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Abstract— In this paper, the estimation of additive inertial
navigation sensor faults with unknown dynamics is considered
with application to the longitudinal navigation and control of
a fixed wing unmanned aerial vehicle. The faulty measurement
is on the pitch angle. A jump Markov regularized particle
filter is proposed for fault and state estimation of the nonlinear
aircraft dynamics, with a Markovian jump strategy to manage
the probabilistic transitions between the fault free and faulty
modes. The jump strategy uses a small number of sentinel
particles to continue testing the alternate hypothesis under both
fault free and faulty modes. The proposed filter is shown to
outperform the regularized particle filter for this application
in terms of fault estimation accuracy and convergence time for
scenarios involving both abrupt and incipient faults, without
prior knowledge of the fault models. The state estimation is
also more accurate and robust to faults using the proposed
approach. The root-mean-square error for the altitude is
reduced by 77% using the jump Markov regularized particle
filter under a pitch sensor fault amplitude of up to 10 degrees.
Performance enhancement compared to the regularized particle
filter was found to be more pronounced when fault amplitudes
increase.

I. INTRODUCTION

Sensor fault detection and diagnosis systems are increas-
ingly important to aircraft mission integrity. Inertial naviga-
tion malfunctions in particular have often been the cause of
flight incidents and crashes as in the case of the Qantas F72
and Croatia Boeing 737–200 flights [1]. Small unmanned
aerial vehicles are also becoming increasingly autonomous,
with a need to further develop their ability to detect, es-
timate and recover from sensor faults. The certification of
autonomous unmanned aerial vehicle (UAV) systems is also
subject to the development of systems to monitor sensor data
and fault flags.

Fault detection often consists of statistical tests used to
detect a change on residuals. This is either performed by
comparison against a threshold or by assuming a residual
distribution, such as the Student’s t-test, the cumulative sum
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(CUSUM) or a likelihood ratio test such as the generalized
likelihood ratio test (GLRT) [2].

A higher level of fault diagnosis is fault estimation. Indeed,
fault detection does not provide quantitative information on
the impact of fault on the system. Hence, fault estimation is
required to obtain valuable information that can be exploited
e. g. to compensate the fault. For linear Gaussian models,
the Kalman filter (KF) is known to be the optimal estimator
and the approach has been extended to fault estimation. For
nonlinear models, the extended Kalman filter (EKF) has been
used for both fault detection [3] and fault estimation [4].
When a variety of faults is considered, interacting multiple
model (IMM) approaches are often used, and they rely on
the use of several filters, all of which are associated to a
specific fault mode. IMMs usually consist of interacting KFs
or EKFs depending on the linearity of the system. They have
been proven efficient for various applications as in [5] but
present the major drawback of requiring detailed knowledge
of the models of the various faults.

Particle filters have proved their efficiency in estima-
tion problems for non-linear dynamics and non-Gaussian
noises [6]. In the context of fault estimation it has been
combined with a jump Markov transition model that enables
to switch from a nominal to faulty model using the tran-
sition probability matrix that accounts for abrupt changes
of modes [7], [8]. This approach is combined in this paper
with a regularized particle filter (RPF) [9] and a Kalman
correction step to handle unexpected fault dynamics. It is
called a jump Markov regularized particle filter (JMRPF).

The dynamical model of fixed wing UAVs is well
known [10], a model-based approach [11]–[14] is therefore
used in this paper. With no prior knowledge of the fault
dynamics, a zero-order constant fault model is used by the
JMRPF, which is initialized by default in a fault free mode.
The actual incipient sensor faults applied to the system do not
match this zero-order model and the process and regulariza-
tion noises are not set to handle abrupt fault amplitudes, but
the JMRPF is shown in Section VI to accurately estimate
sensor faults and robustly estimate the UAV states despite
this model mismatch. This is due to the fact that piecewise
constant approximations of the faults can be rapidly tracked
using the JMRPF that switches more swiftly when a mode
change is detected.

The proposed approach is applied to a nonlinear model of
longitudinal dynamics for a fixed wing UAV.

The main contributions of the paper are as follows:
• A jump strategy between the fault free and faulty sensor

modes is proposed, where the a priori distribution of
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the fault is computed using sensor innovation terms.
Under both fault free and faulty modes, a small set of
sentinel particles is allowed to test the alternate mode,
leading to fast mode transitions and higher fault and
state estimation accuracy.

• A Kalman correction is added to the JMRPF to place the
particles in the most likely areas of the state space. This
correction further improves state and fault estimation
accuracy and was not used in reference [15].

