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Abstract— This paper addresses the problem of searching and
tracking of an a priori unknown number of indistinguishable
targets spread over some geographical area using a fleet of
UAVs. State perturbations and measurement noises are assumed
to belong to bounded sets. In the monitored geographical
area, some false targets (decoys) are present and may be
erroneously considered as targets when observed under specific
conditions. Moreover, obstacles in the search area constrain the
displacements of the targets, alter the UAVs’ trajectories, reduce
their fields of view, and limit their communications. While the
UAVs can detect targets or decoys when observation conditions
are satisfied, they cannot identify them individually.

The search process relies on a robust bounded-error esti-
mation approach which aim is to evaluate a set guaranteed to
contain the actual states of already localized true targets and a
set containing the states of targets still to be discovered. These
two sets are used by each UAV to determine their control inputs
in a distributed way to minimize future estimation uncertainty.

Simulations involving several UAVs illustrate that the pro-
posed robust set-membership estimator and distributed control
laws make it possible to efficiently search and track targets in
the presence of decoys in a cluttered area.

I. INTRODUCTION

Searching and tracking mobile targets evolving in some
geographical area is a demanding task that can be efficiently
addressed by a fleet of UAVs. The search procedure often
relies on the definition of a probability map of the presence
of targets. This map is updated using observations collected
by the UAVs. Their search trajectories are then evaluated to
optimize the target state estimation accuracy. These trajecto-
ries can be obtained using explicit planning methods, which
determine predicted environmental states, estimated target
movements, and potential sensor observations (see, e.g., [16]
for a review of path-constrained approaches). Determination
of such UAVs trajectories has also been addressed through
optimal control [5], [6] or derived from optimal strategies in
a cooperative game approach [12].

For all the aforementioned methods, the performance of
the resulting trajectories is tightly linked to the availability,
quality, and reliability of the information collected by UAVs.
In most cases, the quality of the measurements is assessed
via probabilistic modeling. The measurement noise is usually
represented using zero-mean Gaussian additive noise with
a potentially varying variance, e.g., in [9]. Probabilities of
false alarm and non-detection are used to represent corrupted
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measurements. The former intends to represent the misinter-
pretation of objects as targets and the latter the absence of
detection of targets located in the field of view [1], [8], [12].
As pointed out in [7], the a priori assumptions on the prob-
ability density functions (pdfs) describing the uncertainty
and measurement noises may have a strong impact on the
results of the search and track process. A potential alternative
requiring less detailed assumptions consists of using a set-
membership description of uncertainties, i.e., assuming that
the target states remain within known bounded sets [4], [7].
Such an approach has been applied to cooperative guidance
of a fleet of UAVs for target searching in [17], [18].

In this paper, we assume that each UAV is equipped
with a sensor able to detect and localize targets in some
compact subset of the search area. Contrary to [17] and
[18], one considers here the presence of several false targets
which could be erroneously interpreted as true targets under
specific observation conditions. We also assume that the
UAVs cannot identify the observed targets, i.e., they are
not able to associate a specific measurement with a specific
target. A robust distributed set-membership estimator is then
proposed to determine subsets where the target states may be
located and subsets which are guaranteed to contain no target
state. The area of interest where the UAVs are performing the
search may also contain obstacles. We propose a distributed
control input design algorithm for the UAVs derived from the
minimization of a criterion reflecting the expected estimation
uncertainty and the potential risk of collision with obstacles.

The paper is organized as follows. Section II describes the
multi-target multi-UAV localization problem, including the
models of false targets and obstacles. Section III presents a
distributed estimator that recursively provides sets containing
the true targets. Section IV presents a control input design
scheme to drive each UAV to minimize some measure
of the expected estimation uncertainty. In Section V, the
set-membership estimator and the control input design are
evaluated on simulations. Section VI concludes this paper.

