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Abstract— In this paper, we propose a novel cluster-based
Next-Best-View path planning algorithm to simultaneously
explore and inspect large-scale unknown environments with
multiple Unmanned Aerial Vehicles (UAVs). In the majority
of existing informative path-planning methods, a volumetric
criterion is used for the exploration of unknown areas, and
the presence of surfaces is only taken into account indirectly.
Unfortunately, this approach may lead to inaccurate 3D models,
with no guarantee of global surface coverage. To perform
accurate 3D reconstructions and minimize runtime, we extend
our previous online planner based on TSDF (Truncated Signed
Distance Function) mapping, to a fleet of UAVs. Sensor confi-
gurations to be visited are directly extracted from the map and
assigned greedily to the aerial vehicles, in order to maximize the
global utility at the fleet level. The performances of the proposed
TSGA (TSP-Greedy Allocation) planner and of a nearest
neighbor planner have been compared via realistic numerical
experiments in two challenging environments (a power plant
and the Statue of Liberty) with up to five quadrotor UAVs
equipped with stereo cameras.

I. INTRODUCTION

Autonomous robots are being increasingly used today for
time-consuming and dangerous tasks usually performed by
human operators. For instance, aerial robots equipped with
different on-board sensors (RGB-D, stereo cameras, laser
range finders, etc.) hold great potential for modeling large-
scale 3D structures. Recent applications include digital cul-
tural heritage, exploration of confined and cluttered environ-
ments, and structural inspection for preventive maintenance
[1]–[4]. Next-Best-View (NBV) planning [5], is a planning
method in which a robot iteratively computes the best view-
point configurations to fully reconstruct the 3D environment,
which can be (partially) known in advance or completely
unknown. In the latter case, the robot is forced to dynami-
cally discover the surrounding environment in the course of
the mission. The focus can be either on the exploration of
the 3D volume (exploration problem) or on the consistency
and completeness of the reconstructed surface (inspection
problem), for which different path-planning strategies have
been developed in the literature. When a single aerial robot
is used, the time necessary to cover large-scale environments
may be prohibitively long, and incompatible with limited on-
board power resources and flight autonomy (15-20 minutes
for a standard battery-powered quadrotor). This problem can
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Fig. 1. Example outputs from our multi-UAV surface reconstruction
algorithm. [left] The Statue of Liberty reconstructed by 3 UAVs; [Right]
Powerplant reconstructed by 5 UAVs.

be alleviated by performing the requested task with a team
of cooperating robots.

In this paper, we extend our previous work [1] on incre-
mental exploration and surface reconstruction of an unknown
3D environment, to a fleet of Unmanned Aerial Vehicles
(UAVs). Differently from the classical surface frontier-based
approaches [6], [7], we identify the incomplete areas directly
from the online map and generate candidate sensor view-
points in the free space, to complete them. The proposed
NBV planning method greedily assigns these configurations
to the robots, according to the “utility” (i.e. information gain)
they locally provide to the fleet and known map (see Fig. 1).
Optimal paths are computed by solving a variant of the
Travelling Salesman Problem (TSP) [8], and updated when
unknown areas are completed. In summary, the original
contributions of this paper are threefold:
• A multi-UAV NBV planner is designed to visit view-

point configurations for surface reconstruction. It relies
on a greedy allocation of configurations and on the
successive (approximate) resolution of the TSP.

• A single volumetric representation of surfaces, the Trun-
cated Signed Distance Function (TSDF) [9], is used
to cautiously navigate, identify incomplete areas, and
evaluate the information gain and the quality of 3D
reconstruction.

• The proposed method has been extensively validated in
two realistic simulation environments.

The remainder of this paper is organized as follows.
In Sect. II, we review the existing literature on multi-
robot 3D reconstruction and NBV planning. Sect. III is
devoted to the problem formulation, and in Sect. IV the



proposed method is described. The results of our numerical
experiments, including a comparative study, are discussed in
Sect. V. Finally, Sect. VI outlines the main contributions
of the paper, and presents some possible directions for
future research.

