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Abstract: A distributed event-triggered method is developed to reach the consensus with
bounded-error measurements. The approach is derived from an initial event-triggered consensus
scheme developed in Seyboth et al. (2013). The strategies are presented for single and double-
integrator models, considering a fully connected graph. Proofs of convergence to a ball centered
at the average consensus value are given. The presence of Zeno behavior is excluded. Guaranteed
bounds for consensus are characterized. Results are illustrated with numerical applications.
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1. INTRODUCTION
Consensus determination constitutes a major topic of
multi-agent coordination Olfati-Saber and Murray (2004);
Ren and Atkins (2007). Moreover, due to exchange limita-
tion, it is required that reaching the consensus should be
performed using limited exchange of information. Event-
triggered approaches have been designed to tackle this
issue for simple (Dimarogonas et al. (2012); Seyboth et al.
(2013)) or more general dynamics (Garcia et al. (2014);
Viel et al. (2016)). Most of the developed techniques do
not address the problem of noise in exchanged information.
However, existing methods consist in designing proper
stochastic approximation type consensus protocols to re-
duce the noise effect (Huang and Manton (2009)). This
early work allows Hu et al. (2015) to introduce event-
triggered mechanism for mean-consensus. In Ge et al.
(2017), a set-membership leader-follower event-triggered
consensus is described that provide bounding ellipsoidal
set containing the states of all followers of a leader using
recursive convex optimization.
In this paper, we consider bounded uncertainties on the
state estimates of agents. An event-triggered strategy is
described to enable the MAS to converge to a guaranteed
consensus region that should be updated during the tra-
jectory. This work is inspired from Seyboth et al. (2013).
Section 3 presents the problem definition. Because of the
noise, the self-error from true state is no more accessible
for agent, then new communication triggering conditions
(CTCs) based on error’s bound are introduced for single-
integrator (Section 4) and double-integrator (Section 5)
dynamics. The presence of bounded noise results in defin-
ing a region of consensus contrary to classical noise free
case. Thus, Sections 4.3 and 5.3 expose strategies to obtain
guaranteed interval bounds for consensus values from the
communication mechanism and using lower and upper
bounding dynamical systems for the uncertain systems
(Kieffer and Walter (2006)). Simulations of theoretical
results are exposed for each type of dynamics. Finally,
conclusions are drawn in Section 6.

2. PRELIMINARIES
2.1 Graph Theory
The interaction topology of a network of N agents is
represented using a graph G = (V, E) with the set of
nodes V = {1, 2, ..., N} and edges E ⊆ V × V. Eij is the
edge between the nodes i and j, with i, j = 1, ..., N . The
adjacency matrix A is defined by aij = 1 if i and j are
adjacent and aij = 0 otherwise. The set of neighbors of
a node i is Ni = {j ∈ V|(i, j) ∈ E , i �= j} and Ni its
cardinal number. If there is a path from i to j, then i
and j are called connected. If all pairs of nodes in G are
connected, then G is called connected. The degree matrix
D of G is the diagonal matrix with elements di equal to
the cardinality of node i’s neighbor set Ni. The Laplacian
matrix L of G is defined as L = D − A. L is symmetric
and positive semi-definite iff G is undirected. Moreover, in
that case, every row and every column of L sum to zero,
which means L satisfies L1N = 0. L has only one null
eigenvalue λ1 (L), and all its other non-zero eigenvalues
λ2 (L) ≤ λ3 (L) ≤ . . . ≤ λN (L) are strictly positive.
Lemma 1. from Seyboth et al. (2013). Suppose L is the
Laplacian of an undirected, connected graph G. Then for
all t ≥ 0 and all vectors v ∈ RN with 1T v = 0, it holds
that

∥∥e−Ltv
∥∥ ≤ e−λ2(L)t ‖v‖ .

Lemma 2. from Seyboth et al. (2013). Suppose L is the
Laplacian of an undirected, connected graph G. Define
µ > 0 and Γ =

[
0 IN

−L −µL

]
Then, for all t ≥ 0 and all

vectors v ∈ R2N with [1T 0T ]v = [0T 1T ]v = 0, it holds
that

∥∥eΓtv
∥∥ ≤ eRe(λ3(Γ))tcv ‖v‖, with cv =

∥∥V −1
∥∥ ‖V ‖ and

where V is a non singular matrix defined as in Seyboth
et al. (2013) from the eigen vectors of Γ.

2.2 Interval Analysis
A real interval [x] is a connected subset of R. The lower
bound lb([x]) of an interval [x], also denoted by x, is defined
as x = lb([x]) ∆= sup {a ∈ R ∪ {−∞, ∞} | ∀x ∈ [x], a ≤ x}.
Its upper bound ub([x)], also denoted x, is defined as
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state estimates of agents. An event-triggered strategy is
described to enable the MAS to converge to a guaranteed
consensus region that should be updated during the tra-
jectory. This work is inspired from Seyboth et al. (2013).
Section 3 presents the problem definition. Because of the
noise, the self-error from true state is no more accessible
for agent, then new communication triggering conditions
(CTCs) based on error’s bound are introduced for single-
integrator (Section 4) and double-integrator (Section 5)
dynamics. The presence of bounded noise results in defin-
ing a region of consensus contrary to classical noise free
case. Thus, Sections 4.3 and 5.3 expose strategies to obtain
guaranteed interval bounds for consensus values from the
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bounding dynamical systems for the uncertain systems
(Kieffer and Walter (2006)). Simulations of theoretical
results are exposed for each type of dynamics. Finally,
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case. Thus, Sections 4.3 and 5.3 expose strategies to obtain
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(Kieffer and Walter (2006)). Simulations of theoretical
results are exposed for each type of dynamics. Finally,
conclusions are drawn in Section 6.
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which means L satisfies L1N = 0. L has only one null
eigenvalue λ1 (L), and all its other non-zero eigenvalues
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x = ub([x]) ∆= inf {b ∈ R ∪ {−∞, ∞} | ∀x ∈ [x], x ≤ b}.
The width of any non-empty interval [x] is w([x]) = x − x.