The paper is organized as follows. In Section II, a nonlin-
ear model of fixed wing UAV flight dynamics is presented,
including the longitudinal UAV autopilot. Section III is fo-
cused on the sensor fault types and modes that the nonlinear
filters have to estimate. In Section IV, a more general
stochastic nonlinear Markovian jump model is presented
including the effect of the fault modes Section V details the
JMRPF approach for state and sensor fault estimation in a
stochastic Markovian jump model framework. In Section VI,
the fault and state estimation performance of the JMRPF
is evaluated and compared against the RPF for scenarios
including abrupt and incipient faults with no prior knowledge
of the fault dynamics and amplitudes. Section VII concludes
the paper.

II. LONGITUDINAL FLIGHT DYNAMICS AND CONTROL
SYSTEM

A. Longitudinal UAV Dynamics

A nonlinear model of longitudinal fixed wing UAV dynam-
ics is used in this paper. The state vector representing UAV
longitudinal dynamics is denoted z =

[
pd u w θ q

]>
.

The state pd denotes the position component in the down-
ward direction along kv (see Fig. 1), u represents the
variation with respect to the trim condition on longitudinal
velocity along the ib axis, w represents the vertical velocity
along the kb axis (see Fig. 1) and the states θ and q re-
spectively represent the pitch angle and pitch rate variations.
The nonlinear longitudinal model of the Aerosonde UAV is

Earth center

Horizon

iv

kv

ib

kb

θ
Center of mass

Fig. 1. Side view of an UAV with references axis and angles

obtained from [10] and is given by:

ṗd = − sin (θ)u + cos (θ)w

u̇ = −qw +
Fx

m

ẇ = qu +
Fz

m
θ̇ = q

q̇ = −Jxz
Jy

q2 +
1

Jy
M

(1a)

(1b)

(1c)

(1d)

(1e)

where Fx and Fz respectively represent the external forces
along the ib and kb axes (see Fig. 1), m is the mass of the
UAV, Jxz is a product of inertia, Jy is the moment of inertia
about the pitch axis and M is the pitching moment. All these
parameters are defined in [10].

The discrete time model derived from (1) can be expressed
as:

zk+1 = Fk (zk, uk) (2)

where u =
[
δe δt

]T
is the control input vector and δe and

δt respectively represent the elevator deflection and throttle
input. The input δe is bounded in the interval [−25°, 25°]
and the input δt is bounded in the interval [0, 1]. The full
state is observed using an inertial navigation system (INS),
which is hybridized with a global navigation satellite system
(GNSS) receiver, a magnetometer and a barometer.

The measurement equation is given in Section IV where
a stochastic model including the effects of sensor faults is
presented. The observation function is denoted Hk and is
given by:

Hk (zk) =
[
−pdk uk wk θk qk

]>
(3)

B. Longitudinal Autopilot

In the following, we assume that the desired trajectory to
be followed by the UAV consists of a desired flight path angle
γc and a desired velocity norm V c that are used as reference
inputs to the longitudinal control loop. The actuator inputs
δe and δt are given by:{

δ̄ek+1 = −Lθ ˆ̄zk − Lθi θ̄ik+1

δ̄tk+1 = −Luˆ̄zk − Lui
ūik+1

(4a)
(4b)

where the bar notation represents a variation around the
trim condition1. The gains Lθ, Lu, Lui , Lθi are obtained
after solving the Riccatti equation of the linear quadratic
regulator (LQR) problem for the desired steady trim condi-
tion with integral correction and weighting matrices Q =
diag

([
1 0 4 0 0

])
, R = I2×2. The LQR approach is

suboptimal for the nonlinear system, but the computed gains
will be shown to achieve robust stability despite the non-
linearity of UAV dynamics, particularly when the initial con-
dition does not lead to a severe coupling between rotational
and translational dynamics. The integral gains are Lθi = 1.00

1In our case a straight flight at an altitude of 500m with an air speed of
40m s−1
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and Lui
= −1.00. Integrated state deviations θ̄i and ūi are

given by:
θ̄ik+1 = (γ̄c

k +Au ˆ̄uk +Aw ˆ̄wk − ˆ̄θ)dt+ θ̄ik

ūik+1 = ((V̄ c
k − Vw ˆ̄wk)

1

Vu
− ˆ̄uk)dt+ ūik

(5a)

(5b)

where the parameters Vu = 1.00, Vw = 0.05, Au = 0
and Aw = 0.03 relate pitch and speed reference guidance
commands to γc and V c.