II. RELATED WORK

The ability to plan informative paths for online exploration
and modeling of 3D environments, is a fundamental skill that
highly increases the level of autonomy of a robot. Numerous
strategies for 3D modeling of an unknown environment
with a sensor-equipped robotic platform, are available in the
literature. In this paper, we focus on NBV methods which de-
termine the best viewpoints to visit depending on the nature
of the robot’s mission. Surface inspection methods analyze
the reconstructed surface for viewpoint definition. The goal
is to ensure that the reconstruction is accurate and complete.
Among them, frontier-based methods generate viewpoint
configurations on the frontier of the observed surface, which
satisfy some orientation, positioning, and sensing constraints.
These configurations, visited by the sensor-equipped robot,
provide new information about the surface, with some over-
lapping to ensure continuity [5], [10], [11]. These methods
have been mostly applied for object reconstruction with robot
manipulators, under strong assumptions on the navigable free
space. However, several works have extended NBV to mobile
robots by considering a volumetric representation [10], [12]
and more recently the TSDF [1], [13], [14]. On the other
hand, volumetric exploration aims at exploring a predefined
volume containing the object of interest. It usually proceeds
by building a map of a large unknown environment by
using a 3D grid model (such as Octomap [15]) to identify
known, unknown and occupied areas. The majority of recent
exploration methods rely on sampling-based planning [16]–
[18]. They expand a random tree (e.g. RRT/RRT* [19]) of
sampled sensor configurations in the free space, and select
the NBV trajectory that guarantees the maximum coverage
of the volume. Such receding horizon methods are efficient,
but the accuracy of the reconstructed surface is not explicitly
taken into account. In order to guarantee fast exploration and
reconstruction accuracy, some recent methods have tried to
combine the two approaches. In [4], the authors subdivided
the reconstruction into two phases: in the first one, a coarse
model of the environment is obtained, while in the second
phase the reconstructed surface is refined. Other methods
try to cover the whole surface model by reasoning on the
occupancy map [20], and the exploration path is refined
by accounting for surface incompleteness [3]. However, a
drawback of these strategies is that they rely on multiple
volumetric and surface representations at the same time, and
only a few methods deal directly with the surface inspection
problem [1], [14].

The aforementioned works only feature a single robot, and
online incremental reconstruction with multiple cooperating
robots is an open problem in the literature [21]. The authors
in [22] were the first to propose how to compute frontier
cells, and to define the trade-off between their distance

cost and utility for a multi-agent exploration mission, with
robots equipped with laser scanners in a 2D environment.
A cooperative frontier-based approach for a team of UAVs
flying in uncluttered (outdoor) areas, has been also recently
proposed in [23]. It is one of the first works to consider a
3D space representation for multi-robot exploration, with a
centralized Octomap built on a ground station, which is also
used to coordinate the motion of the UAVs (RRT*-based
path planning). The method was evaluated using realistic
numerical experiments (ROS/Gazebo) with simulated stereo
sensors. The approximation of the mutual information of
range sensors [24] also led to the development of exploration
approaches based on probabilistic occupancy maps with
entropy reduction, such as decMCTS [25] or SGA [26].
Recently, in [27], [28], a finite-horizon decentralized planner
(DGSA) has been designed using sampling-based Monte
Carlo Tree Search (MCTS) [29]. The trajectories of the
robots are assigned by solving a submodular maximization
problem over matroid constraints with greedy assignment
heuristics, for which polynomial-time algorithms and sub-
optimality bounds can be established [30]. However, these
mutual-information methods rely on occupancy mapping,
and they do not exploit any surface representation. Therefore,
it might be problematic, in practice, to assess the quality of
3D reconstruction.

In this paper, we explicitly address the surface inspec-
tion problem by considering a NBV frontier-based planning
strategy for multiple UAVs in large-scale environments.
Viewpoint configurations are clustered according to their
location in space to evaluate the interest of visiting specific
regions and find a suitable path. We use the property of
submodular set functions to formalize the assignment prob-
lem [30], [31], and to allocate sensor configurations using
a TSP-based greedy local search. Successive approximate
resolutions allow to cover the unknown environment and
complete the reconstruction.