II. PROBLEM FORMULATION

Consider a fleet of Nu UAVs which aim is to search and
track Nt potentially moving targets within some bounded
geographical area, where Nt is constant but not known a
priori. This area may contain Nf potentially moving false
target, where Nf is not necessarily constant (false targets may
appear in the monitored area). A false target is erroneously
interpreted as a true target when observed under specific
conditions. The search area is cluttered with No a priori
known static obstacles.
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A. UAV and target state models

Time is sampled with a constant period T . At time k (time
instant t = kT ), xu

i,k ∈ Rnu is the state vector of UAV i,
xt
j,k ∈ Rnt the state vector of target j, and xf

`,k ∈ Rnt the
state vector of false target `. The first three components of
xt
j,k and xf

`,k are the spatial coordinates in a specific frame.
The dynamical models of the states of UAVs and of true

and false targets are

xu
i,k+1 = f u

k

(
xu
i,k,ui,k

)
, (1)

xt
j,k+1 = f t

k

(
xt
j,k,v

t
j,k

)
, (2)

and
xf
`,k+1 = f f

k

(
xf
`,k,v

f
`,k

)
, (3)

where ui,k is the control input for UAV i, belonging to a set
U of admissible control inputs; vt

j,k is an unknown target
state perturbation belonging to the known box [vt], and vf

`,k

is an unknown false target state input. One assumes that
xt
j,k ∈ X0 for all k ≥ 0, X0 ⊂ Rnt being some a priori

known compact set. Moreover, one assumes that f u
k and f t

k

are known, while f f
k is unknown.

B. Description of obstacles

Each obstacle Om, with m ∈ {1, . . . , No}, is assumed to
be a polyhedron Pm of R3. It is modeled as Om = Pm ×
Rnt−3 to be consistent with the target state space. The UAVs
know the locations of all the obstacles. Targets cannot enter
the obstacles. Thus, the search space where the targets are
evolving is : Xs = X0 \

⋃
m∈{1,...,No}Om.

C. Measurements

At each time step, each UAV observes with its sensor a
subset of X0, named the Field-Of-View (FoV). The observed
region, for a given value xu

i,k, is defined as the intersection
between the FoV and the visibility region of the UAV. This
latter is defined as the set of points from which a line
segment connecting the UAV’s location to this point does not
intersect any obstacle. This region is computed for polyhedral
obstacles using the algorithm proposed in [2] and [17]. The
observed region is denoted by Fi(x

u
i,k) ⊂ Rnt .

We assume here that a true target is always detected
when xt

j,k ∈ Fi(x
u
i,k) and consequently a measurement

of xt
j,k is collected by the UAV. For a false target, if

xf
j,k ∈ Fi(x

u
i,k), a measurement is obtained only when some

additional observation condition is satisfied, i.e.,

xf
`,k ∈ Fi

(
xu
i,k

)
and gi,`

(
xu
i,k,x

f
`,k

)
> 0 (4)

The UAVs have no prior information on the structure of gi,`.
The constraint gi,`(xu

i,k,x
f
`,k) > 0 indicates, for example,

that the `-th false target is confused with a true target only
if it is observed from specific points of view belonging to
some polyhedral cone whose apex coordinates are the first
three components of xf

`,k.
Fig. 1 illustrates the 2D projection of the search space, of

the state of true targets xt
i,k (filled circles) and of false targets

xf
`,k (empty circles), as well as the projections of the cones

within which false targets are considered as true targets.





xf`,k

xtj,k

xtj,k

xf`,k

Pm

Pm

Pm

xui,k

Fig. 1. 2D Projections (x1, x2) of the search area, true targets xt
j,k (filled

circles), false targets xf
`,k (empty circles), of their trajectories (dotted line),

the UAV state xu
i,k , UAV’s FoV (dash-dotted line), and of the obstacles

Om; The gray areas indicate the locations when gi,`(xu
i,k,x

f
`,k) > 0.

For each (true or false) target j observed by UAV i at time
k, a noisy measurement yi,j,k ∈ Rny is obtained as

yi,j,k = hi

(
xu
i,k,x

t,f
j,k

)
+ wi,j,k, (5)

where hi is the observation equation of UAV i and wi,j,k is
some measurement noise, bounded in a known box [wk].