3. PROBLEM DEFINITION

Consider a multi-agent system (MAS) of N agents whose
communication topology can be described by an undirected
fully-connected and time-invariant graph G. It is also
assumed that there is no communication delay.
Let xi the state of each Agent i ∈ V and ui its control
input. It is assumed that each Agent i is able to compute
or has access to an estimate x̂i of its own state xi. Let ti

k be
the time instant at which the k-th message is broadcast by
Agent i. This message is composed of its state’s estimate:

x̂i (t) = xi

(
ti
k

)
+ wi(ti

k), ∀t ∈
[
ti
k, ti

k+1
[

(1)
where wi is some additive bounded noise. x̂i kept constant
between two communication instants and equal to the last
broadcast value. It is also assumed that Agent i is able
to broadcast x̂i to all other neighbor agents j, j ∈ Ni.
Due to the presence of noise in the state estimates, only
a bounded consensus of the MAS can be obtained, that is
∃ε > 0 s.t. limt→+∞ ‖xi(t) − xj(t)‖ ≤ ε, ∀(i, j) ∈ E .
Define w̃ as:

w̃ = sup
i∈V

(
sup

k∈N∗
|wi

(
ti
k

)
|
)

(2)

The trigger function fi(.) for Agent i takes values in R
and relies on local information only. A communication is
triggered when the CTC fi(.) > 0 is satisfied. As soon as
an agent sends its state value or receives other agent state
value, it recomputes its control ui immediately.
Problem: The problem addressed here is to design dis-
tributed control laws and CTCs requiring only local infor-
mation available to allow the MAS to achieve a bounded
consensus. It also provides boundary values on the consen-
sus reflecting the bound on the noise and the broadcast
strategy.

4. SINGLE-INTEGRATOR AGENTS
4.1 Consensus & communication triggering condition
Consider first the noise-free case i.e wi(t) = 0, for agents
with single-integrator dynamics described as

ẋi (t) = ui (t) (3)
with i ∈ V, where xi (t) ∈ R is the state of Agent i and
ui (t) ∈ R its control input. The dynamics of the MAS can
be described in a matrix form as ẋ (t) = u (t), with the
state vector x (t) = [x1 (t) , ..., xN (t)]T , x(0) = x0 ∈ RN

and the control vector u (t) = [u1 (t) , ..., uN (t)]T . Seyboth
et al. (2013) proposed an event-based implementation,

ui (t) =
∑

j∈Ni

(x̂j (t) − x̂i (t)) , (4)

or in matrix form u (t) = −Lx̂ (t), where Agent i does not
use its true state xi (t) but the last broadcast estimate
x̂i (t) to guarantee the zero average of the control u (t)
so that a consensus can be achieved. As the MAS evolve,
the state xi will drift from the last broadcast value x̂i.
Therefore, an estimation error ei can be defined for Agent
i as

ei (t) = x̂i (t) − xi (t) . (5)

Let e (t) = [e1 (t) , ..., eN (t)]T be the collection of MAS
errors. Let us recall from Olfati-Saber and Murray (2004)
the disagreement vector of the MAS δ (t):

δ (t) = x (t) − a(t)1N , (6)
with a (t) = (1/N) 1T

N x (t), so that 1T
N δ (t) = 0.

In case there are no measurement noises, a CTC is defined
in Theorem 3.2 of Seyboth et al. (2013) as

fi (t, ei (t)) = |ei (t) | −
(
c0 + c1e−αt

)
> 0, (7)

with constants c0 � 0, c1 � 0, c0 + c1 > 0, and
0 < α < λ2 (L). Then, for all initial condition x0 ∈
RN , the disagreement vector δ of the closed-loop system
converges to a ball centered at the origin with radius
r = ‖L‖

√
Nc0/λ2 (L). Moreover, the closed-loop system

does not exhibit Zeno behavior.

4.2 Presence of unknown but bounded measurement noise
Consider now that Agent i’s state estimate is defined as
(1). Let us define a bound on the error, that can be
evaluated by Agent i, as

ẽi (t) = w̃ +
∫ t

ti
k

|ui (s) | ds, ∀t ∈
[
ti
k, ti

k+1
[

. (8)

Based on this definition, let us also introduce the following
new communication triggering condition

fi (t, ẽi (t)) = ẽi (t) −
(
c0 + c1e−αt

)
> 0 (9)

with constants c0 > w̃ � 0, c1 � 0, c0 + c1 > 0, and
0 < α < λ2 (L).
Theorem 3. Consider the multi-agent system (3), with
control law (4) and state estimate (1) for each Agent i
of the MAS. If communications are triggered when the
CTC (9) is verified then, for all initial conditions x0 ∈ RN ,
a bounded consensus is obtained for the MAS and the
disagreement vector δ converges to a ball centered at the
origin with radius r = ‖L‖

√
Nc0/λ2 (L) . Moreover the

MAS does not exhibit Zeno behavior.

Proof. From (6), one has δ̇ (t) = ẋ (t)−ȧ(t)1N . Assuming
that the same information is received by all its neighbor
agents when each Agent i broadcasts a message (no time
delay, no packet loss) and that the communication graph
G is balanced, then it can be shown that

∑N
i=0 ui = 0. In

this case, ȧ(t) = 0 and δ̇(t) = ẋ(t). Since ẋ (t) = −Lx̂ (t) =
−L (x (t) + e (t)), one obtains

δ̇ (t) = −Lδ (t) − Le (t) (10)
and thus δ (t) = e−Ltδ (0)−

∫ t

0 e−L(t−s)Le (s) ds. Knowing
the estimation error is bounded by the trigger function
due to the CTC, |ei (t) | ≤ ẽi (t) ≤ (c0 + c1e−αt) and using
Lemma 1, an upper bound for the disagreement vector δ
can be obtained similarly to Seyboth et al. (2013):

‖δ (t)‖ ≤ e−λ2t
(

‖δ (0)‖ − ‖L‖
√

N

(
c0

λ2
+

c1

λ2 − α

))

+ e−αt ‖L‖
√

Nc1

λ2 − α
+

‖L‖
√

Nc0

λ2

≤ ‖δ (0)‖ + ‖L‖
√

N

(
c0

λ2
+

c1

λ2 − α

)
= δ̃

(11)

From (5), we have ei (t) = x̂i (t) − xi (t) = xi

(
ti
k

)
+

wi

(
ti
k

)
−xi (t). The aim here is to show that the inter-event

times can be lower bounded by a strictly positive constant
τ . If i triggers at time t∗ > 0, then ei (t∗) = wi (t∗),
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ẽi (t∗) = w̃ and fi (t∗, ẽi (t∗)) ≤ 0. Knowing this and the
time-derivative of ei (t) given by ėi (t) = −ẋi (t) = −ui (t),
for t between two event times,

|ei (t) | ≤ |wi (t∗) | +
∫ t

t∗
|ui (s) | ds ≤ w̃ +

∫ t

t∗
|ui (s) | ds = ẽi (t)

