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Abstract—This paper proposes a new Distributed Moving
Horizon Estimation (DMHE) algorithm for state estimation
of a discrete-time linear system by a sensor network. The
main contribution consists in using a pre-estimating Luenberger
observer in the formulation of the local problem to be solved
by each sensor. This results in a significant reduction of the
computation time while preserving at the same time the accuracy
of the estimates. The state estimate computed by each sensor is
capable to converge even under weak observability conditions.
Comparison with existing approaches is proposed through a
simulation example, for both centralized and distributed cases,
in terms of estimation accuracy and computation time.

Index Terms—distributed state estimation, moving horizon es-
timation, sensor networks, Luenberger observers, linear systems.

I. INTRODUCTION

In recent decades, there has been an increasing interest
in research on distributed state estimation due to its variety
of applications over sensor networks such as target tracking
[1]–[2], exploration [3], surveillance [4], etc. The estimation
algorithms used in these applications are mainly formulated as
centralized fusion architectures, where all the sensors transmit
their local measurements to a central unit that processes the
provided measurements to update the estimate. In general,
the centralized algorithms are not scalable, since with the
increasing number of sensors the complexity of the problem
to solve increases, too. Furthermore, in case of large-scale
networks, communication with a unique central unit can hardly
be achieved e.g. due to communication bandwidth limitations.
Unlike centralized schemes, in the distributed approaches [5]–
[7] each sensor computes a local estimate using information
acquired by other connected sensors within a local neighbor-
hood. This can improve robustness to sensor failure exploiting
redundancy and also lower the communication burden since
data is transmitted amongst local nodes in the network.

The continuous decreasing costs of sensors is making these
applications realizable, even tough there are still open prob-
lems to face with. In fact, the distributed algorithms need to
have particular properties in order to make them attractive for
the industrial community. Thus, in the context of large-scale
systems, the algorithms must be scalable to be able to deal
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with large networks, must have low computation load since
low-cost sensors are not powerful devices, must minimize the
utilization of communication resources, etc. In [8], the authors
reviewed several works on distributed state estimation over
low-cost sensors networks, pointing out their characteristics,
advantages, and challenging issues.

In recent years, Moving Horizon Estimation (MHE) tech-
niques and the distributed counterpart (DMHE) have been
used to successfully deal with large sensor networks [9]. The
first idea of MHE proposed in [10] consists in estimating the
current states by solving a least-square optimization problem
penalizing on one hand the deviation between acquired and
predicted measurements, and on the other hand the distance
between the estimated state and some a priori information on
it. MHE is a practical strategy for constrained state estimation
and a lot of research has been devoted to develop stability
guarantees on the estimation error, e.g., [11]–[13]. Although
this approach is functional for control engineers offering the
freedom to tune the parameters of the cost function, a strength
and a weakness of this approach is the use of an optimization
problem. This has to be solved within the sampling time;
however, for large-scale systems this issue becomes critical.
There have been several attempts in trying to reduce the
computation demanding of MHE. One idea is to add a pre-
estimating observer in the formulation. The authors of [12]
proposed a MHE strategy with a Luenberger observer that
leads to good performance especially for large estimation
horizons. They also propose an optimization problem to tune
the parameters minimizing the effects of measurement noise
and model errors. In [14], the formulation is generalized using
a weight matrix for the penalty function and adding states con-
straints. A MHE with pre-estimation has been proposed also
for non-linear systems [13]. In [6] a distributed algorithm is
proposed for linear systems with a stability proof under weak
observability conditions (exploiting a consensus-on-estimate
and a consensus weight term in the DMHE formulation).
However, the computation time issue becomes crucial, since
usually the network could be composed of low-cost sensors.

In this paper we propose a DMHE algorithm with pre-
estimation, based on the ideas of [6], [12], [14]. A pre-
estimating Luenberger observer is considered in the formula-
tion of the local problem to be solved by each sensor, resulting
in a significant reduction of the computation time. The main
contribution of this paper covers: i) reducing the computation
time of the optimization problems, ii) preserving the accuracy
of the estimation errors. This allows the use of this type of
algorithms for time-sensitive applications.
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The paper is organized as follows. Section II introduces
the main theoretical statements and definitions. Sections III
and IV present the proposed versions of centralized MHE
and distributed MHE approaches, respectively. In Section V
a simulation example is proposed, while Section VI provides
some concluding remarks.

