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Abstract— The problem of angular velocity estimation for a
rigid body directly from body-referenced vector measurements
is addressed. The case of multiple (at least a pair of) vector
measurements is treated without requiring the knowledge of
the corresponding inertial vectors or assuming any additional
information on the attitude and the angular velocity. The
proposed solution ensures uniform global exponential stability
with respect to null estimation error through a thorough strict
Lyapunov analysis. The efficiency of the proposed nonlinear
observer is illustrated by numerical simulations.

I. INTRODUCTION

The fast technological developments related to rigid body
systems such as satellites, drones and underwater vehicles
have increased the demand for even more efficient, and
robust, control and estimation algorithms that are able to
respond successfully to various mission scenarios. Typically,
the principal objectives that need to be attained by a rigid
body are precise attitude stabilization and tracking.

Throughout the years a variety of control algorithms
have been proposed that can in one way be classified
into velocity-independent and velocity-dependent based on
whether they require measurements of angular velocity or
not. The first category exploits, the well-known by now,
passivity properties of the rigid-body dynamics to use only
orientation information, see e.g. [1], [2], while the second
category either exploits direct velocity information or adopts
an observer-controller structure with the observer providing
an estimate of the angular velocity by exploiting direct
attitude measurements, see [3], [4] and references therein
for an exhaustive list of references.

In practice direct angular velocity information is usually
obtained in two ways [5]. First, from a dedicated embedded
sensor that is commonly referred to as strap-down rate gyro-
scope. However, it is well known that gyros are quite expen-
sive, fragile and prone to failure [4], [6]–[10]. The second al-
ternative follows a cascaded approach since it requires to first
obtain an estimate of the body’s orientation from (at least two
linearly independent) body-referenced vector measurements,
for example from accelerometers, magnetometers or Sun
sensors, and then generate an angular velocity estimate. See
[11], [12] for detailed surveys on the different approaches on
attitude determination. Among the various approaches, it has
been established that static attitude determination algorithms
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are very noise-sensitive while dynamic attitude observers
require the incorporation of gyro and vector measurements
to produce a robust attitude estimate.

To remedy the deficiencies of the two aforementioned
approaches, and in particular to obviate the use of direct
gyro measurements and the necessity to derive an estimate
of the rigid body’s orientation, a third alternative has been
recently proposed [8], [9]. This approach rather proposes a
direct manipulation of body-referenced vector measurements,
that are obtained from cheaper sensors, and the use of Euler’s
equations to design a nonlinear time-varying observer for
the angular velocity. When at least two vector measurements
are available the design framework requires that these are
not collinear [9] while in the single measurement case the
above working assumption is naturally replaced, from an
observability point of view, with a persistency-of-excitation
(PE) condition [8].

As mentioned previously, the first works that considered
the problem of dynamically estimating the angular velocities
directly from body-referenced vector measurements are [8],
[9]. Under standard assumptions for both cases of single and
multiple measurements, a very simple, high-gain observer
was shown to ensure uniform local exponential stability
(ULES) of zero estimation error through a non-trivial Linear
Time-Varying (LTV) system analysis. The present work was
motivated and inspired by these recent developments. The
contribution of this work is a nonlinear observer that provides
a uniformly globally exponentially converging estimate of
the angular velocity with measurements from at least two
triaxial sensors. To the author’s knowledge this is the first
such result in the literature. The proposed observer has a
classic structure that consists of a copy of the system plus
some nonlinear correction terms, with the addition of a
(scalar) dynamic extension. The observer design framework
is based on the invariant–manifold approach [13], [14] and
its recent extensions that hinge upon the notion of dynamic
scaling, that allows in particular to explicitly construct a strict
Lyapunov function.

The organization of the paper is as follows. Section II
introduces the dynamic model of the rigid body, the avail-
able measurements and the working assumptions. Section
III presents the proposed observer and the corresponding
Lyapunov-based stability analysis. Numerical simulations of
the presented estimation schemes then follow in Section
IV. The article is concluded with some remarks and future
perspectives.
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II. PROBLEM FORMULATION

A. Notation

We denote by |x| the Euclidean norm of the vector x
and similarly, ||A|| represents the matrix induced 2-norm for
any matrix A. Also, I will represent the identity matrix of
appropriate dimensions and λ(A) will denote the spectrum
of the matrix A. Throughout, for any x ∈ R3 we will define
by

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (1)

the matrix representation of the linear map y 7→ x ×
y, with y ∈ R3, and ‘ × ‘ denoting the usual cross
product in R3. We will interchangeably use both nota-
tions, i.e. x × y and S(x)y, to simplify the presenta-
tion. Finally, the special orthogonal group is defined as
SO(3) = {A ∈ R3×3 | ATA = I, det(A) = 1}.