(12)
the control is bounded by (Seyboth et al. (2013))

|ui (t) | ≤ ‖u (t)‖ ≤ ‖L‖
(

δ̃ +
√

N (c0 + c1)
)

= ũ. (13)

We assume here c0 �= 0. For t ≥ t∗ and before the next
event time, (12) and (13) gives |ei (t) | ≤ ẽi (t) ≤ w̃ +
(t − t∗) ũ. The event is triggered when CTC is satisfied
i.e. not before ẽi (t) > c0, and therefore not before w̃ +
(t − t∗) ũ > c0. For c0 > w̃, the inter-event times are lower
bounded by τ (t∗) = c0−w̃

ũ > 0. This bound holds for all
event times t∗ and all agents i. Thus we get the condition

c0 > w̃ ≥ 0 (14)
for exclusion of the Zeno behavior. Moreover, since e (t)
is piecewise continuous and the right hand side of (10) is
globally Lipschitz in δ, existence and uniqueness of the
solution is guaranteed as said in Khalil (1996). Thus,
‖δ (t)‖ converges exponentially to a ball of radius r =
‖L‖

√
N c0

λ2
as t → ∞.

4.3 Guaranteed bounds on the state of the MAS and on
the consensus
Assuming that the bound w̃ is known by all the agents,
this section aims at exploiting this information along with
the constraint imposed by the CTC to derive bounds on
the state of the agents and on the consensus value. These
bounds are computed in a distributed way by all the
agents, and updated dynamically based on the application
of Muller’s theorem (Müller (1927)), by Kieffer and Walter
(2006) between two triggering instants inside the MAS.
Let us also define by K the index of the K-th message
broadcast in the MAS, whatever the broadcasting agent.
Consider t ∈ [tK , tK+1[. Each Agent i of the MAS will
compute a lower bound xi(t) and an upper bound xi(t) of
x(t) using

ẋi(t) = −Lxi(t), ẋ
i(t) = −Lxi(t) (15)

At the trigger instant tK , Agent i updates its control input
ui and the j-th component of xi and xi by using the
information x̂j(tK) sent by the Agent j that triggered the
communication at tK :
xi

j(tK) = x̂j(tK)−h(tK), xi
j(tK) = x̂j(tK)+h(tK) (16)

with h(tK) = c0 + c1e−αtK . Since the graph G is fully
connected and there is no communication delay, using this
proposed protocol, all the agents update simultaneously
the same component of the lower and upper bound of x.
Therefore the xi will be identical at tK and ∀t ∈ [tK , tK+1[
for all the Agents i of the MAS. The same consideration
stands for the upper bound xi. Let us denote by x(t) and
x(t) these vectors over [tK , tK+1[. It is assumed that all
agents trigger a communication at the initial instant t = 0.
Consider the CTC (9) of triggering Agent j. At time tK

one has ẽj(tK) − h(tK) ≤ 0. Since |ej(t)| ≤ ẽj(t), one
can deduce −h(tK) ≤ ej(tK) ≤ h(tK). Recalling that
ej(t) = x̂j(t) − xj(t), one obtains

xj(tK) = x̂j(tK) − h(tK) ≤ xj(tK) ≤ x̂j(tK) + h(tK) = xj(tK)
(17)

Therefore
x(tK) ≤ x(tK) ≤ x(tK). (18)

In addition, it can be shown that (15) define a lower and
upper dynamical system of ẋ = −Lx̂, in the sense that

ẋ = −Lx ≤ ẋ = −Lx̂ ≤ ẋ = −Lx (19)
where the inequalities are interpreted component by com-
ponent. Using Muller’s Theorem between two triggering
instants, one can conclude that x(t) is bounded by x(t)
and x(t) as

x(t) ≤ x(t) ≤ x(t), ∀t ∈ [tK , tK+1[ . (20)
These bounds allow to find an estimation of the state of
the MAS, which can be computed in a distributed way by
each agent.
Based on this knowledge, we derive bounds on the value
of the consensus. As shown in the proof of Theorem 3,
for t ∈ [tK , tK+1[, one has ȧ(t) = 0. Then the agreement
value a of the consensus remains invariant between two
triggering instants and can be defined as a(t) = a(tK) =
(1/N)1T

N x(tK). Extension of the proof results to a(t)
and a(t) is straight forward and we can define a(tK) =
(1/N) 1T

N x (tK) and a(tK) = (1/N) 1T
N x (tK). From (18),

one has
a(tK) ≤ a(tK) ≤ a(tK). (21)

Let us assume that for each agent of the MAS, the
realization of its corresponding noise at each triggering
instant is such that there exists at least one agent of
the MAS for which the control input, as computed by
(4), is non zero 1 . For such an Agent i, one has therefore
|ui (tK) | > 0. Then, as t increases, ẽi (t) evaluated from
(12) also increases and reaches the broadcast threshold
h(t) which is decreasing with time. The CTC (9) is hence
verified and another communication is triggered. Therefore
the number K of triggered communications inside the
MAS increases with time t. As t → ∞, h(t) → c0, and one
can find some integer m > 0 such that ∀K ≥ m, h(tK) ∼
c0. In this case, using (17), one has

a(tK) =
1
N

1T
N x(tK) ∼

1
N

1T
N x̂(tK) − c0 (22)

a(tK) =
1
N

1T
N x(tK) ∼

1
N

1T
N x̂(tK) + c0 (23)

It can be concluded that, as t → ∞, the width of the
interval [a(tK), a(tK)] tends to 2c0.

