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Abstract

This paper proposes an event-triggered approach for the distributed formation control problem of an Euler-Lagrange multi-
agent system with state perturbations, when communications between agents are prone to losses. To evaluate its control input,
each agent maintains estimators of its own state and of the states of its neighbors. Each estimator accounts for a different
packet-loss hypothesis. Each agent is then able to compute the expected value of the estimation error of its own state as
evaluated by its neighbors. A communication triggering condition (CTC) exploiting this expected error is then proposed. An
analysis of the behavior of the system with this CTC is performed using stochastic Lyapunov functions. Simulations confirm
the effectiveness of the proposed approach.
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1 Introduction

Distributed control with event-triggered communication
is an efficient method to coordinate Multi-Agent Systems
(MAS) with a reduced amount of communications be-
tween agents. The Communication Triggering Condition
(CTC) is instrumental in these approaches to limit com-
munications, while allowing enough information to be ex-
changed between agents to complete the task assigned to
the MAS [12,13,16,19,24]. Designing a suitable CTC when
communications between agents are prone to packet losses
is challenging. With event-triggered control, a message is
transmitted only when required. A loss of information may
thus have a critical impact on the performance and even
stability of the MAS.

Packet losses may result from collisions between packets si-
multaneously transmitted from different agents, from occlu-
sions by obstacles, or from interference with other communi-
cations systems. Considering two packet-loss models, [7] has
shown that event-triggered control schemes are more vulner-
able to packet losses than time-triggered control strategies.
Acknowledgment mechanisms are helpful to detect and pos-
sibly re-transmit lost messages. Nevertheless, acknowledg-
ments or re-transmitted messages may also be lost, which in-
creases communication delays, risk of packet collisions, and
may lead to desynchronization between agents. In [2,6,7,20,
23] packet losses are addressed by combining an H∞ control

and event-triggered communications. For agents with linear
dynamics, sufficient conditions are established to ensure the
global exponential stability of the system. In [6], commu-
nication delays and packet losses are considered simultane-
ously. In [2], the focus is on a MAS where agents follow sev-
eral leaders. Each agent maintains observers of the state of
other agents. These observers account for the last received
message from the other agents and for models of their dy-
namics. In [21], two types of networked controller design
methods are proposed. The first one ensures that the sys-
tem is asymptotically stable in the presence of an arbitrary
bounded number of packet losses. The second one provides
mean square stability in presence of Markovian packet losses.
In [5], communication delays are also considered. Two com-
munication protocols are proposed, and the convergence of
the MAS is guaranteed if the delay and the number of con-
secutive of packet losses are bounded. All previous works
consider only linear dynamics.

Nonlinear dynamics are studied in [3,4]. In [3], packet losses
are taken into account in the estimator models but not in the
CTC: new distributed estimators are designed to guarantee
the exponential stability of the estimation errors. To update
the estimate of the state of other agents, each agent uses its
own innovation and the innovation of its neighbors obtained
from received packets. This improves the accuracy of the es-
timates at the cost of an increased sensitivity to losses. The
control of a single agent in presence of measurements losses
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is considered in [4]. An event-triggered strategy is proposed
along with two communication protocols, with and without
acknowledgments. With acknowledgments, the most recently
received measurement can be identified. Without acknowl-
edgment, this information is no longer available. A set of
estimators is used to estimate the measurement lost during
transmission. Each estimator uses a different hypothesis of
the last packet received. As previously stated, the case of a
MAS is not considered.

This paper addresses the distributed formation control of
a MAS consisting of agents with nonlinear Euler-Lagrange
dynamics, affected by state perturbations, and communica-
tions with losses. An event-triggered control strategy is pro-
posed extending that presented in [17] to account for packet
losses. Each agent maintains several estimators of its own
state to mimic the estimators of its state maintained by its
neighbors. Each estimator considers a different hypothesis
of packet reception by these neighbors. This extends the
idea of [4], where only two estimators are maintained. Con-
trary to most studies accounting for packet losses, no explicit
feedback mechanism is considered here. Nevertheless, pack-
ets received from neighbors provide some (usually delayed)
implicit feedback which is exploited to reduce the number
of considered loss hypotheses, without requiring additional
communications. This reduces the amount of estimators of
its own state maintained by each agent. The CTC proposed
in [17] is then updated to explicitly account for the potential
loss of transmitted packets. The asymptotic convergence of
the MAS to the target formation, as well as the absence of
Zeno behavior have been proved.

Notations, assumptions, and the formation control problem
are introduced in Section 2. The distributed control law used
to drive each agent of theMAS is described in Section 3. State
estimators required for the evaluation of the distributed con-
trol law are detailed in Section 4. The impact of packet losses
on these estimators is analyzed. The CTC used by each agent
is presented in Section 5. A simulation example is presented
in Section 6. Section 7 concludes this work.

2 Notations and hypotheses

For a vector x = [x1, . . . , xn]T ∈ Rn, x > 0 indicates that
xi > 0, ∀i ∈ {1, . . . , n}. The absolute value of the i-th com-
ponent of x is |xi| and |x| = [|x1| , . . . , |xn|]T . Table 1 gathers
the main notations used in this paper.

2.1 Multi-agent system

Consider a system of N agents with indexes in N =
{1, . . . , N}. In a fixed reference frame F , let qi ∈ Rn be the
vector of coordinates of Agent i and q =

[
qT1 , . . . , q

T
N

]T ∈
RNn be the configuration of the MAS. The relative coordi-
nate vector between two agents i and j is rij = qi − qj . The
evolution of the state xi =

[
qTi , q̇

T
i

]T of Agent i is assumed
to be described by the Euler-Lagrange model

Mi (qi) q̈i + Ci (qi, q̇i) q̇i +G = ui + di, (1)

where ui ∈ Rn is the control input, Mi (qi) ∈ Rn×n is the
inertia matrix, Ci (qi, q̇i) ∈ Rn×n is the matrix of the Cori-
olis and centripetal terms for Agent i, G accounts for grav-
itational acceleration supposed to be known and constant,