II. NOTATIONS AND DEFINITIONS

Consider the following discrete-time linear time invariant
(LTI) system:

xt+1 = Axt + wt, (1)

where xt ∈ X ⊆ Rn is the state vector and wt ∈ W ⊆ Rn
is a white noise with covariance matrix Q. The sets X and
W are assumed convex with 0 ∈ X and 0 ∈ W . The initial
state x0 is unknown and assumed to be modelled by a random
variable. Let us denote respectively by µ and Π0 its mean and
covariance matrix. The measurements are carried out by M
sensors, that could be different from each other:

yit = Cixt + vit, i = 1, . . . ,M, (2)

where vit ∈ Rpi is a white noise with covariance Ri.
Consider a sensor network described by the directed graph
G = (N , E), where nodes in N = {1, 2, . . . ,M} represents
the sensors and the edge (j, i) ∈ E ⊆ N × N represents the
communication link from sensor j to sensor i. We assume
that all the links have a self-loop (i, i) ∈ E , ∀i ∈ N . The
transmission neighbourhood N i

τ of the sensor i is N i
τ = {j ∈

N : (i, j) ∈ E}, the reception neighbourhood N i
ρ of the

sensor i is N i
ρ = {j ∈ N : (j, i) ∈ E} and the regional

neighbourhood N i of the sensor i is N i = N i
τ ∪ N i

ρ. The
number of nodes j ∈ N i

ρ is denoted by M i .
A stochastic matrix K ∈ RM×M is associated to the graph
G such that the elements:

kij > 0 if (j, i) ∈ E , (3a)
kij = 0 otherwise, (3b)

M∑
j=1

kij = 1, ∀i = 1, . . . ,M. (3c)

The topology of the sensor network is assumed to be time-
invariant thus the matrix K is constant. This matrix will be
used to compute the consensus terms in the DMHE algorithm
described in Section IV.

We use the notation introduced in [6] to recognize local,
regional and collective information. Considering Sensor i, an
information is considered to be local if it is related only to
the node i, regional if it is related to the nodes in N i

ρ, and
collective if it is related to the entire network. Corresponding
notations from [6] are used to distinguish local, regional and
collective variables. For a given variable z, zi denotes its local
version, z̄i the regional one and z the collective one. Using
these notations, the regional measurements of a sensor i with
reception neighborhood N i

ρ = {ji1, . . . , jiMi} are

ȳit = C̄ixt + v̄it, (4)

where ȳit = [(y
ji1
t )T . . . (y

ji
Mi

t )T ]T ∈ Rp̄i with p̄i =∑
i∈N iρ

pi, C̄i = [(Cj
i
1)T . . . (Cj

i
Mi )T ]T and v̄it =

[(v
ji1
t )T . . . (v

ji
Mi

t )T ]T . The covariance matrix associated to
the regional noise v̄it of sensor i is R̄i = diag(Rj

i
1 , . . . , Rj

i
Mi ).

Base on this nomenclature, three different observability
notions are defined in [6] as follows.

Definition 1. The system is locally observable by sensor i
(sensor i is locally observable) if the pair (A,Ci) is observ-
able. The system is regionally observable by sensor i (sensor i
is regionally observable) if the pair (A, C̄i) is observable. The
system is collective observable if the pair (A,C) is observable.

III. CENTRALIZED MHE WITH PRE-ESTIMATION

Moving Horizon Estimation with pre-estimation is based on
the idea in [12] and [14], where the authors proposed a MHE
formulation relying on a Luenberger observer. The centralized
scheme makes use of the collective information solely.

In this strategy, for a given horizon length N ≥ 1, an
estimate x̂t|t of the state at time t is computed by solving
the constrained minimization problem, hereafter denoted by
MHEpre:

x̂t−N |t = arg min
x̂t−N

J(t−N, t, x̂t−N , v̂,Γt−N ) (5)

s.t. x̂k+1 = Ax̂k + Lv̂k, (6)
ŷk = Cx̂k + v̂k, (7)
x̂k ∈ X , (8)
∀k = t−N, . . . , t.