III. PROBLEM FORMULATION

This paper builds upon our previous work [1], and extends
it to a multi-robot setting. A fleet of N identical UAVs with
4 degrees of freedom (the 3D position [x, y, z]T ∈ R3

and the yaw angle ψ ∈ S1) is considered. Each UAV is
equipped with a forward-facing depth sensor with limited
field of view (FOV) and sensing range, extrinsically cali-
brated with respect to the body frame of the aerial robot.
The UAVs should scan an unknown 3D environment (for
instance, a building), characterized by its surface. A mapping
algorithm is required in order to build a representation of
the reconstructed surface as a collection of voxels, and to
estimate unknown, occupied and empty space (for this, a
TSDF representation [9] was considered). A voxel is said
to be scanned if it has been seen by a UAV. We assume
that the UAVs are equipped with an accurate localization
system which allows to estimate their pose with respect
to a global reference frame, and that a robust lower-level
trajectory-tracking algorithm is available (Model Predictive
Control was used in our implementation [32]).



The incompleteness of the surface model is defined as
follows:

Definition 1 (Incomplete surface element). We call In-
complete Surface Element (ISE), a voxel v lying on the
surface at a frontier, near both the unknown and empty space.
We denote by C the set of all ISEs.

For a rigorous definition of unknown, occupied and empty
space, the reader is referred to Sect. IV-B.

Definition 2 (Remaining incomplete surface). Let Q be
the set of all collision-free configurations q = [x, y, z, ψ]T

of a UAV, and let Qc ⊆ Q be the set of all configu-
rations q from which an ISE v ∈ C can be scanned.
The remaining incomplete surface is then defined as
Crem =

⋃
v∈C

{
v | Qc = ∅

}
.

The vector-valued function pij,k(s) : [0, 1]→ R3 × S1
defines the path of UAV i from configuration j to config-
uration k, where pij,k(0) = qij and pij,k(1) = qik, i ∈
{1, . . . , N}. We assume that pij,k(s) is collision-free and
feasible for UAV i (i.e. the kinematic/dynamic constraints
of the aerial robot are satisfied along the path). We are now
ready to state the problem studied in this paper.

Problem 1 (Inspection with a fleet of UAVs). Given a fleet
of N identical UAVs with initial configurations qi0 ∈ Q,
i ∈ {1, . . . , N}, find collision-free paths pi0,f (s) between
qi0 and the final configurations qif , which allow the aerial
vehicles to scan the set Cins = C \ Crem of all ISEs.

IV. PROPOSED APPROACH

In this paper, we consider a centralized architecture where
the mapping and planning information is shared among all
the UAVs, and the communication is assumed to be perfect.
The general flowchart of our algorithm is depicted in Fig. 2.
During the exploration, the poses and depth maps of each
UAV are sent to a ground station and the volumetric map is
incrementally built (Sect. IV-A). Then, the ISE extractor is
used to identify sets of ISEs. Configurations which allow
to complete them are generated and clustered, depending
on their location in the 3D space (Sect. IV-B). The planner
generates and continuously expands a directed graph which
represents the travel utility between clusters in the free space.
In order to maximize a cumulative utility function for the
robots, paths are extracted from the graph ensuring collision-
free navigation and they are broadcast to the UAVs. As the
map is updated, new ISEs are uncovered and the path to
complete them is updated (Sect. IV-C). The 3D model is
considered complete when no ISEs are left.

A. Surface-based mapping

Surface-based reconstruction is performed over time to
allow detection of incomplete areas. The depth maps sensed
by the UAVs are integrated in a TSDF volumetric map M ,
which consists of a voxel grid, where each voxel contains
a truncated signed distance value φ ∈ R and a weight
w ≥ 0. The model is progressively built by integrating the

Fig. 2. General flowchart of the reconstruction algorithm: the architecture
of the planner is shown inside the shaded box.

depth measurements via an inverse-squared distance incre-
ment 1/z2q(v) for the weight w, where zq(v) is the distance
between voxel v and the current sensor pose q. With this
choice, the sensing error is minimized [33], [34]. This model
implicitly represents a surface, which corresponds to the zero
level set of the distance field: hence, the TSDF volume is a
volumetric representation of a surface. Depending on the
values of φ and w, one can determine whether a voxel is
unknown or known, i.e. occupied or empty. A voxel v is
considered known if w(v) ≥ Wth and unknown if w(v) <
Wth, where the threshold Wth depends on the sensing range
of the depth sensor.

