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a b s t r a c t

Among the various applications for fleets of UAVs, searching and tracking mobile targets remains
a challenging task. In this paper, a distributed set-membership estimation and control scheme is
presented. This scheme relies on the description of uncertainty and noise as bounded processes.
Constraints on the field of view, as well as the presence of false targets, are taken into account. Each
UAV maintains several set estimates: one for each detected and identified true target, one for detected
but not yet identified targets, and one for not yet detected targets, which is also the subset of the state
space still to be explored. These sets are updated by each UAV using the information coming from its
sensors as well as received from its neighbors.

A distributed set-membership model predictive control approach is considered to compute the
trajectories of UAVs. The control input minimizing a measure of the volume of the set-membership
estimates predicted h-step ahead is then evaluated. Simulations of scenarios including the presence of
false targets illustrate the ability of the proposed approach to efficiently search and track an unknown
number of moving targets within some delimited search area.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the various applications of fleets of UAVs, search-
ng and tracking mobile targets in some geographic zone re-
ains challenging. Numerous approaches have been developed

n this context, see, e.g., Khan, Rinner, and Cavallaro (2018) and
obin and Lacroix (2016) and the references therein. Most of the
echniques of the state-of-the-art rely on a cooperative design
f a search strategy and a distributed estimation of the target
ocations.

In this paper, we consider a fleet of UAVs, each of which being
quipped with a sensor able to detect and localize targets from
bservations of a subset of the search area. When a target is
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detected, we assume that its identity is revealed only if some
observation conditions are satisfied. This situation is typically
encountered with cameras: the identity of a target is available
only when it is observed from a satisfying point-of-view. We
also account for the presence of moving false targets. These false
targets may be erroneously identified as true targets and are dis-
tinguished from true targets only when observed under specific
conditions. For each detected (true and false) target, we assume
that some noisy measurement of its state is available. The noise
corrupting the state observation is assumed to be bounded with
known bounds, which may depend on the observation conditions.

We propose a robust distributed set-membership estimator
run by each UAV. This estimator determines (i) set estimates
containing the state of each identified target, (ii) a set estimate
containing the states of detected but not yet identified (true and
false) targets, and (iii) a set possibly containing targets remaining
o be detected (the part of the search area still to be explored).
he estimator is able to process measurements associated to
etected but unidentified targets, prior to their identification
t later time instants. The set estimator alternates predictions
nd corrections using measurements from the sensor of each
AV and measurements received during communications with its
eighbors. The control inputs for each UAV are designed using
model predictive control (MPC) approach adapted to the set-
embership estimation context, which aims at minimizing the
olume of the set estimates. The MPC approach accounts for
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x
t

he impact of future measurements on the set estimates and
nfers future information communicated by neighbors. A limited
ommunication range is also considered.
In summary, the set-membership estimator proposed in this

aper enables the detection and tracking of moving targets in
resence of moving decoys. Issues related to false detection
nd misidentification of false targets, as well as potential non-
dentification of true targets are considered. The distinction
etween true and false targets relies on some deterministic ob-
ervation conditions generalizing that introduced in Ibenthal,
eyer, Kieffer and Piet-Lahanier (2020) and Ibenthal, Meyer,
iet-Lahanier and Kieffer (2020). The distributed MPC approach
ntroduced here accounts for limited and possibly delayed com-
unications between UAVs, extending previous results in Iben-

hal, Meyer, Kieffer et al. (2020) and Reboul, Kieffer, Piet-Lahanier,
nd Reynaud (2019). Finally, a better management of set esti-
ates leads to a more efficient and computationally less de-
anding control law design compared to that of Ibenthal, Meyer,
ieffer et al. (2020).
Some related work in the context of cooperative search, ac-

uisition, and track (CSAT) is provided in Section 2. Section 3
ntroduces notations and describes the way the CSAT problem is
ast into a distributed set-membership estimation problem from
ounded-error measurements. The evolution of set estimates for
given UAV and the way measurements are taken into account

s described in Section 4. Section 5 introduces the considered
istributed MPC approach, focusing on the various simplifications
equired to get a manageable complexity. Extended simulations
re described in Section 6, before drawing some conclusions in
ection 7.

. Related work

In many papers, regarding CSAT problems, the estimation of
arget locations involves a probability map of the search zone.
his map, shared between neighboring agents, represents the
onfidence of target locations (Bertuccelli & How, 2005; Yang,
olycarpou, & Minai, 2007). The prediction and update of the map
re performed by recursive Bayesian filtering. UAV displacements
re then designed to better update the map, as in Sun, Baek,
nd Pack (2014). In Khodayi-mehr, Kantaros, and Zavlanos (2019)
nd Zhang, Song, Huang, and Zhang (2017), communication con-
traints and limited fields of view (FoV) of the embedded sensors
re taken into account. More recently, for effective tracking, a
arget assignment strategy has been proposed in Baek and York
2020). The assignment is updated with other cooperating agents
sing consensus decision-making.
Efficient search requires the design of control schemes to

ove the cooperative UAVs in order to optimize some crite-
ion quantifying the performance of the search, e.g., minimizing
ncertainty of estimated target locations. A review of
ath-constrained approaches to design sets of trajectories is pre-
ented in Raap, Preuß, and Meyer-Nieberg (2019). These ap-
roaches rely on strong a priori knowledge on the search zone and
n targets. Distributed optimal control strategies are proposed
n Foraker, Royset, and Kaminer (2016a, 2016b), while game-
heoretic techniques are considered in Li and Duan (2017). MPC
s a well-adapted framework for designing controls optimizing a
riterion while satisfying potential constraints which makes it a
ood candidate for defining search and track strategies as in Far-
ani, Sun, and Pack (2015) or Tokekar, Isler, and Franchi (2014).
etter account of uncertainty in MPC is presented in Kouvaritakis
nd Cannon (2015).
Nevertheless, a priori probability density functions (pdfs) de-

cribing the process and measurement noises may not be always
vailable. An alternative to the probabilistic description was pro-
osed by Drevelle, Jaulin, and Zerr (2013) and Gu, He, and Han
2

(2015). Instead of representing the target state estimate by a
single point estimate, it was suggested to use a set-membership
description of uncertainties. This description only assumes that
a bounded support of the probability density function (pdf) of
the measurement noise is available. Set estimates containing all
possible states for a target are then derived, see Reboul et al.
(2019) and Reynaud, Kieffer, Piet-Lahanier, and Reboul (2018).
This type of bounded noise has been considered in the context
of MPC, e.g., in Bemporad and Garulli (2000), Canale, Fagiano,
and Signorile (2014), and Ji and Driggs-Campbell (2020), and
considered in a CSAT context in Ibenthal, Meyer, Kieffer et al.
(2020), to the best of our knowledge.

Additional errors affecting CSAT may come from the fact that
detected objects may not necessarily correspond to targets. Sev-
eral approaches have been considered to model the uncertainty
on the decision of considering a detected object as a target. In Bar-
Shalom, Willett, and Tian (2011), Dames (2017) and Li and Duan
(2017), a false alarm probability is introduced to account for
the imperfect processing of the information acquired by sensors.
Another possibility consists in considering the presence of decoys,
i.e., objects that can be considered as a true target when seen
from a specific point of view. For example, Flint, Fernández, and
Polycarpou (2004) introduce a Bayesian process for cooperative
search when the sensors embedded on the UAVs are not able to
determine whether a detected target is real or not. In He, Shin,
and Tsourdos (2017), the random finite set probability density
is used to model both target-generated observation and false
alarms. An interactive multi-model filter is then used to estimate
the modes of the detected objects. Detection or identification
can be linked to some additional observation conditions not only
depending on the field of view but also on the relative orien-
tation of robot and target. A cooperative multirobot observation
of multiple moving targets problem is considered in Pan et al.
(2017) where the detection of a target depends on the target
heading angle. There are less works addressing the CSAT prob-
lems considering that the target identity is revealed when some
additional observation conditions are satisfied. Some results have
been obtained in Blasch and Kahler (2005), where simultane-
ous target tracking and identification from electro-optical and
infrared sensors is considered. In Ibenthal, Meyer, Kieffer et al.
(2020) the presence of static decoys is taken into account, and
the bounded-error approach introduced in Reynaud et al. (2018)
is adapted to design a distributed set-membership estimator able
to discriminate decoys from true targets.

3. Problem formulation

This paper addresses the problem of searching and tracking
targets which can be identified based on some of their features,
e.g., license plates for cars, face characteristics for humans. One
assumes that a unique identifier may be associated to each target
and that the set J t of target identifiers is known a priori.

A fleet of Nu UAVs searches and tracks an unknown number
Nt ⩽

⏐⏐J t
⏐⏐ of targets moving within a limited area of interest.

Furthermore, this area of interest also contains possibly moving
decoys, called false targets hereafter. The set J f of false target
identifiers is unknown but assumed to be such that J t

∩ J f
= ∅.

