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Robust Consensus of High-Order Systems under
Output Constraints: Application to Rendezvous

of Underactuated UAVs
Esteban Restrepo Antonio Lorı́a Ioannis Sarras Julien Marzat

Abstract— We solve output- and state-consensus prob-
lems for multi-agent high-order systems in feedback form. We
consider systems interconnected over arbitrary (connected)
undirected-topology networks as well as directed spanning-
trees and directed cycles. We assume that the systems may be
subject to multiple restrictions in the form of output or state
constraints, such as limited-range measurements, physical
limitations, etc. In addition, we suppose that the systems may
be subject to external disturbances. Under these conditions,
we present a control framework and a formal analysis that
establishes robust stability in the input-to-state sense. The
former relies on a modified backstepping method and the
latter on multi-stability theory. Finally, we apply our approach
to a case-study of interest in the aerospace industry: safety-
aware rendezvous control of underactuated UAVs subject to
connectivity and collision-avoidance constraints.
Index Terms— Consensus, multi-agent vehicles, control under
constraints, robust stability, Lyapunov methods.

I. INTRODUCTION

The literature on consensus control, which constitutes the
basis of cooperative interaction for multi-agent systems, is
rife with works addressing diverse problems for a variety of
dynamical systems, both linear [1]–[3] and nonlinear —most
often second-order mechanical systems [4]–[8], but consensus
of high-order systems is addressed, e.g., in [9]–[12].

While many articles address consensus problems for fairly
generic classes of systems, the latter may fall short at repre-
senting many meaningful and complex engineering problems.
A good example of a scenario of cooperative systems in which
a plethora of difficulties appear naturally is that of rendezvous
control of unmanned-autonomous vehicles (UAVs). For a
start, the systems’ dynamics is nonlinear and underactuated,
so the literature on consensus tailored for linear low-order
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systems does not apply. In addition, the measurements often
come from embedded relative-measurement sensors, which are
reliable only if the vehicles remain within a limited range.
This translates into guaranteeing that the UAVs do not drift
“too far” apart from their neighbors. Moreover, the use of
such sensors naturally imposes directed network topologies.
Furthermore, autonomous vehicles moving “freely” in the
workspace are prone to undesired collisions. Finally, UAVs are
constantly subject to external undesired forces generated, e.g.,
by wind gusts, aerodynamic effects or unmodeled dynamics.
These constitute external disturbances at different levels in the
dynamic model.

The aspects previously described coin a realistic scenario of
automatic control of multi-agent systems that is not restricted
to UAVs. Consensus under such conditions has been addressed
in the literature, but, to the best of our knowledge, never
simultaneously. This is the core contribution of this paper.

Many articles address the constrained consensus problem
for low-order systems interconnected over, both, undirected
and directed topologies [13]–[16]. Fewer works, however,
address the consensus control problem with constraints for
high-order systems. In [17] a tracking consensus controller is
proposed for networked systems over undirected graphs only,
and the constraints are considered on the synchronization error
and not directly on the inter-agent relative states. In [18] a
synchronization controller is designed using the prescribed-
performance framework in order to achieve consensus over
directed graphs with desired bounds on the transient re-
sponse. Nevertheless, as in [17], the prescribed-performance
constraints are imposed on the consensus error and not on
the inter-agent relative states. A consensus control for high-
order systems with constraints and interacting over strongly
connected directed graphs is presented in [19]. Yet, the con-
straints considered therein weigh on each individual agent’s
states (e.g., constraints on the velocity, the acceleration, etc.),
and do not reflect inter-agent restrictions. Model-predictive-
control algorithms are proposed in [20] and [21] for consensus
of high-order systems, but only constraints on the decoupled
states of the agents or only collision avoidance is considered
and robustness is not investigated. Robustness is addressed in
[22], but for linear systems without inter-agent constraints.

The main contribution of this paper consists in a control
framework for consensus of high-order nonlinear systems
in feedback form, under inter-agent constraints. Our main
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statements apply to multi-agent systems interconnected over
arbitrary connected undirected graphs, directed spanning trees,
and directed cycles. Directed spanning-tree and directed-cycle
topologies present practical interests of their own as they
appear naturally in leader-follower configurations [7] and in
the context of cyclic pursuit [23].

To guarantee the systems’ safety as well as the integrity
of the topology through the maintenance of connectivity, our
controllers guarantee that output inter-agent constraints are
respected. To achieve this, the said constraints are encoded
in control laws that are derived as the gradients of barrier
Lyapunov functions [24]. Essentially, the control input is
defined as a function of the state that grows unboundedly as the
system’s state approaches a specified region. This technique
is reminiscent of potential/navigation functions used, e.g., in
robot control at least since the seminal work [25].

Our control framework is tailored for the fairly large class of
systems in feedback form. Hence, the control architecture also
relies on the popular passivity-based backstepping method.
However, since in the presence of constraints this may involve
successive derivatives of functions with multiple saddle points,
we use the refined command-filtered backstepping approach
[26], in which the successive derivatives are approximated by
linear strictly-positive-real filters.

Beyond the control design, a significant part of our contri-
bution resides in the formal analysis. In that regard, we stress
that our method is based on the edge-agreement framework
introduced in [27], by which the consensus problem is recast
as one of stabilization of the origin. Now, since inter-agent
constraints may introduce undesired unstable equilibria in the
edges’ space, the closed-loop system is analyzed using tools
from [28] and [29] for multi-stable systems. Specifically, we
establish attractivity of the consensus manifold as well as
robustness with respect to external disturbances, in the sense
of practical-input-to-state stability. This property is stronger
than mere convergence, more often found in the literature.

Finally, to demonstrate the utility of our main theoreti-
cal findings, we show how our control framework may be
applied to the rendezvous control problem for a group of
underactuated UAVs, subject to connectivity and collision
avoidance constraints, using only local measurements. This
problem is relevant to the aerospace industry, in view of
the increasing interest for safety-aware fleet deployment. It
was addressed, e.g., in [30]–[33] for swarms of underactuated
UAVs interconnected through undirected and directed com-
munication topologies, but none of these works addresses the
problem under inter-agent constraints. Connectivity constraints
are considered in [34], but only for UAVs interconnected under
undirected topologies and collision-avoidance is not addressed.
In turn, the latter is considered in [35], but only for systems
interconnected under an undirected topology.

In Section II we describe the problems that we address, in
Section III we present our main statements, in Section IV we
present a formal stability analysis, in Section V we present our
novel results on formation consensus of UAVs, and the paper
is wrapped up with some concluding remarks in Section VI.

II. MODEL AND PROBLEM FORMULATION

We consider multi-agent nonlinear systems in feedback
normal form, of high relative degree with respect to an output
of interest and subject to additive disturbances. More precisely,
we consider N multi-variable systems of relative degree ρ
defined by the equations

ẋi,l = xi,l+1 + θi,l(t), l ≤ ρ− 1 (1a)
ẋi,ρ = ui + θi,ρ(t), (1b)

where xi,l ∈ Rn, l ≤ ρ, i ≤ N , denotes the components of
the state of each agent, ui ∈ Rn is the control input, θi,l :
R≥0 7→ Rn is an essentially bounded function that represents
a disturbance, and xi,1 is considered an output of interest.

The class of systems with model (1) is fairly wide. This set
of equations may represent, e.g., linearized nonlinear systems
via feedback and coordinate transformation, such as second-
order feedback linearizable systems in which the output-
consensus problem consists in driving all the positions xi,1
to a common constant value and all the velocities xi,2 to
zero. The model (1) may also represent nonlinear systems
under a coordinate transformation and a preliminary dynamic
control feedback loop, in which case some of the states are
the controller’s —see, e.g., Section V.

In terms of the systems’ interaction, it is assumed that each
agent has access only to local information from a limited
number of neighbors. The latter is represented by a graph, de-
noted G = (V, E), where the set of nodes V := {1, 2, . . . , N}
corresponds to the labels of the agents and the set of edges
E ⊆ V2, of cardinality M , represents the communication
between a pair of nodes —an edge ek, k ≤M , is an ordered
pair (i, j) ∈ E indicating that agent j has access to information
from node i, via measurement or communication. We refer to
an initial graph as the graph corresponding to the existing
edges at t = 0 and we pose the following.
Standing Assumption: the initial graph is either undirected and
connected, or a directed spanning tree or a directed cycle.