4.4 Simulation example
A simulation example is proposed in this section to il-
lustrate the proposed approach. A network of five agents
with a fully-connected communication graph G is consid-
ered. Initial conditions are chosen randomly. An uniformly
distributed random noise within [−w̃, w̃] is used for the
perturbation wi affecting the state estimate of each Agent
i, with w̃ = 9.10−5. Triggering function parameters are set
as c0 = 0.0001 = 1.1w̃, c1 = 0.2499, α = 0.9λ2(G) = 0.45.
Figure 1 shows evolution of agents’ states to the consensus,
and the triggering instants defined from the evaluation of
the distributed CTC (9). A set of 200 simulations gives
an average number of communications of 8.64% using the
proposed new CTC and in presence of noise - with 100%
being the percentage in case periodic communications at
each sampling period. Figure 2 presents the evolution of
1 In practice, this assumption is likely to be verified, e.g. if the wi

are independent randomly distributed variables.
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ẽi (t∗) = w̃ and fi (t∗, ẽi (t∗)) ≤ 0. Knowing this and the
time-derivative of ei (t) given by ėi (t) = −ẋi (t) = −ui (t),
for t between two event times,

|ei (t) | ≤ |wi (t∗) | +
∫ t

t∗
|ui (s) | ds ≤ w̃ +

∫ t

t∗
|ui (s) | ds = ẽi (t)

(12)
the control is bounded by (Seyboth et al. (2013))

|ui (t) | ≤ ‖u (t)‖ ≤ ‖L‖
(

δ̃ +
√

N (c0 + c1)
)

= ũ. (13)

We assume here c0 �= 0. For t ≥ t∗ and before the next
event time, (12) and (13) gives |ei (t) | ≤ ẽi (t) ≤ w̃ +
(t − t∗) ũ. The event is triggered when CTC is satisfied
i.e. not before ẽi (t) > c0, and therefore not before w̃ +
(t − t∗) ũ > c0. For c0 > w̃, the inter-event times are lower
bounded by τ (t∗) = c0−w̃

ũ > 0. This bound holds for all
event times t∗ and all agents i. Thus we get the condition

c0 > w̃ ≥ 0 (14)
for exclusion of the Zeno behavior. Moreover, since e (t)
is piecewise continuous and the right hand side of (10) is
globally Lipschitz in δ, existence and uniqueness of the
solution is guaranteed as said in Khalil (1996). Thus,
‖δ (t)‖ converges exponentially to a ball of radius r =
‖L‖

√
N c0

λ2
as t → ∞.

4.3 Guaranteed bounds on the state of the MAS and on
the consensus
Assuming that the bound w̃ is known by all the agents,
this section aims at exploiting this information along with
the constraint imposed by the CTC to derive bounds on
the state of the agents and on the consensus value. These
bounds are computed in a distributed way by all the
agents, and updated dynamically based on the application
of Muller’s theorem (Müller (1927)), by Kieffer and Walter
(2006) between two triggering instants inside the MAS.
Let us also define by K the index of the K-th message
broadcast in the MAS, whatever the broadcasting agent.
Consider t ∈ [tK , tK+1[. Each Agent i of the MAS will
compute a lower bound xi(t) and an upper bound xi(t) of
x(t) using

ẋi(t) = −Lxi(t), ẋ
i(t) = −Lxi(t) (15)

At the trigger instant tK , Agent i updates its control input
ui and the j-th component of xi and xi by using the
information x̂j(tK) sent by the Agent j that triggered the
communication at tK :
xi

j(tK) = x̂j(tK)−h(tK), xi
j(tK) = x̂j(tK)+h(tK) (16)

with h(tK) = c0 + c1e−αtK . Since the graph G is fully
connected and there is no communication delay, using this
proposed protocol, all the agents update simultaneously
the same component of the lower and upper bound of x.
Therefore the xi will be identical at tK and ∀t ∈ [tK , tK+1[
for all the Agents i of the MAS. The same consideration
stands for the upper bound xi. Let us denote by x(t) and
x(t) these vectors over [tK , tK+1[. It is assumed that all
agents trigger a communication at the initial instant t = 0.
Consider the CTC (9) of triggering Agent j. At time tK

one has ẽj(tK) − h(tK) ≤ 0. Since |ej(t)| ≤ ẽj(t), one
can deduce −h(tK) ≤ ej(tK) ≤ h(tK). Recalling that
ej(t) = x̂j(t) − xj(t), one obtains

xj(tK) = x̂j(tK) − h(tK) ≤ xj(tK) ≤ x̂j(tK) + h(tK) = xj(tK)
(17)

Therefore
x(tK) ≤ x(tK) ≤ x(tK). (18)

In addition, it can be shown that (15) define a lower and
upper dynamical system of ẋ = −Lx̂, in the sense that

ẋ = −Lx ≤ ẋ = −Lx̂ ≤ ẋ = −Lx (19)
where the inequalities are interpreted component by com-
ponent. Using Muller’s Theorem between two triggering
instants, one can conclude that x(t) is bounded by x(t)
and x(t) as

x(t) ≤ x(t) ≤ x(t), ∀t ∈ [tK , tK+1[ . (20)
These bounds allow to find an estimation of the state of
the MAS, which can be computed in a distributed way by
each agent.
Based on this knowledge, we derive bounds on the value
of the consensus. As shown in the proof of Theorem 3,
for t ∈ [tK , tK+1[, one has ȧ(t) = 0. Then the agreement
value a of the consensus remains invariant between two
triggering instants and can be defined as a(t) = a(tK) =
(1/N)1T

N x(tK). Extension of the proof results to a(t)
and a(t) is straight forward and we can define a(tK) =
(1/N) 1T

N x (tK) and a(tK) = (1/N) 1T
N x (tK). From (18),

one has
a(tK) ≤ a(tK) ≤ a(tK). (21)

Let us assume that for each agent of the MAS, the
realization of its corresponding noise at each triggering
instant is such that there exists at least one agent of
the MAS for which the control input, as computed by
(4), is non zero 1 . For such an Agent i, one has therefore
|ui (tK) | > 0. Then, as t increases, ẽi (t) evaluated from
(12) also increases and reaches the broadcast threshold
h(t) which is decreasing with time. The CTC (9) is hence
verified and another communication is triggered. Therefore
the number K of triggered communications inside the
MAS increases with time t. As t → ∞, h(t) → c0, and one
can find some integer m > 0 such that ∀K ≥ m, h(tK) ∼
c0. In this case, using (17), one has

a(tK) =
1
N

1T
N x(tK) ∼

1
N

1T
N x̂(tK) − c0 (22)

a(tK) =
1
N

1T
N x(tK) ∼

1
N

1T
N x̂(tK) + c0 (23)

It can be concluded that, as t → ∞, the width of the
interval [a(tK), a(tK)] tends to 2c0.