III. SENSOR FAULT TYPES AND MODES

As in [16], a fault is defined here as an “unpermitted
deviation of at least one characteristic property of the
system”. In this paper, sensor outputs can be faulty and
the fault states have two possible modes, a fault-free mode
denoted m(0) and a faulty mode denoted m(1).

For the UAV model under consideration, the number of
sensors denoted ny is set to 5 without loss of generality but
in the next section, the fault and state estimation algorithm
presented here is written for a more general case where ny

depends on the application. Fault estimation is implemented
for nΘ sensors where nΘ ≤ ny is user-defined depending on
the sensors deemed likely to be faulty. Each sensor has an
index j ∈ [1, ny], a fault variable Θj(mj

k) and an associated
fault mode mj

k at time step k.
A fault and state estimation algorithm is developed here

for the purpose of fault tolerant navigation, with no prior
knowledge of fault dynamics or amplitudes.

The fault types applied to the system are additive and of
unknown amplitude. Their dynamics are also unknown as
the approach tackles abrupt or incipient faults. Exponential
fault models are for example considered in the numerical
simulation section, but the estimation algorithms use a zero-
order fault model, which is initialized by default in mode
m(0). Abrupt faults occur suddenly (stepwise), while incip-
ient faults occur gradually and driftwise [12], [17].

The estimation algorithms also have to determine when
the fault is no longer active. Both abrupt and incipient faults
scenarios under consideration in this paper are therefore
intermittent, such that the fault is deactivated after a certain
time [12].

In the next section, a stochastic Markovian jump system
model is used to represent the dependency of the nonlinear
aircraft model on sensor faults.

IV. STOCHASTIC JUMP MARKOV NONLINEAR SYSTEM
MODEL

A discrete-time stochastic Markovian jump system model
is used to represent the dynamics of the system, including the
transitions between fault modes. This generic system model
is given by:

mk+1 ∼ p (mk+1|mk)

zk+1 = Fk (zk, uk) + ηk

yk = Hk (zk) + Gk (Θk (mk)) + νk

(6a)
(6b)
(6c)

where zk ∈ Rnz represents the system state uk ∈ Rnu is
the control input, yk ∈ Rny is the vector of measurements.

Fk (·) represents the dynamics of the system (see (2)), Hk (·)
represents the measurement function (see (3)) and Gk (·) rep-
resents the impacts of the sensor faults on the measurements.
The process and sensors noises are ηk ∈ Rnz and νk ∈ Rny .
They are assumed to be of zero mean and the covariance
matrices are respectively defined as E

[
ηkη

>
k

]
= Qk and

E
[
νkν

>
k

]
= Rk. They are assumed to be independent

E
[
ηkν

>
k

]
= 0.

A sensor fault vector Θk ∈ RnΘ at time step k is defined.
It is a function of the fault mode vector mk, for which
each element mj

k where j is a sensor index can either be
faulty m(1) or fault free m(0), at time step k. The number of
sensors nΘ ≤ ny for which fault diagnosis is applied is user-
defined, but taken to be equal to one in Section VI, where
the method is applied to a single sensor fault on the pitch
measurement. To simplify notations, Θk = Θk(mk) is used
for the remainder of this article.

In this Markovian jump system, the mode switching be-
tween fault free and faulty modes is managed by a jump
strategy, which is presented in Subsection IV-A

A. The Transition Probability Based Jump Strategy

At every time step k, the probability P
(
m

(j)
k+1|m

(i)
k

)
to

switch from mode m(i) to m(j) is constant πji. Hence, π10

is the probability to switch from nominal mode m(0) to a
faulty mode m(1) while the probability π01 is the probability
to switch from a faulty mode m(1) to a nominal mode m(0).
The transition probability matrix Π represents the probability
of switching from one mode to another. It is given by:

Π =

[
π00 π10

π01 π11

]
(7)

Each state of the fault vector Θ is associated with a Π
matrix. Note that for the numerical analysis in Section VI, a
single scalar fault is considered without loss of generality and
to focus the analysis on estimation performance for abrupt
and incipient fault types, but the proposed approach applies
to multiple observable sensor faults. The diagonal elements
of the πjj matrices represent probabilities to remain in the
same mode for the given sensor.