The gain matrix L ∈ Rn×p in (6), with p =
∑M
i=1 pi, is chosen

such that Φ = A − LC is Schur stable. The cost function J
given by:

J(t−N, t, x̂t−N , v̂,Γt−N ) =
1

2

t∑
k=t−N

‖v̂k‖2R−1

+Γt−N (x̂t−N , x̂t−N |t−1),

(9)

where R = diag(R1, . . . , RM ). The so called initial penalty
function Γt−N (x̂t−N , x̂t−N |t−1) in (9) is defined as follows:

Γt−N (x̂t−N , x̂t−N |t−1) =
1

2

∥∥x̂t−N − x̂t−N |t−1

∥∥2

Π−1
t−N|t−1

,

(10)
where x̂t−N |t−1 is the second estimated state of the sequence
computed at the previous time. The positive-definite symmetric
weighting matrix Πt−N |t−1 in (10) is the unique solution of
the following discrete-time algebraic Riccati equation [15]:

Πt−N |t−1 = Q+AΠt−N−1|t−2A
T−

AΠt−N−1|t−2CT (R + CΠt−N−1|t−2CT )−1CΠt−N−1|t−2A
T ,

(11)

subject to the initial condition Π0. When t 6 N , one sets N =
t. We denote by {x̂k|t}tk=t−N the sequence of the estimated
states computed using (6) with the optimum solution x̂t−N |t
of (5) as initial condition. The last term x̂t|t of this sequence
corresponds to the estimate of the state xt of the system at
the current time instant t.
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IV. DISTRIBUTED MHE WITH PRE-ESTIMATION

In [6] the authors proposed a distributed Moving Horizon
Estimation method to estimate the state and the input of
the model (1). In their strategy, the optimization problem to
be solved online at time t involves the computation of the
state trajectory over the past horizon. As in classical MHE
schemes, this computation is done by propagating forward the
state, from its initial condition at t − N , using the dynamic
model of the system. This can accumulate the estimation error,
especially when N is large and the system is unstable. In this
section, we propose a new DMHE strategy with pre-estimation
by introducing a Luenberger observer in its formulation. This
will mitigate the effect of model uncertainty in the a priori
estimate and thus will contribute to enhance the estimation
accuracy. This improvement will also reduce the computation
time required to solve the optimization problem, because the
number of optimization variables involved is lower and does
not depend on the horizon length N . Further details are given
in the next sections.

A. Local minimization problem

Here we formulate the proposed DMHE scheme, from
now on denoted as DMHEpre, where each sensor i ∈ N
solves its own local moving horizon estimation problem based
on regional measurements ȳit and some shared information
amongst the neighbourhood N i. For a given horizon length
N > 1, each sensor i ∈ N computes an estimate x̂it|t of
the state xt at time t by solving the following constrained
minimization problem with pre-estimation, hereafter denoted
as DMHEi−pre:

x̂it−N |t = arg min
x̂it−N

J i(t−N, t, x̂it−N , ˆ̄vi,Γit−N ) (12)

s.t. x̂ik+1 = Ax̂ik + Li ˆ̄vik, (13)
ˆ̄yik = C̄ix̂ik + ˆ̄vik, (14)

x̂ik ∈ X , (15)
∀k = t−N, . . . , t.

Note that the equations remind the ones of the MHEpre
problem but using regional information instead. There are
also some differences due to the consensus terms embodied
in the initial penalty, which will be discussed in detail later
on. First of all, the Luenberger gain Li is computed such that
Φi = A−LiC̄i is Schur stable when the sensor i is regionally
observable, i.e. the pair (A, C̄i) is observable. Otherwise, as
extrema ratio, one can compute Li in order to minimize
the propagation of the error along the prediction horizon by
keeping the spectrum radius of Φi as small as possible.

The cost function J i is given by:

J i(t−N, t, x̂it−N , ˆ̄vi,Γit−N ) =
1

2

t∑
k=t−N

∥∥ˆ̄vik
∥∥2

(R̄i)−1

+Γit−N (x̂it−N , ˆ̄x
i
t−N |t−1),

(16)

where the initial penalty function Γit−N (x̂it−N , ˆ̄x
i
t−N |t−1)

in (16) is defined as follows:

Γit−N (·) =
1

2

∥∥∥x̂it−N − ˆ̄xit−N |t−1

∥∥∥2

(Π̄i
t−N|t−1

)−1
. (17)

Let ˆ̄xit−N |t−1 denote the weighted average of the state
estimates produced by sensors j ∈ N i

ρ, computed as follows:

ˆ̄xit−N |t−1 =
∑
j∈N iρ

kij x̂
j
t−N |t−1, (18)

where x̂jt−N |t−1 is the second estimated state in the sequence
computed at the previous time by sensor j. A consensus-like
term on the estimates is therefore introduced by (18) in the
initial penalty (17). It helps to improve the accuracy of the
local estimates and enables to guarantee convergence of the
estimates to the state of the system even without regional
observability [6].