N number of agents

qi coordinates vector of Agent i

q configuration vector, q =
[
qT1 , . . . , q

T
N

]T
q̇∗i target reference velocity of Agent i

rij relative coordinate vector between Agents i
and j, with rij = qi − qj

r∗ij target relative coordinate vector between
Agents i and j

r∗ target relative configuration vector with
r∗ = [r∗11, r

∗
12, ..., r

∗
1N ]T

xi state of Agent i, xi =
[
qTi , q̇

T
i

]T
x̂ji estimate of xi by Agent j with(

x̂ji
)T

=

[(
q̂ji
)T
,
(

˙̂qji

)T ]
q̂i,`i estimate of qi performed by Agent i using the

information in its `-th transmitted message and
not in the following one

eji error between qi and q̂ji
ėji error between q̇i and ˙̂qji

r̄ij estimated relative coordinate vector between
Agents i and j as evaluated by Agent i with
r̄ij = qi − q̂ij

ki index of ki-th message sent by Agent i

ti,ki transmission time of the ki-th message sent by
Agent i

π packet loss probability

κ maximum number of estimators of its own state
maintained by each agent

δji,ki indicates whether the ki-th message sent by
Agent i has been received by Agent j (δji,ki = 1)
or lost (δji,ki = 0)

kji index of the last message received by Agent j
among those sent by Agent i

kj,ii index managed by Agent i of the last message
received by Agent j among those sent by Agent i

mij potential energy coefficient between Agents i
and j

αi sum of coefficients mij for j ∈ Ni
Table 1
Main notations

and di ∈ Rn is a time-varying state perturbation satisfying
||di (t) || 6 Dmax with known Dmax. In what follows, the no-
tationsMi and Ci are used in place ofMi (qi) and Ci (qi, q̇i).

For each Agent i of the MAS, we consider the following
assumptions.

A1) Mi (qi) is symmetric positive and there exists kM > 0
satisfying ∀x ∈ Rn, xTMix 6 kMx

Tx.

A2) Ṁi − 2Ci is skew symmetric or negative definite and
∃kC > 0 satisfying ∀x ∈ Rn, xTCix 6 kC ||q̇i||xTx.
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A3) For all ξ1 ∈ Rn and ξ2 ∈ Rn, the left side of (1) can be
linearly parametrized as

Mi (qi) ξ1 + Ci (qi, q̇i) ξ2 = Yi (qi, q̇i, ξ1, ξ2) θi, (2)

see [14]. Yi (qi, q̇i, ξ1, ξ2) is a regressor matrix with known
structure, identical for all agents, and θi ∈ Rp is a vector of
constant parameters known by Agent i via, e.g., an offline
identification. Modeling and estimation errors for Yi and θi
may be incorporated in di(t).

A4) xi is measured without error.

Assumptions A1, A2, A3 and A4 have been previously con-
sidered in [9–11,14,15]. The following assumptions are con-
sidered for each Agent i:

A5) An estimate x̂ji (0) =
[

˙̂qji (0)T , ˙̂qji (0)T
]
of the state xi (0)

is known by all its neighbors j ∈ Ni and the squared norm of
the estimation errors ||qi (0)− q̂ji (0) ||2 and ||q̇i (0)− ˙̂qji (0) ||2
are bounded with bounds described in Proposition 8, see
Section 5.

A6) The velocity q̇i and acceleration q̈i are bounded,

||q̇i (t) || 6 q̇max, (3)
||q̈i (t) ||6 q̈max. (4)

Moreover, q̇i is Lipschitz, i.e., there exists Kd > 0 such that
∀t, ∀∆t,

||q̇i (t+ ∆t)− q̇i (t) || 6 Kd|∆t|. (5)

2.2 Communication model

When its CTC is satisfied, Agent i broadcasts a message to
its neighbors. The packet containing the message is either
received without error or is lost. Usually, packet losses are
due i) to collisions (packets are transmitted at the same time
instants by different agents), ii) to occlusions by obstacles
(two agents are not in line of sight), iii) to a signal-to-noise
ratio below a certain threshold (agents are too far away).

The packet loss probability between Agents i and j is denoted
πij = πji. One considers that a communication link exists
between two agents i and j if πij is less than π 6 0.5. From
this hypothesis, the communication topology of the MAS
can be described by a undirected graph G = (N , E), where
E ⊂ N × N is the set of edges of the graph. Agent i can
communicate with its Ni one-hop neighbors with indexes in
Ni = {j ∈ N| (i, j) ∈ E , i 6= j}. For each Agent j ∈ Ni, one
has therefore πij 6 π.

In this paper, we assume that G is connected and invariant
with the time. Moreover, to simplify analysis, we assume
that ∀(i, j) ∈ E , πij = π.

Communication delays are neglected: When Agent i broad-
casts its ki-th message at time ti,ki , Agent j ∈ Ni either
receives this message without error at time ti,ki or does not
receive it.

Consider a pairs of neighboring agents (i, j) ∈ E . Let
{δji,ki}ki>1 be a sequence of binary variables such that

δji,ki = 1 if the ki-th message sent by Agent i has been
received by Agent j and δji,ki = 0 else. The δji,kis are mod-
eled as realizations of time-invariant memoryless Bernoulli
processes with

Pr
(
δji,ki = 1

)
= 1− π (6)

Pr
(
δji,ki = 0

)
= π. (7)

The model (6)-(7) captures relatively accurately situation
i). Packet loss events due to collisions are often indepen-
dent from one communication trial to the next one, provided
that there is no synchronization between agents (as in the
ALOHA protocol [1]). The considered packet loss model can
also represent situation ii) provided that obstacles are small
or agents move fast enough to experience only very short
occlusions. Situation iii) is more difficult to represent. Ad-
justing the transmission power periodically, so as to reach
farther agents (even less frequently), may partly address the
problem. Nevertheless, this would lead to a time-varying
probability π of packet loss. For situations ii) and iii), one
may alternatively consider a modification of the agent com-
munication topology, which is out of the scope of this paper.
In [6,7], feedback is used to partially solve the problem, but
feedback requires extra communications and so increases the
risk of collision between packets, as described in situation i).
This is why, here, the only feedback information considered
is that received from packets sent by other agents, when this
own CTC is satisfied.

2.3 Message content

Let kij 6 kj be the index of the last message Agent i has
received from its neighbor j. When a communication is trig-
gered at time ti,ki , Agent i broadcasts a message containing
ki, ti,ki , xi (ti,ki), θi, and {k

i
j}, j ∈ Ni. By sending kij 6 kj

for all j ∈ Ni, Agent i indicates the index of the last message
received from each of its neighbors. This can be considered
as an implicit acknowledgment mechanism for the neighbors
j ∈ Ni.

When Agent j receives a message from Agent i, it updates
kji to ki. Moreover, xi (ti,ki) and θi are used to update its
estimator of the state of Agent i, as detailed in Section 4.1.
Finally, Agent j keeps track in the variables ki,jj of the value
of kij which represents the index of the last message sent by
Agent j and which has been actually received by Agent i.
The index ki,jj is used by Agent j to evaluate the knowledge
Agent i has about xj (see the example in Figure 1).