Contrary to [10], (5) only provides some information about
the location of a true or false target, without any indication
on the target identity. When several target states belong to
Fi

(
xu
i,k

)
, as many distinct measurements are obtained. The

set of measurements collected by UAV i at time k is thus

Yi,k =
{
yi,j,k |xt

j,k ∈ Fi

(
xu
i,k

)
, j = 1, . . . , Nt

}
∪
{
yi,`,k |xf

`,k ∈ Fi

(
xu
i,k

)
∧gi,`

(
xu
i,k,x

f
`,k

)
> 0, ` = 1, . . . , Nf

}
. (6)

The set containing all noise-free measurements related to
true and false targets in the FoV is derived from Yi,k by
accounting for the bounded measurement noise [wk], as

Yi,k = {y − [wk] |y ∈ Yi,k} . (7)

D. Communications

When UAVs i and j are in communication range, and
their relative line of sight doesn’t intersect any obstacle,
both UAVs are able to exchange information. The ability to
exchange information between UAVs at time k is described
by an undirected graph Gk = (Nu, Ek). Nu = {1, 2, ..., Nu}
is the set of nodes (UAVs) and Ek ⊂ Nu × Nu the set of
edges of the network at time k, where (i, j) ∈ Ek indicates
that UAVs i and j are able to communicate (without delay
and without error) at time k. The set of neighbors of UAV i
at time k is Ni,k = {j ∈ Nu| (i, j) ∈ Ek, i 6= j}.

III. SET ESTIMATES FOR A GIVEN UAV
In the proposed approach, at time k, each UAV i maintains

a set-membership state estimate Xi,k ⊂ X0, that has to
contain all possible values of xt

j,k, consistent with the
information available to UAV i up to time k. Due to the
presence of false targets, the set Xi,k may also contain
xf
`,k for some ` = 1, . . . , Nf. UAV i also maintains a set

Xi,k ⊂ X0 containing the possible state values of true targets
not yet detected.

In what follows, we consider the evolution with time of the
sets Xi,k and Xi,k evaluated by a given UAV i. At each time
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step, as in the distributed Kalman filter [15], a prediction step
is first performed, then measurements acquired by UAV i
are taken into account in a correction step, and finally,
information coming from neighboring UAVs are processed
in an information fusion step. Contrary to the Kalman filter
set estimates are performed, initialized as Xi,0 = ∅ and
Xi,0 = Xs for i = 1, . . . , Nu.

A. Prediction step

Assume that at time k, UAV i has evaluated Xi,k and Xi,k.
At time k + 1, UAV i is able to evaluate the set of possible
target state values that are consistent with Xi,k, the true target
dynamics (2), and the bounded state perturbation

Xi,k+1|k = f t
k (Xi,k, [vk]) ∩ Xs. (8)

Similarly, the predicted set Xi,k+1|k has to contain all pos-
sible state values of potentially undetected targets. Since all
targets have been assumed to evolve according to the same
dynamics (2), it is evaluated as

Xi,k+1|k = f t
k

(
Xi,k, [vk]

)
∩ Xs. (9)

The presence of obstacles is taken into account in the
prediction step as the UAVs are assumed to know their
locations a priori. On the contrary, the false target dynamics
are not taken into account. If a false target does not satisfy
(8), then it might not belong to the predicted state set
Xi,k+1|k. This will result in an improved differentiation
between false and true targets. Furthermore, if a false target
satisfies (8), then it will remain within the predicted set and
only further measurements will allow to discriminate it.

B. Correction step from measurements

Assume that at time k+1, UAV i collects the observations
Fi(x

u
i,k+1) and obtains the set Yi,k+1 introduced in (7).

To evaluate Xi,k+1|k+1, UAV i has to account for the set
Yi,k+1 containing all noise-free measurements as well as
Xi,k+1|k and Xi,k+1|k. Xi,k+1|k+1 is obtained as the union
of three subsets. First, one has to consider the states of
already detected targets (their states are in Xi,k+1|k), which
have been observed at time k + 1 (their states satisfy
hk+1(xu

i,k+1,x) ∈ Yi,k+1). The states of such targets belong
thus to

S1 =
{
x ∈ Xi,k+1|k |hk+1

(
xu
i,k+1,x

)
∈ Yi,k+1

}
. (10)

Second, one has to consider the states of not yet detected tar-
gets (their states are in Xi,k+1|k), which have been observed
at time k+1 (their states satisfy hk+1(xu

i,k+1,x) ∈ Yi,k+1).
The states of such targets belong to

S2 =
{
x ∈ Xi,k+1|k |hk+1

(
xu
i,k+1,x

)
∈ Yi,k+1

}
. (11)

Third, for some parts of Xi,k+1|k, no information is available
at time k + 1 (the part outside Fi(x

u
i,k+1)). Thus, the set

S3 = Xi,k+1|k \ Fi

(
xu
i,k+1

)
, (12)

where B \ A = {x ∈ B |x 6∈ A} has also to belong to
Xi,k+1|k+1. To summarize, one has

