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Abstract— This paper introduces a new dataset dedicated to
multi-robot stereo-visual and inertial Simultaneous Localization
And Mapping (SLAM). This dataset consists in five indoor
multi-robot scenarios acquired with ground and aerial robots
in a former Air Museum at ONERA Meudon, France. Those
scenarios were designed to exhibit some specific opportunities
and challenges associated to collaborative SLAM. Each scenario
includes synchronized sequences between multiple robots with
stereo images and inertial measurements. They also exhibit
explicit direct interactions between robots through the detection
of mounted AprilTag markers [1]. Ground-truth trajectories
for each robot were computed using Structure-from-Motion
algorithms and constrained with the detection of fixed AprilTag
markers placed as beacons on the experimental area. Those
scenarios have been benchmarked on state-of-the-art monocu-
lar, stereo and visual-inertial SLAM algorithms to provide a
baseline of the single-robot performances to be enhanced in
collaborative frameworks.

Index Terms— Robotics, Visual SLAM, Multi-Robot SLAM

I. INTRODUCTION

In mobile robotics, many tasks such as exploration, in-
spection or navigation in an unknown environment, heavily
depend on the ability of the robots to localize themselves
and estimate their whole trajectory. In outdoor environments,
Global Positioning Systems (GPS) can be used to achieve
accurate localization. However, such systems are intrinsically
restricted to metric accuracy while some applications, like
navigation in cluttered areas, may require up to decimetric or
centimetric accuracies. Furthermore and overall, GPS signals
are not suitable for localization in indoor environments as
they may be mitigated and blocked by walls and roofs.
Robots must hence rely on their own embedded sensors. A
first family of methods, known as Dead-Reckoning, proceed
by integrating measurements from proprioceptive sensors.
However, they are likely to accumulate drift depending on the
quality of the sensors. Reversely, Simultaneous Localization
And Mapping (SLAM) algorithms concurrently estimate the
3D structure of the observed environment and the trajectory
within it. They require at least one exteroceptive sensor like
LiDARs [2], or cameras [3] for Visual SLAM (VSLAM),
those last ones being cheaper, lower power consuming and
easier to embed on drones. In the specific case of visual-
inertial (VI) SLAM, cameras are enhanced with an additional
Inertial Measurement Unit (IMU) [4], [5]. Nowadays, such
methods have achieved high maturity with a wide variety of
single-robot SLAM algorithms which have been issued [6].

Fig. 1: Screenshots of inter-robot direct observations between the drone
and ground robots outfitted with AprilTag markers

A current challenge to the SLAM community is Multi-
Robot SLAM (MR-SLAM). It brings new opportunities to
enhance the efficiency of a fleet of robots performing SLAM
and increase the estimation accuracy of its agents. Each MR-
SLAM algorithm combines three key ingredients: i) a task
and data allocation scheme, ii) an adapted communication
policy and iii) a matching & merging strategy. The allocation
scheme governs how each task and data is centralized /
decentralized or distributed. The communication policy su-
pervises the topology, the planning and the content of inter-
robot exchanges. Finally, the matching & merging strategy
focuses on spotting inter-robot correspondences (data as-
sociation) and jointly refining the map and trajectories of
the robots (data fusion). However, MR-SLAM also comes
with new challenges stemming from i) the network and
time synchronization constraints; ii) the limited computa-
tional resources the robots must rely on to process their
own data additionally to multi-robot interactions; and iii)
heterogeneous data fusion.

Multiple visual MR-SLAM algorithms have been issued
over the last decade. A few examples of fully centralized
MR-SLAM architectures are C2TAM [7], CSfM [8], CCM-
SLAM [9] which was then extended by CVI-SLAM [10]
for VI-SLAM. Centralized methods mainly differ w.r.t. the
degree of autonomy they grant to the agents. Regarding
decentralized MR-SLAM, contributions include full SLAM
pipelines like DDF-SAM [11], stereo SLAM [12] and VI-
SLAM [13], [14] methods. Decentralization is also more
conducive to the distribution of tasks and data to compensate
for the lack of a central server as agents should process the
data received from all the other agents. Hence, decentralized
MR-SLAM also covers methods for the distributed detection



of inter-robot correspondences [15], [16], distributed global
inference [17] and distributed map storage [18].