2.4 Target formation

A potentially time-varying target formation is defined by
the set R(t) =

{
r∗ij (t) , (i, j) ∈ N ×N

}
, where r∗ij (t) is the

target relative coordinate vector between Agents i and j.
Without loss of generality, the first agent is considered as the
reference agent. Any target relative coordinate vector r∗ij can
be expressed as r∗ij (t) = r∗i1 (t)− r∗j1 (t). The target relative
configuration vector is r∗ (t) = [ r∗T11 (t) . . . r∗T1N (t) ]T . Each
Agent i is assumed to only know the relative coordinate
vector with its direct neighbors r∗ij (t), j ∈ Ni. Additionally, a
constant reference velocity q̇∗1 known by all agents is imposed
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Fig. 1. Communication instants between Agents i and j and
evolution of the indexes kji and k

j,i
i of last message received;

from the packet received at time tj,1, Agent i can deduce that
Agent j has received the packet sent at time ti,3 from the
content of the packet it receives from Agent j at time tj,1.

to the MAS. The reference velocities q̇∗i are expressed as
q̇∗i = q̇∗1 + ṙ∗i1 and are assumed to satisfy

A7) For all agents, the reference velocity q̇∗i and acceleration
q̈∗i are bounded

||q̇∗i (t) || < q̇max, (8)
||q̈∗i (t) ||< q̈max, (9)

for i = 1, . . . , N . Moreover, q̇∗i is Lipschitz with constant
K∗d 6 Kd, i.e., ∀t, ∀∆t,

||q̇∗i (t+ ∆t)− q̇∗i (t) || 6 K∗d |∆t|. (10)

Our aim is to evaluate the control input for each agent in a
distributed way so that the MAS converges to R(t), while
limiting the number of communications between agents and
accounting for losses. For that purpose, the control input
of each agent has to provide an asymptotic convergence of
the MAS to the target configuration vector with a bounded
Mean-Square Error (MSE).

Proposition 1 The MAS asymptotically converges to the
target formation with a bounded MSE (bounded average
asymptotic convergence) iff there exists ε1 > 0 such that

∀ (i, j) ∈ N 2, lim
t→∞

E
(
||rij (t)− r∗ij (t) ||2

)
6 ε1, (11)

where the expectation is over all packet loss events.

2.5 Overview of the proposed approach

A control law is introduced in Section 3 to drive the MAS
to its target formation and reference speed in a distributed
way. This requires the knowledge by each agent of the state
vector of its neighbors. Since the state vector of a neighbor
Agent j is only available at Agent i when Agent j broadcasts
its state, Agent i has to maintain an estimator of the state of
each of its neighbors. This estimator is described in Section 4.

To determine the quality of the estimate of xi evaluated by its
neighbors, Agent i has also to estimate its own state xi with
the information it has transmitted to its neighbors. As soon
as a function of the error between this estimate and xi reaches
some threshold, Agent i triggers a communication to allow its
neighbors to refresh their estimate of xi. The main difficulty,
compared to [15,17], lies in the fact that estimators have to
account for packet losses. In the solution proposed here, each
agent maintains several estimates of its own state accounting
for different packet loss hypotheses, and an estimate of the

state of its neighbors with the last information received. As
will be seen in Section 4.4, the number of hypotheses can
be limited to a manageable amount determined by the last
received packet from Agent i.

Usually, a CTC relies on the error between the states of
agents and the state estimates evaluated by neighboring
agents. Here, since this error cannot be exactly obtained due
to packet losses, the CTC involves the MSE between the
state of an agent and its estimate evaluated by its neigh-
bors, see Section 5. This paper proposes different methods
to evaluate or upper-bound this MSE, which is then used to
analyze the convergence and the stability of the MAS.

3 Distributed control inputs

Section 3.1 introduces the potential energy P (q, t) of the
MAS to quantify the discrepancy between the current and
target formations. A control input minimising P (q, t) by ex-
ploiting the agent state estimators is presented in Section 3.2.

3.1 Potential energy of the MAS

As in [22], consider the potential energy of the MAS

P (q, t) =
1

2

∑N

i=1

∑N

j=1
mij ||rij − r∗ij ||2, (12)

where mij = mji are some positive or null coefficients.
P (q, t) quantifies the discrepancy between the actual and
target relative coordinate vectors. We take mii = 0, mij = 0
if (i, j) /∈ E , and mij > 0 if (i, j) ∈ E . Since G is connected,
the minimum number of non-zero coefficients mij to prop-
erly define a target formation is N − 1.

Proposition 2 The MAS asymptotically converges to the
target formation with a bounded MSE iff there exists some
ε2 > 0 such that limt→∞ E (P (q, t)) 6 ε2, where the expec-
tation is over all packet loss events.

The proof of Proposition 2 is provided in [18, Appendix A.1].

3.2 Control input with agent state estimators

In what follows, a control law is designed for each agent so
that the MAS asymptotically converges to the target forma-
tion with a bounded MSE. The control law requires only lo-
cal knowledge of the agent and can therefore be implemented
in a distributed way. It has to make P (q, t) decrease. One
introduces, as in [22],

gi =
∂P (q, t)

∂qi
=
∑
j∈Ni

mij

(
rij − r∗ij

)
, (13)

ġi=
∑
j∈Ni

mij

(
ṙij − ṙ∗ij

)
, (14)

si = q̇i − q̇∗i + kpgi, (15)

where q̇∗i = q̇∗1 − ṙ∗1i is the reference velocity of Agent i. The
vectors gi and ġi characterize the evolution with qi and q̇i of
the discrepancy between the actual and target relative co-
ordinate vectors. In (15), kp > 0 is a scalar design parame-
ter. When the agents are far from the target formation, gi is
large and determines the direction for Agent i to get closer
to the target formation.
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To make P (q, t) decrease, Agent i has to evaluate (13). The
control input of Agent i requires rij , and thus qj , j ∈ Ni.
Nevertheless, qj is only available to Agent i when it receives a
packet from Agent j containing qj , see Section 2.2. Between
the reception of two packets from Agent j, an estimate q̂ij
of qj , j ∈ Ni needs to be evaluated, see Section 4.1. Using
estimates q̂ij and ˙̂qij of qj and q̇j for all j ∈ Ni, Agent i is
able to evaluate the discrepancies r̄ij = qi− q̂ij , ˙̄rij = q̇i− ˙̂qij
between its own state and the estimate of the state of its
neighbors, as well as