Table 1 provides the main notations used in this paper.

.1. UAV and target states

At time t = kT , where T is the discretization time period, let
u
i,k ∈ Rnu be the state vector of UAV i, xtj,k ∈ Rnt the state vector of
arget j ∈ J t, and xf ∈ Rnt the state vector of false target ℓ ∈ J f.
ℓ,k



J. Ibenthal, M. Kieffer, L. Meyer et al. Automatica 132 (2021) 109809

T
U

s
s
a

a
n
t
n
t

f

d

x

able 1
sed variable and their definitions.
Variable Definition

Nu , Nt , Nf Number of UAVs, true, and false targets
nu , nt State vector size for UAVs and true targets
xui,k State vector of UAV i at time k
xtj,k , xfℓ,k State vector of true j and false target ℓ at time k
fuk , ftk Dynamical model of UAVs and targets
vj,k ∈ [vk] True target state perturbations
ui,k ∈ U UAV i control input at time k
X0 Initial set of true and false target states
Fi(xui,k) ⊂ Rnt Observed subset by UAV i

hi
(
xui,k, x

t
j,k

)
Observation equation of UAV i at time k

yIi,j,k Measurement of the identified true target j ∈ DI
i,k

yUi,m,k Measurement of the unidentified true target m ∈ DU
i,k

such that j = π−1
i,k (m) ∈ J t

wi,j,k ∈
[
wi,k

]
Observation noise

xtj,k ∈ Fi
(
xui,k

)
Detection condition for true targets

xfℓ,k ∈ Fi
(
xui,k

)
Detection condition for false targets

g t
j

(
xui,k, x

t
j,k

)
⩾ 0 Identifiability condition for true targets

g f
ℓ

(
xui,k, x

f
ℓ,k

)
⩾ 0 Identifiability condition for false targets

qfℓ
(
xui,k, x

f
ℓ,k

)
⩾ 0 Confusion condition for false targets

πi,k (j) , πi,k (ℓ) Unknown mapping from J t
∪ J f to N

Li,k List of known identified targets by UAV i at time k
DI

i,k Set of detected and identified targets and
misidentified false targets by UAV i at time k

DU
i,k Set of integers referring to true and false targets

that were detected but not identified
Ni,k Set of neighbors connected to UAVi at time k
Xi,j,k Set estimate for target j by UAV i at time k
XU

i,k Set estimate for unidentified targets by UAV i at time k
Xi,k List of set estimates by UAV i at time k
Xi,k Set still to be explored
φ (A) Measure of set A
Φk Average estimation uncertainty at time k

The evolution with time of the state of UAVs and true targets is
modeled as

xui,k+1 = fuk
(
xui,k,ui,k

)
, (1)

xtj,k+1 = ftk
(
xtj,k, vj,k

)
, (2)

where ui,k is the control input for UAV i, to be chosen in a
et U of admissible control inputs; vj,k is an unknown target
tate perturbation belonging to the known box [vk]. No particular
ssumption is considered about the evolution of xfℓ,k: false targets

may be static or moving. The UAVs search and track targets only
within the area of interest X0 ⊂ Rnt .

3.2. Measurements

All UAVs are equipped with sensors able to observe a subset
of the area of interest X0. A true or false target is always detected
by UAV i if the target state belongs to the observed subset (Field
of View, FoV) Fi(xui,k) ⊂ X0 ⊂ Rnt , i.e., if xtj,k ∈ Fi(xui,k) or x

f
ℓ,k ∈

Fi(xui,k).
When a true target is detected, two cases may occur depend-

ing on an additional identification condition g t. If condition g t is
satisfied, then the target is recognized as a true target and its
unique identifier j ∈ J t is obtained. If the condition g t is not
satisfied, then no information on the target’s identity is available:
the UAV does not know if the detected object is a true or a false
target. We assume that misidentification does not occur for true
targets.
3

When a false target ℓ ∈ J f is detected and an identification
condition g f holds, an identifier j is obtained, which may not nec-
essarily be equal to ℓ. A misidentification may occur depending on
an additional condition qf. If qf is satisfied, the obtained identifier
is J (ℓ) ∈ J t, where J is some deterministic confusion function, i.e.,
false target is always confused with the same true target. If qf is
ot satisfied, then the obtained identifier is ℓ ∈ J f, which allows
he UAV to determine that a false target is detected. When g f is
ot satisfied, the UAV does not know if the detected target is a
rue or a false target and does not have access to its identifier.

More formally, at time k, UAV i obtains two lists DI
i,k, and DU

i,k
rom the information gathered in Fi(xui,k).

DI
i,k ⊂ J t contains the identifiers of all true targets that are

etected and identified at time k, i.e.,
t
j,k ∈ Fi

(
xui,k

)
∧ g t

j

(
xui,k, x

t
j,k

)
⩾ 0 ⇒ j ∈ DI

i,k, (3)

where g t
j is the identification condition for the true target j. DI

i,k
also contains the identifiers of all false targets that were detected
and misidentified, and so confused with a target j ∈ J t at time k,
i.e.,

xfℓ,k ∈ Fi
(
xui,k

)
∧ g f

ℓ

(
xui,k, x

f
ℓ,k

)
⩾ 0

∧ qfℓ
(
xui,k, x

f
ℓ,k

)
⩾ 0 ⇒ J (ℓ) ∈ DI

i,k, (4)

where g f
ℓ and qfℓ are the identification and misidentification con-

ditions for the false target ℓ. An identifier j may appear multiple
times in DI

i,k due to the potential presence of a true target and
one or more false targets confused with that true target in the
FoV of the UAV.

DU
i,k is a list of integers referring to true and false targets

that are detected but not identified (conditions g t and g f are not
satisfied). For a true target j ∈ J t

xtj,k ∈ Fi
(
xui,k

)
∧ g t

j

(
xui,k, x

t
j,k

)
< 0 ⇒ πi,k (j) ∈ DU

i,k,

where πi,k maps J t
∪ J f to N. For a false target ℓ ∈ J f

xfℓ,k ∈ Fi
(
xui,k

)
∧ g f

ℓ

(
xui,k, x

f
ℓ,k

)
< 0 ⇒ πi,k (ℓ) ∈ DU

i,k.

The function πi,k is used to assign an integer to the index of
unidentified targets in the order they are processed DU

i,k =

{1, 2, 3, . . .}. For example DU
i,k = {1, 2, 3} indicates that three

unidentified targets are detected at time k by UAV i.
The UAVs are not aware of the structure of g t

j , g
f
ℓ, and qfℓ. The

condition g t
j (x

u
i,k, x

t
j,k) ⩾ 0 may represent a situation where the

UAV i identifies the true target since it is observed from some
specific point of view belonging, for example, to some polyhedral
cone whose apex is xtj,k. A similar structure is assumed for the
identification condition g f

ℓ for false targets. The misidentification
condition qfℓ(x

u
i,k, x

f
ℓ,k) ⩾ 0 is satisfied if, for example, UAV i

does not belong to some polyhedral cone whose apex is xfℓ,k.
Similar identification conditions have been proposed in Pan et al.
(2017). Figs. 1 and 2 show the measurement process and the
information obtained depending on the fulfilled conditions. Fig. 3
illustrates different scenarios when a target is detected. The red
UAV detects and identifies the false target ℓ1 as xfℓ1,k ∈ Fi(xui,k)
and g f

ℓ1
(xui,k, x

f
ℓ1,k) ⩾ 0. Moreover, target ℓ1 is correctly identified

as a false target as qfℓ1 (x
u
i,k, x

f
ℓ1,k) < 0. The green UAV detects

and identifies the true target j1 correctly as xtj1,k ∈ Fi(xui,k) and
g t
j1
(xui,k, x

t
j1,k) ⩾ 0. The blue UAV detects the true target j2 as

xtj2,k ∈ Fi(xui,k) but it is not identified since g t
j2
(xui,k, x

t
j2,k) < 0.

Finally, the blue UAV detects and identifies the false target ℓ2 as
xfℓ2,k ∈ Fi(xui,k) and g f

ℓ2
(xui,k, x

f
ℓ2,k) ⩾ 0, but it is confused with a

true target since qf (xu , xf ) ⩾ 0.
ℓ2 i,k ℓ2,k
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Fig. 1. Measurement process for true targets: the figure shows the obtained
information on true targets depending on the observation conditions and
identification condition g t

j .

Fig. 2. Measurement process for false targets: the figure shows the obtained
information on false targets depending on the observation conditions, the
identification condition g f

ℓ , and the misidentification condition qfℓ .

Fig. 3. Projection of the 2D plane (x1, x2) of the area of interest, of the state of
rue targets xti,k (filled circles) and false targets xfℓ,k (empty circles). The subsets
defined by g t

j (x
u
i,k, x

t
j,k) ⩾ 0 and g f

ℓ(x
u
i,k, x

f
ℓ,k) ⩾ 0 where targets can be identified

re illustrated by the projection of the conic subspace in light gray. The subset
efined by qfℓ(x

u
i,k, x

f
ℓ,k) < 0 where false targets are identified as false targets is

epresented by the projection of the conic subspace in dark gray. The boundary
f the FoV is in dashed-dotted magenta.