Furthermore, we consider that the multi-agent system is
subject to inter-agent constraints that may be defined as a set of
restrictions on the system’s output. Without loss of generality,
let the first component xi,1 be the output for the ith agent,
with i ≤ N , and define the relative-output state as

zk,1 := xi,1 − xj,1 ∀k ≤M, (i, j) ∈ E . (2)

For each k ≤ M , let ∆k and δk, satisfying 0 ≤ δk < ∆k,
be the upper and minimal distances, respectively and let | · |
denote the Euclidean norm. Then, the set of inter-agent output
constraints is defined as

D :=
{
z1 ∈ RnM : δk < |zk,1| < ∆k, ∀ k ≤M

}
. (3)

The control goal is for the agents to achieve output consen-
sus with a non-zero displacement, centered at a point of non-
predefined coordinates (as for instance in a formation control
problem), under the constraint that the output trajectories must
remain in the set D at all times. Furthermore, besides achieving
the output-consensus goal it is additionally required to achieve
consensus of a number of states r ≤ ρ. This is useful,
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for instance, in the context of flocking in formation, attitude
consensus, etc.

Mathematically, the output-consensus problem translates
into making xi,1−xj,1 → zdk,1, or equivalently, zk,1 → zdk,1 in
the relative coordinates, where zdk,1 ∈ Rn denotes the desired
relative state between a pair of neighboring agents i and j.
Moreover, akin to (2), define the relative states

zk,l := xi,l − xj,l, ∀k ≤M, ∀l ∈ {2, . . . , r}. (4)

Then, the problem of consensus of the high-order states
corresponds to making zk,l → 0, for all l ∈ {2, . . . , r}.

Our control approach to solve this problem relies on the
edge-agreement framework for modeling of graphs [27]. In
this framework the variables defined in (2) denote the states
of the interconnection arcs in the graph, instead of those of the
nodes, which are more commonly used. This has the advantage
of recasting the consensus objective as the stabilization of the
origin in error coordinates.

To describe the setting, we start by recalling some notations
and concepts. We denote the so-called incidence matrix of a
graph by E ∈ RN×M , which is a matrix with rows indexed
by the nodes and columns indexed by the edges. Its (i, k)th
entry is defined as follows: [E]ik := −1 if i is the terminal
node of edge ek, [E]ik := 1 if i is the initial node of edge ek,
and [E]ik := 0 otherwise. Let x>l =

[
x>1,l · · · x>N,l

]
∈ RnN

be the collection of each state of all the agents of the system,
for all l ≤ ρ. Then, the edge states in (2) and (4) satisfy

zl := [E> ⊗ In]xl, l ∈ {1, . . . , r}. (5)

where z>l = [z>1,l · · · z>M,l] ∈ RnM , ‘⊗’ denotes the Kronecker
product, and In the identity matrix of dimension n×n. Also,
we introduce the error variable

z̃1 = [E> ⊗ In]x1 − zd1 , (6)

where zd>1 = [zd>1,1 · · · zd>M,1] ∈ RnM . Then, in the error edge
coordinates, the consensus objective is that

lim
t→∞

z̃1(t) = 0 (7a)

lim
t→∞

zl(t) = 0, ∀l ∈ {2, . . . , r} (7b)

lim
t→∞

xl(t) = 0, ∀l ∈ {r + 1, . . . , ρ}. (7c)

Remark 1: Such consensus objective covers different cases
of interest including consensus in part of the states (exactly in
r of them) or in one output and its successive derivatives. For
instance, for position-consensus of second-order mechanical
systems we have r = 1 and ρ = 2. Hence, (7a) expresses
the goal of achieving a desired consensual constant position
modulo a desired offset for each system, (7b) is superfluous,
and (7c) means that all velocities must converge to zero. •

One of the advantages of considering the edge states rather
than the node’s is that it is possible to obtain an equivalent
reduced system, easier to analyze using stability theory. Recall
that, as observed in [27], using an appropriate labeling of the
edges, the incidence matrix is expressed as

E = [ Et Ec ] (8)

where Et ∈ RN×(N−1) denotes the full-column-rank in-
cidence matrix corresponding to an arbitrary spanning tree
Gt ⊂ G and Ec ∈ RN×(M−N+1) represents the incidence
matrix corresponding to the remaining edges not contained in
Gt. Moreover, defining

R := [ IN−1 T ] (9)

with IN−1 denoting the N − 1 identity matrix, and T :=(
E>t Et

)−1
E>t Ec, one obtains an alternative representation of

the incidence matrix of the graph given by

E = EtR. (10)

The identity (10) is useful to derive a reduced-order dynamic
model —cf. [27]. Such transformation is particularly useful to
analyze consensus as a stabilization problem via Lyapunov’s
method [16]. Now, as in the latter references, the error edges’
states, for each l ∈ {2, . . . , r}, may be split as

zl =
[
z̃>lt z̃>lc

]>
, z̃lt ∈ Rn(N−1), z̃lc ∈ Rn(M−N+1) (11)

where zlt, for all l ∈ {1, . . . , r} are the states corresponding
to the edges of an arbitrary spanning tree Gt and z̃lc denote
the states of the remaining edges, G\Gt. Thus, after (5), (6),
and (11), denoting zd1t ∈ Rn(N−1) as the vector of desired
relative displacements corresponding to Gt, we obtain

z̃1 =
[
R> ⊗ In

]
z̃1t (12)

zl =
[
R> ⊗ In

]
zlt, l ∈ {2, . . . , r}. (13)

Now, collecting the inputs of the multiple agents into the
vector u> =

[
u>1 · · · u>N

]
∈ RnN and the disturbances

into θ>l =
[
θ>1,l · · · θ>N,l

]
∈ RnN , with l ∈ {1, . . . , ρ}, the

reduced-order system’s equations read

˙̃z1t = z2t +
[
E>t ⊗ In

]
θ1(t) (14a)

żlt = z(l+1)t +
[
E>t ⊗ In

]
θl(t), l ∈ {2, . . . , r − 1} (14b)

żrt =
[
E>t ⊗ In

]
xr+1 +

[
E>t ⊗ In

]
θr(t) (14c)

ẋl = xl+1 + θl(t), l ∈ {r + 1, . . . , ρ− 1} (14d)
ẋρ = u+ θρ(t). (14e)

In these coordinates, output-consensus as defined in (7) is
achieved if the origin is asymptotically stabilized for the
reduced-order system (14). More precisely we address the
following problem.

Robust consensus problem with output constraints: Consider
a multi-agent system of agents with high relative-degree
dynamics given by (1), interacting either over a connected
undirected graph, a directed spanning tree or a directed cycle.
Assume, in addition, that the systems are subject to inter-
agent constraints that consist in the outputs being restricted
to remain in the set defined in (3). Under these conditions,
find a distributed dynamic controller with outputs ui, i ≤ N ,
that, in the absence of disturbances, i.e., θi,l ≡ 0, l ≤ ρ,
i ≤ N , achieves the objective (7) and renders the constraints
set (3) forward invariant, i.e., such that z1(0) ∈ D imply that
z1(t) ∈ D for all t ≥ 0. Furthermore, that in the presence of
essentially bounded disturbances, that is θl 6≡ 0, ui render the
origin of (14) practically input-to-state stable and the set D in
(3) forward invariant. •
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III. CONTROL DESIGN FOR CONSENSUS UNDER OUTPUT
CONSTRAINTS

For clarity of exposition, we begin by presenting the control
design for the output-consensus problem under output con-
straints. That is, in (7) let r = 1, so these equations become

lim
t→∞

z̃1(t) = 0 (15a)

lim
t→∞

xl(t) = 0, ∀l ∈ {2, . . . , ρ}. (15b)

More precisely, we consider the stabilization of the origin for

˙̃z1t =
[
E>t ⊗ In

]
x2 +

[
E>t ⊗ In

]
θ1(t) (16a)

ẋl = xl+1 + θl(t), l ∈ {2, . . . , ρ− 1} (16b)
ẋρ = u+ θρ(t). (16c)

Remark 2: In Section III-C farther below we show how
the control methodology presented hereafter extends to cover
the partial- and full-state consensus problem with output
constraints defined in the previous section. •

The control design for the system (16) follows a backstep-
ping approach that naturally exploits the normal form of the
system. Hence, we start by defining a virtual control law for
(16a), using x2 as input. Then, in order to account for the
output constraints, a good choice of virtual input for (16a)
consists in the gradient of a barrier Lyapunov function [36]–
[38]. It is well known, however, that the backstepping approach
may lead to an increase of complexity of the control law
due to the successive differentiation of the virtual controllers.
This problem is exacerbated by the fact that the said virtual
control is designed as the gradient of a barrier function,
which has multiple local minima and is defined only in open
subsets of the state space. Therefore, in order to bypass
these technical obstacles, inspired by the command filtered
backstepping approach [26], we approximate the virtual inputs
and their derivatives in each step of the backstepping design
via command filters. This is explained in detail farther below.

