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Abstract

We present a new dataset, dedicated to the development of simultaneous localization and mapping methods for under-

water vehicles navigating close to the seabed. The data sequences composing this dataset are recorded in three different

environments: a harbor at a depth of a few meters, a first archeological site at a depth of 270 meters, and a second site at

a depth of 380 meters. The data acquisition is performed using remotely operated vehicles equipped with a monocular

monochromatic camera, a low-cost inertial measurement unit, a pressure sensor, and a computing unit, all embedded in a

single enclosure. The sensors’ measurements are recorded synchronously on the computing unit and 17 sequences have

been created from all the acquired data. These sequences are made available in the form of ROS bags and as raw data.

For each sequence, a trajectory has also been computed offline using a structure-from-motion library in order to allow

the comparison with real-time localization methods. With the release of this dataset, we wish to provide data difficult to

acquire and to encourage the development of vision-based localization methods dedicated to the underwater environment.

The dataset can be downloaded from: http://www.lirmm.fr/aqualoc/
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1. Introduction

Accurate localization is critical for mobile robotics. In open

outdoor areas, it can be obtained from the global position-

ing system (GPS). However, in GPS-denied environments,

such as indoor or beneath the sea surface, robots’ position

must be estimated from other sensors.

In underwater robotics, the localization problem is often

solved by coupling high-grade inertial measurement units

(IMUs) with compass, Doppler velocity logs (DVLs), and

pressure sensors (Paull et al., 2014). Such solutions, classi-

fied as dead-reckoning (DR) localization, are highly depen-

dent of the sensors quality and suffer from unbounded drift.

While these methods can be employed quite safely for vehi-

cles navigating in the middle of the water column (i.e., in

obstacle-free areas), they are not accurate enough for navi-

gation in cluttered areas. In such places, simultaneous loca-

lization and mapping (SLAM) methods are preferred.

SLAM requires exteroceptive sensors, such as Lidar, sonar,

or camera, to measure the 3D structure of the environment.

From these data, the localization is estimated while a 3D

map is progressively built.

Visual SLAM (VSLAM) and visual–inertial odometry

(VIO) have been a hot research topic during the past

decades (Cadena et al., 2016). VSLAM consists of estimat-

ing localization from visual data, possibly enhanced by

complementary sensors, through the mapping of the

observed scenes. In ground and aerial robotics, the avail-

ability of many public datasets, such as KITTI (Geiger

et al., 2012), Malaga (Blanco et al., 2014), or EuRoC

(Burri et al., 2016), to cite a few, has greatly affected the

development of VSLAM methods. Recent algorithms, rely-

ing on monocular cameras (Engel et al., 2018; Forster

et al., 2017; Mur-Artal et al., 2015) or on visual–inertial

sensors (Leutenegger et al., 2015; Mur-Artal and Tardos,

2017; Qin et al., 2018), have shown impressive results, with

centimetric localization accuracy. In underwater robotics,

many operations occur near the seabed (biology, oil and

gas industry, mine warfare, archeology, etc.), making visual

information available. Nonetheless, under such conditions,
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the acquired images suffer from degradation such as turbid-

ity, backscattering, and illumination issues, owing to the

properties of the medium. These poor imaging conditions

must be accounted for in the development of underwater

VSLAM or VIO systems, thus preventing use of the previ-

ously cited algorithms (Quattrini Li et al., 2017; Weidner

et al., 2017; Zhang et al., 2018). Some previous works have

investigated the use of monocular cameras for underwater

localization Burguera et al. (2015); Ferrera et al. (2019),

sometimes coupled to low-cost IMUs and pressure sensors

(Creuze, 2017; Shkurti et al., 2011), sonar (Rahman et al.,

2018), or even as a means of detecting loop-closures in DR

systems (Kim and Eustice, 2013). However, the limited

number of public datasets dedicated to this localization

challenge prevent a fair comparison of these methods on

common data. Moreover, the fact that these data are diffi-

cult to acquire, because of the required equipment and

logistics, limits the development of new methods. Bender

et al. (2013) proposed a dataset containing the measure-

ments of navigational sensors, stereo cameras, and a multi-

beam sonar. Mallios et al. (2017) released another dataset

dedicated to localization and mapping in an underwater

cave from sonar measurements. Images acquired by a

monocular camera are also given for the detection of cones

placed precisely in order to have a means of estimating

drift. However, in both datasets, the acquisition rate of the

cameras is too low (\10 Hz) for most VSLAM and VIO

methods. Duarte et al. (2016) created a synthetic dataset

simulating the navigation of a vehicle in an underwater

environment and containing monocular cameras measure-

ments at a framerate of 10 Hz. Many public datasets have

also been made available by the oceanography community

through national websites (see https://www.data.gov/ or

http://www.marine-geo.org). However, these datasets have

not been gathered with the aim of providing data suitable

for VSLAM or VIO and often lack essential information

such as the calibration of their sensors’ setup.