Xi,k+1|k+1 = S1 ∪ S2 ∪ S3. (13)

xt
i,j,k+1

xt
i,j,k+1

Xi,k+1|k Xi,k+1|k Xi,k+1|kXi,k+1|k
|

Xi,k+1|k
|

Xi,k+1|k
|

Xi,k+1|k+1

xf
i,`,k+1

Xi,k+1|k+1 Xi,k+1|k+1Xi,k+1|k+1
|

Xi,k+1|k+1
| Xi,k+1|k+1

|

Fi(x
u
i,k+1)

Fi(x
u
i,k+1) Fi(x

u
i,k+1) Fi(x

u
i,k+1)

Fi(x
u
i,k+1)Fi(x

u
i,k+1)

(a) (b) (c)

xt
i,j*,k+1

xf
i,`,k+1

Pm

Pm

Y
i,k Y

i,k

Fig. 2. Description of Xi,k+1|k and Xi,k+1|k (top) and of Xi,k+1|k+1 and
Xi,k+1|k+1 (bottom); (a) the measurement corresponds to two previously
detected target (j and j∗); (b) the measurement corresponds to new false
and true targets ((4) is satisfied); (c) a previously detected false target is
observed in Fi(x

u
i,k+1) but (4) is not satisfied.

Once all measurements obtained within the FoV
Fi(x

u
i,k+1) have been processed, the set containing all pos-

sible state values of true targets not yet detected can be
updated as

Xi,k+1|k+1 = Xi,k+1|k \ Fi

(
xu
i,k+1

)
. (14)

Then UAV i is able to evaluate the set

X̃i,k+1|k+1 = Xs \
(
Xi,k+1|k+1 ∪ Xi,k+1|k+1

)
,

guaranteed not to contain the states of any true target. Fig. 2
illustrates the correction step from measurements.

C. Fusion step after communications

UAV i exchanges the sets Xi,k+1|k+1 and Xi,k+1|k+1

with all its neighbors Ni,k+1 in communication vicinity, as
defined in subsection II-D, at the end of each time step k+1.

UAV i evaluates the information from its neighbors as the
union of the sets X`,k+1|k+1 containing all the possible state
values, deprived from the union of all sets X̃`,k+1|k+1 which
have been proved not to contain a target at time k + 1

Xi,k+1 =
⋃

`∈N i,k+1

X`,k+1|k+1\
⋃

`∈N i,k+1

X̃`,k+1|k+1, (15)

where N i,k+1 = Ni,k+1 ∪{i}. The subset of the state space
still to be explored is the intersection of the unexplored parts
of the state space by UAV i and those of its neighbors

Xi,k+1 =
⋂

`∈N i,k+1

X`,k+1|k+1. (16)

Fig. 3 illustrates the fusion step after communications
resulting from (15) and (16). The figure highlights the fact
that information on target locations is not differentiated for
each target, since they are collected in a single set Xi,k+1.
As the information is defined as a whole, it makes it more
difficult to differentiate between false and true targets (*).
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X1,k+1|k+1

|
X2,k+1|k+1

|

X1,k+1|k+1

s X2,k+1|k+1

s

UAV 1 UAV 2

UAV 1

*

X1,k+1|k+1

X1,k+1
|

X1,k+1

X1,k+1

s

X2,k+1|k+1

Fig. 3. Evaluation of the state estimates by UAV 1 after receiving
Information from UAV 2: X1,k+1|k+1 and X1,k+1 are in light green
whereas X2,k+1|k+1 in dark green.

IV. COOPERATIVE CONTROL DESIGN

At time k, after processing the information from measure-
ments or communication, each UAV i has access to Xi,k, and
Xi,k and is able to evaluate the state estimation uncertainty

Φi

(
Xi,k,Xi,k

)
= φ (Xi,k) + φ

(
Xi,k

)
(17)

where φ (X) is the measure of a set X, φ (Xi,k) is the state
estimation uncertainty of detected targets, and φ

(
Xi,k

)
of not

yet detected targets. Ideally, the UAVs should then determine,
in a distributed way, the sequence of control inputs that will
reduce (17) as fast as possible.