A. On barrier Lyapunov functions

Barrier Lyapunov functions (BLFs) are reminiscent of Lya-
punov functions, so they are positive definite, but their domain
of definition is restricted by design to open subsets of the
Euclidean space. Furthermore, they grow unbounded as the
argument approaches the boundary of their domain. We define
them as follows —cf. [24].

Definition 1 (Barrier Lyapunov function): Consider the
system ẋ = f(x) and let J ⊂ Rn be an open set containing
the origin. A Barrier Lyapunov function is a positive definite,
function V : J → R≥0, x 7→ V (x), that is C1, satisfies

∇V (x)>f(x) :=
∂V (x)

∂x

>
f(x) ≤ 0,

and has the property that V (x) → ∞ and |∇V (x)| → ∞ as
x→ ∂J . �

Now, akin to (3), for each k ≤M , the inter-agent constraints
in terms of the error coordinates are given by the set

D̃k := {z̃k,1 ∈ Rn : δk < |z̃k,1 + zdk,1| < ∆k}.

Then, for each k ≤ M , we define a candidate BLF Wk :
D̃k → R≥0, of the form

Wk(z̃k,1) =
1

2

[
|z̃k,1|2 +Bk(z̃k,1 + zdk,1)

]
, (17)

where Bk(z̃k,1 + zdk,1) is non-negative and satisfies:
Bk(zdk,1) = 0, ∇Bk(zdk,1) = 0, and Bk(z̃k,1 + zdk,1) → ∞
as either |z̃k,1 + zdk,1| → ∆k or |z̃k,1 + zdk,1| → δk. Therefore,
the candidate BLF (17) satisfies: Wk(z̃k,1) → ∞ as either
|z̃k,1 + zdk,1| → ∆k or |z̃k,1 + zdk,1| → δk, or equivalently
in the original edge coordinates, as either |zk,1| → ∆k or
|zk,1| → δk.

Remark 3: Note that Bk(z̃k,1 + zdk,1) in (17) encodes the
constraints on the original edge coordinates zk,1 in terms of the
error z̃k,1. This may lead to imposing conservative feasibility
conditions in terms of the initial conditions when using, e.g.,
logarithmic BLFs [39]. To overcome this limitation, Bk(z̃k,1+
zdk,1) may be defined as an integral BLF [39] or as a weight
recentered barrier function [40] —see also Section V. •

Remark 4: The functions defined in (17) are reminiscent
of scalar potential functions in constrained environments [25]
and, as for the latter, the appearance of multiple critical points
is inevitable. Indeed, the gradient of the BLF (17),∇Wk(z̃k,1),
vanishes at the origin and at an isolated saddle point separated
from the origin —see [41]. Therefore, when using the gradient
of (17) for the control, the closed-loop system has multiple
equilibria. This prevents us from using the classical stability
tools for the analysis of the system. Such technical difficulty
is addressed using tools tailored for so-called multi-stable
systems—see [28], [29], and Appendix I. •

B. Control design for systems over directed graphs

Let us define the so-called in-incidence matrix E� ∈
RN×M , whose elements are defined as follows—cf. [42]—
: [E�]ik := −1 if i is the terminal node of edge ek and
[E�]ik := 0 otherwise. Similarly the elements of so-called
out-incidence matrix E⊗ ∈ RN×M are defined as follows:
[E�]ik := 1 if i is the initial node of edge ek and [E�]ik := 0
otherwise. Define a BLF for the multi-agent system as

W (z̃1) =
∑
k≤M

Wk(z̃k,1), (18)

with Wk(z̃k,1) given in (17) for all k ≤ M , and denote by
∇W (z̃1) the gradient of (18). Then, the virtual consensus
control law for (16a), based on the gradient of the BLF W , is
given by

x∗2 := −c1[E� ⊗ In]∇W (z̃1), c1 > 0. (19)

Remark 5: For undirected graphs the virtual control law
takes the form

x∗2 = −c1[E ⊗ In]∇W (z̃1), c1 > 0,

where E is the incidence matrix —cf. [38]. •
The right-hand side of (19) qualifies as a consensus control

law that guarantees connectivity maintenance for first-order
multi-agent systems ˙̃z1t = u interconnected over directed
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graphs [16]. So, defining x̄2 := x2 − x∗2 and using (19),
Equation (16a) becomes1

˙̃z1t = −c1[E>t E�⊗In]∇W (z̃1)+[E>t ⊗In] [x̄2 + θ1] . (20)

With aim at making x̄2 → 0 in (20), following a
backstepping-based design, we rewrite the second equation in
(16b), i.e., with l = 2, in error coordinates x̄2 and we consider
x3 as an input. We have

˙̄x2 = x3 − ẋ∗2 + θ2. (21)

Hence, the natural virtual control law at this stage is

x∗3 = −c2x̄2 + ẋ∗2, c2 > 0, (22)

which requires the derivative of the right-hand side of (19).
Furthermore, a recursive procedure requires up to ρ − 2
successive derivatives of x∗2, which posses significant technical
and numerical difficulties. Thus, to avoid the use of successive
derivatives of ∇W (z̃1) we approximate the derivatives of the
virtual controls x∗l , with l ∈ {2, . . . , ρ − 1} by means of
command filters. For simplicity, we use second-order systems
defined as in the figure below —cf. [26];

H1(s)
x∗l xlf

H1(s) :=
ω2
n

s2 + 2ωns+ ω2
n

Fig. 1: Command filter used for implementation. The dirty derivative
of x∗l may be obtained using ẋlf := sH1(s)x

∗
l which is equivalent

to ẋlf = H1(s)ẋ
∗
l .

The virtual controls are considered as the inputs of a
command filter, with the outputs corresponding to the ap-
proximated signals and their derivatives, denoted xlf and ẋlf ,
respectively. The filters’ natural frequency, ωn > 0, is a
control parameter which is chosen large enough so that the
approximation xlf converges to the desired virtual control x∗l
in a faster time-scale than that of the system’s dynamics —
see Section IV-A. Moreover, the filters are designed with unit
DC gain and unit damping coefficient so that the tracking
of the virtual signals is guaranteed without overshoot. This
ensures that, in the slower time-scale of the systems’ dy-
namics, the “filtered forms” act as the desired virtual signals,
corresponding to a classical backstepping control. Similarly,
ẋlf = H1(s)ẋ∗l approximates ẋ∗l .

Remark 6: For clarity, we use second-order command-
filters as defined in Fig. 1 above. However, the design is not
restricted to this particular choice. Indeed, other possibilities
include first-order low-pass filters [43] or high-order Levant
differentiators [34]. •

For the purpose of stability analysis, we write the command
filters’ dynamics in state form. To that end, let the filters’
variables be denoted as α>l−1 :=

[
α>l−1,1 α>l−1,2

]
∈ R2nN ,

for l ∈ {2, . . . , ρ}. Then, in state-space representation, the
command filters are written as

α̇l−1 = ωn [A⊗ InN ]αl−1 + ωn [B ⊗ InN ]x∗l (23a)

1To avoid a cumbersome notation we write ∇W (z̃1) in place of the more
appropriate spelling ∇W (

[
R> ⊗ In

]
z̃1t).

[
x>lf ẋ

>
lf

]>
= [C ⊗ InN ]αl−1, l ∈ {2, . . . , ρ}, (23b)

A :=

[
0 1
−1 −2

]
, B :=

[
0
1

]
, C :=

[
1 0
0 ωn

]
(23c)

and the initial conditions are set to αl−1,1(0) = x∗l (0) and
αl−1,2(0) = 0.

Thus, the virtual control inputs, starting with (22), are
redefined using the filter variables as follows. First, we redefine

x∗3 := −c2x̃2 + ẋ2f (24)

where x̃2 := x2 − x2f and ẋ2f = ωnα1,2. Hence, in contrast
to (21), from

ẋ2 − ẋ2f = x3 − ẋ2f + θ2 + x∗3 − x∗3 + α2,1 − α2,1,

defining x̃3 := x3 − x3f and using (24) and α2,1 = x3f , we
obtain

˙̃x2 = −c2x̃2 + x̃3 + (α2,1 − x∗3) + θ2.