ḡi =
∑
j∈Ni

mij

(
r̄ij − r∗ij

)
, (16)

˙̄gi =
∑
j∈Ni

mij

(
˙̄rij − ṙ∗ij

)
, (17)

s̄i = q̇i − q̇∗i + kpḡi. (18)

Then, the following control input (to be used in (1)) can be
evaluated in a distributed way by each Agent i ∈ N , i.e.,
using only vectors available locally

ui = −kss̄i − kg ḡi +G− Yi
(
qi, q̇i, ˙̄pi, p̄i

)
θi, (19)

where p̄i = kpḡi − q̇∗i and ˙̄pi = kp ˙̄gi − q̈∗i with the additional
design parameters kg > 0 and ks > 1 + kp (kM + 1). In
(19), s̄i maintain the formation at the reference velocity, ḡi
drives the agent to the target formation, G compensates the
action of the gravity, and Yi

(
qi, q̇i, ˙̄pi, p̄i

)
θi compensates

the inertia, Coriolis and centripetal terms of the dynamic of
the agents. The convergence properties of the MAS when
each agent applies (19) is analyzed in Section 5.

4 State estimators and packet losses

Section 4.1 introduces the estimators involved in the control
input (19) applied by each agent. Section 4.2 describes the
way Agent i estimates its own state xi, with the information
transmitted to its neighbors, to determine the quality of their
estimates of xi. In Section 4.3, the MSE between the current
state xi and its remote estimates x̂ji , j ∈ Ni is evaluated. In
Section 4.4, packets received from other agents are exploited
to improve the evaluation of the MSE of the estimate x̂ji of
xi.

4.1 Estimation of the state of other agents

To evaluate (19), Agent i has to maintain an estimate x̂ij
of the state xj of all its neighbors j ∈ Ni. Assume that
Agent j broadcasts its k-th message at time tj,k. Then, since
communication delays are neglected, depending on whether
this message has been received by Agent i, x̂ij is updated as

x̂ij
(
t+j,k
)

= δij,kxj (tj,k) +
(

1− δij,k
)
x̂ij
(
t−j,k
)
, (20)

where xj(tj,k) is obtained from the received packet, where
x̂ij

(
t−j,k

)
is the value of the state estimate at ti,ki before the

update and x̂ij

(
t+j,k

)
is its value after the update. For all

t > tj,k and up to the reception of the next packet sent by
Agent j, the components q̂ij and ˙̂qij of x̂ij evolve as

Mj

(
q̂ij

)
¨̂qij + Cj

(
q̂ij , ˙̂qij

)
˙̂qij +G = ûij . (21)

where Mj and Cj are evaluated using (2) with Yj and θ̂ij =
θj , since the structure of Yj and θj are initially known by
Agent i or have been transmitted by Agent j at time t = 0.
The estimator (21) maintained by Agent i itself requires an
estimate ûij of the control input uj evaluated by Agent j.
This estimate ûij , used by Agent i, is chosen as

ûij = −ks ˙̂εij +G− Yj
(
q̂ij , ˙̂qij , −q̈∗j , −q̇∗j

)
θ̂ij , (22)

with ˙̂εij = ˙̂qij − q̇∗j . The control input (22) only depends on
information available to Agent i. Therefore, (22) has been
built from (19) by removing all terms unknown by the neigh-
bors of Agent j. Consequently ḡj and ˙̄gj cannot be used,
and xj is replaced by x̂ij . Since (22) differs from (19), x̂ij will
progressively diverge from xj . Since each agent runs an es-
timator of its own state with the information available to
its neighbors, it can trigger a communication when the dis-
crepancy is too large. When the MAS is close to the target
formation, the term ˙̄gj becomes negligible and (19) and (22)
get closer. This choice limits the number of state estimate
hypotheses to consider, see Section 4.2.

We consider Assumptions A8 and A9 on the components of
x̂ij .

A8) The velocity ˙̂qij and acceleration ¨̂qij are bounded

|| ˙̂qij || 6q̇max (23)

||¨̂qij || 6q̈max. (24)

Moreover, ˙̂qij is Lipschitz on all intervals [tj,k, tj,k+1[, i.e.,
there exists K̂d > 0 such that ∀t ∈ [tj,k, tj,k+1[ and ∀(t +
∆t) ∈ [tj,k, tj,k+1[ one has

|| ˙̂qij (t+ ∆t)− ˙̂qij (t) || ≤ K̂d|∆t|. (25)

This assumption is consistent with that considered for q̇j ,
i.e., Assumption A6, since between two communication time
instants, (21) is similar to (1).

A9) There exists emax > 0 such that the norm of the esti-
mation error satisfies

||qi (t)− q̂ji (t) || 6 emax. (26)

This assumption is reasonable for MAS evolving in some
limited geographical area.

4.2 Multi-hypothesis state estimates

The estimate q̂ji of the state of Agent i, evaluated by Agent j,
only depends on the information provided by Agent i. The
estimate q̂ji is reset to qi as soon as a message sent by Agent i
is received by Agent j, see (20). Consequently, when Agent i
has sent ki messages, and wants to evaluate an image of its
own state as computed by one of its neighbors, ki different
hypotheses have to be considered, each of which is associated
to a different estimator of qi at time t ∈ [ti,ki , ti,ki+1[:

• A first estimator considers the ki-th packet as received,
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• A second estimator considers the ki-th packet as lost, but
the ki − 1-th packet as received,

• ...

• A last estimator considers that no packet has been re-
ceived, and uses the initial state estimate x̂ji (0).

At time t ∈ [ti,ki , ti,ki+1[, the state estimates corresponding
to these hypotheses are denoted as

x̂i,`i (t) =
[
q̂i,`i (t) , ˙̂qi,`i (t)

]
, (27)

with ` = 0, . . . , ki and x̂i,kii = x̂ii.

Since ki can become very large, we impose that Agent imain-
tains at most κ estimates of xi, denoted x̂(1)i (t) , ..., x̂

(κ)
i (t).