In this paper, one considers some time horizon h > 0 and
determines, at each time instant k, the sequence of control
inputs which minimize the average value of (17) at time k+h

Φk+h =
1

Nu

Nu∑
i=1

Φi

(
Xi,k+h,Xi,k+h

)
. (18)

One relies on the distributed Model Predictive Control
(MPC) formalism introduced, e.g., in [3], [14] and considers
several additional simplifications to enable a distributed
evaluation of the control inputs.

A. Evaluation of the control input

A suboptimal sequential approach is proposed to evaluate,
for each UAV, a sequence of control inputs minimizing (18).
Consider UAV i and assume that a subset N P

i,k ⊂ Ni,k of its
neighbors have already evaluated and transmitted their own
control inputs {û`,k+1, . . . , û`,k+h}`∈N P

i,k
as well as their

state xu
i,k at time k to UAV i.

At time k, UAV i has to determine the sequence of con-
trol inputs ui,k+1:h = {ui,k+1, . . . ,ui,k+h} that minimizes
Φ
(
Xi,k+h,Xi,k+h

)
. This has to be performed accounting

for the control inputs Ui,k = {û`,k+1, . . . , û`,k+h}`∈N P
i,k

evaluated by a subset of its neighbors.
In practice, due to the short time horizon h, minimizing

only Φ
(
Xi,k+h,Xi,k+h

)
may lead to deadlocks. Conse-

quently, UAV i considers the regularized cost function

J(ui,k+1:h,Ui,k) =Jm(ui,k+1:h,Ui,k) + αdJd(ui,k+1:h)

+ αsJ s(ui,k+1:h). (19)

to be minimized with respect to ui,k+1:h. In (19),
Jm(ui,k+1:h,Ui,k) represents the state estimation uncertainty
(17) at time k + h, Jd(ui,k+1:h) represents the distance be-
tween UAV i and remote components of the set-membership
state estimates, and J s(ui,k+1:h) evaluates a risk of collision
between UAV i and the obstacles. The constants αd and αs

adjust the relative importance of the terms in (19), which are
detailed in the following sections.

UAV i determines the sequence of control input ûi,k+1:h

that minimizes (19) by gradient search starting from the
sequence of control inputs ûi,k+0:h−1 evaluated by UAV i
at time k − 1.

1) State estimation uncertainty: The first term in (19) is
the predicted state estimation uncertainty evaluated at time
k + h

Jm(ui,k+1:h,Ui,k) =φ(XP
i,k+h(ui,k+1:h,Ui,k))

+ αmφ(XP
i,k+h(ui,k+1:h,Ui,k)), (20)

where XP
i,k+h(ui,k+1:h,Ui,k) and XP

i,k+h(ui,k+1:h,Ui,k) are
predicted values of Xi,k+h and Xi,k+h evaluated from Xi,k

and Xi,k using ui,k+1:h and Ui,k. The parameter αm adjusts
the relative importance of each term of (20).

To evaluate XP
i,k+h(ui,k+1:h,Ui,k) and XP

i,k+h(ui,k+1:h,
Ui,k), several hypotheses are considered. One assumes that
the set of neighbors N P

i,k of UAV i does not change between
time k and k + h, and that estimates for all the UAVs
in N u are equal at time k, i.e, X`,k = Xi,k and X`,k =
Xi,k, ` ∈ N P

i,k. Moreover, since UAV i has only access to
the control inputs evaluated by its neighbors in N P

i,k, only
the information that will be provided by these agents via
communication at the time steps k + κ, κ = 1, . . . , h, will
be considered in the construction of XP

i,k+h(ui,k+1:h,Ui,k)

and XP
i,k+h(ui,k+1:h,Ui,k). UAV i will further neglect all

information that its neighbors may receive from their own
neighbors, which do not belong to N P

i,k. Using these as-
sumptions, the approach described in [10] is employed to
evaluate XP

i,k+h(ui,k+1:h,Ui,k) and XP
i,k+h(ui,k+1:h,Ui,k).

In this approach, the prediction steps employ (8) and (9).
In the correction steps, (14) is employed as is, however, all
potentially newly discovered targets are ignored in (13), by
considering only S3. Finally, in the information fusion steps,
(15) and (16) are also employed as is.