Then, owing to the fact that the system is in feedback form,
we define

x∗l := −cl−1x̃l−1 +ωnαl−2,2− x̃l−2, l ∈ {4, . . . , ρ}, (25)

—cf. Eq. (24), where c2, cl−1 are positive constants, and the
tracking errors are given by

x̃l := xl − xlf = xl − αl−1,1, l ∈ {2, . . . , ρ}. (26)

That is, the virtual controls x∗l starting from l = 3 are
redesigned to steer xl−1 towards the filtered virtual input
xl−1 f . Finally, the actual control input is set to

u = −cρx̃ρ + ωnαρ−2,2 − x̃ρ−1. (27)

Remark 7: The system being in feedback form, the third
term on the right-hand side of (25) and (27) are feedback
passivation terms —cf. [44]. These terms, that come from the
backstepping-as-recursive-feedback-passivation approach [45]
are used to render the system (14) passive with respect to the
output yρ := xρ − xρf . •

Thus, taking the derivative of the backstepping error vari-
ables defined in (26) and using the input (27), with (23)-(25),
we obtain the closed-loop system

˙̃z1t =− c1[E>t E� ⊗ In]∇W (z̃1)

+ [E>t ⊗ In] [x̃2 + (α1,1 − x∗2) + θ1] (28a)
˙̃x2 =− c2x̃2 + x̃3 + (α2,1 − x∗3) + θ2 (28b)
˙̃xl =− clx̃l + x̃l+1−x̃l−1 + (αl,1 − x∗l+1) + θl,

∀ l ∈ {3, . . . , ρ− 1} (28c)
˙̃xρ =− cρx̃ρ−x̃ρ−1 + θρ (28d)
α̇l =ωn [A⊗ InN ]αl + ωn [B ⊗ InN ]x∗l+1,

∀ l ∈ {1, . . . , ρ− 1}. (28e)

Consequently, solving the robust consensus problem with
output constraints comes to guaranteeing that z̃1t(t), as part
of the solution to Eqs. (28), tends to zero. More precisely, that
the control law (27), with (19) and (23)-(25), solves the robust
output-consensus problem with output constraints for system
(1) is a fact established by the following statement.
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Theorem 1: Consider the system (1) in closed loop with
the dynamic controller defined by (27), together with (19),
(24)-(25), and the command filters (23) with initial conditions
set to αl−1,1(0) = x∗l (0) and αl−1,2(0) = 0, l ∈ {2, . . . , ρ}.
Then, under the Standing Assumption, the constraints set (3)
is forward invariant. Moreover, if θi,l ≡ 0, l ≤ ρ, i ≤ N , (15)
holds for almost all initial conditions satisfying z1(0) ∈ D.
Otherwise, if θl 6≡ 0, the closed-loop system is almost-
everywhere practically input-to-state stable with respect to
θ := [θ>1 · · · θ>ρ ]>. �

For clarity of exposition, the proof of Theorem 1 is pre-
sented in Section IV, but in anticipation of the latter we
underline the following. The closed-loop system (28) may be
separated into two systems evolving in distinct time scales.
One fast system that corresponds to the command filters
equations (28e) and one slow system that corresponds to
the actual system under ordinary backstepping control —Eqs.
(28a)–(28d). Therefore, choosing the fundamental frequency
ωn relatively large and multiplying by ε := 1/ωn on both sides
of (28e) we see that the system (28) is in singular-perturbation
form [46] and may be analyzed as such. The reduced slow
system may be analyzed using Lyapunov and input-to-state
stability theory, but because W has multiple equilibria, we use
a refinement of these theories, in a multi-stability sense [28],
[29]. This is significant to establish not only convergence to
the consensus manifold but also explicit robustness properties
in the sense of practical input-to-state stability with respect to
bounded disturbances.

C. Extension to partial- and full-state consensus with
output constraints

As mentioned previously, the control design methodology
presented above for output consensus can be directly extended
to consider the objective (7) with any r > 1. To show this, let

z̃l := zl − [E> ⊗ In]xlf ∀ l ∈ {2, . . . , r} (29)
x̃l := xl − xlf ∀ l ∈ {r + 1, . . . , ρ}, (30)

where, we recall, xlf = αl−1,1. Then, to achieve the consensus
objectives (7) the virtual control inputs, at each step, are
redefined as

z∗l := [E>⊗ In]x∗l , ∀ l ∈ {2, . . . , r} (31)

with x∗2 as in (19),

x∗3 := − c2[E� ⊗ In]z̃2 + ωnα1,2 (32)
x∗l := − cl−1[E� ⊗ In]z̃l−1 + ωnαl−2,2 − x̃l−2 (33)

for all l ∈ {4, . . . , r}, and

x∗r+1 :=−cr[E� ⊗ In]z̃r + ωnαr−1,2 − [E� ⊗ In]z̃r−1, (34)
x∗l :=−cl−1x̃l−1 + ωnαl−2,2 − x̃l−2,

∀ l ∈ {r + 2, . . . , ρ}. (35)

Finally, the actual control input is set to

u := −cρx̃ρ + ωnαρ−2,2 − x̃ρ−1. (36)

Then, we have the following.

Theorem 2: Consider the system (1) in closed loop with
the dynamic controller defined by (36), together with (31)-
(35), and the command filters (23) with initial conditions set
to αl−1,1(0) = x∗l (0) and αl−1,2(0) = 0, l ∈ {2, . . . , ρ}.
Then, under the Standing Assumption the constraints set (3)
is forward invariant. Moreover, if θi,l ≡ 0, l ≤ ρ, i ≤
N , the limits in (7) hold for almost all initial conditions
satisfying z1(0) ∈ D. Otherwise, if θl 6≡ 0, the closed-loop
system is almost-everywhere practically input-to-state stable
with respect to θ := [θ>1 · · · θ>ρ ]>. �

Note that the virtual inputs (32)-(34) may be considered
proportional to the gradient of a quadratic function on z̃l,
respectively, for l ∈ {2, . . . , r}. Hence, modulo the stabil-
ity analysis of the additional edge coordinates z̃l, for l ∈
{2, . . . , r}, which is similar to that of the output consensus
error z̃1, the proof is identical to the proof of Theorem 1.

IV. PROOF OF THEOREM 1

The proof of the statement for arbitrary undirected graphs
is strictly contained within that for directed graphs. The latter
is organized in two main parts. First, we show how the closed-
loop system (28) can be written as a singularly-perturbed
system in which the fast systems correspond to the dynamics
of the command filters and the slow system corresponds to the
high-order dynamics of the original multi-agent system. Then,
we analyze the stability and the robustness of the singularly
perturbed system, using multi-stable systems theory [28], [29].

A. Singular-perturbation representation

Define α> :=
[
α>1 · · · α>ρ−1

]
∈ R2nN(ρ−1), ξ> :=[

z̃>1t x̃
>
2 · · · x̃ρ

]> ∈ Rn(ρN−1), and θ> := [θ1 · · · θρ] ∈
RnρN . Then, the filter subsystem (28e) can be rewritten as

α̇ = ωnÃ
[
α− χ(ξ, α)

]
, Ã := blockdiag{[A⊗ InN ]}, (37)

χ(ξ, α) :=
[
x∗>2 0> x∗>3 0> · · · x∗>ρ 0>

]>
.

Now, as mentioned in the previous section, with ε := 1/ωn
as the singular parameter, the closed-loop system (28) may be
written in the singular-perturbation form

ξ̇ = f(ξ, α, θ, ε) (38a)
εα̇ = g(ξ, α, θ, ε) (38b)

and setting ε = 0 in (38) we obtain the quasi-state model [46],

ξ̇ = f(ξ, α, θ, 0) (39a)
0 = g(ξ, α, θ, 0) (39b)

in which (39b) becomes an algebraic equation. Hence, the
analysis of the singular perturbation model (38) is normally
conducted studying its dynamic properties in different time
scales.

Denote by αs = h(ξ) the unique root of the algebraic
equation (39b), i.e.,

h(ξ) =
[[
− c1[E� ⊗ In]∇W (z̃1)

]>
0> − c2x̃>2 0>

· · · − cρ−1x̃
>
ρ−1 0>

]>
.
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Then, defining the coordinate transformation

α̃ :=
[
α̃>1,1 α̃

>
1,2 · · · α̃>ρ−1,1 α̃

>
ρ−1,2

]>
= α− h(ξ), (40)

and using (28) we obtain the singularly-perturbed system

˙̃z1t =− c1[E>t E� ⊗ In]∇W (z̃1)

+ [E>t ⊗ In] [x̃2 + α̃1,1 + θ1] (41a)
˙̃x2 =− c2x̃2 + x̃3 + α̃2,1 + θ2 (41b)
˙̃xl =− clx̃l + x̃l+1−x̃l−1 + α̃l,1 + θl,

l ∈ {3, . . . , ρ− 1} (41c)
˙̃xρ =− cρx̃ρ−x̃ρ−1 + θρ (41d)

ε ˙̃α =Ãα̃− ε∂h(ξ)

∂ξ
ξ̇. (41e)

In turn, the reduced system ξ̇ = f(ξ, h(ξ), θ, 0) takes the form

˙̃z1t=− c1[E>t E� ⊗ In]∇W (z̃1) + [E>t ⊗ In] [x̃2+θ1] (42a)
˙̄x=− [H ⊗ InN ]x̄+ θ̄, (42b)

where x̄> :=
[
x̃>2 · · · x̃>ρ

]
, θ̄> :=

[
θ>2 · · · θ>ρ

]
, and

H :=


c2 −1 0 · · · 0
1 c3 −1 · · · 0
...