The term Π̄i
t−N |t−1 is computed as in [6]. For the sake of

clarity, we recall here the procedure to compute it by:

Π̄i
t−N |t−1 =

∑
j∈N iρ

M jk2
ijΠ

j
t−N |t−1, (19)

where the update of Πi
t−N |t−1 is performed by the sensor i

based on regional information. More specifically, the matrix
Πi
t−N |t−1, with i ∈ N , is given by one iteration of the

difference Riccati equation associated to a Kalman filter for
the system: {

xt−N = Axt−N−1 + wt−N−1

z̄it−N = ŌiNxt−N + V̄ it−N

where V̄ it−N represents the measurements noise and ŌiN
defines the i-th sensor regional observability matrix:

ŌiN =
[
(C̄i)T (C̄iA)T · · · (C̄iAN−1)T .

]T
(20)

If we define

CiN =


0 0 · · · 0
C̄i 0 · · · 0
...

...
. . .

...
C̄iAN−2 C̄iAN−3 · · · C̄i

 ∈ Rp̄iN×n(N−1),

(21)

R̄iN = diag(R̄i, . . . , R̄i) ∈ Rp̄iN×p̄iN , (22)

QN−1 = diag(Q, . . . , Q) ∈ Rn(N−1)×n(N−1), (23)

Cov[V̄ it ] = R̄∗iN = R̄iN + CiNQN−1(CiN )T , (24)

and set the covariance of the estimate x̂it−N−1 as

Π∗it−N−1|t−2 =

((
Π̄i
t−N−1|t−2

)−1

+ (C̄i)T (R̄i)−1C̄i
)−1

,

(25)
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the resulting Riccati recursive equation is given by

Πi
t−N |t−1 = Ri(Π∗it−N−1|t−2, Q, R̄

∗i
N )

= AΠ∗it−N−1|t−2A
T +Q−AΠ∗it−N−1|t−2

(
ŌiN
)T

×
(
ŌiNΠ∗it−N−1|t−2

(
ŌiN
)T

+ R̄∗iN

)−1

× ŌiNΠ∗it−N−1|t−2A
T .

(26)

Since the communication network topology is assumed to be
time-invariant, these equations can be computed off-line.

B. Network information exchange

It is worth highlighting the way each node exchanges the
information within its neighbourhood. For this purpose, we
recall here some assumptions that play a major role:
• the sensors can be different from each other;
• the sensors characteristics (noise covariance and type of

measurements) are not time-varying;
• the network topology is not time-varying;
• each sensor i knows its reception neighbourhood N i

ρ;
• no time delay in the communication network.

This implies that the matrices Ci can be different for all i ∈ N .
Since the reception neighbourhood N i

ρ is known a priori, it is
not necessary to exchange the information on the matrices Ci

and Ri at each time. Moreover, this allows one to compute
off-line the Luenberger gains Li.

C. DMHEpre procedure

Finally, we have all the elements to describe the procedure
of the proposed distributed scheme.

1) Off-line computation:
a) Since the Luenberger gains Li are constants, they

can be computed off-line.
b) All nodes store the estimate x̂i0|0 = x̂0 = µ of x0,

where µ is given, and the covariance matrix Π0 of
x0.

2) Initialization:
a) At the first step t = 0, each node i ∈ N performs

a first measurement yi0 and sends the information
to the nodes j ∈ N i

τ .
3) Online computation: each node i ∈ N

a) performs the measurement yit and sends it to the
nodes j ∈ N i

τ ;
b) if 1 6 t 6 N , then N is set to N = t, Π̄i

t−N |t−1 =

Π̄i
0|t−1 = Π0 and x̂it−N |t−1 = x̂i0|t−1;

c) if t > N :
i) computes Πi

t−N |t−1 according to (24), (25) and
(26), and sends it to the nodes j ∈ N i

τ ;
ii) computes Π̄i

t−N |t−1 according to (19);
d) solves the problem DMHEi−pre and store the

solution x̂it|t;
e) sends x̂it−N+1|t to the nodes j ∈ N i

τ .
Notice that the steps 3(c)i and 3(c)ii in the DMHEpre

procedure could be computed off-line. However, for clarity

reasons with respect to the exchanging information timing,
they have been described in the online step.

