K, i) =

⊕i
j=0(A+BK)jW. For each partial

sum, it is possible to compute a scaling factor µi ≥ 0
such that the set µiZ(A, B, K, i) is an RPI set. Each
iteration further approximates the mRPI at the expense
of increasing its complexity, hence computational efforts.

4.3 Identification flights and experimental results

In the results presented below, we fix K = − [0.5 0.4 1] ,
and τ = 0.05s.

Fig. 1. Disturbance set W identified and further used
for the TBMPC design, and disturbance realizations
during the validation flight regarding both directions
x and y in the state-space position-speed-angle.

Fig. 2. Invariant set Z and the trajectory of the system
error for the directions x and y during the validation
flight in the state-space position-speed-angle.

The experimental validation of the TBMPC law requires
that the disturbance realizations encountered in flight
are contained in the disturbance set used for the design
of its invariant set. However, the set W has to be as
small as possible to have an invariant set Z with reduced
influence. Therefore, the identification requires a large
set of experimental data from identification flights with
similar flight conditions, in particular the control law.
First, we performed identification flights with the linear
control law U(X) = K(X−Xr) and waypoints as shown in
Figure 3, leading to an initial identification of (A, B, W).
Then, we refined the identification of (A, B, W) by per-
forming identification flights with TBMPC laws until one
of these control laws was validated in flight, as presented
in the next section.
Regarding the tuning of (α, β), we computed and com-
pared the 100th mRPI outer approximation using the
method discussed above for a range of parameters (α, β)
as in (12). We chose the invariant set whose projection on
the first state (i.e. the position) is minimal. This leads to
α = β = 0.97,

A =
[1 0.049 0.0524

0 0.97 0.4294
0 0 0.9389

]
, B =

[ 0.005
0.01

0.0695

]
,

the disturbance set W presented in Figure 1, and the
invariant set Z presented in Figure 2. This identification
method used data from the directions x and y and thus
applies for both directions.
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We have identified the matrices A and B, the disturbance
set W and computed an RPI set Z. In the following, we
provide the results obtained from the validation flight with
the TBMPC law.

5. EXPERIMENTAL VALIDATION OF THE TBMPC
LAW

5.1 Parameters of the Model Predictive Control law

The prediction horizon is chosen as N = 30, which means
a temporal prediction horizon of Nτ = 1.5s. We restricted
the flight zone to −0.6m ≤ x, y ≤ 1.8m, the speed to
|vx|, |vy| ≤ 1m.s−1, and the attitude to |φ|, |θ| ≤ 0.3rad.
We set a control input limit chosen as |U | ≤ 0.56. The
speed, attitude, and control input constraints are chosen
arbitrary to illustrate the recursive constraints satisfaction
of the control law.
This defines the nominal system constraints X̄ and Ū ,

X̄ =
{

X̄ ∈ R3 | HX̄ ≤ ḡ
}

, Ū =
{

Ū ∈ R | |Ū | ≤ 0.332
}

ḡ = [1.3 0.321 0.094 −0.1 −0.321 −0.094]� ,

and H = [I3 I3]�. The weight matrices Q and R as
in (10) are chosen as Q = diag(0.8, 1.2, 1), R = 5. The
terminal weight matrix P is chosen as the solution of
the Riccati equation A�

KPAK − P + Q + K�RK = 0.

As mentioned in Section 3, the terminal set X̄f (Xr) is a
function of the reference, and is to be designed as large
as possible to increase the feasibility region. The largest
admissible set is the Maximal Output Admissible Set
(MOAS) for the system X̄+ = (A+BK)X̄ and constraints
X̄ ∈ X̄ � {Xr}, KX̄ ∈ Ū , as in Kolmanovsky and Gilbert
(1998). The re-calculation of the MOAS along the change
of waypoints is not recommended in the context of online
implementation, as it can be too demanding in terms of
computation time.
Our method consists in computing offline the MOAS for
the origin, X̄f (0). Then, for a reference Xr we define
X̄f (Xr) = λX̄f (0)⊕{Xr}, where λ is chosen as the largest
positive real satisfying X̄f (Xr) ⊆ X̄ and λKX̄f (0) ⊆ Ū .

The computation of X̄f (Xr) requires to solve online a
linear optimization problem.
During the identification and validation flights, the max-
imal computation time of the TBMPC law was 4ms for
each direction, including the terminal set computation
during a waypoint change.

5.2 Validation flight of the TBMPC

We present the results obtained from a validation flight of
the TBMPC law for both directions x and y.
The trajectory of the quadrotor in the plane (x, y) and the
successive waypoints are presented in Figure 3. The refer-
ences are chosen close to one-another to ensure feasibility
of the optimization problems.
Figure 1 presents the realizations of the disturbance during
the validation flight in both directions. Note that all
the disturbance realizations are contained in W. As a
consequence, the error between the uncertain system and
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Fig. 3. Horizontal (x, y) trajectory of the uncertain system
during the validation flight.

the nominal system is contained in the RPI set Z, as
illustrated in Figure 2.
Figure 4 shows the evolution of the uncertain and nominal
systems states X and X̄, the reference values Xr, and the
control actions U and Ū , in the direction x. The actual
and nominal constraints are also depicted to illustrate
the constraints satisfaction during the flight. Note that
the constraints are satisfied during the flight despite the
presence of disturbance, which is the main objective of the
proposed control law. Similar results are obtained in the
direction y.

6. CONCLUSION

We have designed, implemented and validated experimen-
tally a Tube-Based Model Predictive Control law for the
stabilization of the horizontal dynamics of the Parrot
AR.Drone 2.0. A strategy is developed for the identifi-
cation of the discretized and linearized dynamics in the
goal of computing invariant sets as small as possible.
Several test flights have been conducted beforehand to
gather bounds for the disturbance. Satisfaction of the state
and control input constraints are guaranteed as far as the
disturbance encountered does not exceed the bounds. The
design and implementation of a reference governor is to
be sought to allow for greater distance between successive
waypoints.
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