Performances of SLAM algorithms are usually bench-
marked on available public datasets, which can be classified
according to: i) the nature of their data (real vs. synthetic);
ii) the used robotic platforms and sensor suites; iii) the
properties of the environment in which one they were
acquired and the nature of their trajectories (e.g. smooth
vs. aggressive motions); and iv) their target applications
(odometry, mapping, single-robot SLAM, multi-session map-
ping, collaborative localization or mapping, MR-SLAM).
Regarding the first criteria, synthetic data simulators like
Gazebo [19] have tremendously improved over the last years
to get photo-realistic environments. Fully synthetic datasets
have been recently published like the BlackBird [20] and
TartanAir [21] datasets. Nevertheless, most available datasets
were built on real data and various kinds of environments
have been covered: industrial (EuRoC [22]), underwater
(Aqualoc [23]), urban (KITTI [24] and Malaga [25]), under-
ground (Chilean mines [26]) and emulated extra-planetary
environments (Robex [27], Beach Planetary Rovers [28] and
Canadian Rover Navigation dataset [29]). Some datasets
are explicitly dedicated to specific applications e.g. handling
aggressive motions like the UZH-FPV drone racing dataset
[30] or multi-session mapping like the Zurich Urban dataset
[31] in which one several trajectories were acquired with
drones in Zurich city center. Some of them, being extensively
used for benchmarking, have deeply impacted the research
on SLAM algorithms, such as KITTI [24] and EuRoC [22]
for V-SLAM and VI-SLAM.

Very few published datasets are dedicated to the specific
benchmarking of MR-SLAM algorithms. To the best of our
knowledge, the only one which was purposively intended
for MR-SLAM is the UTIAS dataset [32]. It makes 5 robots,
outfitted with a monocular camera, explore a 6 m × 12 m
area beaconed with uniquely identifiable landmarks. Besides,
datasets for multi-session mapping – i.e. whose sequences
were acquired in the very same environment – can also
definitely be used to evaluate such algorithms by synchro-
nizing the trajectories beforehand. However, the resulting
scenarios may not be suitable to relevantly assess MR-SLAM
algorithms. We believe that the trajectories of a MR-SLAM
dataset should be designed such that the individual estima-
tion accuracies of the robots can be significantly enhanced
if the evaluated MR-SLAM algorithm succeeds in taking
the above mentionned opportunities and in overcoming the
associated challenges. Trajectories of a multi-robot scenario
should be jointly designed according to: i) the expected drift
accumulated along individual trajectories because of their
kinematics or the properties of the observed environment;
ii) the spatial and temporal distribution of intra/inter-robot
correspondences and the impact of the resulting inter-robot
loop closures on the accuracies of the trajectory estimates,
and iii) the ability to stage challenges arising from network
and communication issues.

In this paper, we propose a new dataset, which is intended

for heterogeneous Multi-Robot stereo-visual and inertial
Simultaneous Localization And Mapping. It includes five
scenarios, which were acquired using three ground robots
and one drone. The acquisition site is a former Air Museum
which is now a large indoor industrial-like warehouse, at
ONERA Meudon, France. We provide full calibration for
the visual and inertial sensors, as well as the ground-truth
trajectories, computed using Structure-From-Motion (SfM)
algorithms. The rest of the paper is organized as follows.
Section II describes the acquisition area and the robotic
platforms, gives an overview of the dataset and describes
the motivations behind each scenario. Section III provides
additional details on the robots’ specifications. Section IV
describes the computation of the ground-truth trajectories.
In Section V, the properties of the individual sequences
are studied by evaluating the single-robot performances for
monocular, visual-inertial and stereo-visual setups on state-
of-the-art SLAM algorithms. Finally, in section VI, we detail
how the provided data is formatted. The dataset will be
hosted on IEEE Data Port1, and associated information will
be found on the following Github repository2.