The Markov chains can be represented by the transitions
diagram shown in Fig. 2:

m(0) m(1) π11π00

π10

π01

Fig. 2. Markov chain of the JMRPF applied to fault estimation

The objective of the method presented here is to simulta-
neously detect the occurrence of a fault and to estimate its
amplitude. An extended state vector xk ∈ Rnx is introduced
and given by:

xk =
[
z>k Θ>

k

]>
(8)
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which extends the original system state zk to account for the
fault values. The system model (6) can then be written as an
extended state model:{

xk+1 = fk (xk, uk) + ηk

yk = hk (xk) + νk

(9a)
(9b)

where ηk ∈ Rnx now represents the process noise of the
extended state space model. The dynamics of the system
and measurements functions fk and hk are given by:

fk (xk, uk) =

[
Fk (zk, uk)
Tk (Θk)

]
(10a)

hk (xk) = Hk (zk) + Gk (Θk) (10b)

where Tk (·) represents the dynamics of the sensor fault.
For this representation of the problem under consideration,

estimation of xk requires nonlinear filtering techniques. As
introduced previously, jump Markov based filters such as the
JMRPF are well-suited to handle such systems.

V. JUMP MARKOV REGULARIZED PARTICLE FILTER

The proposed JMRPF combines the RPF [9] with a new
jump Markov strategy to manage transitions between faulty
and fault free modes using a transition probability matrix.
As in a RPF, particles are resampled from a continuous
approximation to the posterior density to reduce degeneracy
without compromising the diversity of solutions. A first
version of a JMRPF was introduced in [15] to recover from
ambiguous abrupt sensor fault scenarios. In this paper, a
Kalman correction is introduced to correct particles states by
placing them in more likely state space regions. The Kalman
innovation covariance matrix Sk is taken into consideration
in the calculation of the particles weights. This reduces the
variance of the weights. The estimated state vector xk and the
estimated covariance matrix P̂k are obtained by the JMRPF
algorithm using estimated state feedback, previous estimated
state and the measurement as inputs to the filter. The total
number of particles is denoted Np.

The proposed JMRPF algorithm is introduced in Algo-
rithm 1. The algorithm has prediction, update, estimation and
regularization-resampling steps. The PREDICT and UPDATE
functions of Algorithm 1 are improved compared to [15]
to deal with sensor fault estimation and a JUMP function is
introduced within the prediction step.

A. Prediction Step

The prediction step is described in Algorithm 2. The ith

state variable is propagated using the following probability
transition density for the state xk:

xi
k|k−1 ∼ p

(
xk|k−1|xi

k−1,m
i
k

)
(11)

Then, one obtains a predicted cloud of particles (x1
k|k−1,

x2
k|k−1, · · · , xNp

k|k−1). The mode of each state and particles
of Θk are updated in the prediction step. This update is
performed here using a uniform law and compared to user-
defined probabilities πji to switch from one mode to another
as described in Fig. 2.

Algorithm 1 jump Markov regularized particle filter
k ← 0

... . Initialization
loop

k ← k + 1
for each i ∈ [1, Np] do

PREDICT(xi
k|k−1, xi

k−1, mi
k, uk, yk)

end for
ESTIMATE(x̂k|k−1, P̂k|k−1, w1:Np

k−1 , x1:Np

k|k−1)

ŷk|k−1 ←
Np∑
i=1

wi
k−1hk

(
xi
k|k−1

)
Sk ←

Np∑
i=1

wi
k−1

(
yi
k|k−1 − ŷk|k−1

)(
yi
k|k−1 − ŷk|k−1

)>
+Rk

P̂XY ←
Np∑
i=1

wi
k−1

(
xi
k|k−1 − x̂k|k−1

)(
yi
k|k−1 − ŷk|k−1

)>

Kk ← P̂XY S
−1
k . Kalman gain

for each i ∈ [1, Np] do
UPDATE(xi

k, wi
k, wi

k−1, xi
k|k−1, Kk, Sk, yk)

end for
ESTIMATE(x̂k, P̂k, w1:Np

k , x1:Np

k )
Neff ← 1

Np∑
i=1

wi
k
2

if Neff ≤ NpΓ then . if true then resample
MULTINOMIAL(x́1:Np

k , x1:Np

k , w1:Np

k )
for each i ∈ [1, Np] do

wi
k ← 1

Np
. Reset the weights

REGULARIZE(xi
k, x́i

k)
end for

end if
end loop

To simplify notations in this section, it is assumed that the
maximum number of possible sensor faults nΘ is equal to
the number of sensors ny , although this number can easily be
reduced in practice to restrict fault management to specific
sensors. The same index j is also used to denote the jth state
of vector Θk, representing fault estimates of the jth sensor
of yk. The jump amplitude of the ith particle of the jth state
of Θ at time step k is computed as follows:

Θi,j
k|k−1 =


βi,j
k ifU ≤ πj

10 andmi,j
k = m(0)

Θi,j
k|k−1 ifU < πj

11 andmi,j
k = m(1)

0 else

(12)

where U ∼ U (0, 1) and βi
k is given by:

βi
k = yk − hk

(
xi
k|k−1

)
(13)

A new jump strategy for sensors fault modes is proposed.
It uses a priori distribution of the fault, which is computed
using sensor innovation terms from (13). Irrespective of the
current estimated mode, the alternate mode will continue to
be tested using a small subset of fault state particles that
will be called sentinel particles. Those particles are selected
from a uniform distribution and their number are smaller
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Algorithm 2 Detail of the function PREDICT from Algo-
rithm 1

function PREDICT(xi
k|k−1, xi

k−1, mi
k, uk, yk)

ηi
k ∼ N (0, Qk)

xi
k|k−1 ← fk

(
xi
k−1,uk

)
+ ηi

k

βi
k ← yk − hk

(
xi
k|k−1

)
. See (13)

for each j ∈ [1, nΘ] do . Jump step of Θ
JUMP(Θi,j

k|k−1, mi,j
k , βi,j

k ) . See Algorithm 3
end for

end function

when the off-diagonal terms π01 and π10 of the transition
probability matrix are smaller. Those terms are set based on
empirical sensor false alarm and missed detection rates. This
small number of sentinel particles will continuously test the
probability of transition to the alternate fault modes. The use
of a small number of sentinel particles to test the alternate
mode enhances real time operation prospects compared to
previously published particle filter jump strategies, where the
total or an arbitrary number of particles is used to evaluate
the probabilities of both modes before any jump between
them [8].

The JUMP function used in Algorithm 2 is described in
Algorithm 3.

Algorithm 3 Detail of the function JUMP from Algorithm 2

function JUMP(Θi,j
k|k−1, mi,j

k , βi,j
k )

U ∼ U (0, 1)
if mi,j

k = m(0) then . Θi,j
k|k−1 in mode m(0)

if U ≤ π10 then . Transition m(0) → m(1)

Θi,j
k|k−1 ← βi,j

k

mi,j
k ← m(1)

else . Transition m(0) → m(0)

Θi,j
k|k−1 ← 0

end if
else if mi,j

k = m(1) then . Θi,j
k|k−1 in mode m(1)

if U ≤ π01 then . Transition m(1) → m(0)

Θi,j
k|k−1 ← 0

mi,j
k ← m(0)

end if
end if

end function

B. Update Step

The update step is described in Algorithm 4. The ith

particle xi
k is assigned to a weight wi

k that is proportional to
its likelihood:

w̃i
k = wi

k−1p
(
yk|xi

k|k−1, m
i
k

)
(14a)

wi
k =

w̃i
k

Np∑
i=1

w̃i
k

(14b)

In (14b) a normalization is applied to ensure that
Np∑
i=1

wi
k = 1.

Compared to the update step described in [15], an addi-
tional feature was introduced. Indeed, a Kalman update on
the particles xi

k|k−1 is applied to place the particles in more
likely regions of the state space, which is shown in numerical
simulations to enhance estimation performance accuracy. The
Kalman update is given by:

xi
k = xi

k|k−1 +Kkỹ
i
k (15)

At this step, the likelihood is assumed to follow a Gaussian
distribution.

Algorithm 4 Detail of the function UPDATE from Algo-
rithm 1

function UPDATE(xi
k, wi

k, wi
k−1, xi

k|k−1, Kk, Sk, yk)

ỹi
k ← yk − hk

(
xi
k|k−1

)
. Innovation

w̃i
k ← wi

k−1N (ỹi
k; 0, Sk) . See (14a)

wi
k ←

w̃i
k

Np∑
i=1

w̃i
k

xi
k ← xi

k|k−1 +Kkỹ
i
k . See (15)

end function

C. Estimation

The estimation step aims to perform a global estimation
of the state vectors x̂k and x̂k|k−1, with its associated
covariance matrices P̂k and P̂k|k−1 respectively.

This step is described in Algorithm 5.