For all t ∈ [ti,ki , ti,ki+1[, ki > κ, one has x̂
(1)
i (t) =

x̂i,kii (t) , . . . , x̂
(κ)
i (t) = x̂i,ki−κ+1

i (t). These estimates evolve
according to the dynamics (21)-(22) introduced in Sec-
tion 4.1. When a new packet is sent by Agent i at time ti,ki+1,
the estimates are updated as

x̂
(1)
i

(
t+i,ki+1

)
= xi

(
t−i,ki+1

)
. (28)

x̂
(`+1)
i

(
t+i,ki+1

)
= x̂

(`)
i

(
t−i,ki+1

)
, ` = 1, . . . , κ− 1. (29)

4.3 Expected value of the estimation error of xi (t)

At time t ∈ [ti,ki , ti,ki+1[, Agent i has sent ki packets. Let

pjki,` = Pr
(
δji,` = 1, δji,`+1 = 0, . . . , δji,ki = 0

)
(30)

with 0 6 ` 6 ki, be the probability that the `-th packet has
been received by a given neighbor j and that all packets from
the `+ 1-th to the ki-th have been lost. By convention,

pjki,0 = Pr
(
δji,1 = 0, . . . , δji,ki = 0

)
and

pjki,ki = Pr
(
δji,ki = 1

)
. (31)

Note that pjki,` only depends on the packet loss probability
π of the packet loss model (6)-(7), and does not depend on
the neighbor index j, which is omitted in what follows.

Proposition 3 One has

p1,1 = 1− π (32)
p1,0 = π. (33)

For all ki > 0 and ` < ki,

pki,` = πpki−1,`. (34)

Moreover

pki,ki = 1− π. (35)

The proof of Proposition 3 is in Appendix A.

At time t ∈ [ti,ki , ti,ki+1[, the estimation error of the coor-
dinates of Agent i, as evaluated by Agent j, is

eji (t) = q̂ji (t)− qi (t) . (36)

Since Agent i does not know the index of the last packet
received by Agent j among those it has sent, Agent i cannot
evaluate (36). Alternatively, Agent i can evaluate the mean
square value of eji (t) considering the estimates q̂i,`i and the
associated probabilities pki,`

E
(
||eji (t) ||2

)
=

ki∑
`=0

pki,`||q̂
i,`
i (t)− qi (t) ||2. (37)

Since Agent i maintains only κ estimators of xi, it cannot
evaluate (37) when ki > κ. Nevertheless, using Assump-
tionA9, the MSE (37) can be upper-bounded.

Proposition 4 The MSE (37) can be expressed or upper-
bounded as{

E
(
||eji (t) ||2

)
=
∑ki
`=0 pki,`||q̂

i,`
i (t)− qi (t) ||2 if ki 6 κ

E
(
||eji (t) ||2

)
6 E

(∥∥eji (t)
∥∥2) else,

(38)
where

E
(∥∥∥eji (t)

∥∥∥2) =

ki∑
`=ki−κ+1

pki,`

∥∥∥q̂i,`i (t)− qi (t)
∥∥∥2

+ min
({
eji,ki (t) , πκe2max

})
, (39)

with
eji,ki (t) = 4q̇maxemaxπ

κ (t− ti,ki)

+ πE
(∥∥∥eji (t−i,ki)∥∥∥2)

−
ki∑

`=ki−κ+1

pjki,`

∥∥∥q̂i,`i (
t+i,ki

)
− qi

(
t+i,ki

)∥∥∥2 . (40)

Similar bounds can be obtained for E
(∥∥ėji (t)

∥∥2), E(∥∥eji (t)
∥∥4),

and E
(∥∥ėji (t)

∥∥4), see Appendix B.

The proofs of Proposition 4 is provided in [18, Appendix
A.6].

Using (38), Agent i is able to determine the quality of the
estimate of xi evaluated by its neighbors. The choice of κ
impacts the upper bounds of E

(
||eji (t) ||2

)
and E

(
||ėji (t) ||2

)
.

A large value of κ reduces the influence of emax and q̇max on
the MSE. Nevertheless, κ should not be chosen too large to
limit the number of estimators of its own state maintained
by Agent i.

4.4 Estimates accounting for received packets (implicit
acknowledgement)

Consider Agent i, the time interval [ti,ki , ti,ki+1[, and assume
that [t

i,ρ
j
i
, t
i,ρ

j
i+1

[ is the time interval during which the last

6



packet has been received from Agent j. This packet contains
the index kji of the last message received by Agent j and sent
by Agent i, as illustrated by Figure 1. This index is kept by
Agent i in kj,ii , see Section 2.2. This implicit acknowledgment
can significantly improve the evaluation of the mean-square
values of eji (t) and ėji (t). From this message, Agent i knows
that all packets sent in the time interval [t

i,k
j
i+1

, t
i,ρ

j
i+1

[ have
not been received by Agent j.

Consider again the example in Figure 1. The packet received
in [ti,ki , ti,ki+1[ with kji = ki− 2 indicates that packet ki− 2
has been received, but neither packet ki − 1 nor ki.

Using this knowledge, Agent i can evaluate the probability

pj
ki,`|k

j,i
i ,ρ

j
i

= Pr
(
δji,` = 1,

∑ki

m=`+1
δji,m = 0∣∣∣∣δji,kji = 1,

∑ρ
j
i

m=k
j,i
i +1

δji,m = 0

)
(41)

that the `-th message sent by Agent i (with kji 6 ` 6 ki) has
been received by Agent j and that all following messages,
including the ki-th have been lost. By convention,

pj
ki,ki|k

j,i
i ,ρ

j
i

= Pr

(
δji,ki = 1|δj

i,k
j,i
i

= 1,
∑ρ

j
i

m=k
j,i
i +1

δji,m = 0

)
.

(42)

Proposition 5 As long as Agent i has not received any mes-
sage from Agent j, pjki,`|0,0 is evaluated for all ki > 0 and
` 6 ki as

pjki,`|0,0 = (1− π)πki−` if ` > 0, (43)

pjki,0|0,0 = πki else. (44)

If Agent i receives a message from Agent j at tj,kj ∈
[ti,ki , ti,ki+1[ containing kji , then k

j,i
i = kji , ρ

j
i = ki, and

pj
ki,k

j,i
i |k

j,i
i ,ki

= 1 (45)

pj
ki,`|k

j,i
i ,ki

= 0 ∀` 6 ki, ` 6= kj,ii . (46)

Consider t ∈ [ti,ki+n, ti,ki+n+1[ with n > 0 and assume that
the last message received by Agent i from Agent j has been at
time tj,kj ∈ [ti,ki , ti,ki+1[. Consequently, kj,ii 6 ki, and one
has still ρji = ki. Then pj

ki+n,`|k
j,i
i ,ki

is evaluated recursively

for all ` = 0, . . . , ki + n as

pj
ki+n,k

j,i
i |k

j,i
i ,ki

= πpj
ki+n−1,k

j,i
i |k

j,i
i ,ki

(47)

pj
ki+n,`|k

j,i
i ,ki

= πpj
ki+n−1,`|kj,ii ,ki

if ki < ` < ki + n

= 0 if ` < ki and ` 6= kj,ii (48)

pj
ki+n,ki+n|k

j,i
i ,ki

= 1− π. (49)

The proof of Proposition 5 is in [18, Appendix A.4].