II. DATASET OVERVIEW

A. Acquisition site
The experimental area is a large hangar which was once

part of the Chalais-Meudon Air Museum from 1921 to 1977
and which was then moved to the Bourget Musée de l’Air et
de l’Espace. Nowadays, it is a large 40 m × 80 m warehouse,
an overview of which one is given by Figure 2. Figure 3
additionally provides a map of the site.

(a) North part (b) South part

Fig. 2: Overview of the acquisition site. Most sequences were acquired in
the South area which is more populated with textured structures.

The site is divided into two parts. The North part, which
is pictured by Figure 2a, is a vast and empty area. Most of
the trajectories were captured in the South part represented
by Figure 2b. This area is filled with more obstacles and
with richer textures. The site was also beaconed with five
AprilCubes, each one consisting of five AprilTag markers
pointing towards all observable directions, as shown in
Figure 4a. They can be used to initialize common reference
frames between the robots, but they were primarily intended
to provide additional constraints on the ground-truth trajec-
tories computed from Structure-From-Motion algorithms, as
detailed in section IV.

1https://ieee-dataport.org/
2https://github.com/AirMuseumDataset/

AirMuseumDataset.git

https://ieee-dataport.org/
https://github.com/AirMuseumDataset/AirMuseumDataset.git
https://github.com/AirMuseumDataset/AirMuseumDataset.git
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Fig. 3: Plan of the experimental area with metric scale. Gray zones denote
inaccessible encumbered areas while the black squares represent pillars. The
locations of AprilCubes are denoted using small QR code symbols.

B. Robotic platforms

The dataset was acquired using three ground robots, re-
spectively referred to as A, B and C, and one drone (D), as
shown by Figure 4. Each robot is outfitted with a stereo
camera bench and an Inertial Measurement Unit (IMU).
Robots B and C have mounted AprilTag markers [1] which
are used for direct inter-robot observations. More extensive
details about the specifications of the robots and the multi-
robot setup are provided in section III.

(a) Wifibot
TM

robots B and C (b) DJI-M100
TM

drone

Fig. 4: Used robotic platforms. AprilTag markers [1] are mounted on
robots B and C and are used to estimate relative poses from direct inter-
robot observations.

C. Multi-robot scenarios

1) Followed guidelines to design multi-robot scenarios:
This dataset consists in five multi-robot scenarios whose
motivations and design guidelines are detailed below. As we
mentioned earlier, multi-robot SLAM brings new opportu-
nities and challenges to enhance the estimation accuracies
of the robots. In each scenario, we jointly designed the
trajectories of the robots following three guideline principles.

The first guideline was to make the individual trajectories
prone to drift accumulation in such a way that the estimation
accuracies of the robots can be significantly improved when
sharing information between the robots. The accumulated
drift depends i) on the trajectory kinematics since aggressive
motions and rough rotations may undermine standard VIO
algorithms; ii) on the visual richness of the observed envi-
ronment (e.g. textures, number, salience and conditioning of
visual features) and iii) on the distribution of loop closures
within the trajectories.

The second guideline was to design a temporal and spatial
distribution of inter-robot direct and indirect correspondences
which generates informative inter-robot loop closures. An
inter-robot loop closure is all the more informative as it
covers and constraints a large number of keyframes subjected
to significant drift within that loop. Note that such inter-
robot loop closures may bring asymmetric information to the
involved robots depending on the disparities of information
on their respectively covered sub-trajectories. The general
idea was to workout a distribution of intra/inter-robot corre-
spondences which makes the trajectories complementary.

Finally, the third guideline was to provide a realistic
framework to stage various challenges arising from network
and communication issues. We thus made robots cover wide
areas while getting distant from each other. This legitimizes
the subsequent simulation of communication losses and
recoveries. Furthermore, some robots may never meet or
communicate directly, so their data may need to be relayed
by third-party robots.

2) Description of the scenarios: Following those prin-
ciples, we designed five multi-robot scenarios which are
detailed below. Figure 5 shows the corresponding trajec-
tories. In scenarios 1, 2 and 5, the trajectories followed
by the robots show similar properties such that equivalent
drift accumulation can be expected along them. On the
contrary, in scenarios 3 and 4, robots follow trajectories with
very disparate characteristics: they unequally close loops
and individually achieve contrasting estimation accuracies.
In scenarios 3 to 5, the drone takes advantage of its higher
velocity dynamics to regularly meet distant ground robots
and observe their mounted AprilTag markers. The length and
duration of each trajectory is provided in Table I.