. . . . . . . . .
...

0 . . . 1 cρ−1 −1
0 . . . 0 1 cρ

 . (43)

On the other hand, the boundary layer system, (dα̃/dτ) =
g(ξ, α̃ + h(ξ), θ, 0), with τ = t/ε and with ξ considered as
fixed, is

dα̃

dτ
= Ãα̃, (44)

where Ã is a Hurwitz matrix —see Eqs. (37) and (23c).
Note that even though the system (41) appears to be in the

familiar form (38), the analysis of the slow dynamics (41a)–
(41d) subject to ε = 0 (hence to α̃ = 0), that is, Eqs. (42), is
stymied by the fact that the function ∇W vanishes at multiple
separate equilibria. Therefore, we use perturbation theory for
multi-stable systems [28] to establish input-to-state stability.
The analysis is provided below and some definitions and
statements from the latter reference are recalled in Appendix I.

B. Stability and robustness analysis

Denote z̃∗1t ∈ Rn(N−1) as the vector containing the saddle
points of the BLF for each edge (17). Then, the equilibrium
points of subsystem (41a) are collected into a disjoint set,
denoted by

W := {0} ∪ {z̃∗1t}, (45)

which is an acyclic W-limit set2 of (41a). This means that
asymptotic stability of the origin of (41a) may be guaranteed,
at best, almost everywhere in D, that is, for all initial condi-
tions in D except for a set of measure zero corresponding to
the domain of attraction of the unstable critical point.

2In the settings of this paper an acyclic limit set corresponds to an invariant
set of isolated points in Euclidean space. See [28] for a complete definition.

Now, we first analyze the stability of (41) with respect to
the set of equilibria WΘ := W × {0}ρ−1. For this purpose
we use Theorem 3 in Appendix I, which is essentially a
reformulation of [28, Theorem 2] adapted to the contents of
this paper. Theorem 3 establishes sufficient conditions for a
practical input-to-state multi-stability property to hold for a
singularly perturbed system with respect to WΘ and to a
bounded external input θ, granted that the reduced system (42)
is input-to-state stable with respect to set WΘ and input θ
and that the origin for (44) is globally asymptotically stable.
Therefore, the stability and robustness analysis is conducted
in the following steps:

1) We show that the origin is asymptotically stable for the
boundary layer system (44).

2) Relying on the results on cascaded multi-stable systems
in [29], we show that the reduced system (42) is input-
to-state stable with respect to set WΘ and input θ.

3) Using Theorem 3 in Appendix I, we prove that, for a
sufficiently small ε, the singularly perturbed system (41)
is practically input-to-state stable with respect to the set
WΘ × {0} and a bounded external input θ. Moreover,
using [28, Theorem 3], in the absence of disturbances,
we show convergence to the set of equilibria.

4) Using the practical input-to-state multi-stability prop-
erty, we establish almost-everywhere-practical-input-to-
state stability of the origin of (41). Similarly, if θ ≡ 0,
we establish convergence to the origin.

5) Finally, we show that the output-constraints set defined
in (3) is forward invariant.

Step 1) Since Ã is Hurwitz by design, the origin α̃ = 0 is
exponentially stable for the boundary-layer system (44).

Step 2) Consider the reduced system (42). Note that it has
the form of a cascaded system, in which (42b) is the “driving”
system and the “driven” system (42a) has multiple equilibria
given by the set W in (45). To prove input-to-state stability
of (42) with respect to set WΘ and input θ, as per in [29], we
need to show that (42a) is input-to-state stable with respect
to the set W and the inputs x̃2 and θ1 whereas the system
(42b) is input-to-state stable with respect to θ̄. We start with
the latter.

Input-to-state stability with respect to θ̄ for the system (42b)
follows directly from Lyapunov theory since (42b) is a linear
time-invariant system and −[H ⊗ InN ] is Hurwitz matrix,
since so is −H .

Consider, in turn, the reduced subsystem (42a). For this
system we use the BLF W (z̃1) given by (18). First note that
W (z̃1) consists in a sum of the BLFs defined for each edge
in the initial graph. Yet, from the identity (12) it is possible to
express W in terms of the edges corresponding to a spanning
tree contained in the graph. Hence, we define the candidate
Lyapunov function

Vz(z̃1t) = W
( [
R> ⊗ In

]
z̃1t

)
and, for consistency in the notation, we introduce the con-
straint set (3) in terms of the edges of the spanning tree as

Dt :=
{
z1t ∈ Rn(N−1) :

∣∣r̄>k zk,1∣∣ ∈ (δk,∆k), ∀ k ≤M
}
,
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where r̄k := [rk ⊗ In] and rk is the kth column of R in (9).
For the time-being, assume that D (equivalently Dt) is forward
invariant; this hypothesis is relaxed below. Then, for all z̃1t

such that z1t ∈ Dt, Vz(z̃1t) satisfies

1

2
|z̃1t|2W ≤ Vz(z̃1t), (46)

where |z̃1t|W = min{|z̃1t|, |z̃1t − z̃∗1t|}. Furthermore, from
(42a), the derivative of Vz is given by

V̇z =−c1∇W (z̃1)
[
R>E>t E� ⊗ In

]
∇W (z̃1)

+∇W (z̃1)>
[
R>E>t ⊗ In

]
[x̃2 + θ1] , (47)

where R is defined in (9). Equation (47) holds for, both,
directed-spanning-tree and directed-cycle topologies. Next, we
analyze the two considered topologies separately.

Case 1 (Directed spanning tree). In this case we have G =
Gt. Therefore, z1 = z1t, E = Et, R = IN−1, and E� = E�t,
where E�t is the in-incidence matrix of the spanning tree.
Hence, (47) becomes

V̇z =−c1∇W (z̃1t)
[
E>t E�t ⊗ In

]
∇W (z̃1t)

+∇W (z̃1t)
> [E>t ⊗ In] [x̃2 + θ1] . (48)

Define Lse := 1
2

(
E>t E�t + E>�tEt

)
, which is the symmetric

part of the so-called directed edge Laplacian E>t E�t. As it
is shown in the proof of Proposition 1 in [16], Lse is positive
definite. Therefore, applying Young’s inequality to the second
term in the right-hand side of (48), we have

V̇z ≤− c′1|∇Vz(z̃1t)|2 +
1

2γ

[
|x̃2|2 + |θ1|2

]
, (49)

where c′1 :=
[
c1 λmin(Lse)−

γλmax(E>
t Et)

2

]
is positive for

a sufficiently small γ > 0, λmin(Lse) > 0 is the smallest
eigenvalue of Lse, and λmax(E>t Et) is the largest eigenvalue
of E>t Et.

Case 2 (Directed cycle). Consider equation (47). Using the
identity (10), we have

V̇z =−c1∇W (z̃1)
[
E>E� ⊗ In

]
∇W (z̃1)

+∇W (z̃1)>
[
E> ⊗ In

]
[x̃2 + θ1] . (50)

Now, for a directed-cycle topology, the following identity
follows —cf. [16]—

E>E� + E>�E = E>E. (51)

Therefore, using (51) and (10) again, we obtain

V̇z=−
c1
2
∇W (z̃1)

[
R>E>t EtR

> ⊗ In
]
∇W (z̃1)

+∇W (z̃1)>
[
R>E>t ⊗ In

]
[x̃2 + θ1] . (52)

Denote

∇Vz(z̃1t) :=
∂Vz(z̃1t)

∂z̃1t
= [R⊗ In]∇W (

[
R> ⊗ In

]
z̃1t).

(53)
Then, applying Young’s inequality to the second term of the
right-hand side of (52), we have

V̇z ≤− c′1|∇Vz(z̃1t)|2 +
1

2γ

[
|x̃2|2 + |θ1|2

]
, (54)

where c′1 :=
λmin(E>

t Et)
2 [c1 − γ] is positive for a sufficiently

small γ > 0. Note that, λmin(E>t Et) is positive since it is
the smallest eigenvalue of the edge Laplacian of an undirected
spanning tree —see [38].

Thus, for either the spanning tree or the cycle case, the
derivative of Vz(z1t) satisfies

V̇z ≤− c′1|z̃1t|2W +
1

2γ

[
|x̃2|2 + |θ1|2

]
. (55)

It follows from (46), (55), and Theorem 4 in Appendix I, that
the subsystem (42a) is input-to-state stable with respect to the
set of equilibria W , and the inputs x̃2 and θ1.