A noisy observation of the state xtj,k is obtained for each
dentified true target j ∈ DI

i,k as

I
i,j,k = hi

(
xui,k, x

t
j,k

)
+ wi,j,k, (5)

nd for each unidentified true target m ∈ DU
i,k such that j =

−1
i,k (m) ∈ J t, as

U
i,m,k = hi

(
xui,k, x

t
j,k

)
+ wi,j,k, (6)

here hi is the observation equation of UAV i andwi,j,k represents
ome measurement noise, bounded in some box

[
w

]
. Usually
i,j,k

4

he size of this box varies according to environmental and mea-
urement conditions and is unknown (Cortes, Martinez, Karatas,
Bullo, 2004; Li & Duan, 2017). One assumes, however, that a

nown box
[
wi,k

]
such that

[
wi,j,k

]
⊂

[
wi,k

]
can be obtained,

considering, e.g., worst-case measurement conditions.
A noisy observation of the state xfℓ,k of false targets ℓ, which

are misidentified, i.e., J (ℓ) ∈ DI
i,k, is obtained as

yIi,J(ℓ),k = hi
(
xui,k, x

f
ℓ,k

)
+ wi,ℓ,k, (7)

and of unidentified false targetsm ∈ DU
i,k such that ℓ = π−1

i,k (m) ∈

J f, as

yUi,m,k = hi
(
xui,k, x

f
ℓ,k

)
+ wi,ℓ,k, (8)

where wi,ℓ,k belongs to some box
[
wi,ℓ,k

]
. One assumes again that

a known box
[
wi,k

]
is available such that

[
wi,ℓ,k

]
⊂

[
wi,k

]
.

As illustrated in Section 4.2 measurements and noise bounds
are used to get set estimates of the target locations. After a first
estimate is obtained from conservative noise bounds, if there is a
known dependency between the noise bounds and the distance to
the target, it may be possible to get more accurate noise bounds.
These refined bounds may then be used to reduce the size of the
set estimate of the target location.

3.3. Communications

Two UAVs exchange information when they are in vicin-
ity. The UAV network is represented by a set of nodes Nu =

{1, 2, . . . ,Nu}. The set of edges of the network Ek ⊂ Nu × Nu
describes the connectivity at time k. An undirected graph Gk =

(Nu, Ek) summarizes the communication topology of the fleet
at time k. Ni,k = {j ∈ Nu|(i, j) ∈ Ek, i ̸= j} is the set of
neighbors connected to UAV i at time k. UAVs i and j exchange
information without error when (i, j) ∈ Ek, and they are unable to
communicate when (i, j) /∈ Ek. The edges of the network at time
k depend on some condition c . One has

c
(
xui,k, x

u
ℓ,k

)
⩾ 0 ⇒ (i, j) ∈ Ek. (9)

3.4. Estimates

Ii,k gathers the information available to UAV i up to time k.
From Ii,k, UAV i is able to evaluate Li,k, the list of indices of true
targets already detected and identified or which presence has
been signaled by an other UAV of the fleet to UAV i. Ii,k is used
to evaluate a list of target set estimates Xi,k =

{
Xi,j,k

}
j∈Li,k

and
XU

i,k. Xi,j,k contains all possible values of the state of the identified
target j that are consistent with the information available to UAV i
at time k. It is possible that Xi,j,k does not contain the actual
values of xtj,k due to misidentification of false targets. XU

i,k contains
the union of all possible values of xtj,k and xfℓ,k of all detected
targets still to be identified. Finally, UAV i also maintains a set
Xi,k containing the possible state values of true targets not yet
detected.

3.5. Estimation uncertainty

Consider UAV i and assume that at time k, XU
i,k and Xi,k are

mpty and that set estimates Xi,j,k are available for all j ∈ J t.
hen, xtj,k ∈ Xi,j,k and the estimation uncertainty for the state
f target j may be defined as φ(Xi,j,k), where φ (X) represents

some measure of the set X. When XU
i,k or Xi,k are not empty, due

to the presence of decoys, one has not necessarily xtj,k ∈ Xi,j,k
nd the estimation uncertainty for the state of target j has to
ccount for XU

i,k and Xi,k (which both may contain xtj,k) and may be
defined as Φ (X ,XU ,X ) = φ(X ∪XU

∪X ). The estimation
j i,k i,k i,k i,j,k i,k i,k
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ncertainty for target j is the measure of the union of the sets
here target j may be.
The target state estimation uncertainty at time k for UAV i

ccounts for all sets in which the targets may be, i.e. ,(
Xi,k,XU

i,k,Xi,k
)

=

φ

⎛⎝⎛⎝ ⋃
Xi,j,k∈Xi,k

Xi,j,k

⎞⎠ ∪ XU
i,k ∪ Xi,k

⎞⎠ . (10)

hen Xi,k = ∅, (10) boils down to Φ(Xi,k,XU
i,k,Xi,k) = φ(XU

i,k ∪

Xi,k). Finally, the average estimation uncertainty among all UAVs
at time k is

Φk =
1
Nu

Nu∑
i=1

Φ
(
Xi,k,XU

i,k,Xi,k
)
. (11)

The aim of this paper is to evaluate a sequence of control
inputs for each UAV so as to minimize the estimation uncertainty
Φk as fast as possible. This requires first to be able to determine
he evolution of the various set estimates managed by UAVs, as
etailed in Section 4. A distributed control design strategy is then
resented in Section 5.

. Evolution of set estimates for a given UAV

This section describes the evolution with time of the sets Li,k,
Xi,k, XU

i,k, and Xi,k managed by a given UAV i. The UAVs evaluate
he set estimates considering a generalization of the nonlinear
ecursive set-membership state estimator introduced in Kieffer,
aulin, and Walter (2002). Similar to the classical Kalman filter, it
lternates prediction and correction steps, the latter being based
n measurements and communication. One has Li,0 = ∅, Xi,0 = ∅,

XU
i,0 = ∅ and Xi,0 = X0 for i = 1, . . . ,Nu for the initialization at
ime k = 0.

.1. Prediction step

UAV i has access to Li,k, Xi,k, XU
i,k, and Xi,k at time k. One is

unable to predict whether UAV i will detect new targets at time
k + 1, thus the predicted list of detected targets is

Li,k+1|k = Li,k, (12)

For each target in Li,k+1|k, one is able to predict the set of
ossible future state values at time k + 1, i.e, the set of all target

state values that are consistent with Xi,j,k, with the dynamics (2),
and the bounded state perturbation

Xi,j,k+1|k =
{
ftk (x, v) | x ∈ Xi,j,k, v ∈ [vk]

}
∩ X0

= ftk
(
Xi,j,k, [vk]

)
∩ X0. (13)

One computes the intersection with X0 since targets are assumed
not to leave the area of interest. The update of the sets XU

i,k+1|k
and Xi,k+1|k is obtained in the same manner since all true targets
volve according to the same dynamics (2), XU

i,k+1|k is evaluated
as

XU
i,k+1|k =

{
ftk (x, v) | x ∈ XU

i,k, v ∈ [vk]
}

∩ X0

= ftk
(
XU

i,k, [vk]
)
∩ X0, (14)

nd Xi,k+1|k as

Xi,k+1|k =
{
ftk (x, v) | x ∈ Xi,k, v ∈ [vk]

}
∩ X0

=
{
ftk

(
Xi,k, [vk]

)}
∩ X0. (15)
5

Fig. 4. Correction from measurement I: set estimates Xi,j,k+1|k (in green) and
Xi,k+1|k (in yellow) before correction from measurement (top). Targets were
etected and identified (a), the set estimates (in green) inside Fi

(
xui,k+1

)
are

1 and S3 . Targets were detected but not identified (b), the set estimate (in
reen) inside Fi

(
xui,k+1

)
is S4 . The set estimate (in cyan) inside Fi

(
xui,k+1

)
is SU

2 .

.2. Correction step from measurements

UAV i obtains measurement yIi,j,k+1 for identified targets j ∈

I
i,k+1 and measurement yUi,m,k+1 for unidentified targets m ∈

DU
i,k+1 after processing the information in Fi

(
xui,k+1

)
at time k+1.

Consequently,

Ii,k+1|k+1 = Ii,k∪
{
DI

i,k+1,
{
yIi,j,k+1

}
j∈DI

i,k+1
,

DU
i,k+1,

{
yUi,m,k+1

}
m∈DU

i,k+1

}
. (16)

4.2.1. Updating the set of identified targets
One has to consider different cases to determine the updated

set Xi,j,k+1|k+1 from Xi,j,k+1|k for an identified target j ∈ Li,k+1|k+1,
where Li,k+1|k+1 = Li,k+1|k ∪ DI

i,k+1.