V. EXAMPLE

A performance analysis is provided in this section for the
proposed DMHE algorithm with pre-estimation through a sim-
ulation example. Comparison is performed to the centralized
MHE of [11] and the DMHE of [6]. The system considered
for illustration is the one used in [6] an given by

xt+1 =


0.9962 0.1949 0 0
−0.1949 0.3819 0 0

0 0 0 1
0 0 −1.21 1.98

xt + wt, (27)

where xt =
[
x1,t x2,t x3,t x4,t

]T
is the state vector

and wt ∈ R4 is a white noise with covariance Q =
diag(0.0012, 0.038, 0.0012, 0.038). Notice that the system
is unstable since the eigenvalues of A are 0.9264, 0.4517,
0.99 ± 0.4795i and |0.99 ± 0.4795i| > 1. For this example,
one considers X = R4.

The initial values of the algorithms have been set as µ =[
0 0 0 0

]T
, Π0 = I4 and N = 5.

To compare the results of all algorithms we use M = 4
sensors both for the centralized and distributed cases. For
the centralized scheme the following measurement equation
is considered:

yt =


1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

xt + vt,

with Var(vt) = R = I4. For the distributed schemes, the
following measurement equations are used:

yit =
[
1 0 0 0

]
xt + vit if i = 1, 2,

yit =
[
0 0 1 0

]
xt + vit if i = 3, 4,

where Var(vit) = Ri = 1, i = 1, . . . , 4. The nodes are
connected as reported by the graph in Fig. 1 and the associated
matrix is defined as follows:

K =


0.5 0 0 0.5
0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5

 .

1

2

3

4

Fig. 1. Communication network.

As pointed out in [6], and recalled next, this example is
challenging due to the non regional observability of some of

177

Authorized licensed use limited to: ONERA. Downloaded on December 21,2020 at 14:48:22 UTC from IEEE Xplore.  Restrictions apply. 



the sensors. In fact, analyzing the sensor 1, we notice that
at each time instant it has available the information about
x1,t, directly measured, and x3,t, transmitted by sensor 4.
Likewise, the information available to sensor 2 consists of
x1,t, directly measured, and x1,t, transmitted by sensor 1. The
same applies to the sensors 3 and 4, which have information
about (x1,t, x3,t) and (x3,t, x3,t), respectively. Consequently,
the sensors 1 and 3 are regionally observable, while the sensors
2 and 4 are not, since the pairs (A, C̄2) and (A, C̄4) are not
observable.

The Luenberger gains, both for MHEpre and DMHEpre,
have been chosen such that the eigenvalues of Φ = A−LC, for
the centralized scheme, and Φi = A−LiC̄i for the distributed
one, are equal to the values shown in the Table I. These values
have been chosen to ensure that matrices Φ, Φ1 and Φ3 are
Schur stable, and to keep the spectrum radius of Φ2 and Φ4

”small” enough.

TABLE I
EIGENVALUES OF Φ = A− LC AND Φi = A− LiC̄i .

λ1 λ2 λ3 λ4

MHEpre 0.9 0.6 0.7 0.8
DMHE1−pre 0.9 0.6 0.7 0.8
DMHE2−pre 0.45 0.58 0.99 + 0.48i 0.99− 0.48i
DMHE3−pre 0.9 0.6 0.7 0.8
DMHE4−pre 0.93 0.45 1.17 + 0.98i 1.17− 0.98i

We consider two different performance metrics for the
evaluation of the algorithms: computation time τt, of which we
examine sum, minimum and maximum time, and root mean
square error (RMSE):

RMSE =

( tf∑
t=tc

‖et‖2

tf − tc

) 1
2

, (28)

where tc is the convergence of the algorithms, tf is the final
time instant, with tf > tc, and et = xt− x̂t|t is the estimation
error. In this example, the sampling period is chosen to be 1s,
while tf = 20s corresponds to the simulation duration.

The simulation has been carried out by using a setup
implemented within the MATLAB R2019b environment and
the solver LMI Lab [16] over a Linux Ubuntu 20.04 PC
equipped with an Intel Core i7-7700HQ, 2.80 GHz.

Fig. 2 shows the evolution of the system (27) and the
estimates by MHEpre and DMHEpre algorithms. It is worth
noting that the last two states have unstable dynamics and
are larger in terms of magnitude with respect to the first two,
nevertheless one can consider that the convergence time is
t = 5s.