Scenario #1 #2 #3 #4 #5
Duration [s] 445 387 304 316 304
Robot A traj. length [m] 229 116 147 182 141
Robot B traj. length [m] 225 141 143 120 178
Robot C traj. length [m] 191 162 202 222 131
Drone traj. length [m] — — 203 215 204

TABLE I: Duration and trajectory length for each sequence and robot

Scenario 1. – This scenario, represented by Figure 5a,
makes the three ground robots explore the full experimental
area. They share the same starting point in the North zone
and the same arrival point in the South area. They follow
very long and ample trajectories without closing any loop
along them, what makes them prone to drift accumulation.
However, there exist multiple inter-robot correspondences
regularly dispatched between their trajectories, and which
allow to close large inter-robot loops. The beginning of
those sequences may be challenging for odometry algorithms
because the North zone provides few features, most of them
belonging to distant structures and exhibiting low parallax.
Furthermore, the reflexivity of the ground results into dif-
ficult lighting conditions for robot C at the very beginning
of the sequence. For each robot, the goal of this scenario is
to rely on the large inter-robot loop closures induced by the
inter-robot correspondences to mitigate their drift.



(a) Trajectories of scenario 1 (b) Trajectories of scenario 2

(c) Trajectories of scenario 3 (d) Trajectories of scenario 4 (e) Trajectories of scenario 5

Fig. 5: Ground-truth trajectories of the robots in all the scenarios for robots A, B and C, and the drone, which are respectively colored in red, green,
blue and orange. The numbered markers along the trajectories indicate the simultaneous localizations of the robots.

Scenario 2. – This scenario, pictured by Figure 5b, is
similar to the first one, with the difference that it only
covers the South part and makes robots start from distinct
locations and come back to their starting point. That aside,
each robot covers a significant portion of the South area
without closing any loop. Though they mostly navigate close
to well-textured surfaces, they occasionally cross empty areas
with fewer features and prone to drift accumulation. This is
especially the case of robot A near the middle of its trajec-
tory. Multiple inter-robot direct and indirect correspondences
are dispatched along the trajectories. For each robot, the
objective is similar to the first scenario.

Scenario 3. – This scenario involves the three ground
robots and the drone and their trajectories are displayed
in Figure 5c. The first two scenarios were designed in
such a way that there were no glaring disparities between
the properties of the trajectories and that the inter-robot
correspondences are evenly distributed among the robots. On
the contrary, the third scenario builds on asymmetries. First,
robots A and C explore distinct non-overlapping areas and
never meet, nor do they share inter-robot correspondences.
Robot C also closes more loops than robot A, from which
ones it may benefit to estimate its trajectory more accurately.
As for robot B, it covers the whole area and meets both
other robots. Finally, the drone successively meets all the
ground robots. While robot C is not expected to gain much
estimation accuracy from its interactions with the other
robots, it may bring valuable information to robot B, which
may then act as a torchbearer to robot A.

Scenario 4. – Similarly to scenario 3, this scenario, de-
scribed by Figure 5d, explores how to handle and take advan-

tage on information disparity between the robots. Robot A
continuously explores the very same restricted zone. Hence,
it closes several loops and may achieve high estimation
accuracy. Reversely, robots B and C browse the full South
area and periodically meet each other. The drone alternately
meets robots B and C, which may result in additional
indirect constraints between their trajectories. Furthermore,
and overall, robots B and C regularly cross the zone of robot
A and accumulate several inter-robot correspondences with
it, which then induce informative inter-robot loop closures
and constraint large portions of their trajectories. The goal
of this scenario for robots B and C is to take advantage on
the reliable trajectory estimates of robot A to enhance the
accuracy of their own trajectory estimates.