Accounting for measurements of identified targets
When j ∈ DI

i,k+1, a measurement yIi,j,k+1 is available and four
cases have to be considered.

If Xi,j,k+1|k ∩ Fi(xui,k+1) ̸= ∅, then yIi,j,k+1 may correspond to a
previously detected and identified target j that is observed again.
Under that hypothesis, the set of all state values x consistent
with Xi,j,k+1|k, yIi,j,k+1, the measurement equations (5), and the
measurement noise bound

[
wi,k+1

]
is

S1 =
{
x ∈ Xi,j,k+1|k |

hi
(
xui,k+1, x

)
∈ yIi,j,k+1 −

[
wi,k+1

]}
. (17)

Fig. 4(a) illustrates the case where the set S1 ̸= ∅.
If XU

i,k+1|k ∩ Fi(xui,k+1) ̸= ∅, then yIi,j,k+1 may correspond to the
true target j or to a false target ℓ, such that J (ℓ) = j, which was
only detected at k and (mis-)identified at time k + 1. Under that
hypothesis, the set of all state values x consistent with XU

i,k+1|k,
yIi,j,k+1, the measurement equations (5), and the measurement
noise bound

[
wi,k+1

]
is

S2 =
{
x ∈ XU

i,k+1|k |

hi
(
xui,k+1, x

)
∈ yIi,j,k+1 −

[
wi,k+1

]}
. (18)

Fig. 5(a) illustrates the case where S2 ̸= ∅.
If Xi,k+1|k ∩ Fi(xui,k+1) ̸= ∅, then yIi,j,k+1 may correspond to a

target in Xi,k+1|k ∩ Fi(xui,k+1). This target may either be the true
target j or a misidentified false target ℓ such that J (ℓ) = j.
he set of all state values x consistent with X , yI , the
i,k+1|k i,j,k+1
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Fig. 5. Correction from measurement II: detection of a target inside XU
i,k+1|k (in

yan in the top subfigure): (a) a target is detected and identified as target j
possible mis-identification for a false target), the set estimate (in green) inside
i
(
xui,k+1

)
is S2; (b) the target is detected but not identified, the set estimate

in cyan) inside Fi
(
xui,k+1

)
is SU

1 .

easurement equations (5), and the measurement noise bound
wi,k+1

]
is

3 =
{
x ∈ Xi,k+1|k |

hi
(
xui,k+1, x

)
∈ yIi,j,k+1 −

[
wi,k+1

]}
. (19)

ig. 4(a) illustrates the case where the set S3 ̸= ∅.
Finally, if

Xi,j,k+1|k ∪ XU
i,k+1|k ∪ Xi,k+1|k

)
∩ Fi

(
xui,k+1

)
= ∅,

then the measurement yIi,j,k+1 is necessarily due to a false target
mis-identified with j, since xtj,k+1 is necessarily in Xi,j,k+1|k ∪

XU
i,k+1|k ∪ Xi,k+1|k.

Accounting for measurements of unidentified targets
When j ∈ Li,k+1|k and DU

i,k+1 ̸= ∅, we have to consider the case
hat one of the measurements yUi,m,k+1, m ∈ DU

i,k+1, may be due to
the detection of the true target j. Under that hypothesis, the set of
all state values x consistent with Xi,j,k+1|k, yUi,m,k+1, m ∈ DU

i,k+1, the
measurement equations (6), and the measurement noise bound[
wi,k+1

]
is

S4 =

⋃
m∈DU

i,k+1

{
x ∈ Xi,j,k+1|k |

hi
(
xui,k+1, x

)
∈ yUi,m,k+1 −

[
wi,k+1

]}
. (20)

Fig. 4(b) shows a case where S4 is not empty. S4 leads to sit-
uations where the measurements might be used several times
for the set estimates of different targets. This is illustrated in
Fig. 6(b). The observed target lays inside the intersection of two
set estimates. The measurement has to be considered for both
estimates if the target is not identified.

The sets S1 to S4 account for various hypotheses related to the
obtained measurements which may be due to the true target j
or to a false target misidentified with j. Additionally, one has to
account for the fact that non-detection does not occur and that
all information in Fi(xui,k) has been processed. Therefore, xtj,k+1 /∈

Fi(xui,k+1) \ (S1 ∪ S2 ∪ S3 ∪ S4). Introducing,

S5 = Xi,j,k+1|k \ Fi
(
xui,k+1

)
, (21)

the updated set estimate accounting for all hypotheses, is then

Xi,j,k+1|k+1 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5. (22)

Some of the sets S , . . . , S may be empty.
1 5

6

Fig. 6. Correction from measurement III: detection of a target inside the
intersection of different target set estimates (green and striped green). The target
was detected and identified (a), the set estimate (in green) inside Fi

(
xui,k+1

)
s S1 . The measurement can be linked to target j2 . The target was detected
ut not identified (b), the set estimate (in green) inside Fi

(
xui,k+1

)
is S4 . The

easurement yUi,m,k+1 of state xtj2,k+1 has to be considered for the estimates of
1 and j2 (green and striped green). (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

When j /∈ Li,k+1|k and j ∈ DI
i,k+1, the true target j or a false

arget misidentified with j is detected and identified for the first
ime. The set estimate (22) in that case boils down to

i,j,k+1|k+1 = S2 ∪ S3. (23)

.2.2. Updating the set of unidentified targets
One has to consider different cases to determine the updated

et XU
i,k+1|k+1 from XU

i,k+1|k for an unidentified target using yUi,m,k+1,
∈ DU

i,k+1 obtained after processing the information in Fi(xui,k+1)
at time k + 1.

An unidentified target may be detected again inside the set es-
timate of unidentified targets XU

i,k+1|k. This hypothesis is similar
to that considered in (17), and one gets

SU
1 =

⋃
m∈DU

i,k+1

{
x ∈ XU

i,k+1|k |

hk+1
(
xui,k+1, x

)
∈ yUi,m,k+1 − [wk+1]

}
. (24)

Alternatively, an unidentified target may be detected for the first
time in the unexplored set Xi,k+1|k. This hypothesis is similar to
that leading to (19), and one gets

SU
2 =

⋃
m∈DU

i,k+1

{
x ∈ Xi,k+1|k |

hk+1
(
xui,k+1, x

)
∈ yUi,m,k+1 − [wk+1]

}
. (25)

Contrary to (19) and (17), SU
1 and SU

2 contain the union of the
set estimates associated to all detected targets in m ∈ DU

i,k+1.
Figs. 4(b) and 5(b) illustrate situations where SU

1 ⊂ Fi(xui,k+1) and
SU
2 ⊂ Fi(xui,k+1) (both in cyan) are not empty.
Again, one has to account for the fact that non-detection does

not occur and that all information in Fi(xui,k) has been processed.
Therefore, xtj,k+1 /∈ Fi(xui,k+1) \

(
SU
1 ∪ SU

2

)
. Introducing,

SU
3 = XU

i,k+1|k \ Fi
(
xui,k+1

)
, (26)

the updated set estimate XU
i,k+1|k+1 accounting for all hypothe-

ses, is then

XU
i,k+1|k+1 = SU

1 ∪ SU
2 ∪ SU

3 . (27)

When all measurements from Fi(xui,k+1) are processed, the
unexplored set Xi,k+1|k can be updated as

X = X \ F
(
xu

)
. (28)
i,k+1|k+1 i,k+1|k i i,k+1
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Finally, one has to remove all targets j from the list of already
detected and identified targets whose set Xi,j,k+1|k+1 is empty

Li,k+1|k+1 =
{
j ∈ Li,k+1|k | Xi,j,k+1|k+1 ̸= ∅

}
. (29)

This case may appear if, for example, false target ℓ was detected
and misidentified as a true target j ∈ J t at time k, and new
observations lead to the identification as false target at time k+1.