4.4 Simulation example
A simulation example is proposed in this section to il-
lustrate the proposed approach. A network of five agents
with a fully-connected communication graph G is consid-
ered. Initial conditions are chosen randomly. An uniformly
distributed random noise within [−w̃, w̃] is used for the
perturbation wi affecting the state estimate of each Agent
i, with w̃ = 9.10−5. Triggering function parameters are set
as c0 = 0.0001 = 1.1w̃, c1 = 0.2499, α = 0.9λ2(G) = 0.45.
Figure 1 shows evolution of agents’ states to the consensus,
and the triggering instants defined from the evaluation of
the distributed CTC (9). A set of 200 simulations gives
an average number of communications of 8.64% using the
proposed new CTC and in presence of noise - with 100%
being the percentage in case periodic communications at
each sampling period. Figure 2 presents the evolution of
1 In practice, this assumption is likely to be verified, e.g. if the wi

are independent randomly distributed variables.
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Figure 1. Evolution of the agents’ states to the consensus and their
triggering instants.

Figure 2. Evolution of x1(t), x1(t) and x1(t).

the bounds x1 and x1 on the state of Agent 1. Similar
behaviour is obtained for all the agents. Figure 3 shows

Figure 3. Evolution of a(t), a(t) and a(t).

the evolution of the consensus value and its bounds. As
can be observed, the bounds on the consensus value tend
to an interval of width close to 2c0.

5. DOUBLE-INTEGRATOR AGENTS

5.1 Consensus & communication triggering condition
Consider first the noise-free case for agents with double-
integrator dynamics described as

ẋi (t) =
[

0 1
0 0

]
xi (t) +

[
0
1

]
ui (t) , (24)

where xi(t) = [ξi(t) ζi(t)]T ∈ R2 is the state of Agent i and
ui ∈ R its control input. Seyboth et al. (2013) proposed
the event-based implementation

u (t) = −L
(

ξ̂ (t) + diag(t − t1
k, ..., t − tN

k )ζ̂ (t) + µζ̂ (t)
)

(25)

with µ > 0 and with the stack vectors u = [u1, . . . , uN ]T ,
ξ̂ = [ξ̂1, . . . , ξ̂N ]T and ζ̂ = [ζ̂1, . . . , ζ̂N ]T and where es-
timates ξ̂i(t) and ζ̂i(t) are defined between two triggering
instants by ξ̂i(t) = ξi(ti

k) and ζ̂i(t) = ζi(ti
k), ∀t ∈ [ti

k, ti
k+1[.

Introducing the measurement errors
eξ (t) = ξ̂ (t) + diag(t − t1

k, ..., t − tN
k )ζ̂ (t) − ξ (t)

eζ (t) = ζ̂ (t) − ζ (t)
(26)

allows to re-write (25) as
u (t) = −L (ξ (t) + µζ (t) + eξ (t) + µeζ (t)). Using this
control law, the closed-loop dynamics of the second-order
multi-agent system are[

ξ̇

ζ̇

]
= Γ

[
ξ
ζ

]
−

[
0 0
L L

]
e (t) (27)

with e = [eT
ξ µeT

ζ ]T and Γ defined as in Lemma 2.
A CTC is defined in Th. 5.2 of Seyboth et al. (2013) as

fi (t, eξ,i (t) , eζ,i (t)) =
∥∥∥∥

eξ,i (t)
µeζ,i (t)

∥∥∥∥ −
(
c0 + c1e−αt

)
(28)

where eξ,i and eζ,i respectively stand for the i-th compo-
nent of eξ and eζ and with constants c0 ≥ 0, c1 ≥ 0, c0 +
c1 > 0 and 0 < α < |Re (λ3 (Γ)) |. Using this CTC, Th. 5.2
of Seyboth et al. (2013) ensures that the disagreement vec-
tor δ of the closed loop system converges to a ball centered
at the origin with radius r = c0cv

√
2N ‖L‖ /|Re (λ3 (Γ)) |,

for all initial conditions ξ0, ζ0 ∈ RN . Moreover, the MAS
does not exhibit Zeno behavior. This result is obtained in
the noise-free case.
5.2 Presence of unknown but bounded measurement noise
Considering now that state estimates are defined as

ξ̂i(t) = ξi(ti
k) + wξ,i(ti

k),
ζ̂i(t) = ζi(ti

k) + wζ,i(ti
k)

(29)

∀t ∈
[
ti
k, ti

k+1
[

for each Agent i of the MAS, where
wξ,i and wζ,i are some additive unknown but bounded
noises. Let us denote w̃ξ = supi∈V( sup

k∈N∗
|wξ,i

(
ti
k

)
|) and

w̃ζ = supi∈V( sup
k∈N∗

|wζ,i

(
ti
k

)
|) the respective bounds on all

the possible realizations of wξ,i and wζ,i for all agents of
the MAS and all communication times.
To introduce a new CTC for this problem, let us first define

|Ui(t)| = µ

∣∣∣∣∣
∫ t

ti
k

−ui(s)ds

∣∣∣∣∣ , |Vi(t)| = w̃ζ(t − ti
k) +

∫ t

ti
k

|Ui(s)|ds,

(30)
e′

ζ,i(t) = w̃ζ + |Ui (t) |, e′
ξ,i(t) = w̃ξ + |Vi (t) | and e′

i =
[e′

ξ,i, µe′
ζ,i]. Based on these notations, a new CTC to be

evaluated by Agent i is introduced:
fi (t, e′

i (t)) = ‖e′
i(t)‖∞ −

(
c0 + c1e−αt

)
> 0 (31)

with constants c0 > max(w̃ξ, w̃ζ) ≥ 0, c1 ≥ 0, c0 + c1 > 0
and 0 < α < |Re(λ3(Γ))|.
Theorem 4. Consider the multi-agent system (24) with the
control law (25) and state estimates (29). If communica-
tions are triggered when the CTC (31) is verified then,
for all initial conditions ξ0, ζ0 ∈ RN , a bounded consensus
is obtained for the MAS and the disagreement vector δ
converges to a ball centered at the origin with radius
r = c0cv

√
2N ‖L‖ /|Re (λ3 (Γ)) |, where cv is defined as

in Lemma 2. Moreover the MAS does not exhibit Zeno
behavior.
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Proof. Similarly to the case with single-integrator agents,
the disagreement dynamics is defined as

δ̇ (t) = Γδ (t) −
[

0 0
L L

]
e (t) (32)

and its analytical solution is
δ (t) = eΓtδ (0) −

∫ t

0 eΓ(t−s)
[

0 0
L L

]
e (s) ds. Similarly to Sey-

both et al. (2013), Lemma 2 yields ‖δ (t)‖ ≤ k1 +
k2e−αt + k3eRe(λ3(Γ))t, with Re (λ3 (Γ)) < −α < 0 and
k1 = c0cv

√
2N‖L‖

|Re(λ3(Γ))| , k2 = c1cv

√
2N‖L‖

|Re(λ3(Γ))+α| , k3 = cv ‖δ (0)‖
positive constants. An upper bound ‖u (t)‖ of the control
u (t) is obtained as (see Seyboth et al. (2013)): ‖u (t)‖ ≤√

1 + µ2 ‖L‖ (k1 + k2 + k3) +
√

2 ‖L‖ (c0 + c1) = ũ. Again
we have to prove that the Zeno behavior is excluded. For
that purpose, let us compute a bound on ‖ei(t)‖∞ for each
Agent i and for t between two triggering instants. Denote
by t∗ the last triggering instant.