B. ISE extractor and viewpoint generation

Using the proposed surface model and following [13],
a voxel v ∈ M is an ISE, i.e. v ∈ C, if the following
three conditions are fulfilled:

a) w(v) ≥Wth ∧ φ(v) > 0, (empty)

b) ∃u ∈ N 6
v s.t. w(u) < Wth, (unknown)

c) ∃o ∈ N 18
v s.t. w(o) ≥Wth ∧ φ(o) ≤ 0, (occupied)

where N 6
v and N 18

v denote the 6- and 18-connected voxel
neighborhoods of v, respectively. With reference to Defini-
tions 1 and 2, we introduce the notion of scanned element:

Definition 3 (Scanned element). A voxel v ∈ M which
satisfies w(u) ≥ Wth, ∀u ∈ N 6

v , is called a scanned
element.

The determination of a direction nv to observe the ISE v,
is based on the gradient of the weight function ∇w(x, y, z),
which can be computed as,

nv =
∑

c∈N 26
v

w′(c)
c− v

‖c− v‖
,

where N 26
v is the 26-connected neighborhood of v and the

weight function w′ is

w′(c) =

{
−Wth if voxel c is occupied,
Wth otherwise.

Note that nv is not a unit vector. A new sensor configuration
is generated along the direction nv at a distance δpose from
voxel v (see Fig. 3). The sensor points towards v along
−nv and the value of δpose depends on the sensing range
of the depth camera. Two poses qj ,qk ∈ Q generated from
the ISEs vj ,vk ∈ C, respectively, may be very close, i.e.



Fig. 3. [left] Two-dimensional example of ISE v (filled green square).
Its 2D neighborhood is represented by a dashed green square. Unknown
voxels are black, occupied are gray, and empty voxels are white. The recon-
structed surface is depicted as a blue segment, and the sensor configuration
and its frustum as dark blue triangles; [right] Direction from the contour,
nv , and corresponding viewpoint configuration at distance δpose from v
(light blue triangle).

dist(qj , qk) < ε for a small ε > 0, and the viewing
directions nvj

, nvk
, almost parallel, i.e. |nvj

· nvk
| ' 1.

These configurations are then aggregated into a single view-
point by averaging their positions and orientations to reduce
the number of overall poses.

Large-scale environments may result in a prohibitive
number of possible viewpoint configurations, which are
impractical for planning purposes. To overcome this issue
and easily identify the most promising areas to scan, the
viewpoints are grouped into clusters uj , j ∈ {1, 2, . . . , Nc},
depending on their location in space. We denote by U =
{u1, u2, . . . , uNc

} the set of all clusters. A configuration
ql belongs to a generic cluster u if ∃qj ∈ u such that
d(τ jl ) < dν , where d(τ jl ) denotes the length of the path
τ jl between ql and qj on a directed graph we will define
in Sect. IV-C, and dν is an upper bound on the distance.
If no neighbors are found, dν is increased up to a maximum
value dmax

ν .
Once the clusters have been defined, their level of infor-

mativeness should be quantified. To evaluate a configuration,
we use the ray-tracing method [35] from a frontier-based
perspective, i.e. we count the number of ISEs that can be
seen. Let Cq be the set of all ISEs seen from viewpoint
q and let Cu =

⋃
q∈u Cq. The gain g(u) of cluster u is

defined as,

g(u) =
|Cu|
|C|

, (1)

where |Cu| denotes the cardinality of the set Cu.

C. Next-Best-View planning

The planner globally allocates clusters to the UAVs and
schedules their visit according to a given common TSDF
map. To formalize this idea, let us introduce the weighted
directed graph G = (U, E, {auv}(u, v)∈E), where U is the
set of nodes (in our case, the clusters), E is the set of edges,
and {auv}(u, v)∈E is the collection of weights for the edges.
Each edge euv ∈ E is directed and links cluster u to v, with
u, v ∈ U . Let us assume that the initial configuration of
UAV i belongs to one of the clusters of G, i.e. qi0 ∈ U . Let qik
be a configuration of cluster u, and qil , q

i
m two configurations

of cluster v. Then, the weight auv between cluster u and v
is the 6-tuple defined as,

auv =
{
τ lk, τ

m
l , g(v), d(τ lk), d(τml ), fuv

}
, (2)

where
• τ lk denotes the path from qik ∈ u to qil ∈ v, i.e. the path

between cluster u and cluster v. We select qil among
all the configurations of v, so that τ lk is the shortest
possible path,