Table 2 illustrates the evolution of pj
ki+n,`|k

j,i
i ,ki

as a function

of n when κ = 3, ki = 5, and kji = 3.

Proposition 5 can be used by Agent i to evaluate
E
(
||eji (t) ||2

)
, taking into account the implicit acknowledge-

ment provided by neighbors as follows.

Proposition 6 Consider some Agent i and ki > 0. Assume
that Agent i knows the index kji of the last message sent
by Agent i and received by some neighbor Agent j. At time
t ∈ [ti,ki+n, ti,ki+n+1[, one has

E
(∥∥∥eji (t)

∥∥∥2 |kj,ii ) 6 E
(∥∥∥eji (t)

∥∥∥2 |kj,ii ) , (50)

where

E
(∥∥∥eji (t)

∥∥∥2 |kj,ii ) =

ki+n∑
`=`min

pj
ki+n,`|k

j,i
i ,ki

∥∥∥q̂i,`i (t)− qi (t)
∥∥∥2

+ 1ki>κ1
ki−k

j,i
i >κ

×min
({
eji,ki+n (t) , σji

(
ki + n, κ|kj,ii , ki

)
e2max

})
(51)

with `min = max ({0, ki + n− κ+ 1}), σji
(
ki + n, κ|kj,ii , ki

)
=

1−
∑ki
`=ki−κ+1 p

j

ki+n,`|k
j,i
i ,ki

and

1ki>κ =

{
1 if ki > κ

0 else,
(52)

eji,ki+n (t) = 4q̇maxemaxσ
j
i

(
ki + n, κ|kj,ii , ki

)
(t− ti,ki+n)

+ πE
(∥∥∥eji (t−i,ki+n)∥∥∥2 |kj,ii )

−
ki+n∑
`=`min

pj
ki+n,`|k

j,i
i ,ki

∥∥∥q̂i,`i (
t+i,ki+n

)
− qi

(
t+i,ki+n

)∥∥∥2 . (53)

Contrary to (38), (51) depends now on the index of the
neighbor Agent j via kj,ii , and so is updated by its neighbor
when Agent i receives a packet, in addition to the update
made each time Agent i broadcast a message as in (38).
Note that the value of σji tends to πκ like in Proposition 4
if Agent i does not received implicit acknowledgement from
Agent j.

Similar results can be obtained for E
(
||ėji (t) ||2|kj,ii

)
. In

what follows, the notation E(||eji (t)||
2) is used in place of

E(||eji (t)||
2|kj,ii ).

5 Event-triggered communications accounting
for packet losses

This section presents a CTC involving one of the state es-
timators introduced in Section 4. Let mmin = mini,j=1,...,N

{mij 6= 0}, mmax = maxi,j=1,...,N {mij}, Nmin = mini=1...N

{Ni}, αi =
∑N
j=1mij , αM = maxi=1,...,N αi. The CTC (54)

presented in Theorem 7 is designed to ensure an asymp-
totic convergence of the MAS to the target formation with
a bounded MSE.

Theorem 7 Consider a MAS with agent dynamics given by
(1), the communication protocol defined in Section 2.2, and
the control law (19). In absence of communication delays,
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ki + n

5 message 6 7 8 9

from Agent j

`

0 π5 0 0 0 0 0

1 (1− π)π4 0 0 0 0 0

2 (1− π)π3 0 0 0 0 0

3 (1− π)π2 1 π π2 π3 π4

4 (1− π)π 0 0 0 0 0

5 1− π 0 0 0 0 0

6 ∗ ∗ 1− π (1− π)π (1− π)π2 (1− π)π3

8 ∗ ∗ ∗ 1− π (1− π)π (1− π)π2

9 ∗ ∗ ∗ ∗ 1− π (1− π)π
10 ∗ ∗ ∗ ∗ ∗ 1− π

Table 2
Probabilities p

ki+n,`|k
j,i
i ,ki

that the `-th message sent by Agent i has been received by Agent j and all following messages
including the ki-th one have been lost, for n ∈ [0, . . . , 5], ki = 5; ∗ represents probabilities not defined. In the time interval
[tki,5, tki,6[, a message is received from Agent j indicating that the last message it has received from Agent i is message ki = 3.

and with a packet loss model satisfying (6)-(7), if the com-
munications are triggered by each Agent i of the MAS when
the following condition is satisfied

αM

[
N∑
j=1

mij

(
keE

(
||eji ||

2
)

+ kpkME
(
||ėji ||

2
))

+ kpk
2
C

×
N∑
j=1

mij

(
2E
(
||eji ||

2
)
|| ˙̂qij ||2 + E

(
||eji ||

4
)

+ E
(
||ėji ||

4
))]

+ kgbi||q̇i − q̇∗i ||2 > kss̄
T
i s̄i + kpkg ḡ

T
i ḡi + η (54)

where ke = ksk
2
p +kgkp +

kg
bi
, η and bi are design parameters

such that

η > 4kgbiq̇
2
max (55)

for some 0 < bi <
ks

kskp+kg
, then

(a) the MAS asymptotically converges to the target formation
with a bounded MSE such that

lim
t→∞

E
(

1

2
P (q, t)

)
6 ξ, (56)

where ξ = N
kgc3

[
D2

max + η
]
,

c3 =
min {k1, kp}min

(
1, Nminmmin

mmax

)
max {1, kM}

(57)

and k1 = ks − (1 + kp (kM + 1)).

(b) one has ti,ki+1 − ti,ki > τmin for some τmin > 0.

The proof of Theorem 7(a) is given in [18, Appendix A].
The absence of Zeno behavior is shown by the existence of
a minimum inter-event time τmin, see Theorem 7(b), which
proof is in [18, Appendix B]. Each Agent i has to evaluate
the expected values of ||eji ||

2, ||ėji ||
2, ||eji ||

4 and ||ėji ||
4 for all

j ∈ Ni. This can be done using (38) or (51) as detailed in
Sections 4.3 and 4.4.