In this article, we present AQUALOC, a new dataset

aimed at the development of VSLAM and VIO methods

dedicated to the underwater environment. The dataset

sequences have been recorded using acquisition systems

composed of a monochromatic camera, a microelectrome-

chanical system (MEMS)-based IMU, a pressure sensor,

and a computing unit for synchronous recordings. These

acquisition systems have been embedded on ROVs

equipped with lighting systems and navigating close to the

seabed. The recorded video sequences exhibit the typical

visual degradation induced by the underwater environment

such as turbidity, backscattering, shadows, and strong illu-

mination shifts caused by the artificial lighting systems.

Three different sites have been explored to create the data-

set: a harbor and two archeological sites. The recording of

the sequences occurred at different depths, going from a

few meters, for the harbor, to several hundred meters, for

the archeological sites. The provided video sequences are

hence highly diversified in terms of scenes (low-textured

areas, very texture repetitive areas, etc.) and of scenarios

(exploration, photogrammetric surveys, manipulations,

etc.). As the acquisition of ground truth is very difficult in

natural underwater environments, we have used the state-

of-the-art structure-from-motion (SfM) library Colmap

(Schönberger and Frahm, 2016) to compute comparative

baseline trajectories for each sequence. Colmap processes

the sequences offline and performs a 3D reconstruction to

estimate the positions of the camera. This 3D reconstruc-

tion is done by matching exhaustively all the images com-

posing a sequence, which allows the detection of many

loop closures and, hence, the computation of accurate tra-

jectories, assessed by low average reprojection errors.

Along with the computed trajectories, we also provide the

list of matched images for each sequence, which could be

used to evaluate relocalization or loop-closure detection

methods. We further include statistics on the 3D recon-

struction to assess their accuracy.

With the release of this dataset, we provide to the com-

munity the opportunity to work on data that are difficult to

acquire. Indeed, the logistics (ship availability) and the

required equipment (deep-sea compliant underwater vehi-

cles and sensors), as well as regulations (official authoriza-

tions), can be a barrier preventing possible works on this

topic. We are convinced that the availability of this dataset

will increase the development of algorithms dedicated to

the underwater environment. Both raw and ROS bag for-

matted field data are provided along with the full calibra-

tion of the sensors (camera and IMU). Moreover, the

provided comparative baseline makes this dataset suitable

for benchmarking VSLAM and VIO algorithms.

The rest of this article is organized as follows. First, we

present the design of the acquisition systems used and the

calibration procedures employed. Then, an overview of the

dataset is given and the acquisition conditions on each site

are detailed, highlighting the associated challenges for

visual localization. Next, the processing of the data

sequences to create a baseline are described. Finally, we

detail how the dataset is organized and in which way the

data are formatted.

2. The acquisition systems

In order to acquire the sequences of the dataset, we have

designed two similar underwater systems. These acquisi-

tion systems have been designed to allow the localization

of underwater vehicles from a minimal set of sensors in

order to be as cheap and as versatile as possible. Both sys-

tems are equipped with a monochromatic camera, a pres-

sure sensor, a low-cost MEMS–IMU, and an embedded

computer. The camera is placed behind an acrylic dome to

minimize the distortion effects induced by the difference

between water and air refractive indices. The image acqui-

sition rate is 20 Hz. The IMU delivers measurements from

a three-axis accelerometer, three-axis gyroscope, and three-

axis magnetometer at 200 Hz. The embedded computer is

a Jetson TX2 running Ubuntu 16.04 and is used to record
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synchronously the sensors’ measurements thanks to the

ROS middleware. The Jetson TX2 is equipped with a car-

rier board embedding the mentioned MEMS-IMU and a 1

To NVME SSD to directly store the sensors measurements,

thus avoiding any bandwidth or package loss issue. An

advantage of the self-contained systems that we have devel-

oped, is that they are independent of any robotic architec-

ture and can, thus, be embedded on any kind of remotely

operated vehicle (ROV) or autonomous underwater vehicle

(AUV). The interface can either be Ethernet or a serial link,

depending on the host vehicle’s features.