Scenario 5. – In this last scenario, depicted in Figure 5e,
all the robots explore the whole South area of the hangar.
However, as opposed to all previous scenarios, they never
meet each other, nor do they close loops along their own
trajectory. Hence, their only means to fuse information is to
rely on spotted inter-robot correspondences. Many of them
are dispatched since all robots mostly follow each other to
visit the same areas in a delayed fashion. This scenario thus
aims at assessing how successfully the robots can merge
information without any direct inter-robot correspondences.

III. ROBOTIC PLATFORMS AND MULTI-ROBOT SETUP

The used robotic platforms are displayed in Figure 4. Each
ground robot is a WifibotTM, and the drone is a DJI-M100TM.
All of them are equipped with a stereo camera rig and
an IMU. The stereo-rig is composed of two identical IDS
UL124xLE monochrome cameras with 4 mm focal lenses
and a baseline of 26 cm with enabled auto-shutter. The used



resolution is 640×512 pixels with a frame rate of 20 images
per seconds. On the ground robots, the IMU is a low-cost
MPU-9250TM, while we use the IMU integrated in the drone.
Robots were connected together using the 5 GHz band of
a WiFi router (TP-Link Archer-C7). Clock synchronization
was performed by using a common Network Time Protocol
(NTP) reference. In each scenario, all individual sequences
were acquired simultaneously by controlling the robots man-
ually, while data was recorded on each platform and triggered
by a central ground station over the network, using the ROS
[33] middleware to directly collect data as .bag files.

We outfitted robots B and C with mounted AprilTag
markers [1] as shown by Figure 4a. Both robots have one
AprilTag marker facing backwards to be observed by the
other ground robots, and one marker facing upwards to be
observed by the drone. Each AprilTag marker is a QR-code
tag which can be detected in undistorted images. Knowing
the tag size, one can estimate the relative pose T̂CT, between
the observer camera frame C and the tag frame T . This
allows to get direct inter-robot measurements at meeting
points: it could be used as additional constraints between the
trajectories of the robots directly or as ground-truth for more
advanced methods. An extensive study of the uncertainty
associated to AprilTag observations was carried out in [34].

IV. GROUND-TRUTH TRAJECTORIES

Computing the ground-truth trajectories is a critical and
delicate point to be able to benchmark odometry and SLAM
algorithms on the provided sequences. One general solu-
tion is to use specific motion capture sensors during the
acquisition of the sequences. This approach was adopted
in the EuRoC dataset [22]: a Leica Nova MS50 multi-
station3 and a Vicon motion capture system4 were used to
respectively capture the positions and the poses of the drones.
However, proceeding this way is limited when it comes to
acquiring the ground-truth positions and poses of multiple
robots running through a large area. Instead, we used the
Structure-From-Motion software Colmap [35] to build an
up-to-scale reconstruction5 of the environment and extract
a reliable trajectory from it. For each scenario, Colmap
performed an exhaustive matching, which involves extracting
and matching SIFT features [36] between all images to
find loop closures, and then perform a bundle adjustment
optimization to estimate the 3D structure of the environment
and the pose of each camera frame. In Table II, we provide
the Colmap reconstruction statistics for each scenario and
which allow to assess their reliability. Such statistics include
the number of used images, the number of estimated 3D
points, the average track length for each point (i.e. number
of observer keyframes) and the average re-projection error.

3https://leica-geosystems.com/products/total-stations/multistation/leica-
nova-ms60

4https://www.vicon.com/hardware/cameras/
5Unfortunately, Colmap does not currently explicitly allow to specify

hard baseline constraints between the stereo cameras to perform a stereo
reconstruction with an unambiguous scale factor.

The mean re-projection error is around 0.5 pixels for each
reconstruction, what suggests the reconstruction is reliable.