2) Distance to the sets: Assume that Xi,k consists of Ni,k

disjoint components

Xi,k =

Ni,k⋃
`=1

Xi,`,k

and let j denote the component minimizing the weighted
Hausdorff distance to xu

i,k, i.e.,

j = arg min
`
φ (Xi,`,k) d(xu

i,k,Xi,`,k),
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where d(xu
i,k,Xi,`,k) is the Hausdorff distance between xu

i,k

and Xi,`,k. When (20) remains constant for all ui,k+1:h, it
may be useful to drive UAV i towards the closest set estimate
with a large volume. This is obtained considering the term

Jd(ui,k+1:h) = φ (Xi,j,k) d(Xi,j,k,x
u,P
i,k+h(ui,k+1:h))

+ φ
(
Xi,k

)
d(Xi,k,x

u,P
i,k+h(ui,k+1:h)), (21)

where xu,P
i,k+h(ui,k+1:h) is the predicted value of xu

i,k+h

when the sequence of control inputs of UAV i is ui,k+1:h.
One only minimizes the distance corresponding to the posi-
tion of the UAV obtained at time k + h. Jd(ui,k+1:h) does
not account for the control input of other UAVs.

3) Distance to obstacles: This criterion is designed to
represent the risk of collision between UAVs and obstacles.
It considers that a collision may occur when the distance
between a UAV and the boundary of a polytope is less
than some threshold dcol. The criterion expression has been
designed in order to satisfy the following properties. Its
amplitude of variations should be very small when the UAV
is located far from the obstacle, and increase very fast in
the vicinity of an obstacle. The function should be smooth
to be consistent with gradient search. A suitable candidate
for satisfying these properties, as presented in [19], is the
following risk expression:

J s(ui,k+1:h) =

1

2

[
1− tanh

(
d(Om,x

u,P
i,k+h(ui,k+1:h))− αs1

αs2

)]
, (22)

where αs1 and αs2 are used to tune the shape of the function
which varies between 0 (no risk of collision) and 1 (collision
will occur). αs2 defines the width of the region where the
criterion variations are fast and αs1 defines the center of this
region and is related to dcol by αs1 − αs2 >= dcol.

B. Practical issues

In practice, the order in which the UAVs compute their
control input at each time step k may be optimized. Possible
suboptimal approaches consist of starting with the most
connected UAV and continue with its neighbors or start
with the UAV of the smallest index and continue with the
connected UAVs. This strategy is similar to that considered in
the binary log-linear learning algorithm [13]. If the graph Gk
consists of several disconnected components, the evaluation
of the control input has to be started selecting one UAV per
connected component.

The first UAV evaluates its control input independently of
the other UAVs. Assume without loss of generality that its
index is i = 1. UAV 1 determines the vector

û1,k+1:h = arg min
u1,k+1:h

J (u1,k+1:h) ,

where the minimization of J (u1,k+1:h) defined in (19) is
over all u1,k+1:h ∈ Uh, without accounting for the presence
of its neighbors. Then UAV `, connected to UAV 1, will
determine u`,k+1:h ∈ Uh minimizing J (u`,k+1:h, û1,k+1:h),

accounting for the information provided by UAV 1 controlled
using û1,k+1:h.

To further simplify the search, one may assume in the
MPC approach that, at time k, only the control input at time
k + 1 is evaluated and that the control inputs at the next
time instants remain constant. This simplification has been
considered in the following simulations.

The complexity of the proposed approach is independent
of the number of targets since a single set is used by each
UAV to represent the possible states of all targets. Moreover
the complexity is linear with the number of UAVs thanks to
the sequential evaluation of the control input.

V. SIMULATIONS

We consider the search of Nt = 2 true ground targets
assumed to move in a plane. The sampling period is T = 1 s.
The coordinates at time k of target j in some reference frame
attached to the plane are (xt

j,k+1,1, x
t
j,k+1,2)ᵀ. The targets

move with a constant speed xt
j,k,3 = 5 km/h. The heading

angle xt
j,k,4 is controlled with an input vj,k uniformly

distributed in the interval [−π/5, π/5] and changing at each
time instant. The target state vector xt

j,k evolves according
to

xt
j,k+1,1

xt
j,k+1,2

xt
j,k+1,3

xt
j,k+1,4

 =


xt
j,k,1 + Txt

j,k,4 cos
(
xt
j,k,4 + vj,k

)
xt
j,k,2 + Txt

j,k,4 sin
(
xt
j,k,4 + vj,k

)
xt
j,k,3

xt
j,k,4 + vj,k

 .