To record data at different depths, we have designed two

systems that we will refer to as ‘‘System A’’ and ‘‘System

B’’. These systems have the same overall architecture, but

they differ on the camera model, the pressure sensor type,

and the diameter and material of the enclosure. System A

(Figure 1a) is designed for shallow waters and was used to

acquire the sequences in the harbor. Its camera has been

equipped with a wide-angle lens, which can be modeled by

the fisheye distortion model. The pressure sensor is rated

for 30 bars and delivers depth measurements at a maximum

rate of 10 Hz. System A is protected by an acrylic enclo-

sure, rated for a depth of 100 meters. System B (Figure 1b)

was used to record the sequences on the archeological sites

at larger depths. Its camera has a slightly lower field of

view and the lens can be modeled by the radial-tangential

distortion model. It embeds a pressure sensor rated for 100

bars delivering depth measurements at 60 Hz. Its enclosure

is made of aluminum and is 400 meters depth rated. The

technical details about both systems and their embedded

sensors are given in Table 1.

Each camera–IMU setup has been cautiously calibrated

to provide the intrinsic and extrinsic parameters required to

use it for localization purpose. We have used the toolbox

Kalibr (Furgale et al., 2012, 2013) along with an apriltag

target to compute all the calibration parameters.

The cameras calibration step allows an estimate of the

focal lengths, principal points, and distortion coefficients to

be obtained. These parameters can then be used to undistort

the captured images and to model the image formation

pipeline, with the following notation:

u

v

� �
=PK Rcam

w Xw + tcamw

� �
ð1Þ

u

v

� �
=

fx:
xcam
zcam

+ cx

fy:
ycam
zcam

+ cy

� �
=PK Xcamð Þ ð2Þ

with K=
fx 0 cx

0 fy cy

0 0 1

2
4

3
5 and Xcam =

xcam
ycam
zcam

2
4

3
5

where PK(�) denotes the projection: R
3 7!R

2, K is the

calibration matrix, Xw 2 R
3 is the position of a 3D land-

mark in the world frame, Rcam
w 2 SO(3) and tcamw 2 R

3

denote the rotational and translational components of the

transformation from the world frame to the camera frame,

Xcam 2 R
3 is the position of a 3D landmark in the camera

frame, fx and fy denotes the focal lengths, and (cx, cy) is the

Fig. 1. The acquisition systems equipped with a monocular monochromatic camera, a pressure sensor, an IMU, and a computer along

with the sensors’ reference frames: (a) System A; (b) System B.
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principal point of the camera. The distorted pixel coordi-

nates (u, v) are the projection of Xcam into the image frame

that can be further undistorted using the distortion model

and coefficients.

As these parameters are medium dependant, the calibra-

tion has been performed in water to account for the

additional distortion effects at the dome’s level. The results

of the calibration of the fisheye camera can be seen in

Figure 2.

The camera–IMU setup calibration allows the extrinsic

parameters of the setup to be estimated, that is the relative

position of the camera with respect to the IMU, and the

time delay between camera’s and IMU’s measurements.

This relative position is represented by a rotation matrix

Rimu
cam and a translation vector timu

cam. Camera and IMU poses

relate to each other through:

Tw
cam =Tw

imuT
imu
cam ð3Þ

with Timu
cam ¼

: Rimu
cam timu

cam

01× 3 1

� �
2 R

4× 4

Tw
cam

� ��1
=Tcam

w ¼: Rcam
w tcamw

01× 3 1

� �
2 R

4× 4

where Rimu
cam 2 SO(3), timu

cam 2 R
3, Tw

cam 2 SE(3),
Tcam
w 2 SE(3), Timu

cam 2 SE(3), and Tw
imu 2 SE(3). Here

Tw
cam and Tw

imu respectively represent the poses of the cam-

era and of the body, with respect to the world frame. Tcam
w

is the inverse transformation of Tw
cam and Timu

cam is the trans-

formation from the camera frame to the IMU frame.

Before estimating these extrinsic parameters, the IMU

noise model parameters have been derived from an Allan

standard deviation plot, obtained by recording the gyro-

scope and accelerometer measurements for several hours,

while keeping the IMU still. These noise parameters are

then fed into the calibration algorithms to model the IMU

measurements. As these parameters (IMU noises, camera–

IMU relative transformation, and measurements time delay)

are independent of the medium (air or water), they have

been estimated in air. Performing this calibration step in air

allowed the fast motions required to correlate the IMU to

the camera measurements to be easily performed.