Scenario #1 #2 #3 #4 #5
Nb. of used images 2478 2330 2442 2534 2448
Nb. of 3D points 295284 474593 323766 314173 309865
Mean tracking length 8.830 9.706 10.555 12.217 11.528
Mean reproj. err. (px) 0.573 0.520 0.549 0.604 0.577

TABLE II: Statistics on Colmap reconstructions

Finally, the reconstruction was scaled using the detections
of the AprilTag markers of the AprilCubes. For each ob-
servation z of a tag Tz from a camera Cz , a relative
position Cz t̂CzTz

and relative orientation R̂CzTz
∈ SO3 can

be derived. Hence, given a set Z of AprilTag observations,
the scale estimation can be formulated as an optimization
problem whose variables Θ include the scale factor s, the
orientation matrix RWT and the position WpT of each
observed tag where W denotes the world frame:

Θ∗ = arg min
Θ

{∑
z∈Z

ρ
(
‖ξzR‖2 + ‖ξzt ‖2

)}
(1)

with

{
ξzR , logSO3

(
R>WCz

·RWTz
· R̂>CzTz

)∨
ξzt , s ·R>WCz

(
W tWTz − WtWCz

)
− Cz t̂CzTz

where ρ denotes the Huber loss function, logSO3
denotes

the logarithm map from SO3 to its Lie algebra so3 and the
vee operator maps from so3 to R3. Relative pose constraints
between the tags belonging to the same cubes were enforced
with additional heavily weighted relative pose factors.

V. SINGLE-ROBOT PERFORMANCES

In the perspective of multi-robot evaluation, we studied the
properties and the difficulties inherent to the trajectories by
assessing how each robot performs individually in estimating
its own trajectory with a monocular, a visual-inertial and a
stereo-visual setup. For that purpose, we used three state-of-
the-art SLAM algorithms. For the monocular case, we used
ORB-SLAM [3] which is a keyframe-based SLAM algorithm
which employs ORB [37] features for tracking and loop
closure detection. For the visual-inertial case, we used Vins-
Mono [4] which combines a tightly-coupled VI estimator,
a loop detection module based on BRIEF [38] features
and 4DoF pose-graph optimization for global consistency.
Finally, for the stereo-visual case, we used the stereo-only
extension of Vins-Mono introduced in the framework Vins-
Fusion. Terrestrial sequences can be more challenging for
tightly-coupled visual-inertial odometry since the IMU is not
excited in all directions, while robots may furthermore be
subjected to significant vibrations and movements through
leaps. The odometric drift may also result from locally
difficult illumination conditions or from the crossing of less
textured areas. To cope with this last point, we increased
the number of tracked features up to 300 with a minimum
distance of 20 pixels in Vins-Mono and Vins-Fusion.

Performances were evaluated using the RPG Trajectory
Evaluation toolbox [39] which first performs a Sim3 align-
ment of the estimated trajectory to the groundtruth which



Translation Error [m] Scale Factor Error
Robot A B C D A B C D

Scenario 1
ORB-SLAM 1.043 1.512 2.135 — — — — —
Vins-Mono 2.617 2.382 2.314 — 0.091 0.050 0.086 —
Vins-Fusion 0.970 1.244 0.704 — 0.095 0.071 0.067 —

Scenario 2
ORB-SLAM 0.760 1.851 0.516 — — — — —
Vins-Mono 1.510 1.998 2.305 — 0.215 0.065 0.059 —
Vins-Fusion 0.354 0.867 0.299 — 0.016 0.033 0.014 —

Scenario 3
ORB-SLAM 0.682 0.096 0.417 0.163 — — — —
Vins-Mono 3.743 1.306 0.969 0.439 0.059 0.055 0.059 0.015
Vins-Fusion 0.945 0.508 0.144 0.259 0.001 0.011 0.004 0.001

Scenario 4
ORB-SLAM 0.320 0.967 1.323 0.051 — — — —
Vins-Mono 0.761 1.476 2.482 0.147 0.126 0.209 0.024 0.017
Vins-Fusion 0.164 0.260 0.472 0.122 0.001 0.004 0.014 0.004

Scenario 5
ORB-SLAM 0.086 0.093 2.405 0.062 — — — —
Vins-Mono 3.338 1.440 1.422 0.254 0.065 0.083 0.132 0.008
Vins-Fusion 0.175 0.360 0.124 0.559 0.002 0.019 0.005 0.026

(a) Absolute Translation Errors

Relative Error 5m Relative Error 10m
Robot A B C D A B C D

Scenario 1
ORB-SLAM 1.630 2.872 2.537 — 1.458 2.245 2.668 —
Vins-Mono 0.851 0.881 1.278 — 1.680 1.422 2.119 —
Vins-Fusion 0.151 0.162 0.147 — 0.245 0.342 0.718 —