‖ei (t)‖∞ = max
(∣∣∣∣

∫ t

t∗
ėξ,i (s) ds

∣∣∣∣ , µ

∣∣∣∣
∫ t

t∗
ėζ,i (s) ds

∣∣∣∣
)

(33)

Using the fact that µėζ(t) = −µu(t), one has

µ

∣∣∣∣
∫ t

t∗
ėζ,i (s)

∣∣∣∣ ds = µ

∣∣∣∣
∫ t

t∗
−ui (s) ds

∣∣∣∣
µ|eζ,i(t) − wζ,i(t∗)| = µ |Ui (t) |

µ|eζ,i (t) | ≤ µ
(

w̃ζ + |Ui (t) |
)

≤ µ
(

w̃ζ + ũ (t − t∗)
)
(34)

Let us define e′
ζ,i(t) = w̃ζ + |Ui (t) | and ẽζ,i(t) = w̃ζ +

ũ (t − t∗). Using the fact that ėξ,i(t) = eζ,i(t),∣∣∣∣
∫ t

t∗
ėξ,i (s) ds

∣∣∣∣ =

∣∣∣∣
∫ t

t∗
eζ,i (s) ds

∣∣∣∣ ≤
∫ t

t∗
w̃ζ ds +

∫ t

t∗
|Ui (s) | ds

|eξ,i(t) − wξ,i(t∗)| ≤ |Vi (t) |
|eξ,i (t) | ≤ w̃ξ + |Vi (t) | ≤ w̃ξ + (c0 + c1) (t − t∗)

(35)

Let us introduce e′
ξ,i (t) = w̃ξ + |Vi (t) | and ẽξ,i(t) = w̃ξ +

(c0 + c1) (t − t∗). We get from (33):
‖ei (t)‖∞ ≤ max

(
e′

ξ,i(t), µe′
ζ,i(t)

)
≤ max (ẽξ,i(t), µẽζ,i(t))

Here, we assume c0 �= 0. The event is triggered when CTC
is satisfied i.e. not before ‖ei (t)‖∞ > c0, and therefore
not before max (ẽξ,i, µẽζ,i) > c0. The inter-event times are
lower bounded by τ (t∗) = max

(
c0−w̃ξ

c0+c1
,

c0−µw̃ζ

µũ

)
> 0. This

bound holds for all event times t∗ and all agents i. Thus
we get the condition c0 > max (w̃ξ, µw̃ζ) for exclusion of
the Zeno behavior. Moreover, e (t) is piecewise continuous
and the right hand side of (32) is globally Lipschitz in δ,
existence and uniqueness of the solution is guaranteed as
said in Khalil (1996). Thus, ‖δ (t)‖ converges exponentially
to the ball ‖δ‖ < k1 as t → ∞.

5.3 Guaranteed bounds on the state of the MAS and on
the consensus
As for the single-integrator case, one assumes the graph
G is fully connected and there is no communication delay.
Denote by K the index of the K-th message broadcast
in the MAS, whatever the broadcasting Agent. Consider
t ∈ [tK , tK+1[. Each Agent i of the MAS will compute
lower bounds ξ(t), ζ(t) and upper bounds ξ(t), ζ(t) of ξ(t),
ζ(t), which are identical for all agents, using

[
ξ̇

ζ̇

]
= Γ

[
ξ

ζ

]
−

[
0 0
L L

]
H (t) ,

[
ξ̇

ζ̇

]
= Γ

[
ξ

ζ

]
+

[
0 0
L L

]
H (t)

(36)
with H (t) a vector of size 2N which all components are
h (t). And because G is fully-connected, (36) becomes[

ξ̇

ζ̇

]
= Γ

[
ξ

ζ

]
,

[
ξ̇

ζ̇

]
= Γ

[
ξ

ζ

]
(37)

At the trigger instant tK , Agent i updates its control input
ui and the j-th component of ξ, ζ and ξ, ζ by using
the information ξ̂j(tK), ζ̂j(tK) sent by the Agent j that
triggered the communication at tK :

ξ
j
(tK) = ξ̂j(tK) − h(tK), ξj(tK) = ξ̂j(tK) + h(tK)

ζ
j
(tK) = ζ̂j(tK) − h(tK)/µ, ζj(tK) = ζ̂j(tK) + h(tK)/µ

(38)

with h(tK) = c0 + c1e−αtK . It is assumed that all the
agents trigger a communication at the initial instant
t = 0. Consider the CTC (31) of triggering Agent j. At
time tK , max(|e′

ξ,j(tK)|, µ|e′
ζ,j(tK)|) − h(tK) ≤ 0. Since

max(|eξ,j(tK)|, µ|eζ,j(tK)|) ≤ max(|e′
ξ,j(tK)|, µ|e′

ζ,j(tK)|),
one can deduce −h(tK) ≤ eξ,j(tK) ≤ h(tK) and −h(tK) ≤
µeζ,j(tK) ≤ h(tK). Therefore

ξ
j
(tK) = ξ̂j(tK) − h(tK) ≤ ξj(tK) ≤ ξj(tK) = ξ̂j(tK) + h(tK)

ζ
j
(tK) = ζ̂j(tK) − h(tK)/µ ≤ ζj(tK) ≤ ζj(tK) = ζ̂j(tK) + h(tK)/µ

(39)
so ξ(tK) ≤ ξ(tK) ≤ ξ(tK) and ζ(tK) ≤ ζ(tK) ≤ ζ(tK).
In addition, it can be shown that (37) define a lower and
upper dynamical system for (27), in the sense that[