All the calibration results are included in the dataset,

that is the cameras’ models (including the intrinsic para-

meters and the distortion coefficients), the IMUs’ noise

parameters, the relative transformation from the camera to

the IMU, and the time delay between the camera and the

IMU measurements.

3. Dataset overview

As explained in Section 2, System A was used to record

the shallow harbor sequences, whereas System B was used

on the two deep archeological sites. We propose a total of

17 sequences: 7 recorded in the harbor, 4 on the first arche-

ological site, and 6 on the second site. As each of these

environments is in some ways different from the others, we

describe the sequences recorded in each environment sepa-

rately. Table 2 summarizes the specificities of each data

sequence. Note that, for each sequence, the starting and

ending points are approximately the same. In most of the

sequences, there are closed loops along the performed tra-

jectories. Some sequences also slightly overlap, which can

be useful for the development of relocalization features.

Table 1. Technical details about the acquisition systems.

Camera sensor UEye - UI-1240SE

Resolution 640× 512 px
Sensor Monochromatic
Frames per second 20 fps
Lens Kowa LM4NCL

C-Mount
Focal length 3.5mm
Pressure Sensor MS5837 - 30BA
Depth range 0–290 m

System A
(Harbor
sequences)

Resolution 0.2 mbar

Output frequency 5–10 Hz
Inertial
Measurement
Unit

MEMS - MPU-9250

Gyroscope frequency 200 Hz
Accelerometer
frequency

200 Hz

Magnetometer
frequency

200 Hz

Embedded
Computer

Nvidia - Tegra
Jetson TX2

Carrier board Auvidea J120 - IMU
Storage NVME SSD 1 To
Housing 4’’ Blue Robotics

Enclosure
Enclosure 33.4 cm × 11.4 cm
Enclosure Material Acrylic
Dome 4’’ Blue Robotics

Dome End Cap

Camera sensor UEye - UI-3260CP
Resolution 968× 608 px
Sensor Monochromatic
Frames per second 20 fps
Lens Kowa LM6NCH

C-Mount
System B
(Archeological
sequences)

Focal length 6 mm

Pressure sensor Keller 7LD - 100BA
Depth range 0–990 m
Resolution 3 mbar
Output frequency 60 Hz
Inertial measurement
unit

Same as System A

Embedded computer Same as System A
Housing 3’’ Blue Robotics

Enclosure
Enclosure 25.8 cm × 8.9 cm
Enclosure Material Aluminum
Dome 3’’ Blue Robotics

Dome End Cap
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3.1. Harbor sequences

The harbor sequences were recorded in April 2018.

System A was embedded on the lightweight ROV

Dumbo (DRASSM-LIRMM) with the camera facing

downward, as shown in Figure 3. The ROV was navigat-

ing at a depth of 3–4 meters over an area of around

100 m2. Although the Sun illuminates this shallow envi-

ronment, a lighting system was used in order to increase

the signal-to-noise ratio of the images acquired by the

camera. The explored area was mostly planar but the

presence of several big objects made it a real 3D envi-

ronment, with significant relief.

For each sequence, loops are performed and an apriltag

calibration target is used as a marker for starting and

ending points. On these sequences, vision is mostly

degraded by light absorption, strong illumination varia-

tions, and backscattering. In two sequences, visual informa-

tion even becomes unavailable for a few seconds because

of collisions with surrounding objects. Another challenge

is the presence of areas with seagrass moving because of

the swell. Moreover, the ROV is sensitive to waves and

tether disturbances, which results in roll and pitch

variations.

3.2. Archeological sites sequences

The archeological sites sequences were recorded in the

Mediterranean sea, off Corsica’s shore. System B, designed

Fig. 2. Distortion effects removal from Kalibr calibration on one of the harbor sequences. Left: raw image. Right: undistorted image.

Table 2. Details on all the AQUALOC sequences and their associated visual disturbances.