B. Dynamic Model

We consider a moving rigid body subjected to the angular
velocity ω ∈ R3 (in body axes). Its orientation, from body
to inertial axes, matrix R ∈ SO(3) is related to ω through
the orientation kinematics as

Ṙ = RS(ω), (2)

We consider that the sensors placed on the rigid body provide
us with the (unit) body vectors a, b that correspond to two
constant, but unknown, reference vectors å, b̊, expressed
in the inertial frame. Then we can write the following
relationships

å = Ra (3)
b̊ = Rb. (4)

The model describing the dynamic evolution of the angular
velocity and the vector measurements a, b, and which will
be adopted for the observer design in the following section,
is given as

Jω̇ = (Jω)× ω + τ (5)
ȧ = a× ω (6)
ḃ = b× ω. (7)

Similarly to [9], we consider the following working assump-
tions.

Assumption 1 (A.1): The angular velocity is bounded, i.e,
|ω(t)| ≤ ω̄.

Assumption 2 (A.2): The inertia matrix J and the torque
τ are known.
In order to be able to succesfully design an angular velocity
observer, we require the following additional assumption.

Assumption 3 (A.3): The (unit) body vector measure-
ments, a and b, are linearly independent.
Assumption A.3 gives rise to the following fact.

Fact 1 ( [7], [15]): Under assumption A.3, the matrix

M(a, b) := −K10S
2(a)−K20S

2(b), (8)

is symmetric and positive definite. Furthermore, the positive
scalars K10, K20 can arbitrarily increase the (simple) eigen-
values of M(a, b).

Problem Statement: Design a continuous observer based
on the model (5)-(7), measurements a, b and under assump-
tions A.1-A.2, that provides a uniformly globally exponen-
tially convergent angular velocity estimate.

III. OBSERVER

Under assumptions A.1-A.3, an observer for system (5)-
(7) is the dynamical system

Jξ̇ = (Jω̂)× ω̂ + τ +K1((â× a)× ω̂) +K2((b̂× b)× ω̂)

+ K1Ka(â, r)(â− a) +K2Kb(b̂, r)(b̂− b) (9)

ω̂ := ξ − J−1K1(â× a)− J−1K2(b̂× b) (10)
˙̂a = â× ω̂ −Ka(â, r)(â− a) (11)
˙̂
b = b̂× ω̂ −Kb(b̂, r)(b̂− b) (12)

ṙ = −2ψ1(r − 1) + 2r(K1|â− a|+K2|b̂− b|), (13)
r(0) ≥ 1,

with the positive scalars K1,K2, ψ1 and the mappings
Ka(â, r), Kb(b̂, r) serving as gain functions to be properly
chosen. Notice that the proposed observer, with state ξ ∈ R3

has the classical structure consisting of a copy of the original
system, some correction terms with nonlinear gains and an
additional dynamic extension r ∈ R.

Proposition 1: Consider the system (5)-(7). Then, the
dynamical system (9)-(13) ensures the uniform global ex-
ponential stability (UGES) of null estimation error ω̂ − ω
provided the gains satisfy the conditions

min(λ(−K1S
2(a)−K2S

2(b))) > (ψ1 + ω̄||J ||+ 1)(14)

ψ1 >
1

2
(15)

Ka(â, r) := Ka0 + (2r2K2
1 +

r|â|2

2
)I(16)

Kb(â, r) := Kb0 + (2r2K2
2 +

r|b̂|2

2
)I(17)

with Ka0 = K>a0 � 0, Kb0 = K>b0 � 0, and with the estimate
for the angular velocity ω given by

ω̂ := ξ − J−1K1(â× a)− J−1K2(b̂× b). (18)
Proof: Let us define the errors

z := ξ − J−1K1(â× a)− J−1K2(b̂× b)− ω
ã := â− a
b̃ := b̂− b. (19)

Using the expressions in (5)-(7),(9)-(13), the z-dynamics is
expressed as

ż = J−1(K1S
2(a) +K2S

2(b))z − J−1(K1S(ã)S(a)

+ K2S(b̃)S(b))z + J−1((Jz)× z + (Jω)× z)
+ J−1(Jz)× ω.

Consider now the candidate Lyapunov function

V (z) =
1

2
z>Jz, (20)

980

Authorized licensed use limited to: ONERA. Downloaded on December 21,2020 at 14:18:12 UTC from IEEE Xplore.  Restrictions apply. 



whose time-derivative along trajectories of (20) yields

V̇ = z>(K1S
2(a) +K2S

2(b))z

− z>(K1S(ã)S(a) +K2S(b̃)S(b))z + z>((Jz)× ω)

≤ z>(K1S
2(a) +K2S

2(b))z + (K1|ã|+K2|b̃|)|z|2

+ ω̄||J |||z|2

= z>(K1S
2(a) +K2S

2(b) + ω̄||J ||I)z

+ z>((||K1|||ã|+ ||K2|||b̃|)I)z,

using the properties of the triple scalar product and the
boundedness of ω from A.1.