ξ̇

ζ̇

]
= Γ

[
ξ̇

ζ̇

]
≤

[
ξ̇

ζ̇

]
−

[
0 0
L L

]
e (t) ≤

[
ξ̇

ζ̇

]
= Γ

[
ξ̇

ζ̇

]
(40)

where the inequalities are interpreted component by com-
ponent. Using Muller’s Theorem between two triggering
instants, one can conclude that[

ξ
ζ

]
≤

[
ξ
ζ

]
≤

[
ξ
ζ

]
, ∀t ∈ [tK , tK+1[ (41)

These bounds allow to find an estimation of the state of
the MAS, which can be computed in a distributed way by
each agent.
Based on this knowledge, one would like now to derive
some bounds on the value of the consensus. From Seyboth
et al. (2013)), for t between two events tK and tK+1, the
state vector can be expressed ξ (t) = a(t)1N + b(t)t1N +
δξ (t) and ζ (t) = b(t)1N + δζ (t) where δξ and δζ are
block vectors composing δ such that 1T δξ(t) = 0 and
1T δζ(t) = 0, and where b(t) = b(tK) = (1/N)1T

N ζ(tK) and
a(t) = a(tK) = (1/N)1T

N ξ(tK) are invariant quantities i.e
for t ∈ [tK , tK+1[, ζi(t) ∼ b(tK) and ξi(t) ∼ a(tK) + b(tK)t
as t → ∞. Using the same scheme as in Section 4.3, it can
be shown from (39) that:

a(tK) ≤ a(tK) ≤ a(tK)
b(tK) ≤ b(tK) ≤ b(tK). (42)

and therefore
b(tK) =

1
N

1T
N ζ(tK) ∼

1
N

1T
N ζ̂(tK) − c0/µ

b(tK) =
1
N

1T
N ζ(tK) ∼

1
N

1T
N ζ̂(tK) + c0/µ

(43)

a(tK) =
1
N

1T
N ξ(tK) ∼

1
N

1T
N ξ̂(tK) − c0

a(tK) =
1
N

1T
N ξ(tK) ∼

1
N

1T
N ξ̂(tK) + c0

(44)
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Proof. Similarly to the case with single-integrator agents,
the disagreement dynamics is defined as

δ̇ (t) = Γδ (t) −
[

0 0
L L

]
e (t) (32)

and its analytical solution is
δ (t) = eΓtδ (0) −

∫ t

0 eΓ(t−s)
[

0 0
L L

]
e (s) ds. Similarly to Sey-

both et al. (2013), Lemma 2 yields ‖δ (t)‖ ≤ k1 +
k2e−αt + k3eRe(λ3(Γ))t, with Re (λ3 (Γ)) < −α < 0 and
k1 = c0cv

√
2N‖L‖

|Re(λ3(Γ))| , k2 = c1cv

√
2N‖L‖

|Re(λ3(Γ))+α| , k3 = cv ‖δ (0)‖
positive constants. An upper bound ‖u (t)‖ of the control
u (t) is obtained as (see Seyboth et al. (2013)): ‖u (t)‖ ≤√

1 + µ2 ‖L‖ (k1 + k2 + k3) +
√

2 ‖L‖ (c0 + c1) = ũ. Again
we have to prove that the Zeno behavior is excluded. For
that purpose, let us compute a bound on ‖ei(t)‖∞ for each
Agent i and for t between two triggering instants. Denote
by t∗ the last triggering instant.

‖ei (t)‖∞ = max
(∣∣∣∣

∫ t

t∗
ėξ,i (s) ds

∣∣∣∣ , µ

∣∣∣∣
∫ t

t∗
ėζ,i (s) ds

∣∣∣∣
)

(33)

Using the fact that µėζ(t) = −µu(t), one has

µ

∣∣∣∣
∫ t

t∗
ėζ,i (s)

∣∣∣∣ ds = µ

∣∣∣∣
∫ t

t∗
−ui (s) ds

∣∣∣∣
µ|eζ,i(t) − wζ,i(t∗)| = µ |Ui (t) |

µ|eζ,i (t) | ≤ µ
(

w̃ζ + |Ui (t) |
)

≤ µ
(

w̃ζ + ũ (t − t∗)
)
(34)

Let us define e′
ζ,i(t) = w̃ζ + |Ui (t) | and ẽζ,i(t) = w̃ζ +

ũ (t − t∗). Using the fact that ėξ,i(t) = eζ,i(t),∣∣∣∣
∫ t

t∗
ėξ,i (s) ds

∣∣∣∣ =

∣∣∣∣
∫ t

t∗
eζ,i (s) ds

∣∣∣∣ ≤
∫ t

t∗
w̃ζ ds +

∫ t

t∗
|Ui (s) | ds

|eξ,i(t) − wξ,i(t∗)| ≤ |Vi (t) |
|eξ,i (t) | ≤ w̃ξ + |Vi (t) | ≤ w̃ξ + (c0 + c1) (t − t∗)

(35)

Let us introduce e′
ξ,i (t) = w̃ξ + |Vi (t) | and ẽξ,i(t) = w̃ξ +

(c0 + c1) (t − t∗). We get from (33):
‖ei (t)‖∞ ≤ max

(
e′

ξ,i(t), µe′
ζ,i(t)

)
≤ max (ẽξ,i(t), µẽζ,i(t))

Here, we assume c0 �= 0. The event is triggered when CTC
is satisfied i.e. not before ‖ei (t)‖∞ > c0, and therefore
not before max (ẽξ,i, µẽζ,i) > c0. The inter-event times are
lower bounded by τ (t∗) = max

(
c0−w̃ξ

c0+c1
,

c0−µw̃ζ

µũ

)
> 0. This

bound holds for all event times t∗ and all agents i. Thus
we get the condition c0 > max (w̃ξ, µw̃ζ) for exclusion of
the Zeno behavior. Moreover, e (t) is piecewise continuous
and the right hand side of (32) is globally Lipschitz in δ,
existence and uniqueness of the solution is guaranteed as
said in Khalil (1996). Thus, ‖δ (t)‖ converges exponentially
to the ball ‖δ‖ < k1 as t → ∞.