Site Sequence Duration Length Visual disturbances

Turbidity Collisions Backscattering Sandy
clouds

Dynamics Robotic
arm

Harbor
(depth ’ 4 m)
Acquired by System A,
embedded on a
lightweight ROV

#01 3’49’’ 39.3 m X — X — — —
#02 6’47’’ 75.6 m X — X — — —
#03 4’17’’ 23.6 m X — X — — —
#04 3’26’’ 55.8 m X X X — — —
#05 2’52’’ 28.5 m X — X — — —
#06 2’06’’ 19.5 m X — X — — —
#07 1’53’’ 32.9 m X X X — — —

First archeological site
(depth ’ 270 m)
Acquired by System B,
embedded on a medium
workclass ROV

#01 14’39’’ 32.4 m X — X X X X
#02 7’29’’ 64.3 m X — X X X —
#03 5’16’’ 10.7 m X — X X — —

Second archeological site
(depth ’380 m)
Acquired by System B
embedded on a medium
workclass ROV

#04 11’09’’ 18.1 m X — X X X X
#05 3’19’’ 42.0 m X — X — X —
#06 2’49’’ 31.8 m X — X — X —
#07 9’29’’ 122.1 m X — X — X —
#08 7’49’’ 41.2 m X — X — X —
#09 5’49’’ 65.4 m X — X — X —
#10 11’54’’ 83.5 m X — X — X —

Ferrera et al. 1553



for deep water, was embedded on the Perseo ROV

(Copetech SM Company) displayed in Figure 4. In the way

it was attached to the ROV, the camera viewing direction

made a small angle with the vertical line (’20–30�).

Perseo is equipped with two powerful led lights (250,000

lumens each) and with two robotics arms for manipulation

purposes. As localization while manipulating objects is

valuable information, to grab an artifact for instance, in

some sequences the robotic arms are in the camera’s field

of view. A total of 10 sequences have been recorded on

these sites, with 3 sequences taken on the first site and 7

on the second site.

The first archeological site explored was located at a

depth of approximately 270 meters and hosted the remains

of an antique shipwreck. Hence, this site is mostly planar

and presents mainly repetitive textures, owing to numerous

small rocks that were used as ballast in this antique ship

(Figure 5a). These sequences are affected by turbidity and

moving sand particles, increasing backscattering and creat-

ing sandy clouds (Figure 5b). These floating particles are

stirred up from the seabed by the water flows of the ROV’s

thrusters and lead to challenging visual conditions. A

shadow is also omnipresent in these sequences in the left

corner of the recorded images, owing to the limits of the

lighting system.

The second visited archeological site was located at a

depth of approximately 380 meters. On this site, a hill of

amphorae is present (Figure 6b), the top of which is culmi-

nating a few meters above the surrounding seabed level.

During these sequences, the ROV was mainly operated for

manipulation and photogrammetry purposes. While the

amphorae present a highly textured surface, the ROV was

also hovering low-textured sandy areas around the hill of

amphorae (Figure 6a). Owing to the presence of these

amphorae, marine wildlife has been growing on this site.

Hence, the environment is quite dynamic, with many fish

entering the field of view of the camera and many shrimp

moving in the vicinity of the amphorae. In one of the

sequences, both arms move in front of the camera.

Otherwise, the visual degradation is the same as on the first

site.

4. Comparative baseline

As the acquisition of a ground truth is very difficult in

natural underwater environments, we have used the state-

of-the-art SfM software Colmap (Schönberger and

Frahm, 2016) to offline compute a 3D reconstruction for

Fig. 3. The ROV Dumbo and the acquisition System A, used to

record the harbor sequences.

Fig. 4. The ROV Perseo, used on the archeological sites.

(Credit: F. Osada - DRASSM / Images Explorations.)

Fig. 5. Images acquired on the first archeological site (depth:

270 m): (a) sandy cloud; (b) texture repetitive area.
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each sequence and extract a reliable trajectory from it. By

setting the features extraction parameters very low, we

were able to extract enough scale-invariant feature trans-

form (SIFT) features (Lowe, 2004) to robustly match the

images of each sequence. Performing a matching of the

images in an exhaustive way, that is trying to match each

image to all the others, allows a reliable trajectory recon-

struction to be obtained as many closed loops can be

found (Figure 7). In Table 3, we provide statistics for

each sequence about Colmap’s 3D reconstructions to

highlight the reliability of the reconstructed models.

These statistics include the number of images used, the

number of estimated 3D points, the average track length

of each 3D points (i.e., the number of images observing a

given 3D point) and the average reprojection error. The

high average track lengths for each sequence (going from

6.7 to more than 20) assess the accuracy of the 3D

points’ estimation as it leads to high redundancy in the

bundle adjustment steps of the reconstruction. Moreover,

given these high track lengths, the average reprojection

error is a good indicator of the overall quality of a SfM

3D model and for each of the sequences this error is

below 0.9 pixels.