4.3. Correction step from communications

UAV i sends the sets Li,k+1|k+1, XU
i,k+1|k+1, Xi,k+1|k+1, and

i,k+1|k+1 =
{
Xi,j,k+1|k+1

}
j∈Li,k+1|k+1

, to its neighbors ℓ ∈ Ni,k+1,
nd it receives the corresponding sets from its neighbors at the
nd of time step k+1. The information available to UAV i is then

i,k+1 =Ii,k+1|k+1

⋃
ℓ∈Ni,k+1

{
Lℓ,k+1|k+1,

Xℓ,k+1|k+1,XU
ℓ,k+1|k+1,Xℓ,k+1|k+1

}
. (30)

ccounting for the information exchanged with UAV i, the set
f all targets which have been identified by UAV i or one of its
eighbors up to time k + 1 is then

+

i,k+1|k+1 =

⋃
ℓ∈Ni,k+1∪{i}

Lℓ,k+1|k+1. (31)

hen, for each j ∈ L+

i,k+1|k+1, the set of neighbors Ni,k+1 of UAV i
an be partitioned into two subsets. The subset N j

i,k+1 of the
neighbors who believe that they have detected target j up to time

+ 1 and the subset N j
i,k+1 of neighbors who are sure that they

have not detected target j up to time k + 1.
To further fuse the information available to UAV i before and

after communication, for all j ∈ L+

i,k+1|k+1, we introduce

Xi,j,k+1|k+1 =X0 \
(
Xi,j,k+1|k+1∪

XU
i,k+1|k+1 ∪ Xi,k+1|k+1

)
(32)

as the set proved not to contain the state of target j, i.e., xtj,k+1 /∈

Xi,j,k+1|k+1, where, by convention, Xi,j,k+1|k+1 = ∅ when j /∈ Li,k+1.
We also introduce

XU
i,k+1|k+1 = X0 \

(
XU

i,k+1|k+1 ∪ Xi,k+1|k+1
)

(33)

the set proved not to contain the state of any unidentified target.
Considering UAV i, for any target j ∈ Li,k+1|k+1, one knows

that either xtj,k+1 ∈ Xi,j,k+1|k+1, or xtj,k+1 ∈ XU
i,k+1|k+1, or xtj,k+1 ∈

Xi,k+1|k+1. Moreover, one has xtj,k+1 /∈ X̃i,j,k+1|k+1. Similarly, con-
idering UAV ℓ ∈ N j

i,k+1, i.e., such that j ∈ Lℓ,k+1|k+1, one has
ither xtj,k+1 ∈ Xℓ,j,k+1|k+1, or xtj,k+1 ∈ XU

ℓ,k+1|k+1, or xtj,k+1 ∈

Xℓ,k+1|k+1. Moreover, one knows that xtj,k+1 /∈ X̃ℓ,j,k+1|k+1. Con-
sequently, for UAV i and any target j ∈ L+

i,k+1|k+1, Xi,j,k+1 is
evaluated as the union of all possible state values accounting for
the measurements of the identified target j, deprived of the union
of all sets which have been proved not to contain target j at time
k + 1, i.e.,

Xi,j,k+1 =

⋃
ℓ∈N j

i,k+1∪{i}

Xℓ,j,k+1|k+1\
⋃

ℓ∈Ni,k+1∪{i}̃

Xℓ,j,k+1|k+1. (34)

The list Li,k+1|k+1 of all targets j known to UAV i has to be
updated from L+

i,k+1|k+1 accounting only for estimates Xi,j,k+1
which are not empty

L =
{
j ∈ L+

| X ̸= ∅
}
. (35)
i,k+1 i,k+1|k+1 i,j,k+1

7

Fig. 7. Set estimates evaluated by UAV i and ℓ before communication (two top
subfigures of each column) and after communication and update (bottom sub-
figures); (a) Xi,j,k+1 is smaller than Xi,j,k+1|k+1 since some subsets of Xi,j,k+1|k+1
have been proved by UAV ℓ not to contain a target; (b) Xi,j,k+1 is larger than
Xi,j,k+1|k+1 , since UAV i has to account for the two different hypotheses on the
state estimate of target j.

The update of XU
i,k+1|k+1 is evaluated as the union of the set

estimates of unidentified targets reduced by the space which is
proved not to contain any unidentified target, i.e.,

XU
i,k+1 =

⋃
ℓ∈Ni,k+1∪{i}

XU
ℓ,k+1|k+1 \

⋃
ℓ∈Ni,k+1∪{i}̃

XU
ℓ,k+1|k+1. (36)

Finally, the update of Xi,k+1|k+1 is the intersection of the un-
explored space of UAV i and that of its neighbors

Xi,k+1 =

⋂
ℓ∈Ni,k+1∪{i}

Xℓ,k+1|k+1. (37)

Fig. 7 illustrates the sets resulting from (34) and (37) for
two cases. The size of Xi,j,k+1 may be smaller than Xi,j,k+1|k+1
as it is the case in Fig. 7(a), when some subsets of Xi,j,k+1|k+1
have been proved by another UAV not to contain a target. It
may also be larger, as is the case in Fig. 7(b), where UAV ℓ has
obtained measurements leading to another hypothesis on the
state estimate of target j. The evolution of XU

i,k+1 from XU
i,k+1|k+1

could be illustrated with similar figures. The size of Xi,k+1 is
lways reduced compared to that of Xi,k+1|k+1.

4.4. Algorithm

Algorithm 1, summarizes the prediction and correction steps
from both measurements and communications.

4.5. Accounting for delayed information

In case of reception of delayed information from another UAV,
the estimation technique has to be significantly updated. A so-
lution similar to the state augmentation approach considered
in Lu, Zhang, Wang, and Teo (2005) may be proposed in our set-
membership estimation context. For that purpose, we assume
that the UAVs have synchronized clocks, update their estimate
periodically and synchronously, and that the transmitted data
are properly time stamped. Moreover, only information with a
delay δ less than or equal to δ time steps are processed to limit
computational complexity.

At time k, UAV i has to maintain the sets Li,k−δ , Xi,k−δ , XU
i,k−δ ,

nd Xi,k−δ , δ = 0, . . . , δ corresponding to the estimates at time k
as well as the estimates at time k − δ, δ = 1, . . . , δ. Assume that
UAV i receives L ′ , X ′ , XU , and X ′ from UAV ℓ ̸= i
ℓ,k−δ ℓ,k−δ ℓ,k−δ′ ℓ,k−δ
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lgorithm 1. Robust Cooperative Bounded-error Target Localization and
Tracking

RoCoBoTLoT
(
Li,k,Xi,k,Xi,k

)
Input: Li,k, Xi,k, XU

i,k, and Xi,k

Output: Li,k+1, Xi,k+1, XU
i,k+1, and Xi,k+1

Prediction step
1 Li,k+1|k = Li,k
2 Xi,j,k+1|k = ftk

(
Xi,j,k, [vk]

)
∩ X0, for all j ∈ Li,k+1|k

3 XU
i,k+1|k = ftk

(
XU

i,k, [vk]
)
∩ X0

4 Xi,k+1|k = ftk
(
Xi,k, [vk]

)
∩ X0

Correction step from measurements
5 L+

i,k+1|k = Li,k+1|k ∪ DI
i,k

6 For all j ∈ L+

i,k+1|k
7 Xi,j,k+1|k+1 updated as in (22)
8 Li,k+1|k+1 =

{
j ∈ L+

i,k+1|k |Xi,j,k+1|k+1 ̸= ∅
}

9 XU
i,k+1|k+1 updated as in (27)

10 Xi,k+1|k+1 = Xi,k+1|k \ Fi(xui,k+1)
Correction step from communications

11 L+

i,k+1|k+1 =
⋃

ℓ∈Ni,k+1∪{i}
Lℓ,k+1|k+1

12 For all j ∈ L+

i,k+1|k+1
13 Xi,j,k+1 =

⋃
ℓ∈N j

i,k+1∪{i}

Xℓ,j,k+1|k+1\
⋃

ℓ∈Ni,k+1∪{i}
X̃ℓ,j,k+1|k+1

14 Li,k+1 =
{
j ∈ L+

i,k+1|k+1 |Xi,j,k+1 ̸= ∅
}

15 XU
i,k+1 =

⋃
ℓ∈N j

i,k+1∪{i}

XU
ℓ,k+1|k+1 \

⋃
ℓ∈Ni,k+1∪{i}

X̃U
ℓ,k+1|k+1

16 Xi,k+1 = Xi,k+1|k+1
⋂

ℓ∈Ni,k+1∪{i}
Xℓ,k+1|k+1

t time k, with δ′
∈

[
0, δ

]
. The sets Lℓ,k−δ′ , Xℓ,k−δ′ , XU

ℓ,k−δ′ , and
Xℓ,k−δ′ can be used to update Li,k−δ′ , Xi,k−δ′ , XU

i,k−δ′ , and Xi,k−δ′

using the procedure described in Section 4.3. These updated sets
can then be used by UAV i to further update Li,k−δ , Xi,k−δ , XU

i,k−δ ,
and Xi,k−δ , δ = δ′

−1, . . . , 0. This is done for each value of δ using
he prediction step described in Section 4.1 and the correction
teps from communication described in Section 4.3.
Processing delayed measurements significantly increases the

omputational complexity, as it is also the case in the state
ugmentation approaches considered in Lu et al. (2005).

. Cooperative control design

The aim of the control design for the fleet of UAVs is to de-
rease the estimation uncertainty as much as possible. To achieve
his task, we will consider the problem of determining, at each
ime k and in a distributed way, the sequence of control inputs
which minimizes the predicted estimation uncertainty (11) at
time k + h

Φk+h =
1
Nu

Nu∑
i=1

Φ
(
Xi,k+h,XU

i,k+h,Xi,k+h
)
, (38)

here h ⩾ 1 is the considered prediction horizon. UAVs have no
access to all the terms of (38), thus each UAV i, i = 1, . . . ,Nu, will
ry to minimize the term Φ(Xi,k+h,XU

i,k+h,Xi,k+h) given by (10).
We consider the distributed Model Predictive Control (MPC)

ormalism introduced, e.g., in Camacho and Alba (2013) and
orari and Lee (1999) to predict the evolution of (10). In the
roposed set-membership estimation context, some simplifica-
ions are introduced to do so. We will first consider an h-step
head prediction ignoring communication between neighboring
8

AVs. Then the impact of communications will be taken into ac-
ount in the Set-Membership Model Predictive Control (SM-MPC)
pproach.