• τml denotes the shortest Hamiltonian path [36] including
configurations of v, which starts at qil and ends at qim,

• g(v) is the gain of cluster v, as defined in (1),
• d(τ lk) is the cost associated with the inter-cluster

path τ lk, i.e. the length of τ lk,
• d(τml ) is the cost associated with the intra-cluster

path τml , i.e. the length of τml ,
• fuv is the utility function defined as,

fuv = g(v) exp
(
−λtc d(τ lk)− λic d(τml )

)
, (3)

where λtc and λic are positive penalty terms for the
inter-cluster and intra-cluster costs, respectively, which
can be used to promote the visit of clusters far apart or
large clusters. A similar utility function was originally
proposed in [37].

The weights on the directed graph G in (2), quantify the
potential benefit of choosing a path to pursue the 3D recon-
struction: the higher the value of the function fuv , the more
beneficial is the path. Since the formulation of the inspection
problem depends on the number of robots, we will separately
analyze the case of a single UAV and of multiple UAVs.

1) Single UAV: If we consider a single UAV as in [1],
we can formalize the inspection problem as a maximum
Asymmetric Travelling Salesman Problem (maxATSP), i.e. as
the problem of finding a maximum-utility Hamiltonian path
p on G. In what follows, we will denote by maxATSP(U ) the
set function that takes the set of clusters U and outputs its
utility value p, from which path p is computed. In practice,
the ATSP is solved by first converting it into a symmetric
TSP (i.e. a standard TSP) and then using the well-known
Lin-Kernighan heuristic [38].

2) Multiple UAVs: In the multi-robot case, the clusters
should be suitably allocated to the UAVs, and a cluster
assignment problem should be solved. Let U i be the set
of clusters assigned to robot i, such that

⋃N
i=1 U

i = U .
Then, the assignment problem can be stated as follows,

max
U1, ..., UN ⊂U

{ N∑
i=1

maxATSP(U i) | U i ∩ U ` = ∅,

i 6= `,

N⋃
i=1

U i = U
}
,

(4)

where
∑N
i=1 maxATSP(U i) is a non-decreasing submodular

set function [30], and the space of feasible paths has the
structure of a simple partition matroid. The submodular
maximisation problem (4) can be approximately solved using
local greedy heuristics [31], such as the TSP-Greedy Alloca-
tion (TSGA) procedure reported in Algorithm 1. Note that



Algorithm 1: TSP-greedy allocation (TSGA)
Set U i = ∅ and pi = 0, ∀ i ∈ {1, . . . , N};
foreach cluster v ∈ U do

i← argmax
k∈{1,...,N}

{maxATSP(Uk ∪ v)− pk};

U i ← U i ∪ v ;
pi ← maxATSP(U i);
piUi ← {pi, U i};

Broadcast the paths {p1
U1 , . . . ,p

N
UN } to the UAVs;

while provable worst-case bounds on the suboptimality can
be established [39], a detailed mathematical analysis is
beyond the scope of this paper and is not reported here.
The TSGA algorithm greedily assigns a cluster to a UAV,
when it locally maximizes the overall utility of the fleet of
N robots. Unlike classical insertion methods where a cluster
is added to a robot’s path [39], the maxATSP problem is
solved for the extended cluster set U i ∪ v, which results
in a more efficient path for UAV i. Once the clusters have
been assigned and the corresponding paths p1

U1 , . . . ,pNUN

computed, they are broadcast to each UAV. This strategy
maximizes the individual utility of the UAVs over disjoint
sets, to maximize fleet-wise utility, and it is amenable to a
distributed implementation in which only local information
is used (such as, local free space, ISEs, U i related to the
local map of UAV i).

The maximization of the utility function over the long run,
prompts the UAVs to explore the areas which appear to be
the most valuable in terms of completeness and quality. This
might induce a UAV to visit a configuration that covers an
area containing multiple ISEs and scan them all (cf. equ. (1)).
It is then pointless to visit configurations associated to ISEs
that have already been scanned. To avoid unnecessary visits,
the planner computes the remaining ISEs of paths since the
last iteration, and possibly updates the plan. In practice,
a path is updated when 50% of the ISEs whose visit is
currently scheduled, has been completed. This update rule
ensures a reactive visit of revealed ISEs as the map grows.