The extracted trajectories have been scaled using the

pressure sensor measurements and hence provide metric

positions. Although these trajectories cannot be considered

as being perfect ground truths, we believe that it provides a

fair baseline to evaluate and compare online localization

methods. Evaluation of such methods can be done using

the standard relative pose error (RPE) and absolute trajec-

tory error (ATE) metrics (Sturm et al., 2012).

Furthermore, we have made available the list of overlap-

ping images (i.e., matching) according to Colmap for each

sequence. These files could hence be used to evaluate the

efficiency of loop-closure or image-retrieval methods.

5. Data sequences format

As explained in the introduction, the sequences are all

available as ROS bags and as raw data. The dataset is split

into two folders, one for the harbor sequences and the other

for the archeological ones.

The dataset repository architecture is as follows.

The archeological sites sequences do not appear here but

are organized in exactly the same manner.

The calibration files are given in the output format of

Kalibr (Furgale et al., 2012, 2013).

The trajectories computed by Colmap for each sequence

are available as text files and contain the pose in a

Fig. 6. Images acquired on the second archeological site (depth:

380 m): (a) low texture area; (b) hill of amphorae.
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translation-quarternion form. The format of these files is as

follows.

The files containing the loop closures detected by

Colmap provide information in the following format:

1,1,0,0,1
1,1,1,0,0
0,1,1,0,0
0,0,0,1,1
1,0,0,1,1
.

where a 1 indicates an overlap between row i and column

j, with i and j standing for the frame numbers. Note that

Fig. 7. Examples of trajectories reconstructed with Colmap: (a) Harbor #02; (b) archeological site #07; (c) archeological site #10.

#Frame tx ty tz qx qy qz qw

0. –1.88 2.41 –0.47 0.01 0.06 0.14 0.91
20. –1.83 2.35 –0.46 0.05 0.64 0.14 0.99
40. –1.80 2.10 -0.34 0.04 0.58 0.12 0.98
.
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only a subset of the images has been used to compute the

offline reconstruction with Colmap (1 image out of 5 for

the harbor sequences and 1 out 20 for the archeological

sequences). Therefore, the frame number given in these

ground-truth files is the number of the corresponding

frame in the full sequence.

Concerning the bag files, each sequence is stored in a

separate bag containing the following topics.

� /camera/image_raw: Images recorded from the

camera.
� /camera/camera_info: Image width and height info.
� /rtimulib_node/imu: Accelerometer and gyroscope

measurements.
� /rtimulib_node/mag: Magnetometer measurements.
� /barometer_node/pressure: Pressure measurements in

millibars.
� /barometer_node/depth: Depth measurements in

meters.
� /barometer_node/temperature: Pressure sensor tem-

perature measurements.

In their raw format, each sequence contains the follow-

ing data.

� images/: The directory containing the sequence

images.
� frameXXXXX.png: The images recorded from the

camera.
� images.csv: The timestamps related to each image of

the sequence.
� imu.csv: The accelerometer and gyroscope measure-

ments and their timestamps.
� mag.csv: The magnetometer measurements and their

timestamps.
� depth.csv: The pressure measurements converted into

meters and their timestamps.

For each csv file, the first row starts with a # and then

gives the name of the different fields along with their

related measurement units in squared brackets. The follow-

ing rows contain the values of the measurements. In all

these files, the first field is the acquisition timestamp of the

measurements. For instance, the depth.csv files appear as

follows:

#timestamp [ns], depth [m]
1542828791719540119,271.988866935
1542828791735507011,272.01910918
.

6. Conclusion

In this article, we have presented a new dataset of subsea

monocular video sequences synchronized with inertial and

pressure measurements. This dataset is intended for

encouraging the development of localization methods forT
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underwater robots navigating close to the seabed. The

sequences have been recorded from ROVs in three different

environments at different depths: a harbor at a depth of 4

meters, a first archeological site at a depth of 270 meters,

and a second site at a depth of 380 meters. The diversity of

the recorded environments allowed video sequences to be

captured with different visual perturbations typical in

underwater scenarios. For each sequence, trajectories

have been computed offline using a SfM library and are

provided as a baseline for performance comparisons of

localization methods. The datasets are available both as

ROS bags and as raw data. In future work, we plan to per-

form new acquisition missions in different underwater

environments in order to augment this dataset and

increase its diversity.
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