Algorithm 5 Detail of the function ESTIMATE from Algo-
rithm 1

function ESTIMATE(x̂, P̂, x1:Np , w1:Np )

x̂←
Np∑
i=1

wixi

P̂←
Np∑
i=1

wi
(
xi − x̂

) (
xi − x̂

)>
end function

D. Regularization-Resampling Step

This step consists of two stages, the resampling and the
regularization of the selected particles. Its purpose is to
remove the particles with a low likelihood and to replace
them by duplicating the particles with a high likelihood and
regularizing the duplicated particles.

a) Resampling step: In the MULTINOMIAL function
of algorithm 1, the particles are selected according to a
multinomial law with wi

k as parameter. Then the probability
to choose a particle is:

P
(
x́j
k = xi

k

)
= wi

k (16)
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b) Regularization step: The regularization step is de-
scribed in Algorithm 6. The particles are randomly moved
according to a regularization kernel K (x). The regularization
equation is:

xi
k = x́i

k + hDkε
i
k (17)

where h ∈ R+∗ is the bandwidth factor in the re-scaled ker-
nel density K (·) and with Pk = DkD

>
k and ε ∼ K (x). The

kernel density is a symmetric probability density function
such that:∫

xK (x) dx = 0,

∫
‖x‖2K (x) dx <∞ (18)

The optimal kernel K (·) and bandwidth factor h are cho-
sen to minimize the mean integrated square error (MISE)
between the theoretical and estimated posterior density, and
is given by:

MISE (p̂) = E
[∫

(p̂ (xk|Y1:k)− p (xk|Y1:k))
2
dxk

]
(19)

where p̂ (xk|Y1:k) is the JMRPF approximation of the
conditional density. The Epanechnikov kernel is used as a
regularization kernel [18].

K (x) =

{ nx+2
2cnx

(
1− ‖x‖2

)
if ‖x‖ < 1

0 else
(20)

where cnx
is the volume of the unit hypersphere in Rnx .

Algorithm 6 Detail of the function REGULARIZE from
Algorithm 1

function REGULARIZE(xi
k, x́i

k)
εik ∼ K

(
xi
k

)
. see (20)

xi
k ← x́i

k + hDkε
i
k

end function

The resampling step is only performed if Neff /Np is lower
than a user-defined threshold Γ ∈ (0; 1), where the efficiency
Neff is given by:

Neff =
1

Np∑
i=1

wi
k
2

(21)

The conditional density is then approached by:

p (xk,mk|Y1:k) ≈
Np∑
i=1

wi
kKh

(
xk − xi

k

)
δmi

k
(mk) (22)

where:
Kh (xk) =

1

hnx
K
(
1

h
xk

)
(23)

VI. SIMULATION RESULTS AND ANALYSIS

The application example is the fixed-wing UAV described
in Section II. A pitch sensor fault in an inertial navigation
system is assumed. The UAV is initialized in straight level
flight with an initial velocity of 40m s−1 and initial altitude
of 500m. The simulation time step is 50ms.

During all the simulation, the desired flight path angle is
set to γc = 0° and the desired norm of the velocity vector
is V c = 40m s−1.

A. Filter Parameters

For the two filters compared, the JMRPF and the RPF the
stochastic process model of the filter is given by:

[
zk+1

Θk+1

]
=

[
Fk (zk, uk)

Θk

]
+ ηk

yk = Hk (zk) + Gk (Θk) + νk

(24a)

(24b)

where Fk (·) is the longitudinal dynamic of the UAV given
by (2), and Hk (·) is the measurement function given by (3).
As previously explained, a zero-order fault model is used by
the filter, but the actual dynamical model of the fault does
not always match the fault model of the filter. The process
noise ηk and measurement noise νk are both Gaussian and
independent with a zero mean and their covariance matrices
are respectively Qk and Rk. The impact of the sensor fault
on the state and measurements is given by:

Gk (Θk) =
[
0 0 0 Θk 0

]>
(25)

The JMRPF and RPF parameters are2:
• The standard deviation vector used to compute the

covariance matrix P0 = diag
(
σ2

0

)
for the extended

state vector xk is given by:

σ0 =
[
1 1 1 0.3 0.1 0.3

]
(26)

• The standard deviation vectors used to compute the
covariance matrices Qk = diag

(
σ2

Q

)
and Rk =

diag
(
σ2

R

)
are respectively given by:

σQ =
[
0.1 0.1 0.1 0.03 0.01 0.1

]
(27)

σR =
[
1 1 1 0.3 0.1

]
(28)

• The resampling threshold Γ and regularization band-
width h are:

Γ = 0.5 (29)
h = 0.2817 (30)

• The number of particles Np is set to 1000.
• The transition probability matrix for sensor faults

(JMRPF only) is equal to:

Π =

[
0.99 0.01
0.01 0.99

]
(31)

Selection of the transition probability matrix Π was
driven by the expected device false alarm probability.