.1. Control input design ignoring future communications

When the communications in time steps k + 1, . . . , k + h are
gnored, the control inputs of each UAV can be designed inde-
endently. Obviously, the communications which have previously
ccurred are taken into account.
At time k, UAV i has access to Li,k, Xi,k, XU

i,k, and Xi,k. Using a
rediction step described in Section 4.1, UAV i is able to evaluate
i,k+1|k = Li,k, Xi,j,k+1|k, j ∈ Li,k, XU

i,k+1|k, and Xi,k+1|k. Then, for
a given control input ui,k, UAV i is able to get a predicted value
xu,Pi,k+1 of its state xui,k+1 at time k+1 and to infer the corresponding
field of view Fi(xu,Pi,k+1). Nevertheless, UAV i is unable to determine
whether it will observe new or previously detected targets in
Fi(xu,Pi,k+1). Consequently, in the update from measurement equa-
tions described in Section 4.2, only S5 in (21), SU

3 in (26), and
Xi,k+1|k+1 in (28) can be inferred accurately as follows

XP
i,j,k+1|k+1 = Xi,j,k+1|k \ Fi

(
xu,Pi,k+1

)
, j ∈ Li,k (39)

XU,P
i,k+1|k+1 = XU

i,k+1|k \ Fi
(
xu,Pi,k+1

)
, (40)

XP
i,k+1|k+1 = Xi,k+1|k \ Fi

(
xu,Pi,k+1

)
. (41)

If xui,k+1 = xu,Pi,k+1, then XP
i,j,k+1|k+1 ⊂ Xi,j,k+1|k+1, XU,P

i,k+1|k+1 ⊂

XU
i,k+1|k+1, and XP

i,k+1|k+1 = Xi,k+1|k+1.
Using the previous approximations, a predicted estimation

uncertainty for UAV i at time k + 1 may be evaluated as

Φ

(
XP

i,k+1|k+1,X
U,P
i,k+1|k+1,X

P
i,k+1|k+1

)
=⎛⎜⎝

⎛⎜⎝ ⋃
j∈Li,k

XP
i,j,k+1|k+1

⎞⎟⎠ ∪ XU,P
i,k+1|k+1 ∪ XP

i,k+1|k+1

⎞⎟⎠ . (42)

Despite the approximation performed in the evaluation of
XP

i,j,k+1|k+1, j ∈ Li,k and XU,P
i,k+1|k+1, the contribution of the miss-

ing part of these sets is usually negligible compared to that of
XP

i,k+1|k+1 in the evaluation of Φ .
In order to compute (42) more efficiently, at time k, consider

the set, known to UAV i,

XA
i,k =

⎛⎝ ⋃
j∈Li,k

Xi,j,k

⎞⎠ ∪ XU
i,k ∪ Xi,k, (43)

aggregating the states of all detected targets and the states of not
yet detected targets. Exploiting the target dynamics (2) and the
common bound on the state perturbation [vk], the predicted value
of XA

i,k in (43) at time k + 1 is

XA
i,k+1|k = ftk

(
XA

i,k, [vk]
)
∩ X0. (44)

Considering (13), (14), and (15), one observes that

XA
i,k+1|k =

⎛⎝ ⋃
j∈Li,k

Xi,j,k+1|k

⎞⎠ ∪ XU
i,k+1|k ∪ Xi,k+1|k. (45)

Now, introducing the corrected set at time k + 1

XA,P
i,k+1|k+1 = XA

i,k+1|k \ Fi
(
xu,Pi,k+1

)
, (46)

where the superscript P indicates that this is a predicted value of
XA

i,k+1|k+1, relying on the various assumptions considered in the
proposed SM-MPC approach. Combining (45) and (46), one easily
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hows that

A,P
i,k+1|k+1 =

⎛⎝ ⋃
j∈Li,k

Xi,j,k+1|k ∪ XU
i,k+1|k ∪ Xi,k+1|k

⎞⎠
\ Fi

(
xu,Pi,k+1

)
=

⋃
j∈Li,k

XP
i,j,k+1|k+1 ∪ XU,P

i,k+1|k+1 ∪ XP
i,k+1|k+1.

Introducing XA,P
i,k+1 = XA,P

i,k+1|k+1, the predicted estimation un-
ertainty for UAV i at time k + 1, provided by (42), is also given
y φ

(
XA,P

i,k+1

)
. Consequently, considering XA

i,k, instead of Xi,k, XU
i,k,

and Xi,k and applying the prediction step (44) and the correction
tep (46) to XA

i,k is sufficient to evaluate the predicted estimation
uncertainty for UAV i at time k + 1.

The previous approach may be applied iteratively on XA,P
i,k+κ−1

to evaluate the impact of ui,k+κ , κ = 1, . . . , h − 1 on the
predicted estimation uncertainty for UAV i at time k + κ , which
provides XA,P

i,k+h when κ = h − 1. Thus an estimate φ(XA,P
i,k+h) =

Φ(X P
i,k+h,X

U,P
i,k+h,X

P
i,k+h) of Φ(Xi,k+h,XU

i,k+h,Xi,k+h) is deduced.
Then UAV i may search the sequence of control inputs

(
ui,k, . . . ,

ui,k+h−1
)
minimizing

J
(
ui,k, . . . ,ui,k+h−1

)
=

φ
(
XA,P

i,k+h

)
+ αd

(
xu,Pi,k+h,X

A,P
i,k+h

)
, (47)

where XA,P
i,k+h and xu,Pi,k+h depend on

(
ui,k, . . . ,ui,k+h−1

)
. In (47),

d (x,X) represents the Hausdorff distance between the vector
x and the set X. The first term of J represents the predicted
stimation uncertainty for UAV i at time k + h. The second term
s introduced to drive UAV i towards XA,P

i,k+h. This is useful when
he first term of the cost function remains constant, whatever the
equence of inputs

(
ui,k, . . . ,ui,k+h−1

)
. The parameter α adjusts

he importance of the second term.

.2. Control input design accounting for communications

Assume that some UAVs in a subset N C
i,k ⊂ Ni,k of neighbors of

UAV i have already computed and transmitted their own control
inputs

(
uℓ,k, . . . ,uℓ,k+h−1

)
, ℓ ∈ N C

i,k, as well as their state value
at time k. To evaluate its own sequence

(
ui,k, . . . ,ui,k+h−1

)
of

ontrol inputs, UAV i will now account for the information that
ill be provided via communications at the steps k + κ by the
gents in N C

i,k+κ , κ = 1, . . . , h. Nevertheless, some UAVs in N C
i,k

ay not be able to communicate with UAV i at some prediction
teps κ = 1, . . . , h. We have thus to predict for each κ , the
et of UAVs with which UAV i will be able to communicate. For
ach UAV ℓ ∈ N C

i,k, consider the sequences of control inputs
uℓ,k, . . . ,uℓ,k+h−1

)
and

(
ui,k, . . . ,ui,k+h−1

)
, as well as the states

u
ℓ,k and xui,k. UAV i can evaluate xu,Pℓ,k+κ and xu,Pi,k+κ , the predicted
alues of xuℓ,k+κ and xui,k+κ , for κ = 1, . . . , h. Then, using the
ommunication condition (9), the set of UAVs with which UAV i
an expect to be able to communicate at time k+κ , κ = 1, . . . , h,
s
P
i,k+κ =

{
ℓ ∈ N C

i,k | c
(
xu,Pi,k+κ , x

u,P
ℓ,k+κ

)
⩾ 0

}
. (48)

f xui,k+κ = xu,Pi,k+κ and xuℓ,k+κ = xu,Pℓ,k+κ , ℓ ∈ Ni,k, κ = 1, . . . , h,
he set N P

i,k+κ is a subset of Ni,k+κ , since UAVs that are not in
C
i,k may also be able to communicate with UAV i at time k + κ ,
= 1, . . . , h.
At time k + κ , for the correction step from communications,

e consider that UAV i is only allowed to account for the FoV
(xu,P ) of UAVs with index ℓ ∈ N P . All information that the
ℓ ℓ,k+κ i,k+κ

9

neighbors of UAV i may receive from their own neighbors, not
belonging to N P

i,k+κ is thus ignored.
At time k, UAV i can compute XA

i,k using (43). Applying the
prediction step (44) and correction step from measurements (46),
we get XA,P

i,k+1|k and XA,P
i,k+1|k+1. UAV i will receive xuℓ,k and uℓ,k from

all UAVs with index ℓ ∈ N P
i,k+1, from which the FOV Fℓ(xu,Pℓ,k+1)

is deduced. Ignoring possible detection of new or previously
detected targets in Fℓ(xu,Pℓ,k+1), UAV i simply accounts for the
reduction of the size of the search space provided by Fℓ(xu,Pℓ,k+1),
ℓ ∈ N P

i,k+1, to evaluate XA,P
i,k+1 similarly to (46), so as to get

XA,P
i,k+1 = XA

i,k+1|k+1 \

⋃
ℓ∈N P

i,k+1

Fℓ

(
xu,Pℓ,k+1

)
. (49)

In this SM-MPC approach, UAV i processes the FoVs of its neigh-
bors as its own FoV.