Note that Algorithm 1 may allocate paths of various
length: hence, the UAVs may conclude their tours at different
time instants. To reduce the idle time of the UAVs finishing
first, we asynchronously assign new paths to them in order to
visit clusters which are not currently allocated to any robot
(e.g. if UAV i has not completed its exploration round, the
set of clusters assigned to the fleet becomes U \ U i). The
reconstruction procedure stops when no more ISEs are left.

V. NUMERICAL EXPERIMENTS

The proposed surface-driven method has been validated
via realistic numerical experiments. We compared the TSGA
planner with another multi-robot planner, the Nearest Neigh-
bor (NNB) greedy algorithm, for a fleet of 3 and 5 UAVs.
In NBB, only one cluster is allocated to each robot by locally
computing max v ∈U fuv for the updated map. Replanning
is thus very fast compared to TSGA, but only one cluster
at a time is set to be visited. We also evaluated the 3D

Fig. 4. Gazebo simulation environments: [left] Scenario 1, Powerplant;
[right] Scenario 2, the Statue of Liberty.

reconstruction accuracy achieved by the fleet and by a single
UAV, using the strategy proposed in [1].

1) Experimental setup: An industrial plant benchmark,
which is widely used in the volumetric exploration literature,
has been chosen (Scenario 1) [3]. In order to study the
impact of the two penalty terms in the utility function (3),
on the reconstruction accuracy/completeness, we also con-
sidered a monumental statue (Scenario 2) [20], see Fig. 4.
The simulation parameters used in the two scenarios are
reported in Table I. We used the RotorS simulator [40] to
model quadrotor UAVs equipped with a stereo camera, in the
ROS-Gazebo1 environment. To represent depth map uncer-
tainty, we considered a Gaussian noise model. The standard
deviation associated with a pixel corresponds to the depth-
value sensing error of the corresponding point located at a
distance z, i.e. σ(z) = |ed|

fB z
2, where |ed| is the magnitude

of the disparity error, f the focal length in pixels, and B
the baseline of the stereo camera in meters. Following [33],
[41], the raw depth map was smoothed out by using a 3× 3
kernel. The TSDF volume was generated with the algorithm
proposed in [42], where the reconstruction is performed
with MarchingCubes [43], and the weight increment has
been modified to be quadratic, as reported in Sect. IV-A.
Collision-free UAV paths have been computed using the Lazy

1https://ros.org/ , http://gazebosim.org/

TABLE I
PARAMETERS USED IN THE NUMERICAL EXPERIMENTS.

Parameter Scenario 1 Scenario 2
Voxel resolution rv [m] 0.3 0.15
Threshold Wth 0.3 0.3
emax [m] 0.2598 0.1299
Camera range [m] [1.6, 8] [1, 5]
Camera FOV [deg.] (H, V) 90 × 60 90 × 60
ed [pixels] 0.1 0.1
f [pixels] 376 376
B [m] 0.11 0.11
Collision radius [m] 1 1
UAV nominal speed [m/s] 0.5 0.5
δpose [m] 4.7 3.6
dν [m] 2.0 2.5
dmax
ν [m] 5 5

Penalty term λtc 0.3 0.17
Penalty term λic 0.03 0.15



Fig. 5. [top] Scenario 1 and [bottom] Scenario 2: Reconstructed mesh and 3D exploration paths p1
0,f , p2

0,f , p3
0,f (green, red, blue) of 3 UAVs (the initial

locations are marked with magenta dots); [left] NNB planner; [middle] TSGA planner; [right] Signed distance error: the color coding shows the error in
meters with respect to the ground truth, computed with CloudCompare’s M3C2 algorithm.