B. Fault Scenario

The simulation scenario was chosen to illustrate the ef-
ficiency of the JMRPF and RPF algorithms to estimate
intermittent pitch sensor faults with unknown amplitude
and unknown dynamics. To assess those two aspects of
estimation performance, the fault scenario has two phases.
On the first phase, an abrupt bias type sensor fault is injected
with unexpected amplitude starting at t = 10 s and ending at
t = 20 s. On the second phase, the fault also has unexpected
dynamics, starting from t = 30 s until t = 40 s.

2Note: The angle unit used is degree
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1) Unexpected Amplitude: Estimation performance is as-
sessed for faults amplitudes much larger than process and
regularization noises. To ensure a fair comparison, the pro-
cess and regularization noises of the fault state are taken
to be the same for both filter and are given by the 6th

element of (27) and (30). The abrupt amplitude fault follows
zero-order dynamics, as expected by both filters where
the assumed fault dynamics are given by (24a). The fault
estimates are initialized at zero. The amplitude of the pitch
fault is taken to be 5° which is significant compared to the
process and regularization noises of both filters. The fault
equation for this phase is given by:

Θ (t) = 5 (32)

2) Unexpected Fault Dynamics: When the fault has un-
expected dynamics, both filters continue to assume zero-
order filter dynamics. To compare the effect of unexpected
fault dynamics on the two filters, an incipient fault with an
exponential dynamic and a maximum amplitude of 10° is
considered for this phase. The actual sensor fault equation
for this phase is given by:

Θ (t) = 10 exp (t− 40) (33)

The full sensor fault sequence with both phases is illus-
trated in Fig. 3.
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Fig. 3. Faults scenario used for the simulation

C. Estimation Performance Comparison

In this section, the JMRPF and RPF are compared in
terms of root-mean-square error (RMSE) and of median fault
and state estimation for NMC = 100 Monte Carlo runs. The
RMSE is defined for any state variable x as:

RMSEx
k =

√√√√√NMC∑
i=1

(x̂i
k − xi

k)
2

NMC
(34)

where xi
k and x̂i

k respectively represent the true and esti-
mated state variable at time step k for the ith Monte Carlo run
and x is a generic notation that could for example represent
pitch θ or altitude pd. True states depend on the Monte Carlo
run because the autopilot uses estimated state feedback. The

average RMSE over the total simulation time is also used as
an estimation performance metric and is given by:

RMSEx =

Ns∑
k=1

RMSEx
k

Ns
(35)

where Ns is the total number of time steps for the simulation.
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Fig. 4. Median result of the estimated pitch sensor fault

In Fig. 4, both filters estimate the abrupt fault between
10 s and 20 s and return to the fault free mode between 20 s
and 30 s when the fault is no longer active. The JMRPF
has higher accuracy and significantly lower convergence time
compared to the RPF during both fault free and faulty phases
When the transient fault phase starts at t = 30 s, the JMRPF
estimates the unexpected exponential fault more and more
accurately than the RPF as time approaches 40 s. At that
time, the fault is no longer active and the JMRPF returns
to the fault free mode almost instantaneously and with very
high estimation accuracy compared to the RPF that converges
much more slowly to the fault free mode. The jump strategy
of the JMRPF was indeed designed to return more rapidly
to the correct mode. Moreover, between 40 s and 42.55 s,
the RPF does not converge. This non convergence is due to
the fact that the estimated fault amplitude of approximately
6.12° at those times is high compared to the process and
regularization noises. The JMRPF handles this abrupt change
more efficiently.
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Fig. 5. RMSE of the pitch sensor fault

In Fig. 5, the RMSE is indeed shown to be significantly
lower with the JMRPF at all times except for a brief 1.35 s
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interval of time at 37.5 s when the exponential fault has not
yet compensated the slow convergence dynamics of the RPF.
The RMSE is only very briefly higher with the JMRPF at
t = 20 s and t = 40 s before a sharp decrease to substantially
smaller errors. This is due to the fact that the fault is suddenly
activated and deactivated and during one time step, there is
an error between the current fault estimate and the new fault.
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(b) Estimated pitch with the RPF

Fig. 6. Comparison of the median results for estimated pitch

In Fig. 6, the pitch estimation error is also shown to be
significantly smaller with the JMRPF from t = 10 s until the
end of the simulation. Maximum error is below 0.74° with
the JMRPF at 38.65 s and exceeds 2.23° with the RPF at
10.60 s.

Note that the true pitch signal differs between the two
simulations because estimated pitch is used by the LQR
feedback controller with integral action, which was presented
in the control system Subsection II-B.