Thus, after [29, Theorem 3.1], the reduced system (42)
is input-to-state stable with respect to WΘ and input θ.
Furthermore, WΘ qualifies as a W-limit set for (42).

Remark 8: In the case of an interaction topology given by
an arbitrary connected undirected graph, it is shown in [38]
that the input-to-state stability result (55) follows from (47)
(replacing E� by EtR) by noting that E>t Et is symmetric
positive definite [27], to obtain directly (52). •

Remark 9: For generic connected directed graphs the sym-
metric part of the directed edge Laplacian E>E� is not
positive semi-definite; indeed, the identity (51) does not hold.
Moreover, for the in-incidence matrix of a general directed
graph there does not exist an equivalent identity to (10). Hence,
unlike for connected undirected graphs —see, e.g., [38], the
directed edge Laplacian of a general directed graph cannot be
transformed into the directed edge Laplacian of a spanning tree
E>t E�t, which has a positive-definite symmetric part. Thus,
the analysis of constrained consensus in edge coordinates over
general directed graphs, via strict and ISS Lyapunov functions,
is still an open problem. •

Step 3) Since the reduced system (42) is input-to-state stable
with respect to WΘ and θ, and the origin of (44) is asymptot-
ically stable, it follows, after Theorem 3 in Appendix I, that
the singularly perturbed system (41) is practically input-to-
state stable with respect to set WΘ × {0}2nN(ρ−1) and input
θ. More precisely, for any pair of constants d1, d2 > 0, there
exists an ε∗ > 0 such that, for any ε ∈ (0, ε∗], the solutions
of (41) satisfy

lim sup
t→∞

|ξ(t)|WΘ
≤ ηθ(‖θ‖∞) + d2 (56a)

|α̃(t)| ≤ βα

(
|α̃(0)|, t

ε

)
+ d2, ∀ t ≥ 0, (56b)

provided that

max
{
|ξ(0)|WΘ

, |α̃(0)|, ‖θ‖∞, ‖θ̇‖∞
}
≤ d1,

where ‖θ‖∞ := lim sup
t→∞

|θ(t)| and |ξ|WΘ
:= inf

a∈WΘ

|ξ − a|.
Now consider the case in which the disturbance θ ≡ 0. From

property (56a) we may conclude that the origin of the reduced
system (42) is multi-stable with respect to WΘ. Therefore,
from the latter and the exponential stability of the boundary
layer system (44) all the assumptions of [28, Theorem 3] are
satisfied and the solutions of (41) satisfy

lim
t→∞

|ξ(t)|WΘ
= 0 (57a)
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lim
t→∞

|α̃(t)| = 0. (57b)

Step 4) Since the critical point z̃∗1t of the BLF is a saddle
point —see [41], after [47, Proposition 11], it follows that the
region of attraction of the unstable equilibrium z̃∗1t has zero
Lebesgue measure. Therefore, we conclude that the bound in
(56a) and the limit in (57a) are satisfied for the origin {ξ = 0}.
More precisely, we have

lim sup
t→∞

|ξ(t)| ≤ ηθ(‖θ‖∞) + d2

and, for θ ≡ 0,
lim
t→∞

|ξ(t)| = 0.

Step 5) Up to this point we have assumed that the inter-
agent constraints are satisfied for all time, that is, z1(t) ∈ D
for all t ≥ 0. Then, in order to prove the forward invariance
of the constraints set we proceed by contradiction as follows.
Assume that the state constraints are not respected. Therefore,
from continuity of the solutions, there exists a time T > 0
such that z1t(T ) ∈ ∂Dt. Now, from the previous analysis of
the singularly perturbed system, we have that in the interval
[0, T ), condition (83) holds. Moreover, since α̃(0) = 0 by
design, the solutions of the filter error satisfy α̃(t) ≤ d2, for
t ∈ [0, T ). Consider the derivative of the Lyapunov function
(46) along the trajectories of (41a), which satisfies

V̇z(z̃1t) ≤ −c′1|∇Vz(z̃1t)|2 +
1

2γ

[
|x̃2|2 + |θ1|2 + |α̃|2

]
.

Therefore, since α̃(t) ≤ d2, θ1(t) is bounded and the system
in (42b) is input-to-state stable, x̃2(t) is bounded, for all t ∈
[0, T ). Then, we have

V̇z(z̃1t(t)) ≤ −c′1|∇Vz(z̃1t(t))|2 + d, ∀t ∈ [0, T ) ,

where d is a positive constant. By Definition 1 we have
|∇V (z̃1t(t))| → ∞ as z1t(t) approaches the border of the
constraints set, ∂Dt. Therefore, if |z̃1t(t)| grows, there exists
a time 0 < T ∗ < T such that V̇z(z̃1t(T

∗)) ≤ 0. The latter,
in turn means that Vz(z̃1t(t)) is bounded for all t ∈ [0, T ),
which contradicts the initial assumption that the constraints are
not respected. By resetting the initial conditions, the previous
reasoning can be repeated for t ≥ T . Therefore, the interval
where Vz(z̃1t(t)) is bounded can be extended to infinity. The
boundedness of Vz(z̃1t(t)) means, based on the definition
of the BLF, that the constraints are always respected or,
equivalently, that the set Dt is forward invariant.

V. FORMATION CONTROL OF COOPERATIVE
THRUST-PROPELLED UAVS WITH OUTPUT CONSTRAINTS

In this section we use the previously-presented control
method to solve a problem of robust consensus for multi-
agent constrained 3rd-order systems, which has relevance
in certain robotics applications. The case-study consists in
designing robust distributed controllers for position-consensus-
based formation of multiple thrust-propelled UAVs under a
set of realistic hypotheses. It is assumed that the drones
are equipped with relative-measurement sensors, so the graph
representing the interaction between the agents is directed.

Only directed-spanning-tree and directed-cycle topologies are
considered but, alluding to Remark 5, we stress that the results
in this section also apply to connected undirected graphs.
Furthermore, the sensors are reliable only if “neighboring”
agents remain within a certain range and, in order to guarantee
the safety of the systems, these must also avoid collisions with
one another. Finally, we assume that the agents are subject
to bounded time-varying disturbances. Thus, this meaningful
case-study shows both the applicability and the versatility of
our framework. Its efficacy is illustrated via simulations.

A. UAV’s model and problem formulation

..
B1

T1

ωx,1

ωy,1

ωz,1

.

T2

∆2

.

δ3
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e2e3
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Fig. 2: Group of thrust propelled vehicles and Inertial frame

We consider a swarm of N UAVs as illustrated in Fig. 2;
each vehicle’s motion being described by a so-called “mixed”
model that consists in a second-order Cartesian dynamics
equation on E(3) and a first-order attitude kinematics equation
on SO(3) —see, e.g., [30], [31]. This underactuated model
describes some commercial UAVs, which accept only thrust
and angular rates as the control inputs.

The model for the ith agent is given by the equations

ṗi = vi (58a)

v̇i = − Ti
mi

Rie3 + ge3 + θi,2(t) (58b)

Ṙi = RiS(ωi), (59)

where mi is the mass of the quadrotor, e3 = [0 0 1]> is the
unitary vector in the vertical direction of the inertial frame I,
pi ∈ R3 and vi ∈ R3 are respectively the inertial position
and inertial velocity, Ri ∈ SO(3) is the rotation matrix
of the body-fixed frame Bi with respect to I, g is gravity
acceleration, and θi,2 : R≥0 → R3 is an essentially bounded
disturbance. The inputs are the thrust force produced by the
propellers, Ti ∈ R, and the angular rate of the vehicle ωi ∈ R3

in the body-fixed frame Bi —see Figure 2 for an illustration.
The control goal is for the robots to achieve a predetermined

formation in the three-dimensional space, centered at a point
of non-predefined coordinates. More precisely, let the output
of the multi-agent system be the relative position between pairs
of connected agents. That is, in the way of (5)-(6), the edge
states and error-edge states are defined as

z1 := [E> ⊗ I3]p (60)
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and
z̃1 = [E> ⊗ I3]p− zd1 , (61)

respectively, where p> = [p>1 · · · p>N ] ∈ R3N and zd>1 =
[zd>1,1 · · · zd>M,1] ∈ R3M are the relative displacements of the
desired formation. Therefore, the control objective is that

lim
t→∞

z̃k,1(t) =0 ∀k ≤M (62a)

lim
t→∞

vi(t) =0 ∀i ≤ N. (62b)

Next, let ∆k denote the maximal distance between the nodes
i and j, such that the node j has access to information from
the node i through the arc ek = (i, j). Similarly, let δk denote
the minimal distance among neighbors such that collisions
are avoided. Then, the connectivity and collision-avoidance
constraints are encoded by the constraints set given in (3).