Now, in order to be able to dominate the cross-terms in V̇
we introduce a dynamic scaling function r, with dynamics
given in (13), and define the candidate (dynamic) Lyapunov
function

Vs(z, r) :=
V (z)

r
. (21)

Its time-derivative along the (z, r)-trajectories gives

V̇s =
V̇

r
− Vs

ṙ

r

≤ z>(K1S
2(a) +K2S

2(b) + (ψ1 + ω̄||J ||)I)
z

r
≤ −κVs(z, r),

with κ > 0, after using the property that r−1
r ≤ 1 and from

the Fact 1 that the matrix K10S
2(a) + K20S

2(b) can be
chosen as

−K1S
2(a)−K2S

2(b) � (ψ1 + ω̄||J ||)I � κI � 0,(22)

since a,b are non-collinear, and with eigenvalues that can be
arbitrarily increased by increasing the gains K1, K2.

In order to conclude uniform local (global) asymptotic
(exponential) stability of z = 0, we need to further show
that r(t) stays bounded for all times. To this end, let us first
express the dynamics of ã, b̃ as

˙̃a = −(S(ω) +Ka)ã− S(z)â (23)
˙̃
b = −(S(ω) +Kb)b̃− S(z)b̂. (24)

Considering the candidate Lyapunov function for these
subsystems

Vab(ã, b̃) :=
1

2
(|ã|2 + |b̃|2),

and taking its time-derivative results in

V̇ab(ã, b̃) ≤ −ã>Kaã+ |â||ã||z| − b̃>Kbb̃+ |b̂||b̃||z|

≤ −ã>(Ka − r
|â|2

2
I)ã− b̃>(Kb − r

|b̂|2

2
I)b̃+ |z|2,

with the last inequality obtained after applying Young’s
inequality as xy = xy

√
r√
r
≤ r|x|2

2 + |y|2
2r and observing from

ṙ that r(t) ≥ 1.
Similarly, we take the time-derivative of the function

Vr(r) =
1

2
(r − 1)2,

that gives the expression

V̇r = −2ψ1(r − 1)2 + 2(r − 1)r(K1|ã|+K2|b̃|)
≤ −(2ψ1 − 1)(r − 1)2 + 2r2(K2

1 |ã|2 +K2
2 |b̃|2),

where we applied Young’s inequality and used the fact that
(x+ y)2 ≤ 2(x2 + y2).

Finally, defining the composite Lyapunov function as

W (z, ã, b̃, r) := Vs(z, r) + Vab(ã, b̃) + Vr(r), (25)

and taking its derivative along trajectories of the (z, ã, b̃, r)-
dynamics results in the expressions

Ẇ ≤ −(κ− 1)Vs − λm(Ka0)|ã|2 − λm(Kb0)|b̃|2

− (2ψ1 − 1)(r − 1)2

≤ −min(κ− 1, λm(Ka0), λm(Kb0), (2ψ1 − 1))W < 0,

∀(z, ã, b̃, r) 6= (0, 0, 0, 1), and with κ > 1, ψ1 > 0.5, Ka0 =
K>a0 � 0, Kb0 = K>b0 � 0,

Ka(â, r) := Ka0 + (2r2||K1||2 +
r|â|2

2
)I (26)

Kb(b̂, r) := Kb0 + (2r2||K2||2 +
r|b̂|2

2
)I. (27)

This concludes the uniformly global exponential stability
(UGES) claim.

Remark 1: The proposed observer was derived using the
observer methodology based on invariant manifolds, see
[13], [14] and references therein for the original works. The
general principle behind this technique is to estimate the
unmeasured state η by rendering a certain manifold

M = {(η, y, ŷ, ξ)|β(ξ, y, ŷ) = ϕ(η, y, ŷ)}

attractive and invariant for some ξ (the observer state), y the
measured state, ŷ a filtered version of y, and functions β, ϕ.
The objective then is to stabilize to zero the dynamics of the
“error” (usually called off-the-manifold coordinates)

z := β(ξ, y, ŷ)− ϕ(η, y, ŷ),

whose norm essentially captures the distance from the
manifold M. If this (non-standard) stabilization objective
is achieved then an estimate of η is given by η̂ =
ϕ−1(β(ξ, y, ŷ), y, ŷ).

Apart from the applications in the above references,
this methodology has been recently applied by the author
and co-workers to succesfully solve a variety of problems
such as global velocity estimation for Euler-Lagrange me-
chanical systems [16], [17], global exponential position-
feedback tracking for fully-actuated mechanical systems
[18], global asymptotic position-feedback synchronization
for tele-operation systems [19], as well as for semi-global
reduced attitude estimation for quadrotors [20] and full
attitude estimation of rigid bodies for different measurement
scenarios [21]–[23].
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Fig. 1. Components of b̊.
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Fig. 2. Noiseless setting: Components of measured (am), true (a) and
filtered (â) vectors.