As in 5.1, this process may be iterated from XA,P
i,k+κ−1 to further

evaluate the impact on XA,P
i,k+κ of ui,k+κ−1 as well as uℓ,k+κ−1,

ℓ ∈ N C
i,k and κ = 2, . . . , h. UAV i then searches the sequence

of control inputs
(
ui,k, . . . ,ui,k+h−1

)
minimizing (47).

5.3. Practical issues

The order in which the UAVs compute their control inputs at
each time step k has to be determined. Assume that UAV i has
access to Ni,k from previous communication. The considered sub-
optimal distributed approach for UAV i is to compute its control
inputs only once it has received the predicted control inputs from
all UAVs inNi,k with a smaller index, i.e., from all UAVs with index
in N C

i,k ⊂ Ni,k.
In each Ni,k, i = 1, . . . ,Nu, UAV i is able to determine whether

it has the smallest index. If this is the case, UAV i evaluates and
communicates its control input(̂
u1,k, . . . , û1,k+h−1

)
= argmin J

(
XA,P

i,k+h, x
u,P
i,k+h

)
,

where the minimization is over all ui,k ∈ U0, . . . ,ui,k+h−1 ∈

Uh−1, without accounting for the presence of its neighbors. In
practice, to lighten computations, U0, . . . ,Uh−1 are chosen as
discrete subsets of U, the set of admissible control inputs. Then,
one of the UAVs with index ℓ ∈ Ni,k, ℓ > i can determine(̂
uℓ,k, . . . , ûℓ,k+h−1

)
minimizing J(XA,P

ℓ,k+h, x
u,P
ℓ,k+h), accounting for(̂

ui,k, . . . , ûi,k+h−1
)
provided by UAV i.

6. Simulations

The performance of the proposed approach is evaluated via
simulations.

The targets move on the ground with a speed module V t

assumed constant. At time k, (xtj,k,1, x
t
j,k,2)

⊺ are the coordinates
of target j, xtj,k,3 is its heading angle, xtj,k,4 its yaw rate. The
yaw rate derivative xtj,k,5 follows a random walk with input vj,k

uniformly distributed in the interval [−π/8, π/8] s−2, i.e., vj,k ∼

U
(
−π/8 s−2, π/8 s−2

)
. The target state vector xtj,k evolves ac-

cording to⎛⎜⎜⎜⎜⎜⎜⎜⎝

xtj,k+1,1
xtj,k+1,2
xtj,k+1,3
xtj,k+1,4
xtj,k+1,5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xtj,k,1 + Td cos
(
xtj,k,3

)
V t

xtj,k,2 + Td sin
(
xtj,k,3

)
V t

xtj,k,3 + Tdxtj,k,4
xtj,k,4 + Tdxtj,k,5

vj,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where T d
= 0.05 s. The state of UAV i at time k consists of

its coordinates (xui,k,1, x
u
i,k,2, x

u
i,k,3)

⊺, flight path angle xui,k,4, heading
angle xu , yaw rate xu , and yaw rate derivative xt . The
i,k,5 i,k,6 i,k,7
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ontrol input is applied to xui,k,7. The UAV state vector xui,k evolves
according to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xui,k+1,1
xui,k+1,2
xui,k+1,3
xui,k+1,4
xui,k+1,5
xui,k+1,6
xui,k+1,7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xui,k,1 + Td cos
(
xui,k,4

)
cos

(
xui,k,5

)
Vu

xui,k,2 + Td cos
(
xui,k,4

)
sin

(
xui,k,5

)
Vu

xui,k,3 + Td sin
(
xui,k,4

)
Vu

xui,k,4
xui,k,5 + Tdxti,k,6
xui,k,6 + Tdxti,k,7

ui,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The altitude xui,k,3 = 100m, the flight path angle xui,k,4 = 0, and
he speed module V u

= 16.6 m/s are assumed constant.
The UAVs are equipped with identical optical sensors able

o detect targets within their FoV. The sensor opening angles
re equal to π/4 in both azimuth and elevation. A noisy mea-
urement yi,j,k of (xtj,k,1, x

t
j,k,2)

⊺ is obtained with a noise wi,j,k ∼

(−5m, 5m) when a target is detected, as described by (5) and
6). A target is detected and identified at time k when (3) is
atisfied, where
t
j

(
xui,k, x

t
j,k

)
=

(
xui,k − xtj,k

)⊺ atj,k
−

xui,k − xtj,k
 atj,k (

cos λt
j

)
(50)

epresents a half circular cone of R3 with a small aperture 2λt
j =

/60, to make identification of targets more difficult. The cone
ertex is xtj,k and its axis is
t
j,k =

(
sin γj cos

(
xtj,k,3 + βj

)
,

sin γj sin
(
xtj,k,3 + βj

)
, cos γj, 0, 0, 0

)⊺
, (51)

ith azimuth βj ∼ U (−π/4, π/4) and elevation angle γj ∼

(2π/60, 3π/60).
The false targets evolve according to the same dynamics as the

rue targets. False targets are detected and misidentified when (4)
s satisfied, where
f
ℓ

(
xui,k, x

f
ℓ,k

)
=

(
xui,k − xfℓ,k

)⊺ afℓ,k
−

xui,k − xfℓ,k
 afℓ,k (

cos λ
f,g
ℓ

)
(52)

nd
f
ℓ

(
xui,k, x

f
ℓ,k

)
=

(
xui,k − xfℓ,k

)⊺ afℓ,k
−

xui,k − xfℓ,k
 afℓ,k (

cos λ
f,q
ℓ

)
, (53)

here 2λf,g
ℓ = π/30 and 2λf,q

ℓ = π/60. In both cases,
f
ℓ,k =

(
sin γℓ cos

(
xfℓ,k,3 + βℓ

)
,

sin γℓ · sin
(
xfℓ,k,3 + βℓ

)
, cos γℓ, 0, 0, 0

)⊺
, (54)

ith βℓ ∼ U (−π/4, π/4) and γℓ ∼ U (2π/60, 3π/60).
In the communication condition (9),(
xui,k, x

u
ℓ,k

)
= dc − d

(
xui,k, x

u
ℓ,k

)
,

here dc = 200m is the maximum communication range and(
xui,k, x

u
ℓ,k

)
is the distance between UAV i and ℓ. The communica-

ion delays are neglected. The prediction horizon for the SM-MPC
s h = 2. The control input is computed with a period T c

= 0.5 s
qual to the communication period.
The search area is a square of 400 × 400 m2. The simula-

ions have been carried out in Matlab. Matlab’s polyshapes are
sed to represent sets. Polyshapes simplify the handling of sets
n R2 regarding Boolean and geometrical operations. In higher-
imensions subpavings, i.e., unions of non-overlapping interval
ectors (Kieffer et al., 2002) can be used.
The parameter of the cost function (47) is α = 0.0001,
o give more importance to the reduction of the set estimates.

10
Fig. 8. Left: Mean values (line) and standard deviation (shaded area) of Φk
evaluated for 30 simulations with 3 true targets, 3 false targets, and 2 to 6
UAVs. Right: Mean values of φ

(
Xk

)
, φ

(
XU

k

)
, and φ (Xk) evaluated with 3 true

and 3 false targets, considering 2, 4 and 6 UAVs.

Video sequences associated to the simulations are at https://drive.
google.com/drive/folders/1lFtrPrR0J2uXHquSRiZU2FSydXFXIPcB?
usp=sharing

The results for each setup of the following simulations were
obtained for 30 independent simulations with uniformly dis-
tributed initial locations of the targets and UAVs.

Impact of the fleet size

Fig. 8 (left) shows, for different numbers Nu of UAVs, the
average value and standard deviation of Φk as defined in (11),
considering 3 true and 3 false targets with V t

= 1m s−1.
Fig. 8 (right) details the contribution of φ

(
Xk

)
=

∑Nu
i=1 φ

(
Xi,k

)
/Nu, φ

(
XU

k

)
=

∑Nu
i=1 φ

(
XU

i,k

)
/Nu, and φ (Xk) =

∑Nu
i=1 φ(⋃

Xi,j,k∈Xi,k
Xi,j,k

)
/Nu to Φk.