The search is performed by Nu = 4 UAVs which spa-
tial coordinates at time k are (xu

i,k,1, x
u
i,k,2, x

u
i,k,3)ᵀ, i =

1, . . . , Nu. The initial altitude xu
i,0,3 is 100 m and remains

constant. The norm of the speed xu
i,k,4 is constant and equal

to 60 km/h, as well as the slope angle xu
i,k,5 = 0. The control

input ui,k impacts the heading angle xu
i,k,6. The UAV state

vector xu
i,k evolves according to



xu
i,k+1,1

xu
i,k+1,2

xu
i,k+1,3

xu
i,k+1,4

xu
i,k+1,5

xu
i,k+1,6

 =



xu
i,k,1 + Txu

i,k,4 cos (xi,k,5) cos
(
xu
i,k,6 + ui,k

)
xu
i,k,2 + Txu

i,k,4 cos (xi,k,5) sin
(
xu
i,k,6 + ui,k

)
xu
i,k,3 + Txu

i,k,4 sin (xi,k,5)

xu
i,k,4

xu
i,k,5

xu
i,k,6 + ui,k


.

The parameters of the cost function (19) of the UAVs are
set to αm = 1.3, αd = 4.5, αs = 3500, dcol = 5, αs1 = 10,
αs2 = 3. The communication range is unlimited but the
communication is impossible when an obstacle intersects the
line of sight of two UAVs. No delay is considered and the
communication period is equal to the sampling period. The
prediction horizon for the MPC is h = 2. The UAVs are
equipped with identical optical sensors able to detect targets
within their FoV. The sensor opening angles are equal to π/4
in both azimuth and elevation. As the targets are assumed
to move on the z = 0 plane, when a target is detected
at time k, the measurement equation (5) provides a noisy
measurement yi,j,k of (xt

j,k,1, x
t
j,k,2)ᵀ with an additive noise

wi,j,k bounded in [−5 m, 5 m].
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Nf = 2 false targets moving in a plane are also considered
with xf

`,0 ∈ R4. The dynamics of false targets are the same
as that of true targets. A false target with state xf

` is confused
with a true target when it is observed by some UAV i with
state xu

i satisfying (4), where

gi,`
(
xu
i ,x

f
`

)
=
((
xu
i − xf

`

)
· a`
)2 − (xu

i − xf
`

)2
a2` (cosλ`)

2

represents a half circular cone of R5 with the aperture 2λ`
uniformly distributed within [π/15, π/5]. The cone vertex is
xf
` and its axis is parallel to

a` = (sin γ` · cosβ`, sin γ` · sinβ`, cos γ`, 0, 0, 0)
ᵀ
,

where the azimuth β` is bounded in [0, 2π] and the elevation
angle γ` is equal to the aperture.

The search area is a square of 500 × 500 m2, No = 5
obstacles are randomly placed within the search area. The
obstacles are modeled as rectangular cuboids with a constant
height of 100 m while their lengths and widths are chosen
at random in the interval [30 m, 70 m].

Different approximate representations of a set can be
considered, e.g., ellipsoids, polytopes, or interval vectors.
For most simple linear dynamics and states in R2, a set
may be represented as unions of 2D polygons, e.g., using
the MATLAB toolbox Polyshape. In the case of nonlinear
dynamics or higher dimensional state vectors, unions of
interval vectors (subpavings) are better suited [11]. The
direct and inverse image of a subpaving by a function my
be computed using tools from interval analysis, e.g., the
INTLAB library [20].

Here polyshapes have been used. To apply the target
dynamics (2) in (8) and (9) to a set, we evaluate the maximal
possible traveled distance of the target and inflate the set by
this distance.

The simulation has been launched on a Windows 10
machine with an Intel Xeon W-2123 processor. It uses the
MATLAB R2019a. A simulation with a length of 400 s took
2700 s in average.