IV. SIMULATIONS

The excellent behavior of the observer is now illus-
trated in a simple simulation scenario. Simulations were
run for the model of a CubeSat used in [8], [9]. This
CubeSat is a rectangular parallelepiped of dimensions
20 (cm)×10 (cm)×10 (cm) and mass 2 (kg) assumed to
be homogeneously distributed. As such the inertia matrix
is given as J = diag(87, 83, 37)(kg/cm2).

The constant vectors å and b̊, corresponding to the mea-
sured vectors a, b, are respectively set to the nominal values
(0, 0, 1)T and ( 1√

2
, 0, 1√

2
)T , in order to mimic the gravity

and magnetic vectors.
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Fig. 3. Noiseless setting: Components of measured (bm), true (b) and
filtered (b̂) vectors.

The initial conditions on the angular velocity are taken as
ω0 = [1, 0.3,−0.6]T (rad/sec) and we further consider the
upper bound on the angular velocity ω̄ = 1.2042 (rad/sec).
The inital state of the observer has been set in such a way
that the initial velocity estimate ω̂0 = 0 by selecting ξ0 =
K1J

−1(â0 × å) +K2J
−1(b̂× b̊).

We will consider two scenarios. In the first we consider
that measurements are noiseless while in the second measure-
ments are affected by additive noise. To keep notation con-
sistent for both scenarios, we will refer to the measurements
as am, bm which in the presence of noise do not identically
correspond to the vectors a, b. In both cases, we test the
robustness of the proposed algorithm in two different ways;
a sudden re-initialization of the observer at t = 40 (sec)
and a perturbation of the b vector, through a perturbation
of its corresponding inertial vector b̊ in the time interval
70− 90 (sec), which can be visualized in Fig. 1.

A. Perfect setting

We first consider the ideal setting where the measurements
are noiseless. The initial conditions and the gains are selected
as follows â0 = [0, 0, 0]T , b̂0 = [0, 0, 0]T , ω̄ = |ω0|, ψ =
1,K1 = 1/2(ψ + ω̄||J ||+ 1) + 0.5,K2 = 1/2(ψ + ω̄||J ||+
1) + 0.5,Ka0 = 0.5,Kb0 = 0.5.

The behavior of the measurement vectors a, b are depicted
in Figs. 2 and 3. In both figures we can observe the sudden
peak due to the sudden reinitialization of the observer that
does not however hamper the behavior of the estimator that
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Fig. 4. Noiseless setting: Components of the true ω (dotted red) and its
estimate ω̂ (blue).

recovers fast. In the second, we can additionally visualize
the effect of the induced perturbation which, similarly to the
reinitialization, is attenuated quite fast.

From the above, it is expected that the angular velocity
estimate will inherit a similar behavior and this is confirmed
from Fig. 4. In fact, one can hardly observe the effect of the
abrupt reset of the observer while during the perturbation of
b the estimate converges fast to the true value.

B. Vector measurement noise

We now consider the case where both vector measure-
ments are affected by noise. All the measurement signals are
corrupted by band-limited independent gaussian white noises
(sample time 10−3, noise powers 10−6 for the components of
a and b) ω0 = [1, 0.3,−0.6]T , ω̄ = |ω0|, â0 = [0, 0, 0]T , b̂0 =
[0, 0, 0]T , ψ = 1,K1 = 1/500(ψ+ ω̄||J ||+1)+0.001,K2 =
1/500(ψ + ω̄||J ||+ 1) + 0.001,Ka0 = 0.5, kb0 = 0.5

Similarly to the ideal measurement setting, the transient
behavior of the observer is excellent despite the presence
of additive noise. This can be established by looking at the
time evolution of the measurement vectors a, b, depicted in
Figs. 5 and 6, and the comparison of the true and estimated
angular velocities, depicted in Fig. 7.

V. CONCLUSIONS–PERSPECTIVES

A global solution has been proposed to the problem of
angular velocity estimation for a rigid body. Under the main
realistic assumption of linear independence of two body
measurements, the proposed observer ensures the uniform
global exponential stability of zero estimation error. This is
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Fig. 5. Noisy setting: Components of measured (am), true (a) and filtered
(â) vectors.

established through a thorough stability analysis based on a
strict Lyapunov function. The theoretical results are further
supported by extensive numerical simulations.

Given the nice properties of the proposed observer, it is
expected that its use can be exploited among others for
the problems of output-feedback attitude stabilization and
tracking control. Although not presented here, the proposed
observer can be shown to work well in simulations even if
only one available vector measurement is available, in the
expense of it being persistently exciting. As such, a future
direction is to provide a detailed proof for this case.
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