5.3 Guaranteed bounds on the state of the MAS and on
the consensus
As for the single-integrator case, one assumes the graph
G is fully connected and there is no communication delay.
Denote by K the index of the K-th message broadcast
in the MAS, whatever the broadcasting Agent. Consider
t ∈ [tK , tK+1[. Each Agent i of the MAS will compute
lower bounds ξ(t), ζ(t) and upper bounds ξ(t), ζ(t) of ξ(t),
ζ(t), which are identical for all agents, using

[
ξ̇

ζ̇

]
= Γ

[
ξ

ζ

]
−

[
0 0
L L

]
H (t) ,

[
ξ̇

ζ̇

]
= Γ

[
ξ

ζ

]
+

[
0 0
L L

]
H (t)

(36)
with H (t) a vector of size 2N which all components are
h (t). And because G is fully-connected, (36) becomes[

ξ̇

ζ̇

]
= Γ

[
ξ

ζ

]
,

[
ξ̇

ζ̇

]
= Γ

[
ξ

ζ

]
(37)

At the trigger instant tK , Agent i updates its control input
ui and the j-th component of ξ, ζ and ξ, ζ by using
the information ξ̂j(tK), ζ̂j(tK) sent by the Agent j that
triggered the communication at tK :

ξ
j
(tK) = ξ̂j(tK) − h(tK), ξj(tK) = ξ̂j(tK) + h(tK)

ζ
j
(tK) = ζ̂j(tK) − h(tK)/µ, ζj(tK) = ζ̂j(tK) + h(tK)/µ

(38)

with h(tK) = c0 + c1e−αtK . It is assumed that all the
agents trigger a communication at the initial instant
t = 0. Consider the CTC (31) of triggering Agent j. At
time tK , max(|e′

ξ,j(tK)|, µ|e′
ζ,j(tK)|) − h(tK) ≤ 0. Since

max(|eξ,j(tK)|, µ|eζ,j(tK)|) ≤ max(|e′
ξ,j(tK)|, µ|e′

ζ,j(tK)|),
one can deduce −h(tK) ≤ eξ,j(tK) ≤ h(tK) and −h(tK) ≤
µeζ,j(tK) ≤ h(tK). Therefore

ξ
j
(tK) = ξ̂j(tK) − h(tK) ≤ ξj(tK) ≤ ξj(tK) = ξ̂j(tK) + h(tK)

ζ
j
(tK) = ζ̂j(tK) − h(tK)/µ ≤ ζj(tK) ≤ ζj(tK) = ζ̂j(tK) + h(tK)/µ

(39)
so ξ(tK) ≤ ξ(tK) ≤ ξ(tK) and ζ(tK) ≤ ζ(tK) ≤ ζ(tK).
In addition, it can be shown that (37) define a lower and
upper dynamical system for (27), in the sense that[

ξ̇

ζ̇

]
= Γ

[
ξ̇

ζ̇

]
≤

[
ξ̇

ζ̇

]
−

[
0 0
L L

]
e (t) ≤

[
ξ̇

ζ̇

]
= Γ

[
ξ̇

ζ̇

]
(40)

where the inequalities are interpreted component by com-
ponent. Using Muller’s Theorem between two triggering
instants, one can conclude that[

ξ
ζ

]
≤

[
ξ
ζ

]
≤

[
ξ
ζ

]
, ∀t ∈ [tK , tK+1[ (41)

These bounds allow to find an estimation of the state of
the MAS, which can be computed in a distributed way by
each agent.
Based on this knowledge, one would like now to derive
some bounds on the value of the consensus. From Seyboth
et al. (2013)), for t between two events tK and tK+1, the
state vector can be expressed ξ (t) = a(t)1N + b(t)t1N +
δξ (t) and ζ (t) = b(t)1N + δζ (t) where δξ and δζ are
block vectors composing δ such that 1T δξ(t) = 0 and
1T δζ(t) = 0, and where b(t) = b(tK) = (1/N)1T

N ζ(tK) and
a(t) = a(tK) = (1/N)1T

N ξ(tK) are invariant quantities i.e
for t ∈ [tK , tK+1[, ζi(t) ∼ b(tK) and ξi(t) ∼ a(tK) + b(tK)t
as t → ∞. Using the same scheme as in Section 4.3, it can
be shown from (39) that:

a(tK) ≤ a(tK) ≤ a(tK)
b(tK) ≤ b(tK) ≤ b(tK). (42)

and therefore
b(tK) =

1
N

1T
N ζ(tK) ∼

1
N

1T
N ζ̂(tK) − c0/µ

b(tK) =
1
N

1T
N ζ(tK) ∼

1
N

1T
N ζ̂(tK) + c0/µ

(43)

a(tK) =
1
N

1T
N ξ(tK) ∼

1
N

1T
N ξ̂(tK) − c0

a(tK) =
1
N

1T
N ξ(tK) ∼

1
N

1T
N ξ̂(tK) + c0

(44)
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So as t → ∞, the width of intervals [b(tK), b(tK)] tends to
2c0/µ and [a(tK), a(tK)] tends to 2c0.
5.4 Simulation example
A simulated example has been designed to illustrate the
proposed approach. Initial conditions are chosen randomly.
Uniformly distributed random noises within [−w̃ξ, w̃ξ]
and [−w̃ζ , w̃ζ ] are respectively used for the perturbation
wξ,i and wζ,i affecting the state estimate of each Agent
i, with w̃ξ = 9.10−5 and w̃ζ = 4.5.10−5. Triggering
function parameters are set to c0 = 0.0001, c1 = 0.2499,
α = 0.95|Re (λ (Γ)) | = 0.523. Figure 4 shows that the

Figure 4. Simulation result for single-integrator agents.

Figure 5. Evolution of ξ1(t), ξ1(t), ξ1(t) and ζ1(t), ζ1(t), ζ1(t).

Figure 6. Evolution of b(t), b(t), b(t) and a(t), a(t), a(t).

triggering function (31) allows to reach the consensus and
that communications are triggered regularly. The average
rate of communication is of 9.99% for 3 agents. Figure 5
presents the evolution of the bounds ξ1, ξ1 and ζ1, ζ1 on

the state of Agent 1. Similar behaviour is obtained for
all the agents. Figure 6 shows evolution of the consensus
values and their bounds.

6. CONCLUSIONS

A new distributed event-triggered communication method
based on an existing work allowing multi-agent systems to
reach the consensus in case where agent’s state measure-
ments are subject to unknown but bounded noise has been
introduced. Based on bound on measurement error, condi-
tions for design of a new CTC has been determined. From
this mechanism, guaranteed bounding for consensus has
been obtained using upper and lower dynamical systems.
Simulations have shown the efficiency of the new strategy.
Further works include considering more complex CTCs or
other state estimators as in Viel et al. (2016).
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