Considering the size of the search area and the relative speed
of UAVs and of targets, within 400 s, from Fig. 8, at least 5
UAVs are necessary to eliminate Xi,k. Fig. 8 (right) shows that
the growth of Xi,k between consecutive observations is too fast
to allow 3 UAVs or less to fully eliminate it. The variance of the
estimation uncertainty Φk is the largest for 4 UAVs: φ

(
Xi,k

)
may

r may not converge to 0 depending on the simulations. Videos
llustrate both cases (see video FleetSize_4_1 and FleetSize_4_2).

The initial growth of φ
(
XU

k

)
in Fig. 8 (right) is always faster

hen the initial growth of φ (Xk) since initially, targets are more
likely to be unidentified: target identification requires additional
measurements. When Φk converges to 0, the size of XU

k also
onverges to 0 at some time instant when all false targets are
dentified and removed from XU

k , and all true targets are identified
and belong to Xk.

Additionally, the video FleetSize_10_1 shows the performance
of 10 UAVs tracking 10 true and 10 false targets.

Impact of the target speed

Fig. 9 (left) shows the evolution of Φk for different values of
V t. The simulations are carried out with 3 true targets, 3 false
targets, and 6 UAVs.

The relative speed of targets and UAVs significantly impacts
the value to which Φk converges. When V t

= 1.8m s−1, in
ll simulations, φ

(
Xk

)
does not converge to 0. When V t

=

.6m s−1, φ
(
Xk

)
converges to 0 only in some simulations (see

video TargetSpeed_1).

https://drive.google.com/drive/folders/1lFtrPrR0J2uXHquSRiZU2FSydXFXIPcB?usp=sharing
https://drive.google.com/drive/folders/1lFtrPrR0J2uXHquSRiZU2FSydXFXIPcB?usp=sharing
https://drive.google.com/drive/folders/1lFtrPrR0J2uXHquSRiZU2FSydXFXIPcB?usp=sharing
https://drive.google.com/drive/folders/1lFtrPrR0J2uXHquSRiZU2FSydXFXIPcB?usp=sharing
https://drive.google.com/drive/folders/1lFtrPrR0J2uXHquSRiZU2FSydXFXIPcB?usp=sharing
https://drive.google.com/file/d/1sGyF78ohwM0nPG9rzsseAQIPHH53bVzC/view?usp=sharing
https://drive.google.com/file/d/1q7FKuOnKL_dsy3E2zaPrGoi8_jGM5_gh/view?usp=sharing
https://drive.google.com/file/d/1LX0SrvEHuHnlG3l3qwQg4S2bc_TZEwFX/view?usp=sharing
https://drive.google.com/file/d/1PTsrzc63uWYnO25Igmb9M1pClFuHMLIu/view?usp=sharing
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Fig. 9. Mean values (line) and standard deviation (shaded area) of Φk evaluated
ith 3 true targets as well as (left) 6 UAVs, 3 false targets, and different values
f the target speed module V t , (right) 4 UAVs, from 0 to 6 false targets, and

V t
= 1m s−1 .

Fig. 10. Mean value of Φk (left) and of φ
(
Xk

)
, φ

(
XU

k

)
, and φ (Xk) (right)

valuated for 30 simulations with 3 true targets, 0 false targets, and 5 UAVs for
ifferent measurement noise bounds

[
wi,j,k

]
and different assumptions

[
wi,k

]
on

wi,j,k
]
.

mpact of the number of false targets

Fig. 9 (right) shows the evolution of Φk for 0, 3, and 6 of
alse targets. The simulations are carried out with 3 true targets,
UAVs, and V t

= 1m s−1. The convergence speed of Φk is
affected by an increased Nf. This phenomenon is mainly due to
n increase of φ

(
XU

k

)
with Nf.

ismatch of the measurement noise bounds

Fig. 10 shows the mean of Φk for different values for the
easurement noise bounds

[
wi,j,k

]
and different assumptions on

the box
[
wi,k

]
, known to the UAVs, such that

[
wi,j,k

]
⊂

[
wi,k

]
. One

considers 3 true targets, 0 false targets, 5 UAVs, and V t
= 1m s−1.

For small values of t , the decreases of Φk are similar, since
nitially they are mainly due to the decreases of φ

(
Xk

)
. When

⩾ 100 s, the curve of Φk obtained for
[
wi,j,k

]
=

[
wi,k

]
=

−20m, 20m] is above that for
[
wi,j,k

]
=

[
wi,k

]
= [−5m, 5m]

since large noise bounds lead to larger values of φ
(
XU

k

)
and

φ (Xk), as observed in Fig. 10 (right). A mismatch of
[
wi,j,k

]
and[

wi,k
]
leads to the slowest decrease of Φk, due to the overesti-

ation of
[
wi,j,k

]
which does not allow an efficient reduction of(

XU
k

)
and φ (Xk) when measurements are exploited.

The simulations show that the state of a true target was never
utside the set estimates in any simulation as long as

[
w

]
⊂
i,j,k b

11
Fig. 11. Mean values (line) and standard deviation (shaded area) of Φk evaluated
for different values of the communication distances dc when 6 UAVs are
exploring an area with 3 true targets and 3 false targets (left), and of the
computation time of the control inputs for 1 to 3 UAVs with 3 true targets
and no false targets (right), average over 30 simulations.

[
wi,k

]
. If

[
wi,j,k

]
⊈

[
wi,k

]
then all targets are lost at some time

instant, which provides a mean to detect erroneous estimates of
the noise bounds.

The video NoiseBoundMismatch_1 shows the performance of
the state estimator for a large mismatch of

[
wi,j,k

]
and

[
wi,k

]
.

Impact of the communication distance

Fig. 11 (left) illustrates the detrimental impact of a reduced
communication range between UAVs on the decrease speed of Φk
hen 6 UAVs are exploring an area with 3 true targets and 3 false
argets. The reduction of dc leads to a less efficient information
haring and thus to a redundant exploration of some areas by
everal UAVs unaware that these areas were already explored. A
ideo illustrates the performance of the fleet when dc = 50 m
see video ComDist_50).

rocessing time of the control input

Fig. 11 (right) shows the mean and standard deviation of the
valuation time of the control input with 3 true targets, no false
arget and from 1 to 3 UAVs with V t

= 1m s−1.
One observes that the average total computing time is almost

onstant with time. The computing times for 2 and 3 UAVs is
bout three and five times that with a single UAV. This is due
o the fact that in the predictive control scheme, once UAV 1
as computed its control input, UAV 2 will have to evaluate the
mpact of this control input when evaluating its own control
nput, while UAV 3 will have to evaluate the impact of the control
nputs of UAVs 1 and 2.

The video SimpleBaselineMPC_1 shows the performance of the
earch and track task when the evolution of the set estimates and
he control input from the neighbors are not taken into account
n the control design.

. Conclusions and perspectives

This paper presents a distributed set-membership approach
o search and track targets using a cooperative fleet of UAVs.
he presence of false targets, which may be confused with true
argets, is taken into account. When a target is detected in the
ield of view of a UAV, it is identified as a true or false target only
hen observed under specific conditions. In the proposed set-
embership approach, each UAV maintains several set estimates:
ne for each detected and identified true target, one for detected

ut not yet identified targets, and one for not yet detected target.

https://drive.google.com/file/d/1K_KOMvPa5hHXTOoMRPsazhPxXaITpoKX/view?usp=sharing
https://drive.google.com/file/d/1p4fpiwbPbOEYdMUAlqjb5EB8fywYdMED/view?usp=sharing
https://drive.google.com/file/d/1hv70-MhVBGkPnoQHtA5MrYsiuYtGVXss/view?usp=sharing
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his last set estimate corresponds to the subset of the state
pace still to be explored. Using the information available to
ach UAV (coming from its sensors and information shared by its
eighbors), these set estimates are updated so that, at each time
tep, UAVs can have estimates as precise as possible of the states
f tracked targets.
A distributed set-membership model predictive control ap-

roach is considered to compute the trajectories of UAVs. The
volution of the set estimates for each UAV is evaluated account-
ng for the impact of its own future measurements and of future
easurements shared by its neighbors. The control inputs mini-
ize a measure of the volume of the set-membership estimates
redicted h-step ahead.
Simulation results show the efficiency of the proposed ap-

roach. The impact on its convergence of the relative speed
f targets and UAVs, of the number of UAVs and of false tar-
ets, of the communication range, as well as of the considered
easurement noise bounds is evaluated.
In the experimental part, the UAVs were evolving at a constant

ltitude. Allowing UAVs to adjust their altitude is possible in the
roposed framework but requires a refined model of the depen-
ency with altitude of the detection and identification conditions
nd the measurement noise bounds.
Further extensions of this paper include developing displace-

ent strategies for UAVs to see the potential targets under dif-
erent points of view to determine whether it is a true or a false
arget. Other extensions would be to deal with a probability of
on-detection within the field of view.
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