The JMRPF also provides significantly higher altitude
estimation accuracy compared to the RPF, as shown in Fig. 7.
This is particularly the case for the duration of the faults and
when the faults are deactivated. True altitudes are different
between the two filters because the feedback control scheme
uses state estimation feedback.

The controller is designed to maintain a zero flight path
angle. Fault estimation errors have a visible impact on both
filters as also shown in Fig. 7 when the altitude tracking
accuracy temporarily deteriorates. The same figure also
shows that the altitude fluctuations are less significant with
the JMRPF compared to the RPF. This is due to the fact
that the JMRPF has higher estimation accuracy. The non-
convergence of the RPF is also visible between 40 s and
42.55 s when the estimated altitude does not follow the true
altitude. For this scenario, the average altitude RMSE was

TABLE I
RMSE RESULTS FOR THE SCENARIO WITH 10° FAULT AMPLITUDE

Times (s) 10 21 30 41 RMSE

Altitude

RMSE JMRPF (m) 0.201 0.215 0.203 0.239 0.215
RMSE RPF (m) 0.223 1.278 0.527 1.246 0.932

Pitch

RMSE JMRPF (°) 0.061 0.082 0.044 0.123 0.114
RMSE RPF (°) 0.208 0.884 0.704 0.899 1.014

found to be 0.215m with the JMRPF and 0.932m with the
RPF.This average RMSE is therefore reduced by 77% by
the JMRPF and the pitch RMSE is also reduced by 89%, as
shown in as shown in Table I.
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Fig. 7. Comparison of the median results for estimated altitude

The amplitude used for this simulation scenario has been
bound by the constraints on RPF parameters tuning. The
difference between the convergence characteristics of the
JMRPF and the RPF is more pronounced when larger ampli-
tudes are considered. To illustrate this, the same simulation
has been run with fault amplitudes 10 times larger than the
one previously introduced. The filters parameters remains
unchanged.

In Fig. 8, the fault estimation performance of the JMRPF
is not significantly affected by a tenfold increase in fault
amplitude, without changing the JMRPF parameters. On the
other hand, the RPF was unable to handle this fault amplitude
and does not converge to the abrupt fault, and at 38 s the
incipient fault is also too steep for it to converge.

In Fig. 9, the RMSE of the pitch sensor fault of the RPF
is also shown not to converge when the amplitude of the
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Fig. 8. Median result of the estimated pitch sensor fault with 10 times
larger fault amplitudes

fault is too large compared to its process and regularization
noises. Indeed, with no a priori knowledge of the fault
amplitude, process noise cannot be adjusted to increase
when the unknown fault amplitude increases. An arbitrarily
large process noise would also degrade performance in the
fault free case or when the fault is small. That is why
the same moderate value of process noise was adopted for
both RPF and JMRPF. Using the JMRPF, the jump Markov
and Kalman correction compensate for the lack of process
and regularization noises when fault amplitudes are high
and drive the particles towards the high-likelihood regions.
This promotes the particles’ diversity and reduces particle
degeneracy and sample impoverishment issues, and thus
enhances the ability to track high amplitude abrupt and
incipient faults. For the JMRPF, this figure illustrates its
capacity to handle a variety of fault amplitudes and dynamics
despite them being significantly different from the zero-order
fault model used by the filter.
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Fig. 9. RMSE of the pitch sensor fault with 10 times larger fault amplitudes

VII. CONCLUSION

A new nonlinear filter that combines regularized particle
filtering with a jump Markov strategy and a Kalman correc-
tion was used in this paper to estimate abrupt and incipient
sensor faults with unexpected dynamics and amplitudes.
The approach was applied to state and fault estimation
for a nonlinear longitudinal fixed wing unmanned aerial
vehicle (UAV) model with a pitch sensor fault in the inertial

navigation system. Numerical simulations have shown that
the jump Markov regularized particle filter (JMRPF) sig-
nificantly outperforms the regularized particle filter (RPF)
with a higher accuracy and a faster convergence to both
faulty and fault free modes. State estimation accuracy is also
significantly enhanced with better robustness to faults using
the JMRPF, particularly when the sensor fault is active and
when the system switches back to a fault free mode. The
simulation results also illustrate that the JMRPF has a much
higher ability to estimate larger fault amplitudes compared
to the RPF which is better suited to small fault amplitudes
with slower dynamics. This presents a practical benefit for
a fixed wing UAV with no sensor redundancy to maintain a
steady flight in the presence of sensor faults with unexpected
dynamics and amplitudes.
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