Estimation errors corresponding to MHEpre and DMHEpre
are represented in Fig. 3. It can be notice that the MHEpre
compensates the initial estimation error very fast, within a few
iterations, since the system is collective observable. As pointed
out in [6] for the DMHE, when using the DMHEpre the
estimates produced by sensor 2 (respectively 4) relative to the
states x3,t, x4,t (respectively x1,t, x2,t) also exhibit large errors
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Fig. 2. Component of the states xt = [x1,t x2,t x3,t x4,t]T and the
estimates x̂t = [x̂1,t x̂2,t x̂3,t x̂4,t]T computed by MHEpre and DMHEpre

algorithms.
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Fig. 3. Components of the estimation error et = [e1,t e2,t e3,t e4,t]T =
xt − x̂t|t of the MHEpre and DMHEpre algorithms.

for t < 5. In fact, as previously mentioned, these states cannot
be observed by these sensors using regional information.
Effectiveness of the consensus terms also introduced in the
DMHEpre scheme is therefore illustrated here since all the
estimation errors tend to converge to the same value despite
the weak observability conditions of this example.

For the sake of clarity, in Fig. 2 and Fig. 3 the estimates and
the estimation errors, respectively, from MHE and DMHE are
omitted. It is also because et and xt from MHE and DMHE
are very similar with the ones from MHEpre and DMHEpre,
respectively, as can be checked by comparing Fig. 3 with Fig.
4(a) in [6, p. 2468].
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Table II shows the performance metrics that have been taken
into account. In particular, the computation time is always
lower for our proposed algorithms with respect to the ones
without pre-estimation. This not come at a cost in terms of
accuracy, because the RMSEs produced are similar amongst
them. The maximum computation time for the algorithms
without pre-estimation is greater than the sampling period.
This means that there are some time steps where real time
feasibility is not obtained. This can be checked on Fig. 4.
Pre-estimation enables to reduce computation time by a factor
close to 5 and would enable real time implementation without
requiring fast optimization or ad hoc implementation.

TABLE II
MINIMUM, MAXIMUM AND SUM OF THE COMPUTATION TIME τt AND

RMSE WITH tc = 5S OF ALL ALGORITHMS COLLECTED IN THE
SIMULATION.

minτt maxτt
∑
τt RMSE

MHE 0.27 1.13 17.25 1.4
MHEpre 0.24 0.27 5.21 0.99
DMHE1 0.26 1.10 17.30 0.74
DMHE1−pre 0.24 0.29 5.20 0.84
DMHE2 0.26 1.02 16.30 1.53
DMHE2−pre 0.24 0.27 5.09 1.63
DMHE3 0.27 1.08 16.49 0.77
DMHE3−pre 0.25 0.29 5.18 0.76
DMHE4 0.26 1.10 17.24 0.90
DMHE4−pre 0.24 0.27 5.11 1.08

Figure 4 shows the computation time τt of all algorithms.
In this figure is more clear that our proposed schemes are less
time demanding. In fact, the computation time mainly relies
on the number of optimization parameters nop, the evaluation
of the cost and constraints. As it can be seen, nop is the most
important, since the algorithms without pre-estimation have
nop = n(N + 1), while the ones with pre-estimation have
only nop = n. Thus, the latter ones do not depend on the
horizon length N . Since N = t for t 6 5 and N = 5 for
t > 5, as excepted, the computation time rises as N increases
for MHE and DMHE.
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Fig. 4. Comparison amongst the computation times of all algorithms run in
the simulation: MHE, MHEpre, DMHE, DMHEpre.

VI. CONCLUSION

We presented a novel algorithm based on Moving Horizon
Estimation (MHE) concept for distributed state estimation of
discrete-time linear time-invariant systems. The use of a pre-
estimation observer results in a significant reduction of the
computation time. The proposed strategy has been validated
via an illustrative numerical example. The estimation errors

produced by the DMHEpre are capable to converge even
if some sensors in the network are not observable, due to
the consensus terms embodied in the optimization problem.
Moreover, the accuracy of the estimation errors is preserved
(together with a reduced computation time), in the sense that
it is comparable with the one of the original formulation [6].

Further improvements will include stability analysis of the
estimation error provided by the proposed DMHE strategy
with pre-estimation.
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