PRM* planner from the Open Motion Planning Library [44]:
in this way, we can find the shortest path between two
configurations by taking the structure of the TSDF map and
the current location of other UAVs into account (the collision
radius was set to 1 m). Lazy PRM* allows multi-query
path planning to all destination points, which is useful for
reachable-path checking and distance evaluation, because of
the reduced computational complexity compared to RRT (the
average runtime is below 1 s). The UAVs track the generated
paths using Model Predictive Control [32]: the reference
translational velocity was fixed at 0.5 m/s. In Scenario 1,
the popular Powerplant model2 was scaled to fit in a box of
size 65×42×15m3 (as a consequence, the five flues have the
same height, see Fig. 4). Because of its narrow passages, high
walls and roof, large flues and thin gantries, Powerplant is
challenging for both navigation and reconstruction (occlusion
problem). In Scenario 2, we considered a model of the
Statue of Liberty3 (20×20×60m3), which contains multiple
sharp edges and fine details. In both scenarios, the UAVs
are initially located in the same area, around a ground
station (magenta dots in Fig. 5) The results of our numerical
experiments are reported in Table II. The single-UAV planner
with perfect and noisy depth measurements (denoted by [1]
and [1]∗, respectively), is compared here with the TSGA
and NNB planners for 3 and 5 UAVs. To obtain statistically-
significant values, 10 trials per scenario were carried out.
We ran all tests on a Dell Precision 7520 laptop with
2.90 GHz Intel Core i7 processor, 16 GB RAM and Quadro
M2200 graphics card.

2http://models.gazebosim.org/
3https://free3D.com/

2) Metrics: The single-UAV planner proposed in [1] is
used as a baseline to evaluate our new multi-robot strategy,
in terms of cumulated path length and completion time (to
cover the entire 3D environments). This includes travel time
and sensing time (e.g. one depth map integration and map
update). The reconstructed 3D surface has been evaluated
with CloudCompare4 using the M3C2 (Multiscale Model
to Model Cloud Comparison) algorithm [45]. To quantify
how well the surface has been recovered, dense point clouds
were sampled on the reconstructed and ground truth (GT)
meshes, and their deviation was measured by performing a
cloud-to-cloud comparison (see Fig. 5 [right]). For a fair
evaluation, all the invisible surfaces of the GT mesh were
pruned beforehand (e.g. the interior floor and walls), and
the analysis was restricted to the exterior surface mesh only.
A point belonging to the GT point cloud was considered
to be covered by a corresponding one in the reconstructed
cloud, if their absolute distance was less than the length of
the half diagonal of a voxel, i.e. emax = rv

√
3/2, where rv

is voxel’s resolution. The quality of the recovered surface is
evaluated in Table II, by reporting the average and standard
deviation of the signed distance error with respect to the GT
point cloud, and the root-mean-square error (RMSE).

3) Penalty terms: The choice of the penalty terms λtc and
λic appearing in the utility function (3), depends on the nature
of the 3D environment explored by the UAVs. Scenario 1
and 2 are, in this respect, two representative examples. In a
wide, box-like environment as Scenario 1, the ISEs tend to
appear in the proximity of occluded regions and sharp edges,

4https://danielgm.net/cc/



TABLE II
RESULTS OF THE NUMERICAL EXPERIMENTS (STATISTICS OVER 10 TRIALS).

Scenario 1 Scenario 2
Number of UAVs 1 3 5 1 3 5
Algorithm [1] [1]∗ NNB TSGA NNB TSGA [1] [1]∗ NNB TSGA NNB TSGA
Path length [m] 780 785 1038 790 1113 879 547 550 733 721 580 574.2
Completion time [min.] 32 33′10′′ 11′09′′ 10′20′′ 6′51′′ 6′22′′ 36′ 37′ 13′10′′ 10′18′′ 7′30′′ 6′45′′

Time gain [%] w.r.t. [1]∗ − − 66.4 68.8 79.4 80.8 − − 64.4 72.2 79.7 81.8
Surface coverage [%] 91.5 90.4 90 91 90.5 90.6 92.3 91.2 91.1 91 90.9 91.1
M3C2 avg. error [cm] 0.14 −0.13 −0.15 −0.26 −0.11 −0.3 0.29 −0.02 −0.8 −0.03 0.06 −0.01
M3C2 std. error [cm] 5.85 7.51 7.52 7.54 7.5 7.52 3.41 3.67 3.61 3.69 3.65 3.66
RMSE [cm] 5.86 7.51 7.52 7.55 7.5 7.52 3.43 3.67 3.69 3.69 3.65 3.66

and large stretches of known surface may separate these
sites. To minimize the total distance traveled, inter-cluster
utility should then take priority over intra-cluster utility, i.e.
λtc � λic. On the other hand, the pedestal of the statue
excluded, Scenario 2 mainly consists of round surfaces and
the average distance between two clusters is much smaller
than in Scenario 1. Similar penalty terms should be then
selected this time (i.e. λtc ' λic, see Table I).