Scenario 2
ORB-SLAM 0.839 1.748 0.634 — 1.239 1.381 0.446 —
Vins-Mono 0.907 0.934 0.731 — 1.862 1.614 1.712 —
Vins-Fusion 0.146 0.206 0.165 — 0.246 0.419 0.266 —

Scenario 3
ORB-SLAM 1.266 0.303 0.700 3.183 1.108 0.313 0.709 3.401
Vins-Mono 0.686 0.609 0.791 0.149 1.389 1.056 1.108 0.227
Vins-Fusion 0.292 0.181 0.153 0.127 0.512 0.323 0.254 0.183

Scenario 4
ORB-SLAM 0.510 1.034 1.778 2.539 0.630 0.831 1.575 3.360
Vins-Mono 0.831 0.778 1.049 0.126 1.363 1.059 1.584 0.173
Vins-Fusion 0.185 0.107 0.169 0.125 0.268 0.195 0.295 0.173

Scenario 5
ORB-SLAM 0.708 0.593 1.903 4.210 0.335 0.515 1.966 2.966
Vins-Mono 1.065 0.765 0.474 0.134 1.703 1.241 0.794 0.207
Vins-Fusion 0.133 0.145 0.085 0.158 0.231 0.270 0.139 0.242

(b) Relative Translation Errors

TABLE III: Evaluation of single-robot SLAM algorithms

minimizes the translation errors between the temporally
matched frames. Translation errors and the scale factor error
(evaluated as the scale correction induced by the above
mentionned Sim3 alignment) are reported in Table IIIa.

VI. DATASET SPECIFICATIONS AND DATA FORMAT

A. Camera-IMU and AprilTag markers calibration
On each robot, the cameras bench was spatially and

temporally calibrated using the Kalibr toolbox [40]. This
step allows to estimate the camera intrinsic coefficients k,
its distortion coefficients d and the camera-to-IMU extrinsic
transformation TCB ∈ SE3 – where C denotes the camera
frame and B is the body frame. We need the distortion coeffi-
cients to map any 3D point to its 2D distorted projection onto
the image plane using the classical pinhole camera model.
The camera-to-IMU extrinsic transformation relates the in-
ertial measurements to the observed visual movement. The
camera intrinsic coefficients k = [fx, fy, cx, cy]> include the
focal lengths fx, fy and the coordinates cx, cy of the principal
point. The provided distortion coefficients are those of the
equidistant distortion model [41] i.e. d = [k1, k2, k3, k4]>.
Finally, the temporal calibration estimates the time delay
tcam→imu between the IMU and camera clocks timu = tcam +
tcam→imu. Figure 6 provides a view of the estimated frames
for the camera, IMU and AprilTag frames for each robot.

(a) Robot A (b) Robot B (c) Robot C (d) Drone

Fig. 6: Reference frames attached to the robots

For each mounted AprilTag marker T , we estimated the
pose TCT w.r.t. the frame C of one camera of the robot by
using one large AprilGrid calibration target which was simul-
taneously observed by the robot and one moving calibrated
camera which also observed the mounted AprilTag markers.
We provide the pose and id of the used AprilTags. All the
used tags belong to the 36h11 family (see [1])

B. Sensor acquisitions

The sensor acquisitions are provided as ROS .bag files.
For each robot in each sequence, we splitted the acquisitions
into two .bag files. The first one holds visual data from
camera cam100 and the IMU measurements; it may be used
for monocular and visual-inertial algorithms. The second
.bag file holds the complementary visual data from the
second camera cam101; it may be played along with the
first one for stereo(-inertial) settings.
C. Ground-truth trajectories

The ground-truth trajectories are provided as text files,
organized in the following way:

# timestamp tx ty tz qx qy qz qw

1566395013.9421284199 -1.23891 -19.98109 0.26091 -0.27863 -0.65316 -0.27460 0.64834

1566395014.4422287941 -1.23891 -19.98107 0.26092 -0.27864 -0.65314 -0.27461 0.64835

1566395014.9421727657 -1.23892 -19.98108 0.26092 -0.27862 -0.65315 -0.27460 0.64836

The poses are reported in the form TWB = [WtWB, qWB]>

where qWB denotes the orientation quaternion, W is the
world frame and B is the body frame.