The CTC proposed in Theorem 7 is analyzed considering
that the state estimators and the communication protocol

are such that for all i ∈ N and for all agent j ∈ Ni that has
received its last message from Agent i at t` ∈ [ti,ki−κ, ti,ki [
one has

x̂i,`i (t) = x̂ji (t) (58)

all t ∈ [t`, ti,ki [. If Agent j has received the `-th message from
Agent i, its estimation x̂ji (t) of xi (t) is equal to x̂i,`i (t), one
of the κ estimators maintained by Agent i. This property is
actually satisfied by the communication protocol described
in Section 2.2 and the state estimator described in Section 4.
Alternative estimators can be used.

The CTC (54) is satisfied for Agent i mainly when E(||eji ||
2)

and E(||ėji ||
2) become large. Thus, it is preferable to use the

knowledge of kj,ii provided by the proposed implicit feedback
mechanism to calculate (51) rather than using (38).

A large packet loss probability π results in large values of
E(||eji (t) ||2) and E(||ėji (t) ||2), and therefore leads to an in-
crease in the number of communications to compensate for
the losses.

When π is a conservative upper-bound of the packet loss
probabilities πij , (i, j) ∈ E , the upper bounds of E(||eji (t) ||2)

and E(||ėji (t) ||2) evaluated by Agent i will be conservative.
This leads to more communications than necessary. This ef-
fect may be limited by exploiting the implicit acknowledge-
ment.

The right hand side of the CTC (54) is proportional to
ḡi(t) and s̄i(t), i.e., to the potential energy of the formation
P (q, t), which is large when agents are far from the target
formation. When agents are far from the target formation,
the discrepancy between (19) and (22) is large. This lead to a
fast increase of E(||eji (t) ||2) and E(||ėji (t) ||2). The fact that
the right hand side of the CTC (54) is large too prevents the
CTC from being satisfied too often. When agents are close
to the target formation, even if the right hand side of the
CTC (54) is small, the fact that (22) is close to (19) leads
to E(||eji (t) ||2) and E(||ėji (t) ||2) increasing slowly. Conse-
quently, less communications will be required. See Section 6
for an illustration.

An analysis of the impact of the values of the parameters on
the reduction of communications has been presented in [17] in
absence of packet losses. These results can be extended to the
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case with packet losses. The choice of the parameters αM, kg,
kp and bi also determines the number of broadcast messages.
Choosing the coefficients mij such that αi =

∑N
j=1mij is

small leads to a reduction in the number of communications
triggered resulting from the satisfaction of (54), at the cost
of a less accurate formation.

The following proposition introduces a condition on the ini-
tial estimate of the states of agents to guarantee that (54)
in Theorem 7 is not satisfied at t = 0.

Proposition 8 If a common initial estimate x̂ji (0) is known
by all the neighbors j ∈ Ni of each Agent i such that

|| ˙̂qji (0) || = 0, ||eji (0) ||2 6 Hi, ||ėji (0) ||2 6 Hi (59)

where Hi > 0 is defined for each Agent i as

Hi =

√
(ke + kpkM )2 + kpk2Cξi − (ke + kpkM )

2kpk2C
(60)

ξi =
kp (ks + kg)

αMαi
ḡTi ḡi (0) +

η

αMαi
, (61)

then the condition (54) in Theorem 7 is guaranteed not to be
satisfied at t = 0.

The proof of Proposition 8 is given in [18, Appendix A7].
Hi = 0 corresponds to the case where the initial state xi(0)

is known by all neighbors of Agent i, i.e., x̂ji (0) = xi(0)
∀j ∈ Ni. The value of the bound Hi is proportional to ḡi (0),
i.e., the initial value of the potential energy of the formation.
Thus, the most distant from the target formation agents are,
the largest the initial error of the estimate x̂ji (0) can be tol-
erated. We have assumed in Proposition 8 that all neighbors
of Agent i share the same estimate x̂ji (0) of xi(0). This al-
lows Agent i to initialize the estimator of its own state by
x̂ji (0) and avoids using a different estimator for each of its
neighbors. When this hypothesis is not satisfied initially, in
practice, the local estimators of xi and those performed by
neighbors are likely to coincide only after few communica-
tions. In practice, the formation can still be achieved even if
the initial conditions do not satisfy Proposition 8.

6 Example

Consider a MAS of N = 6 identical surface ships with co-
ordinate vectors qi = [ xi yi ψi ]T ∈ R3, i = 1 . . . N , in a
local Earth-fixed frame. For Agent i, (xi, yi) represents its
position and ψi its heading angle. The agent dynamics are
expressed in the body frame as

Mb,iv̇i + Cb,i (vi) vi +Db,ivi = ub,i + db,i, (62)

where vi is the velocity vector in the body frame. The values
of Mb,i, Db,i, and Cb,i (vi) are found in [8]. The model (62)
may be expressed as (1) with G = 0 using an appropriate
change of variables detailed in [8]. The parameters of (19) are
kM = ||Mi|| = 33.8, kC = ||Ci (1N ) || = 43.96, kp = 2, kg =
20, ks = 1 + 6 (kM + 1), bi = 1/kg, emax = 20, q̇max = 2 and
q̈max = 1. In the simulations, the following state estimator
x̂ij is used for all t ∈ [tj,k, tj,k+1[ with components[

˙̂qij (t) , ¨̂qij (t)
]

=
[

˙̂qij (ti,ki) , 0
]

(63)

q̂ij (t) = q̂ij (tj,k) + (t− tj,k) ˙̂qij (tj,k) , (64)

Fig. 2. Evolution of P (q, T ) and Rcom for different values
of Dmax and π, when η = 100, the estimator (21) is con-
sidered for the dynamics of neighbors agents, as well as
E
(∥∥eji (t)

∥∥2 |ki,jj ) from (51).

x̂ij is updated using (20).

Starting from some initial configuration, the MAS has to
reach an hexagonal target formation. From [22], one ob-
tains mij = 0 ∀j, except mi,(i+1) = mi,(i−1) = 0.185 and
mi,(i+3) = 0.0926. One has αi =

∑N
j=1mij = 0.463, for

i = 1 . . . N and αM = 0.463, see also [18] for more de-
tails. One takes κ = 6 for several value of π 6 0.3. The
simulation duration is T = 4 s with an integration step
size ∆t = 0.01 s. The perturbation di (t) is assumed con-
stant over each interval [k∆t, (k + 1) ∆t[. The components
of Di(t) are independent realizations of zero-mean uniformly
distributed noise U

(
−Dmax/

√
3, Dmax/

√
3
)
and are thus

such that ||di (t) || 6 Dmax. Let Nm be the total number of
messages transmitted during a simulation. The performance
of the proposed approach is evaluated with

Rcom = Nm/Nm (65)

where Nm = NT/∆t > Nm. Rcom is the ratio between the
number of communications required using the proposed ap-
proach and the number of communications that would be
obtained with a communication triggered at each sampling
time instant.