4) Single UAV: The method in [1] and the algorithms
described in [3], [20], exhibit similar completion times for
Scenario 1. The deviation is more pronounced with the
Statue of Liberty: in fact, the algorithm in [20] takes twice as
long to finish the exploration. However, the trajectory of the
quadrotor UAV is longer (twice as much, in Scenario 1), and
more jagged with the planner in [1]. This is not surprising,
since the viewpoint configurations have been generated for
accurate 3D reconstruction and not for navigation purposes
as in [3]. Noisy depth measurements have a negligible effect
on the trajectory of the UAV and on the completion time,
but a degradation of the reconstruction and coverage quality
can be observed.

5) Multi-UAV vs. single-UAV: The use of multiple UAVs
has a beneficial effect on the completion time. In particular,
the TSGA planner significantly reduces it, as shown in
Table II. In Scenario 1, the fleet of three (five) UAVs
performs the 3D reconstruction 68.8% (80.8%) faster than
a single UAV. With Scenario 2 we had a similar outcome,
the gain on the completion time being of 72.2% (81.8%).
On the other hand, the cumulated path length of the fleet is
bigger than that of a single UAV in both scenarios, and the
number of quadrotors has little impact on the reconstruction
quality and completeness.

6) TSGA vs. NNB planner: Overall, the TSGA planner
is more effective than the NNB planner for multi-robot
navigation (see the comparative results reported in Table III).
TSGA outperforms NNB in terms of cumulated path length

TABLE III
COMPARISON BETWEEN THE TSGA AND NBB PLANNER.

Scenario 1 Scenario 2
Number of UAVs 3 5 3 5
Path length gain [%] 23.9 21 1.64 1
Completion-time gain [%] 7.32 7.06 21.8 10

in wide and large environments (Scenario 1), but the results
are comparable in medium-size structures (Scenario 2).
Indeed, the surface properties play an important role on
the reconstruction, and a planner favoring fast local updates
tends to be more successful in small environments containing
close occluded areas, sharp edges and fine details, where
many ISEs can be revealed after a scan. On the other
hand, over a long horizon, a planner is more effective
at finding the shortest path in a large planar environment
where each viewpoint covers less ISEs. By comparing the
completion times for Scenario 2, we can notice that TSGA
is much faster than NNB, but that the UAVs need to travel
long distances before completing the same number of ISEs.
Nevertheless, NNB performs many more scans which are
close to each other, and long paths are computed to complete
the reconstruction (see Fig. 5 [bottom left]).

Our method guarantees that all the regions that are acces-
sible to the UAVs are covered. Moreover, in keeping with
the recent qualitative analysis for single-robot exploration
in [14], it turns out to be competitive with the state-of-the-art
approaches in terms of overall 3D reconstruction quality. In
fact, the quality of 3D reconstruction is resolution-dependent:
in fact, it is inversely proportional to the size of the TSDF
voxels. A small resolution amounts to a large number of
voxels to be integrated in the TSDF map, which is a resource-
intensive process. Therefore, if multiple UAVs explore a
large environment using on-board sensing and processing, a
trade-off between reconstruction accuracy and computational
efficiency should be found.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new Next-Best-View
planning algorithm for online surface reconstruction of large-
scale environments with a fleet of aerial robots. In particular,
a novel cluster-based 3D reconstruction gain and cost-utility
formulation, and a local TSP-greedy allocation planner have
been proposed. Realistic numerical experiments in ROS-
Gazebo, have successfully validated the proposed strategy
in two challenging outdoor environments. A significant re-
duction of completion time has been observed with respect
to the single-UAV case and a baseline multi-robot path
planner (NNB).

There are several promising directions for further research
we would like to explore in the future. First of all, we plan to
test our method in the presence of localization uncertainty,



network communication delays and data dropout, and to
modify our centralized architecture (and notably our mapping
module) to make it amenable to a decentralized implemen-
tation. We would also like to study the case of multiple het-
erogeneous robots (e.g. ground and aerial vehicles). Finally,
work is in progress to validate our approach on hardware
platforms in real-world environments.
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