VII. CONCLUSION

In this paper, we presented a new dataset intended for
testing multi-robot stereo-visual and inertial SLAM algo-
rithms with ground and aerial robots. This dataset is made
publicly available and is intended to fill a void of benchmark
data in multi-robot visual SLAM evaluation. Five scenarios
were acquired with sequences of various difficulty degrees,
and which aim at rendering some of the opportunities and
challenges brought by multi-robot SLAM. As perspectives,
we plan to augment this dataset with the measurements
acquired by the Intel R© RealsenseTM D435i sensor which
also outfitted all the robots, and which consists in a stereo
RGB-Depth camera bench associated with another embedded
Inertial Measurement Unit.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Direction Générale de
l’Armement (DGA). We thank Martial Sanfourche, Julien
Moras, Julien Marzat and Guillaume Hardouin for their
involvement in the acquisition of the sequences.



REFERENCES

[1] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in
2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 3400–3407.

[2] J.-E. Deschaud, “Imls-slam: scan-to-model matching based on 3d
data,” in 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2018, pp. 2480–2485.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a
versatile and accurate monocular slam system,” IEEE transactions on
robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[4] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[5] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in IROS 2019
Workshop on Visual-Inertial Navigation: Challenges and Applications,
Macau, China, 2019.

[6] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[7] L. Riazuelo, J. Civera, and J. M. Montiel, “C2tam: A cloud framework
for cooperative tracking and mapping,” Robotics and Autonomous
Systems, vol. 62, no. 4, pp. 401–413, 2014.

[8] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collabora-
tive monocular slam with multiple micro aerial vehicles,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2013, pp. 3962–3970.

[9] P. Schmuck and M. Chli, “Multi-uav collaborative monocular slam,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 3863–3870.

[10] M. Karrer, P. Schmuck, and M. Chli, “Cvi-slamcollaborative visual-
inertial slam,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2762–2769, 2018.

[11] A. Cunningham, M. Paluri, and F. Dellaert, “Ddf-sam: Fully dis-
tributed slam using constrained factor graphs,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2010, pp. 3025–3030.

[12] M. J. Schuster, C. Brand, H. Hirschmüller, M. Suppa, and M. Beetz,
“Multi-robot 6d graph slam connecting decoupled local reference
filters,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 5093–5100.

[13] K. Sartipi, R. C. DuToit, C. B. Cobar, and S. I. Roumeliotis, “De-
centralized visual-inertial localization and mapping on mobile devices
for augmented reality,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 2145–2152.

[14] R. Dubois, A. Eudes, and V. Frmont, “On data sharing strategy for de-
centralized collaborative visual-inertial simultaneous localization and
mapping,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 2123–2130.

[15] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient
decentralized visual slam,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 2466–2473.

[16] M. Giamou, K. Khosoussi, and J. P. How, “Talk resource-efficiently
to me: Optimal communication planning for distributed loop closure
detection,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1–9.

[17] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and
F. Dellaert, “Distributed trajectory estimation with privacy and com-
munication constraints: a two-stage distributed gauss-seidel approach,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2016, pp. 5261–5268.

[18] T. Cieslewski, S. Lynen, M. Dymczyk, S. Magnenat, and R. Siegwart,
“Map api-scalable decentralized map building for robots,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 6241–6247.

[19] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[20] A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and S. Karaman,
“The blackbird dataset: A large-scale dataset for uav perception in
aggressive flight,” arXiv preprint arXiv:1810.01987, 2018.

[21] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor,
and S. Scherer, “Tartanair: A dataset to push the limits of visual slam,”
arXiv preprint arXiv:2003.14338, 2020.

[22] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp.
1157–1163, 2016.

[23] M. Ferrera, V. Creuze, J. Moras, and P. Trouvé-Peloux, “Aqualoc:
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