Figure 2 shows the performance of the proposed approach
with the CTC (54) for different values of the packet loss
probability π and disturbance boundDmax. Results are aver-
aged over 50 independent realizations of the noise and of the
packet loss events. As expected, the number of communica-
tions required for the MAS to converge increases with π and
Dmax. The influence of η on the number of communication
is detailed in [18]. Increasing η leads to a reduction of Rcom
but increases the potential energy P (q, T ), and thus the dis-
crepancy with respect to the target formation at t = T . Fig-
ure 3 compares results of the proposed approach obtained
without (a) and with (b) the exploitation of the index kj,ii
of the last message sent by Agent i and received by some
neighbor Agent j. Using this implicit acknowledgement from
neighbors, and thus E(||eji (t)||

2|kij) instead of E(||eji (t)||
2) in

the CTC, convergence is obtained with 75% less messages.

Figure 4 shows the influence of κ on the number of commu-
nication Rcom. One observes that increasing κ reduces Rcom,
until Rcom reaches a minimum value (when k = 3). Increas-
ing further κ does not reduce Rcom.
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(a) without acknowledgement (b) with acknowledgement

Fig. 3. Results of the proposed method using an estimated
of the state error (a) via (38) (implicit acknowledgement not
used), (b) via (51) (implicit acknowledgement used) when
Dmax = 200 and π = 0.2

Fig. 4. Evolution of Rcom as a function of κ when η = 100,
π = 0.2 and Dmax = 100. E

(∥∥eji (t)
∥∥2 |ki,jj ) given by (51) is

considered in the CTC.

When κ is small, E
(∥∥eji (t)

∥∥2 |ki,jj ) and E
(∥∥ėji (t)

∥∥2 |ki,jj )
are conservative, which leads to more communications than
necessary. When κ > 3, the additional terms in the upper
bound have a negligible impact. Rcom is large due to emax,
q̇maxans q̈max which influence the value of E

(∥∥eji (t)
∥∥2 |ki,jj ).

7 Conclusions

This paper addresses the problem of communication reduc-
tion in distributed formation control of a MAS with Euler-
Lagrange dynamics in presence of packet losses and state
perturbations.

To evaluate its control input, each agent maintains estima-
tors of the states of its neighbors as well as multiple esti-
mators of its own state accounting for different packet loss
hypotheses in the communications with its neighbors. Using
these estimators, each agent is then able to compute the ex-
pected value of the estimation error of its own state as eval-
uated by its neighbors. An implicit acknowledgement from
other agents may be used to evaluate more accurately the
estimation error. A distributed CTC is then proposed, in-
volving these estimation errors. The behavior of the MAS is
analyzed using stochastic Lyapunov functions in [18]. The
convergence to the target formation and the absence of Zeno

behavior have been proven. Simulations illustrate the effec-
tiveness of the proposed approach. In future work, communi-
cation delays will also be considered along with packet losses.
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A Proof of Proposition 3

Consider first pki,`:

pjki,` = Pr
(
δji,` = 1, δji,`+1 = 0, . . . , δji,ki = 0

)
= Pr

(
δji,ki = 0|δji,` = 1, δji,`+1 = 0, . . . , δji,ki−1 = 0

)
× Pr

(
δji,` = 1, δji,`+1 = 0, . . . , δji,ki−1 = 0

)
(A.1)

Then, using (6)-(7), one gets

pjki,` = πpjki−1,`. (A.2)

Consider now pjki+n,ki+n. Using (6)-(7), one gets

pjki+n,ki+n = 1− Pr
(
δji,ki+n = 0

)
= 1− π. (A.3)

Note that pjki+n,ki+n is independent of j because no implicit
acknowledgment is exploited in Proposition 3.

B Upper-bounds of E
(
||ėji (t) ||2

)
, E

(
||eji (t) ||4

)
and E

(
||ėji (t) ||4

)
As for E

(∥∥eji (t)
∥∥2), one gets

E
(∥∥∥ėji (t)

∥∥∥2) =

ki∑
`=`min

pki,`

∥∥∥ ˙̂qi,`i (t)− q̇i (t)
∥∥∥2

+ 1ki>κ min
({
ė
j
i,ki (t) , 4σji (ti,ki)q̇

2
max

})
(B.1)

E
(∥∥∥eji (t)

∥∥∥4) =

ki∑
`=`min

pki,`

∥∥∥q̂i,`i (t)− qi (t)
∥∥∥4

+ 1ki>κ min
({
ej,2i,ki (t) , σji (ti,ki)e

4
max

})
(B.2)

E
(∥∥∥ėji (t)

∥∥∥4) =

ki∑
`=`min

pki,`

∥∥∥ ˙̂qi,`i (t)− q̇i (t)
∥∥∥4

+ 1ki>κ min
({
ė
j,2
i,ki (t) , 16σji (ti,ki)q̇

4
max

})
(B.3)

with `min = max ({0, ki + n− κ+ 1}) and

ė
j
i,ki (t) = 8q̇maxq̈maxσ

j
i (ti,ki) (t− ti,ki)

+ πE
(∥∥∥ėji (t−i,ki)∥∥∥2)− ki∑

`=`min

pjki,`

∥∥∥ ˙̂qi,`i
(
t+i,ki

)
− q̇i

(
t+i,ki

)∥∥∥2
(B.4)

ej,2i,ki (t) = 8q̇maxe
3
maxσ

j
i (ti,ki) (t− ti,ki)

+ πE
(∥∥∥eji (t−i,ki)∥∥∥4)− ki∑

`=`min

pjki,`

∥∥∥q̂i,`i (
t+i,ki

)
− qi

(
t+i,ki

)∥∥∥4
(B.5)

ė
j,2
i,ki (t) = 32q̈maxq̇

3
maxσ

j
i (ti,ki) (t− ti,ki) (B.6)

+ πE
(∥∥∥ėji (t−i,ki)∥∥∥4)− ki∑

`=`min

pjki,`

∥∥∥ ˙̂qi,`i
(
t+i,ki

)
− q̇i

(
t+i,ki

)∥∥∥4 .
(B.7)
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