Robust formation problem with output constraints: Consider
a multi-agent system composed of N quadrotor UAVs with
underactuated dynamics described by (58)-(59). Let the inter-
actions of the vehicles be modeled by a connected undirected
graph, a directed spanning tree or a directed cycle. Moreover,
let the output inter-agent constraints be given by the set (3).
Find distributed controllers Ti and ωi, i ≤ N , that, in the
absence of disturbances, that is, with θi,2 ≡ 0 for all i ≤ N ,
achieve the objective (62) and render the constraints set (3)
forward invariant, i.e., z1(0) ∈ D implies that z1(t) ∈ D for
all t ≥ 0. Furthermore, in the presence of disturbances, that is
θi,2 6≡ 0, the control law must render the formation practically
input-to-state stable with respect to the disturbances and the
set D in (3) forward invariant. •

B. Control approach

The design builds on the method proposed in the previous
sections, but we must start by applying an implementable
feedback transformation to represent the system (58) in the
form (1). Then, the control architecture follows a hierarchical
approach that exploits the natural cascaded interconnection
between the translational dynamics (58) and the rotational
kinematics, (59) —see Fig. 3.

First, note that (58) may be assimilated to a second-order
integrator

ṗi = vi (63a)
v̇i = ζi + θi,2(t), (63b)

with
ζi := − Ti

mi
Rie3 + ge3. (64)

Nonetheless, the implementation of a virtual controller for
(63), through the input ζi, is subject to the possibility of
solving (64) for Ti, which is the actual control input. Because
of the underactuation of (58), however, this is far from
acquired. Indeed, note from (64) that the virtual input ζi ∈ R3

cannot take an arbitrary value since Ti ∈ R and its direction
are determined by the vehicle’s orientation, Ri. In order to
overcome the underactuation, we solve equation (64) dynam-
ically, inspired by the distributed-backstepping approach in
[31]. More precisely, we design the angular rates ωi and an

update law for the thrust Ti, so that ζi in (64) satisfies the
dynamic equation

ζ̇i = ui, i ≤ N, (65)

where ui ∈ R3 is a new input. Note that now the system
defined by (63) and (65) has the form (1) with ρ = 3. Hence,
in the sequel, in (65), ui is assumed to correspond to an
output-constrained consensus control law designed as per the
framework described in Section III.

Differentiating (64) with respect to time, and using (59), the
left-hand side of (65) becomes

− Ṫi
mi

Rie3 −
Ti
mi

RiS(ωi)e3 = ui. (66)

Then, for a given ui, we define νi ∈ R3 as

νi := ui −
c3
mi

TiRie3, (67)

where c3 is a positive control gain. Next, replacing (67) into
(66), we obtain[

(Ṫi + c3 Ti)Ri + TiRiS(ωi)
]
e3 = −miνi. (68)

Left-multiplying by (the full-rank rotation matrix) R>i , we see
that the dynamic equation (68) is equivalent to[

Tiωyi, −Tiωxi, Ṫi + c3 Ti

]>
= −miR

>
i νi. (69)

Now let ν̃i := [ν̃i,x ν̃i,y ν̃i,z]
> = R>i νi. Then, (69) holds

if the angular rates are set to

ωi =

[
miν̃i,y
Ti

− miν̃i,x
Ti

ωzi

]>
, (70)

and the thrust is given by the update law

Ṫi = −c3 Ti −miν̃i,z. (71)

Remark 10: Note that by transforming the UAV model (58)
using (64)-(65), only the three translational dimensions are
directly controlled. Therefore, only three of the four available
inputs are needed to solve the formation problem. Indeed, note
that from equation (69), the yaw component of the angular rate
ωzi is not needed for the control. Hence it may be considered
as an additional degree of freedom and may be designed so
that the vehicle follows a desired yaw trajectory. •

Thus, after the previous transformation, the underactuated
system (58) may be rewritten in the form (1), as desired, i.e.,

ṗi = vi (72a)
v̇i = ζi + θi,2(t) (72b)

ζ̇i = ui. (72c)

Furthermore, let v> = [v>1 · · · v>N ] ∈ R3N and ζ> =
[ζ>1 · · · ζ>N ] ∈ R3N ; using the transformation (61), the multi-
agent system in the reduced error-edge coordinates becomes

˙̃z1t =
[
E>t ⊗ I3

]
v (73a)

v̇ = ζ + θ2(t) (73b)

ζ̇ = u. (73c)
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Fig. 3: Block diagram of the hierarchical control approach.

The transformed system (73) is in the form of (14) with
ρ = 3. To apply the robust control law (27), designed in
the previous section for the constrained-consensus problem of
high-order systems, we define the backstepping error variables

ṽ = v − vf and ζ̃ = ζ − ζf . (74)

The filtered signals vf and ζf are the outputs of command
filters given in (23), with inputs v∗ and ζ∗, respectively,
corresponding to the desired virtual controllers given by

v∗ :=−c1[E� ⊗ I3]∇W (z̃) (75)
ζ∗ :=−c2ṽ + ωnα1,2, (76)

where ∇W (z̃) is the gradient of the BLF defined in (18) and
(17) with the weight recentered barrier function given by [41]

Bk(zk,1) = κ1,k

[
ln

(
∆2
k

∆2
k − |zk,1|2

)
− ln

(
∆2
k

∆2
k − |zdk,1|2

)]

+ κ2,k

[
ln

(
|zk,1|2

|zk,1|2 − δ2
k

)
− ln

(
|zdk,1|2

|zdk,1|2 − δ2
k

)]
,

κ1,k :=
δ2
k

|zdk,1|2(|zdk,1|2 − δ2
k)
, κ2,k :=

1

∆2
k − |zdk,1|2

.

This function and its gradient are equal to zero at the desired
formation configuration, i.e., Bk(zdk,1) = 0, ∇Bk(zdk,1) = 0.
Moreover it directly encodes the constraints in terms of the
original edge-state zk,1, i.e., Bk(zk,1)→∞ as either |zk,1| →
∆k or |zk,1| → δk —see Remark 3.

Then, akin to (27), the new input u is given by

u := −c3ζ̃ + ωnα2,2 − ṽ. (77)

After the developments in Section III and Theorem 1, the
transformed controller (77), with (75)-(76) and (23), solves the
robust formation problem with output constraints for system
(72). However, a closer inspection shows that there is one
more technical difficulty to circumvent. Note that, from (70),
the dynamic solution to the equation (64) is valid if and only
if Ti 6= 0. In order to address this additional constraint, we
perform a control redesign which respects the control method
and the stability analysis in Sections III-B and IV.

From (64), the condition Ti 6= 0 is satisfied if the filtered
control ζif satisfies ζif 6= ge3, for all i ≤ N . Let us modify
the virtual control input ζ∗ to

ζ∗ := sat (−c2ṽ + ωnα1,2) , (78)

where sat( · ) is a saturation function RN → RN defined
element-wise, i.e., sat(s) =

[
σ(s1)> · · · σ(sN )>

]>
, where,

e.g., σ(si) = sign(si) min{|si|, ζ̄M}, with ζ̄M < g. Then, with
the modified virtual control (78) as input, the over-damped
command filter (23) with initial conditions α2,1(0) = ζ∗(0),
α2,2(0) = 0, guarantees that the output ζif (t) ≤ ζ̄M < g, and,
consequently, that Ti(t) 6= 0 for all t ≥ 0.

Remark 11: The virtual control ζ∗ is saturated to ensure
that the physical input, the thrust, Ti 6= 0. In addition, the
control design also guarantees that ζ and the thrust Ti satisfy
pre-imposed bounds. This is significant because it implies that
even though BLF-based controllers are not primarily designed
to guarantee control-input constraints, the satisfaction of the
latter may be accomplished using a dynamic controller, as
done above. •

Proposition 1: Under the Standing Assumption and for
almost any initial conditions satisfying z(0) ∈ D, except for a
set of measure zero, there exists ε∗, such that, for ε ∈ (0, ε∗]
where ε := 1/ωn, the control law (70)-(71) and (77), with (75),
(78), and the command filters (23) with initial conditions set
to α1,1(0) = v∗(0), α2,1(0) = ζ∗(0), α1,2(0) = α2,2(0) = 0,
solves the robust formation problem with output constraints
for system (58). �

Proof: The proof follows the same arguments as the
proof of Theorem 1. First, following the same arguments used
in Section IV-A, the system (73) in closed-loop with (77) may
be written in singular-perturbation form

˙̃z1t =− c1[E>t E� ⊗ In]∇W (z̃1) + [E>t ⊗ In] [ṽ + α̃1,1]

˙̃v = sat(−c2ṽ + ωnα̃1,2) + ζ̃ + α̃2,1 − ωnα̃1,2 + θ2(t)

˙̃
ζ =− c3 ζ̃ − ṽ

ε ˙̃α =Ãα̃− ε∂h(ξ)

∂ξ
ξ̇, ξ> =

[
z̃>1t ṽ> ζ̃>

]
.