Fig. 4 shows a typical evolution of the projection of the
sets X1,k and X1,k on R2 evaluated by UAV i = 1 (in red).
Initially, X1,k is large (k = 72). One observes at time k =
132 that a false target has been considered as a true target.
Measurements coming from an other UAV at time k = 137
help to eliminate this false target from further consideration.
When k is sufficiently large, X1,k becomes empty and X1,k

contains all possible state values of the targets.
Fig. 5 shows the projection of X1,k and X1,k on R2

evaluated by UAV i = 1 (in red) for two consecutive time
steps (k = 17 and k = 18). The figure highlights the situation
when disconnected communication graphs are reconnected.
UAV i = 1 receives information from remote neighbors at
time k = 18 and can update its estimate X1,k. It only receives
the information from its direct neighbors.Videos illustrating
this situation of sudden reduction of Xi,k, when UAVs previ-
ously unable to communicate, are again communicating can
be accessed at https://drive.google.com/open?
id=1HQO0nyzVd1nqMmXPA3Vmu1d5QCGUgUS-

Fig. 6 shows the mean value over 100 simula-
tions of φ (Xk) /φ (X0) = 1

Nu

∑Nu
i=1 φ (Xi,k) /φ (X0) and

φ
(
Xk

)
/φ (X0) = 1

Nu

∑Nu
i=1 φ

(
Xi,k

)
/φ (X0), which are

components of Φ
(
Xk,Xi,k

)
in (17). In this application the

measure φ (X) is defined as the surface of the projection of
X on the plane in which targets are evolving. Fig. 6 shows
that φ

(
Xk

)
converges towards 0 and is already very close

to zero at step k = 300. Due to αm = 1.3 in (20), the
UAVs try to reduce in priority φ

(
Xk

)
compared to φ (Xk).

The measure of the target state estimation uncertainty φ (Xk)
starts increasing, due to the discovery of new targets, and
to the fact that at the beginning, UAVs favor exploration
of unexplored areas to discover new targets. In a second
phase, when the search space has been largely explored,
UAVs try to reduce the sate estimation uncertainty φ (Xk).
At time k = 400, φ (Xk) /φ (X0) = 0.035 in average, which
corresponds to an area of 65× 65 m2 in average.

Fig. 7 shows the trajectory of a UAV trying to get a more
accurate estimate of the state of an already detected target.
The figure illustrates the different trajectories adopted in the
presence and absence of obstacles.

VI. CONCLUSIONS

This paper addresses the problem of multi-target search
and tracking using a fleet of drones in the presence of
distracting false targets and obstacles. A set-membership
estimation algorithm is developed to process the information
collected by the UAVs. Each UAV evaluates three different
sets: one set guaranteed to contain the state of already
detected targets, one set to which not yet detected targets
may belong to, and one set proven not to contain any target.

The originality of the proposed method is that it does
not require labeling of the targets, and thus the collected
observations do not require being linked to a specific target.
To increase the information available on the target locations,
a cost function is developed which leads the UAVs to the
not yet explored set and prevents the UAVs from colliding
with obstacles. Each UAV determines its trajectory using
the information it has collected and the one provided by its
communicating neighbors.

The distributed evaluation of control inputs relies on a
model predictive control approach. The simulations illustrate
the robustness of the proposed approach. All targets in the
search area are detected and the estimation uncertainty grad-
ually decreases. Some subsets of the target state estimates
might originate from the presence of false targets. Neverthe-
less, these subsets are reduced during the simulations thanks
to new observations from different points of view.

Further extensions of this paper include the presence of
both false targets and non-observation of true targets at the
same time. Additionally we will consider the impact on the
control input design of limited UAV resources.
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Fig. 4. Projection of X1,k (green) and X1,k (yellow) on R2 evaluated by
UAV i = 1 (red) for different time steps. Simulation with two true targets
(filled circles) and two false targets (empty circles). The FoVs are magenta.

0 100 200 300 400 500

x1 (m)

0

100

200

300

400

500

x
2
 (

m
)

0 100 200 300 400 500

x1 (m)

0

100

200

300

400

500

x
2
 (

m
)

Fig. 5. Projection of X1,k and X1,k on R2 evaluated by UAV i = 1
(red) for k = 17 (left) and k = 18 (right); At k = 17, UAV 1 is
unable to communicate with one of its distant neighbors due to an obstacle;
this communication is again possible at k = 18 and leads to a significant
reduction of the size of X1,k . The dotted lines indicate the connected UAVs.
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Fig. 7. UAV trajectory (black line) in presence of an obstacle (right) and
without obstacles (left); the target trajectory is in red and the set estimate
Xi,k in green.
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