Then, proceeding as in Section IV-B, to apply [28, The-
orem 2], we need to show that the boundary layer system
is asymptotically stable and that the reduced slow system is
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input-to-state stable with respect to the setW×{0}2 and input
θi,2, i ≤ N .

Since Ã is Hurwitz, the origin for the boundary-layer system
(44) is exponentially stable. Now consider the reduced system

˙̃z1t = −c1[E>t E� ⊗ In]∇W (z̃1) + [E>t ⊗ In]ṽ (79a)
˙̃v = −sat(c2ṽ) + ζ̃ + θ2(t) (79b)
˙̃
ζ = −c3 ζ̃ − ṽ. (79c)

From (55) the subsystem (79a) is input-to-state stable with
respect to the set W and to the input ṽ. Next, consider
the subsystem (79b)-(79c). Let εu ∈ (0, 1) and define the
Lyapunov function

V2(ṽ, ζ̃) =
(1 + c3 εu)

2
|ṽ|2 +

1

2
|ζ̃|2 + εu ζ̃

>ṽ, (80)

which is positive definite. Its derivative along (79b)-(79c)
satisfies

V̇2(ṽ, ζ̃) ≤− (1 + εuc3 − γv)|ṽ|sat(c2|ṽ|)

−
(
c3 − εu −

ε2
u

1 + c3 εu

)
|ζ̃|2 +

2εu
1 + c3 εu

|θ2|2.
(81)

Hence, choosing γv > 0 and εu > 0 small enough so that

γ2 := c3 − εu −
ε2
u

1 + c3 εu
> 0

and γ1 := 1 + εuc3 − γv > 0, we have

V̇2(ṽ, ζ̃) ≤ −γ1|ṽ|sat(c2|ṽ|)− γ2|ζ̃|2 + γ3|θ2|2 (82)

where γ3 := 2εu/(1 + c3 εu). The inequality (82) implies
input-to-state stability of (79b)-(79c) with respect to the origin
and to θ2. Using [29, Theorem 3.1] we conclude that, for all
initial conditions ξ(0) such that zt(0) ∈ Dt and all essentially
bounded inputs θ2(t), the reduced system (79) is input-to-state
stable with respect toWΘ :=W×{0}2 and to the input θ2(t).
Furthermore, WΘ qualifies as a W-limit set for (79).

Now, since the boundary layer system is exponentially
stable and the reduced system is input-to-state stable with
respect to WΘ and θ2(t), using Theorem 1, we conclude that
the controller (77), with (23), (75), and (78) solves the robust
consensus problem with output constraints for system (73).
That is, the controllers (70)-(71) solve the robust formation
problem with output constraints for the system (58).

C. A numerical example

We consider the rendezvous problem for six UAVs subject
to inter-agent collision avoidance and connectivity restrictions.
It is assumed that the measurement range of each agent is
different and that they are equipped with proximity sensors.
Hence, the network is modeled by a directed graph —see
Fig. 4— but connectivity is assumed only at the initial time.

1 2

3

4

5

6

e2

e3

e1
e4

e5

Fig. 4: Interaction topology: directed spanning tree

The desired formation corresponds to a hexagon and is
determined by the desired relative position vector zdk,1 =(
zdk,1x

, zdk,1y
, zdk,1z

)
, for each k ≤ 5, set to (1, 0.5, 0),

(−1, 1.5, 0), (−1, 0.5, 0), (−2, 1, 0), (−1, 0.5, 0). The initial
conditions and constraint parameters are presented below.

TABLE I: Initial conditions and constraint parameters

UAV px py pz vx vy vz ∆k δk
index [m] [m] [m] [m/s] [m/s] [m/s] [m] [m]

1 2.4 0 -1 0.6 -0.8 0 2.5 0.2
2 -0.58 -0.9 0 -0.3 0 0 3.4 0.2
3 4 1.8 0 1.1 0.3 0 3.8 0.2
4 5 -2 0 0.1 0 0 3.5 0.2
5 -4.2 -0.45 0 0 0 0 3.7 0.2
6 -2 -4.2 2 -0.8 0 0 4.2 0.2

The saturation limit for the virtual control law in (78) was
set to ζ̄M = 7 m/s2, the controller gains to c1 = 1, c2 = 0.8,
c3 = 3, and the filter natural frequency to ωn = 350 rad/s.
The mass of each drone is mi = 0.4 kg.

Furthermore, it is assumed that the UAVs are subject to a
disturbance modeled as a smoothed vanishing step, that is,

θi(t) =− σi(t) [1 1 0]>

σi(t) =


−0.6

[
tanh(2(t− 15))− 1

]
if i ∈ {3, 5}

0.6
[

tanh(2(t− 15))− 1
]

if i = 2

0 if i ∈ {1, 4, 6}.

The paths of each agent and the final desired formation are
shown in Fig. 5. The trajectories of the inter-agent distances
are presented in Fig. 6. It is also seen in the latter that
the connectivity and collision avoidance constraints (dashed
lines) are respected, even in the presence of the disturbance.
Furthermore, as soon as the disturbance vanishes after 15
seconds, the agents converge to the desired static formation.
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Fig. 5: Paths of the agents. The dashed black hexagon repre-
sents the final formation.
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Fig. 6: Distances between neighbor UAVs. The dashed red
line corresponds to the collision avoidance constraints and the
dashed colored lines represent the connectivity constraints for
the edge of the same color.

VI. CONCLUSIONS

We presented a consensus control framework of broad
applicability for systems of high relative degree in feedback
form, subject to inter-agent constraints and interconnected over
directed or undirected graphs. The design is based on the
gradient of barrier Lyapunov functions and on the command
filtered backstepping approach. It is important to emphasize
that, beyond mere convergence to the consensus manifold,
also robustness in the sense of practical input-to-state multi-
stability with respect to external disturbances is established.

We also showed that our control framework is versatile
in that it serves as basis for consensus control design of
systems that are not, a priori, in the assumed strict-feedback
form. In particular, we solved the rendezvous (open) problem
for a group of UAVs subject to connectivity and inter-agent
collision-avoidance constraints.

We believe that our theoretical results may be useful to ap-
proach other consensus-based problems in realistic settings for
different types of dynamical systems. Current research focuses
on consensus-tracking control with limited measurements and
the generalization of our main theoretical statements to multi-
agent systems interconnected over arbitrary and time-varying
directed topologies.

APPENDIX I
STABILITY OF MULTIPLE INVARIANT SETS

The following statements are adapted from the literature
to the notation used in this paper. Theorem 3 is adapted
from [28, Theorem 2], Definition 2 is adapted from from [29,
Definition 2.7], and Theorem 4 from [29, Theorem 2.8].

Theorem 3: Consider a singularly perturbed system of the
form (41). Assume that:

1) the reduced system (42) is input-to-state stable with
respect to an acyclic W-limit set WΘ and an input θ;

2) the equilibrium α̃ = 0 of the boundary layer system (44)
is globally asymptotically stable.

Then, there exist a class KL function βα and a class K∞
function ηθ and, for any pair d1, d2 > 0, there exists an ε∗ > 0
such that, for any ε ∈ (0, ε∗], any essentially bounded function
θ(t), and any initial condition ξ(0) ∈ Dt × RnN(ρ−1), and

max{|ξ(0)|WΘ
, |α̃(0)|, ‖θ‖∞, ‖θ̇‖∞} ≤ d1, it holds that

|α̃(t)|≤βα
(
|α̃(0)|, t

ε

)
+ d2. ∀t ≥ 0 (83)

lim sup
t→+∞

|ξ(t)|WΘ
≤ ηθ(‖θ‖∞) + d2

�
Definition 2: A C1 function V : M → R≥0 is a practical

ISS-Lyapunov function for a system ẋ = f(x, θ) if there exist
K∞ functions η1, η, γ and q ≥ 0 such that, for all x ∈ M
and all θ, the following holds:

η1(|x|W) ≤V (x)

∇V (x)>f(x, θ) ≤− η(|x|W) + γ(|θ|) + q.
(84)

If (84) holds with q = 0, then V is said to be an ISS-Lyapunov
function. �

Theorem 4: Consider a system ẋ = f(x, θ) and an acyclic
W-limit set W . Then, system ẋ = f(x, θ) is input-to-state
stable with respect to input θ and to the set W if and only if
it admits an ISS-Lyapunov function. �
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